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Abstract. The dust grains were observed over a thousand discharges in the
tokamak COMPASS. A novel method for semi-automatic extraction and tracking
of dust grains using a relatively low frame-rate camera (370 fps) was proposed.
Radiation lifetime, time evolution and the acceleration of the dust grains were
studied. The measured dust velocities roughly correspond to a simple model.
However, slow dust particles are significantly affected by local plasma properties
and initial release conditions that cannot be determined in our experiment.

Introduction

Dust inside the tokamak vessel can be a serious issue in the future fusion devices such as
tokamak ITER [Winter, 1999]. However, even in the present tokamaks, dust can deteriorate
plasma parameters. In order to predict dust accumulation, it is necessary to study and model
dust production and behavior. Several models were developed for the dust dynamics study
in tokamak plasma: the Dust in tokamaks (DTOKS) code [Martin et al., 2008] and DUST
Transport (DUSTT) [Pigarov et al., 2005; Smirnov et al., 2011]. Generally, the dust dynamics
depends predominantly on the dust–plasma interaction (friction force) in the toroidal direction
and on electric force in the radial direction. The dust lifetime is determined by dust grain
size, composition and plasma temperature and density [Krasheninnikov et al., 2011]. The dust
production is dominated by flaking, brittle destruction of graphite and arcing [Winter, 1999] of
the redeposited layers in the case of carbon-based plasma facing components (PFCs).

This work is mainly focused on experimental observation of dust particles in the tokamak
COMPASS. Since high speed cameras can provide hundreds of MB data per a shot, it is nec-
essary to develop automatic procedures to extract the dust position. These methods must be
(i) fast because the amount of processed data is huge and (ii) robust because number of false
event detection needs to be sufficiently low. Our method was focused on data extraction from a
relatively slow camera (370 fps) with the read-out time 1.7 ms when the signal is not measured.

In the recent years, many studies focused on dust creating and behavior in tokamaks were
published. The concentration, size and composition of the dust particles can be evaluated using
post-mortem analysis when the dust particles are collected during the chamber vent events.
This methods is very important for statistical evaluation over large periods however, it cannot
determine the dust dynamics. Another option is to use a fast camera to observe movements of
the dust grains [Yu et al., 2009; Rudakov et al., 2009; Hong et al., 2010] inside the vessel. This
method allows to estimate dust dynamics but it cannot give information about mass or size of
the particles. Finally, many in-situ methods were developed such as electrostatic dust detectors,
aerogels, laser scattering. These methods can provide valuable information about dust grains
hitting the surface of the tokamak vessel.
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Figure 1. An example of the camera vibrations in the horizontal direction for the shot #3850
caused by mutual motion of the toroidal field coils and the tokamak construction.

Dust Tracking in the Tokamak COMPASS

Our database is based on measurements from the tokamak COMPASS (ASCR, Prague).
The major and minor radii of the COMPASS tokamak are 0.56 m and 0.23–0.38 m, respectively,
the plasma current is 200–400 kA and the plasma temperature up to 1 keV and the typical
discharge length is between 150–300 ms.

The observed plasma was either in the limiter or divertor configuration. Discharges with
additional power and torque input from neutral beam injections (NBIs) were not available in
our dataset. Therefore, all discharges were in clear L-mode with the ohmic heating.

The dust database was based on a dataset obtained from discharges 2700–3900 correspond-
ing to years 2011–2012. Measurements were performed by the camera EDICAM [Szappanos
et al., 2010] that is installed above the mid-plane of the tokamak. The frame resolution was
cropped to 902×992 and the frame-rate was estimated to 370 frames per second (fps) with
exposure time 1.0 ms and readout time 1.7 ms. The sampled dynamic range is 12 bit, however
due to strong readout noise, the effective dynamic range is less than 10 bit.

Data Extraction

Firstly, an image stabilization was performed because vibrations would cause blurring of
our background model (next Section). We used an edge enhancement algorithm based on the
Sobel operator in combination with normalized cross-correlation
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where f(x, y) and t(x, y) are edge enhanced original and reference images. The resulting shift
for horizontal direction is shown in Fig. 1. The nearest-neighbor interpolation was used for
subsequent correction to avoid blurring of the image and changing statistical properties i.e.
spreading the X-ray damaged pixels. Fig. 2 shows region used for the cross-correlation with the
used mask.

Background Subtraction

The crucial step in the dust particles detection process is a proper background subtraction.
The dust radiation can be very weak compared to the background radiation ie. plasma emissivity
and the subsequent reflections from the tokamak vessel. Furthermore, long exposure time of
the camera along with finite aperture cause blurring of the dust and hence decreasing contrast.

The developed background subtraction method is based on the Randomized Principle Com-
ponent Analysis (RPCA) [Halko et al., 2011]. The main aim of the method was to use all
possible a-priori knowledge about the plasma position and chamber pattern in order to maxi-
mize the number of the recognized dust particles. Only “interesting frames,” e. g., frames with
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Figure 2. The artificial correlation mask that was used for the image registration (left) and
an example of one image frame from the camera (right). The mask corresponds to the center
region of the image frame.

non-stationary plasma shape were selected for the final decomposition because the size of the
full dataset was 150 GB. The “interesting frames” were detected as frames that were not well
described by a first estimation of the RPCA model.

The data matrix I of size n×m contains the selected set of m images with the resolution
n pixels reshaped to columns. I is decomposed using the RPCA

I = UΣV ∗ , (2)

where the matrix U is an unitary matrix m×k (see Fig. 4), Σ is a diagonal matrix k×k with so
called singular values on the diagonal and V is a n×k unitary matrix. Only the first k singular
vectors were computed. The k was estimated from the power spectrum of the matrix Σ. The
projection of the original image I to the orthogonal singular vector matrix U was subtracted.
Therefore, the background subtracted image Isub is a complement to the low-rank space of the
singular vectors

Isub =
(
1− UTU

)
Ii , (3)

where Ii is the vectorized i-th frame.

Foreground Detection

Candidates for the dust tracks were recognized as blobs exceeding a certain threshold. The
image intensity was normalized by local standard deviation σ (in time and space) and by edge
enhanced model σedge (Fig. 3)

Isub√
σ2 + σ2

edge

> Tloc , (4)

where Isub is the background subtracted image. The optimal threshold was estimated by an
improved Otsu [1975] method. The edge model (Fig. 3) was determined by an application of
an edge enhancement method on the low-rank projection of each frame Ii

σedge =
(
U(UIi)

T
)
∗ k , (5)

where ∗ denotes convolution and k is the Sobel kernel. The detected objects were further filtered
using clustering algorithms in order to separate hotpots and plasma fluctuations. False objects
were detected by shape and position similarities compared to the other objects in the database.

The final database contains 11000 dust tracks and 13500 non-dust objects. Reliability of
the dust database was estimated by a random selection and manual object checking to be more
than 95 %.
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Figure 3. Edge enhanced low-rank projection of one frame with plasma.

Figure 4. Examples of three main singular vectors ie. the first columns of the matrix U (Eq. 2).
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Figure 5. Histogram of dust tracks angle relatively to the toroidal direction of the tokamak.

Results

Two methods were used in order to measure the dust dynamics. The first method obtained
the particle velocity and position directly from the dust track shape ie. length L and width W .
Each object was fitted with a regularized second order polynomial and width of object W was
estimated from the residuum as 2 · 1.48 ·MAD where MAD is median absolute deviation. The
length Lobj was estimated as Lfit − 2W in order to remove blurring effects. The length L is
directly proportional to 2D projection of 3D velocity while the width W roughly corresponds
to the distance from camera due to the finite camera aperture. The dust velocity is equal to

v = f (L/τ, x, y) (6)

where f is a non-linear geometry transformation correcting the measured 2D projection of
the velocity to 3D space. The correction f was calculated numerically for each pixel using a
simplifying assumption that radiating dust is observed in a thin shell near to the scrape-of-layer
and τ = 1.0 ms is exposure time of our camera.

The resulting velocities are shown in Fig. 6. This direct method is the only way how
to estimate velocities of very fast dust particles that are not observable in the subsequent
frames. Further, the relative angles of dust tracks compared to the mid-plane (Fig. 5) follows
approximately magnetic field although fast particles moving in the perpendicular direction were
also observed.
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Figure 6. Magnitude of velocity of dust particles on the high field side of the tokamak vessel.

Figure 7. Velocity and acceleration of particles reliably tracked over more than 5 frames at
low-field side of the tokamak vessel. Angular distribution shows that particles are preferably
moving and accelerating in the toroidal direction.

Slow particles with long survival time were tracked and assigned using a heuristic algorithm.
The information about shape, luminosity and velocity of the dust track was used to estimate
future position and particle in the following frame that exceeding certain level of similarity was
assigned. The optimal combination was searched for a higher number of the candidates. This
particles were tracked up to 30 ms. However, the total number of the tracked particles over more
than two frame was only 297. Velocity and acceleration were estimated for the most reliable
dust tracks and they are shown in Fig. 7. Finally, the number of the dust particles observed per
one discharge variated from 5 to 500 with no clear dependence on the plasma shape or tokamak
vent events and disruptions.

Discussion

The original 2D projection of the dust tracks were recalculated to a 3D shape using the
a-priory knowledge that dust can be observed only in a thin shell near to tokamak wall. The
velocity (Fig. 6) was estimated only using the dust particles moving along regions of the vessel
that are close to perpendicular to the lines of sight of the camera. Therefore the velocity
uncertainty was estimated roughly to 10–20 %. On the other hand, if the radiation lifetime was
shorter than the camera exposure time, the resulting velocity was underestimated. Further,
precision of the minimal measurable velocity by this non-tracking method is limited by the
camera point-spread function to v ∼> 5 ms−1 (see Fig. 6) while the maximal velocity is limited
by the low signal to noise ratio (SNR) of the fast tracks and the finite field of view. Finally, small
or cold grains were not detected because of too low radiation [Smirnov et al., 2009] compared
to background light. This could be significantly improved with a higher camera frame-rate or
by spectral filters. However, the EDICAM camera is limited by its slow read-out time of the
region of interest [Szappanos et al., 2010].

The measured dust velocities 5–50 m/s are smaller than the values measured in large toka-

77
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maks (10–100 m/s). This can be explained by weaker plasma fluxes in SOL and slower plasma
rotation due to missing torque force from NBI. Another explanation is that the faster particles
were lost because of the lower contrast. The SNR ∼ ID/(vσ) where I is intensity, D is distance
of particle from camera, v denotes velocity and σ is average background radiation. The dust size
was in a ex-situ measurement estimated to roughly 1µm. The maximal observed dust lifetime
< 30 ms is at the bottom edge of the predicted interval 10−2 to 1 s for 1µm carbon dust [Martin
et al., 2005] heated to temperature 1000–3000 K [Smirnov et al., 2009] for edge plasma temper-
atures from 5–50 eV. The reason can be that the intensively radiating dust particles penetrate
deeper to the hot plasma where the particles quickly sublimate.

The slow dust particle study (Fig. 7) suggests that dust in the COMPASS is not produced by
abrupt events as disruptions because, on contrary to other tokamaks, no radiating dust particles
were observed after the plasma disruption events. The main dust source is probably erosion of
the carbon plasma facing components that produce cold dust (invisible for our camera). The
dust can be observed after penetration to the SOL where the particles are heated and start
to radiate. Average acceleration was estimated only for the well tracked particles during the
plasma flat-top phase. The measured acceleration almost constant over the particles tracked
time, however the direction of the acceleration was significantly different for each slow particle.
Generally, the particles were preferably accelerated in the toroidal direction (Fig. 7). The
fast particles are clearly accelerated in the direction of the plasma rotation (see Fig. 5). The
SOL plasma velocity is not routinely measured in the COMPASS tokamak and the initial
measurements only suggests that the poloidal boundary plasma velocity is below 2 km/s.

Conclusion

The observed dust velocity in the tokamak COMPASS was between 5–50 m/s with lifetime
of the radiating stage less than 30 ms. No clear sources of dust were observed so the dust
is expected to be created by PFC erosion during regular tokamak operation. The slow dust
particles dynamics was inconclusive. In future, it is necessary to measure more dust particles
with a higher time resolution and determine the boundary plasma properties in order to apply
models for dust behavior.
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