Předchozí kapitola Předchozí podkapitola Obsah kapitoly Příklady Průvodce Následující podkapitola Následující kapitola


4.1 Kapalina a plyn

Název tekutina užíváme jako společné označení pro kapalinu a plyn. Mechanika tekutin značí mechaniku kapalin (hydromechaniku) a mechaniku plynů (aeromechaniku). Mechanické chování kapalin a plynů je do té míry podobné, že je výhodné jeho obecný popis dělat společně a pouze při diskusi dílčích výsledků rozlišit zvláštnosti obou druhů látek.

Nejprve se budeme zabývat dokonalou tekutinou. Je to spojitě rozprostřená látka (kontinuum), pro kterou v každém bodě platí rovnice

rovnice 4_1. (4,1)

Napětí je čistý tlak stejné velikosti na všech rovinách proložených daným bodem. Smyková napětí (složky , pro které je ) jsou v dokonalé tekutině vždy nulová.

Dokonalá tekutina se nebrání změně tvaru. Z úvah článku 2.1, např. z rovnice (2,42) , pak plyne, že modul pružnosti ve smyku je pro takovou látku nulový;

rovnice 4_2. (4,2)

Podmínka ukazuje, že v dokonalé tekutině nelze realizovat tahové napětí.

U dokonalé kapaliny předpokládáme dále, že její hustota r je ve všech bodech a za působení libovolných vnějších sil konstantní;

rovnice 4_3. (4,3)

Jelikož působící síly mohou dle předpokladu být pouze tlakové, formulujeme obvykle podmínku (4,3) větou: Dokonalá kapalina je nestlačitelná.

Užijeme-li znovu výsledků článku 2.1, můžeme říci, že první invariant tenzoru deformace je pro dokonalou kapalinu roven nule;

rovnice 4_4. (4,4)

V rovnici (2,31) je dle (4,4) na pravé straně nula a na levé straně obecně nenulový výraz . Konstanta dokonalé tekutiny musí tedy být nekonečně velká. Dle rovnice (2,35) je konstanta rovna trojnásobku modulu objemové pružnosti , tedy modul objemové pružnosti dokonalé tekutiny je nekonečně velký;

rovnice 4_5. (4,5)

Dokonalý plyn je stlačitelný. Můžeme-li pokládat hustotu plynu pouze za funkci tlaku p,

rovnice 4_6, (4,6)

označujeme plyn jako barotropní.

 

Je-li hustota dokonalé kapaliny konstantní, musí jisté její množství zaujímat vždy stejný objem. Plyn je rozpínavý, a proto objem jistého množství plynu je dán objemem uzavřené nádoby, v které je přechováván.

Abstrakce dokonalé tekutiny vystihuje malý odpor reálných kapalin a plynů k tvarové změně. Odpor reálných tekutin k tvarové změně je však konečný a vystihujeme jej způsoby popsanými v čl. 2.2. Chování newtonovské viskózní tekutiny v obecném proudovém poli probereme v článku 4 této kapitoly. Představa nestlačitelnosti dokonalé kapaliny odpovídá velkým hodnotám modulu objemové pružnosti reálných kapalin ve srovnání s jejich malým odporem k tvarovým změnám. Objemová stlačitelnost reálných kapalin bývá obvykle větší než objemová stlačitelnost pevných látek, ale poměr jejich objemové stlačitelnosti k odporu vůči tvarovým změnám vystiženým viskozitou h je výrazně větší než stejný poměr u pevných látek, u nichž předpokládáme velký odpor k tvarovým změnám vystižený modulem smyku G.


 

Představy o struktuře plynů a kapalin, z nichž lze odůvodnit vlastnosti zabstrahované rovnicemi (4,1)(4,6) , jsou vyloženy např. v [5], kap. 4 nebo [51]. Způsoby měření tlaku, který je základní veličinou charakterizující stav tekutiny, jsou popsány v [6], čl. 2.5.1.

 


Předchozí kapitola Předchozí podkapitola Obsah kapitoly Příklady Průvodce Následující podkapitola Následující kapitola