Aktuální semestr
Měření a protokoly
Zadání LS 2024/2025
Rozvrh LS 2024/2025
... vše o fyzikálním praktiku najdete právě na těchto stránkách
UK • MFF • KVOF
Aktuální semestr
Měření a protokoly
Zadání LS 2024/2025
Rozvrh LS 2024/2025
Toto je starší verze dokumentu!
Základní vztahy a klíčová slova:
trioda, zesilovač, zatěžovací přímka
Poznámky
Je-li anoda triody připojena ke zdroji anodového napětí Uz přes anodový odpor Ra, pak zatěžovací přímka vytíná na ose napětí anodové charakteristiky úsek Uz a na ose proudu úsek Uz/Ra. Tak ji lze snadno zakreslit. Přímka ukazuje, jak v důsledku spádu napětí na anodovém odporu klesá napětí na anodě, jestliže roste anodový proud. Je zřejmé, že pracovní bod triody lze určit graficky jako průsečík zatěžovací přímky s anodovou charakteristikou triody změřenou pro odpovídající napětí mřížky Ug. Pro vynášení frekvenční charakteristiky je vhodné užít logaritmické stupnice jak pro frekvence, tak pro zesílení. Místo absolutních hodnot zesílení Uvýst/Uvst (nebo též spolu s nimi) lze na svislou osu vyznačit velikost zesílení v decibelech [dB]:
Adb = 20.log(Uvýst/Uvst)
Abychom vysvětlili výhody tohoto způsobu zobrazení, ukažme, jak se projevuje například vliv vazebního kondensátoru Cg1 spolu s mřížkovým odporem Rg (viz obr. 1 na stránce 98 v [1]). Snadno zjistíme, že zesílení je pak úměrné výrazu:
ω τ (1 + ω2τ2)1/2
kde τ je časová konstanta = Rg1.Cc1. Pro ω « 1/τ je tedy zesílení prakticky konstantní, pro ω = 1/τ poklesne v poměru sqrt(2):1, čili přibližně o 3 dB a pro ω » 1/τ klesá zesílení úměrně frekvenci, tedy s poklesem přiblžně o 6 dB na oktávu (oktávou se přitom rozumí změna frekvence na dvojnásobek či na polovinu). Uvažovaná kombinace kondenzátoru s odporem tedy propouští vyšší frekvence a potlačuje nízké, je to jednoduchý případ tzv. hornofrekvenční propusti. Ve zmíněném grafickém zobrazení bude závislost mít při vysokých frekvencích vodorovnou asymptotu, při nízkých frekvencích asymptotu se směrnicí 1 (použijeme-li na obou osách stejného měřítka). Obě asymptoty se protínají při frekvenci ω = 1/τ, (tzv. frekvenci zlomu) a zhruba vystihují průběh frekvenční charakteristiky. Charakteristiku zesilovače při nízkých frekvencích ovšem může ovlivnit ještě další zlom způsobený kondenzátorem Cv spolu s odporem Rg2 (v zapojení na obr. 3 hraje roli tohoto odporu vstupní odpor voltmetru). V oblasti vysokých frekvencí je situace obdobná, obrázek je ovšem zrcadlově symetrický a dolnofrekvenční propust, která snižuje zesílení při nejvyšších frekvencích, je tvořena vstupní kapacitou nízkofrekvenčního voltmetru, kterým měříme zesílené napětí, a paralelní kombinací odporů Ra, Rg2 a vnitřního odporu elektronky.