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Abstract. Empirical models for predicting the location of the magnetopause currently
in use typically rely on the identification of individual magnetopause crossings, and their
fitting by a predefined magnetopause shape. Although the assumed analytical shape formula
may be rather complicated and general, it represents a principal apriori limitation of the
model. We remove this limitation by applying an approach based on an artificial neural
network. A large data set of about 15,000 subsolar magnetopause crossings is used for the
training, resulting in a direct data-driven model predicting the magnetopause radial distance
as a function of relevant solar wind parameters without any additional assumptions. The
model performance is evaluated using the testing data set of magnetopause crossings and
by a comparison with a former widely used empirical model.

Introduction

Magnetopause is a dynamic boundary that separates the Earth’s magnetic field from the shocked
solar wind, protecting the Earth from this continuous stream of charged particles. The shape and loca-
tion of the magnetopause are strongly influenced both by upstream solar wind and internal conditions
within the magnetosphere [Němeček et al., 2020]. Accompanied by the first observations of the magne-
topause location [Cahill and Amazeen, 1963] using the three-component magnetometer carried by the
Explorer 12 spacecraft, the magnetohydrodynamic (MHD) approach established a basic understanding
of the interaction of the Earth’s magnetic field with the solar wind [Spreiter et al., 1966]. An empirical
magnetopause model based on the identified crossings was offered by Fairfield [1971]. Since then, an in-
creasing number of identified magnetopause crossings and continuous monitoring of the corresponding
solar wind parameters gradually helped to constructed more advanced magnetopause models.

The main parameter affecting the position of the magnetopause is upstream dynamic pressure
[Formisano et al., 1979; Petrinec and Russell, 1996; Lu et al., 2011; Boardsen et al., 2000]. Inter-
planatary Magnetic Field (IMF) Bz component is believed to be the second most influential factor de-
termining magnetopause position which is discussed by Sibeck et al. [1991]. However, the large data set
of magnetopause crossings obtained by the Interball spacecraft has revealed apparently no dependence
of the subsolar magnetopause to the IMF Bz [Verigin et al., 2009]. Some recent studies suggest that it
may be the IMF magnitude actually playing the role [Li et al., 2023].

In addition to the IMF Bz and IMF strength, the IMF cone angle appears to be another factor
affecting the magnetopause location [Dušı́k et al., 2010]. According to Case and Wild [2013], the IMF
clock angle has no influence on the magnetopause location. However, the statistical analysis by Nguyen
et al. [2021a] and Nguyen et al. [2021b] demonstrates the effect of IMF By component in the flaring
area. MHD simulations further indicate that magnetopause cross-section is extended along (or opposite)
to the IMF direction and as compared to the direction perpendicular to the IMF [Lu et al., 2013; Liu
et al., 2015]. Despite large experimental uncertainties, this seems to be confirmed by analyses of large
magnetopause crossing data sets [Lavraud et al., 2013; Aghabozorgi et al., 2023].

A significant effort, both theoritical and experimental, as been made to explore the shape of the
magnetopause in response to the dipole tilt angle [Boardsen et al., 2000; Tsyganenko, 1998; Eastman
et al., 2000]. The significance of dipole tilt angle at higher latitudes was convinceingly demonstrated by
Šafránková et al. [2005]. More sophisticated mathematical form describing the three-dimentional mag-
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Figure 1. Histograms of parameters corresponding to the analyzed magnetopause crossings. (a) The
angle θ between the crossing positional vector and the the direction toward the impinging solar wind.
(b) Solar wind dynamic pressure. (c) IMF Bz .

netopause shape was eventually developed by Lin et al. [2010]. Li et al. [2023] designed an interpretable
machine learning procedure determining the effects of interplanetary parameters on the magnetopause
location.

In this study, we use a database of about 15,000 low-latitude dayside magnetopause crossings in
the subsolar region to demonstrate the feasibility of the Neural Network (NN) modeling of the magne-
topause location. Three model parameters are used: solar wind dynamic pressure (pd), IMF Bz , and the
angle between the magnetopause crossing positional vector and the the direction toward the impinging
solar wind, assuming thus the cylindrical symmetry. The NN output, i.e., directly the model magne-
topause crossing radial distance, is compared with the Shue et al. [1998] model, which uses the same
parameterization. The used data set is described in the data section. The approach employed for data
processing and the results obtained are presented and discussed in the results and discussion sections,
respectively. Finally, the conclusion section provides the overview of main results.

Data Set

Our full database comprises 49,638 magnetopause crossings identified in the THEMIS A–E, Geo-
tail, Magion 4, and Interball satellites obtained between 1995 and 2020. An automated routine of finding
simultaneous changes of magnetic field and plasma parameters [Němeček et al., 2016] is used for iden-
tification of the magnetopause crossings in the THEMIS data. The identified crossings were carefully
examined visually to remove false positives. The magnetopause crossings in the data measured by other
spacecraft were analyzed manually [Šafránková et al., 2002].

However, due to the limited apogee distance of the THEMIS spacecraft and the related insufficient
sampling of large distances and possible sampling bias, only subsolar magnetopause crossings are used
in the present study. These are selected based on the condition θ < 30◦, with θ being the angle between
the positional vector of a given crossing and the direction toward the impinging solar wind. This leaves
us with as many as 14,781 magnetopause crossings. To each of the crossings, the corresponding solar
wind parameters are attributed based on the Wind spacecraft measurements and a two-step propagation
method by Šafránková et al. [2002]. As this is only an initial study of the possible usage of the NN
modeling approach, we assume a simple magnetopause distance parameterization by pd, Bz , and θ,
i.e., the same as in a widely used Shue et al. [1998] empirical model. The distribution of these three
parameters for the analyzed magnetopause crossings is shown in Figure 1, representing the number
of crossings at individual parameter intervals. It can be seen that, due to geometrical reasons, most
magnetopause crossings are obtained at larger θ values. The distribution of pd has a rather long tail,
extending to dynamic pressures as high as 7 nPa. On the other hand, the distribution of IMF Bz is quite
symmetric and roughly Gaussian-like.
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Neural Network Model

Artificial neural networks (ANNs) are intricate systems comprised of basic processing units re-
ferred to as “neurons.” These neurons perform computations on their respective localized data while
simultaneously communicate with other interconnected elements. While ANNs drew their initial in-
spiration from the structural attributes of the human brain, the design and configuration of processing
elements and network architectures have significantly departed from their biological origins.

Although a diverse array of network types and structures has emerged within the realm of ANNs
[McCulloch and Pitts, 1943], the fundamental principles remain remarkably akin. Each neuron within
the network possesses the capability to accept input signals, carry out processing tasks on them, and
subsequently transmit an output signal. Every neuron establishes connections, minimally with one other
neuron, and each of these connections is assessed using a real number referred to as the weight coeffi-
cient. This weight coefficient quantifies the significance or importance of the specific connection within
the neural network [Svozil et al., 1997]. The primary strength of neural networks lies in their ability to
utilize latent, previously unknown information contained within data, even though they cannot extract
this information directly. This process of uncovering this hidden knowledge is referred to as neural net-
work training. In mathematical terms, learning involves the adjustment of weight coefficients to satisfy
specific conditions. There are two principal types of training processes: supervised and unsupervised
training. In supervised training, as seen in the case of multi-layer feed-forward (MLF) neural networks,
the network possesses knowledge of the desired output. Consequently, the adaptation of weight coeffi-
cients aims to minimize the disparity between the calculated and desired outputs. Unsupervised training,
on the other hand, focuses on a different approach. Unsupervised training operates on the premise that
the desired output is unknown. Instead, the system is presented with a collection of data instances (pat-
terns) and is allowed to autonomously converge to a stable state through a series of iterations [Kohonen,
1989].

MLF neural networks are the most popular neural networks which are trained with a back-
propagation learning algorithm. A MLF neural network consists of input, hidden, and output layers.
Each neuron in a particular hidden layer is connected with all neurons in the next layer. The connection
between each two neurons is characterized by the weight coefficient, reflecting the degree of importance
of the given connection. For training and prediction of the MLF neural network, training and test sets
are needed. The training mode begins with arbitrary (random) values of the weights and proceeds itera-
tively. During each iteration, the network adjusts the weights in order to reduce the error. As the iterative
process of incremental adjustment continues, the weights gradually converge to the locally optimal set
of values. In our study, the IDLmlFeedForwardNeuralNetwork built-in function in IDL software is used
with three input layer, 2 hidden layers of 30 and 15 neurons, respectively, and one output. Our data set
of subsolar magnetopause crossings is diveded into traning and testing subsets (80% and 20% of data
points, respectively). The three inputs are same parameters as in the Shue et al. [1998] model. The used
activation function is IDLmlafArcTan and the used optimizer is IDLmloptAdam with a learning rate of
0.0002. The neural networks is trained using 10,000 iterations, and it effectively converges well before
that.

Results

Green dots in Figure 2 represent the projections of the magnetopause crossings to the ρ− x plane,
where x is the axis pointing toward the direction of the impinging solar wind and ρ =

√
y2 + z2. The

blue curve corresponds to the NN-predicted magnetopause location for selected values of the controlling
parameters, approximately corresponding to the median values over the data set (pd = 1.63 nPa, IMF
Bz = 0). The red dash-dotted curve corresponds to the NN model extrapolation to the θ values beyond
the training data set. We note the small jump roughly in the middle of the blue curve. It is likely
an artifact of the neural network configuration, but we do not have any clear explanation for it at the
moment.

Figure 3a represents a direct one-to-one comparison between the magnetopause distances predicted
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Figure 2. Schematic view of the model performance in terms of the magnetopause shape. The green
dots correspond to the projections of the observed magnetopause crossings to ρ − x plane. The blue
curve corresponds to the model magnetopause distance obtained for the median value of the dynamic
pressure and IMF Bz = 0. The red curve shows the model extrapolation beyond the θ angles in the
training data set.

by the NN model and the observed magnetopause distances. Each green point represents a single mag-
netopause crossing, the solid blue line depicts an exact 1:1 dependence. Despite the substantial scatter
indicating a non-perfect model performance, the model and observed distances have correlation of about
0.76, corresponding to reasonably good agreement. Nevertheless, it can be seen that the model tends to
overpredict the radial distances for the near magnetopause crossings (robs <∼ 10.5 RE), while it tends to
underpredict the radial distances for the far magnetopause crossings (robs >∼ 12 RE). In other words,
although the model general trend is quite correct, it is not as steep as it perhaps should be given the
individual data points. However, for the distances more than 12RE , majority of the crossings are located
below the blue line. Figure 3b shows the histogram of differences between the observed and model
magnetopause radial distances by the black line. For comparison, the red line shows the histogram of
differences between the observed and model magnetopause radial distances obtained by the Shue et al.
[1998] empirical magnetopause model evaluated using the same data set. Disregarding the slight sys-
tematic shifts of output radial distances, which can be easily accounted for by a global shift of the model
predictions, it can be seen that the model performances are quite comparable. The respective standard
deviations are about 0.69 RE and 0.65 RE for our NN-based model and for the Shue et al. [1998] model,
respectively. We note, however, that despite the separation on the training and testing data subsets, the
crossings obtained by the same spacecraft are used both for the training and testing of the model. This
may possibly provide it some advantage over the Shue et al. [1998] model based on different spacecraft
data in a different epoch.

Figure 4a shows the distance of the solar wind magnetopause as a function of dynamic pressure
for IMF Bz = 0. The black curve corresponds to the NN model output, while the red curve is the
dependence assumed by the empirical model by Shue et al. [1998]. It can be seen that while the NN
correctly predicts the magnetopause radial distance to decrease with increasing solar wind dynamic
pressure, the predicted dependence is not as steep as expected. We also note the lack of dependence
for very high values of the solar wind dynamic pressure, which is due to these dynamic pressure values
being critically under-sampled in the training data set. Figure 4b uses the same format as Figure 4a to
investigate the dependence on IMF Bz for a fixed value of pd = 1.63 nPa (corresponding roughly to the
median dynamic pressure value over the entire data set). No clear trend can be identified, with most of
the observed variations taking place around IMF Bz = 0, in line with the low number of samples with
very low/high values in the training data set.
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Figure 3. (a) Magnetopause distances predicted by neural network model as a function of the distances
of the observed magnetopause crossings. The blue line shows a 1:1 dependence. (b) Histogram of the
differences between the observed and model magnetopause distances obtained by the neural network
model (black line) and the Shue et al. [1998] empirical model (red line).

Figure 4. (a) Magnetopause distances in the subsolar point (θ = 0) predicted by our NN-model (black
curve) and by the Shue et al. [1998] empirical model (red curve). (a) As a function of the solar wind
dynamic pressure for IMF Bz = 0. (b) As a function of IMF Bz for pd = 1.63 nPa.

Discussion

The used data set of nearly 15,000 subsolar magnetopause crossings is quite unique and allows for
extensive statistical studies. It is important to note that, due to the near-ecliptic latitudes of the crossings,
they are essentially unaffected by the cusp indentations, and the assumption of the cylindrical symmetry
of the situation is thus roughly valid. The main advantage of the used NN modeling approach is that it
does not require any additional assumptions concerning the magnetopause shape. Moreover, it is very
versatile and can be in the future easily extended to include other possible controlling parameters. For
the moment, we considered only two solar wind parameters, i.e., the solar wind, dynamic pressure,
and IMF Bz . Considering the assumed cylindrical symmetry, the location of the model magnetopause
crossing is characterized exclusively by the angle θ. This can be again easily extended in the future to
study possible magnetopause asymmetries.

The NN utilized in the study consisted of two hidden layers, with each layer comprising 15 neurons.
This was determined based on experiments with varying the number of neurons in each hidden layer (and
also the number of the hidden layers) to optimize the prediction precision. We note, however, that the NN
performance did not seem to crucially depend on these factors, as long as the number of neurons is not
too low or too high. Another free parameters which may be possibly tuned in the future are the functions
used for the normalization of the input parameters and/or neurons in the other layers. This seems to
be a possible way how to avoid some of the issues regarding the steepness of the model prediction
as a function of the solar wind dynamic pressure. The aforementioned insufficient steepness of the
NN model as a function of the solar wind dynamic pressure is the reason for the observed overfitting
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at low radial distances and underfitting at higher radial distances. Based on a simple evaluation of
the pressure balance across the magnetopause, one might expect the subsolar magnetopause stand-off
distance r0 to vary with the dynamic pressure as r0 ∝ p

−1/6
d . Such an exponent was considered, e.g.,

by Boardsen et al. [2000], while Shue et al. [1998] analysis indicated a value of the exponent equal to
−1/6.6. Although the proper exponent value is thus somewhat unclear, the steepness resulting from
the NN approach is obviously lower than it should be (corresponding to a larger exponent value). This
is likely due to two somehow related issues: i) there is a lack of magnetopause crossings obtained
at high values of pd, resulting in a rather flat dependence at high solar wind dynamic pressures and
generally not so steep slope, and ii) the applied normalization of the input data causes problems when
the distribution of a given input parameter has a significant long tail, as the tail is effectively suppressed
by the normalization. Different normalization procedures of the dynamic pressure are to be used in the
future to tackle this issue. The obtained dependence on the IMF Bz is only rather weak and its general
trend does not seem to much correspond to the Shue et al. [1998] model dependence. This may be
possibly in line with recent studies suggesting that the IMF magnitude is actually more important [Li
et al., 2023]. This parameters is yet to be considered in the future version of the NN model.

Conclusions

We used as many as about 15,000 magnetopause crossings within 30◦ from the subsolar point iden-
tified in the THEMIS A–E, Magion 4, Geotail, and Interball satellite data to investigate the possibility
of modeling the magnetopause radial distance using a NN. We assumed a cylindrical symmetry around
the axis of the incoming solar wind, expressing the magnetopause crossing location (on top of the pre-
dicted radial distance) exclusively by the angle θ between the positional vector of a given crossing and
the direction toward the impinging solar wind. Two solar wind parameters believed to be the most
important for controlling the magnetopause location were considered: i) solar wind dynamic pressure
pd, and ii) IMF Bz . The constructed NN thus had three inputs and a single output, corresponding to
the predicted magnetopause radial distance. The resulting model shows a correlation of 0.74 with the
testing magnetopause crossing distances. Although this is quite comparable to the correlation obtained
for a widely used Shue et al. [1998] empirical model with the same parameterization (0.75), the applied
method allows for significant further improvements. The model is overfitting at low radial distances
and underfitting at higher radial distances. This can be possibly solved by a better normalization of the
solar wind dynamic pressure before using it as a NN input. Moreover, the used approach can be easily
extended to use more input parameters, gaining direct data-driven insight into the factors controlling the
magnetopause distance.
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