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Abstract. In many problems in the area of artificial intelligence, it is necessary
to deal with uncertainty. Using probabilistic models can also improve efficiency
of standard AI-based techniques. Commonly used methods for dealing with
uncertainty include Bayesian models, which can be used to describe and work with
probabilistic systems effectively. This article reviews several models based on the
Bayesian approach and typical algorithms used to work with them, along with some
examples of their application.

Introduction

When dealing with problems in the real world, outcomes of actions or the actual state of
the world is often not known with certainty. This may be caused by the world not being fully
observable, or because our model of the world is not complete. In order to make good decisions
under such conditions, it is beneficial to introduce probability to the reasoning process.

Since working with the full probabilistic description of the world can be in many cases
too difficult, the Bayesian models are used to simplify the reasoning process. In the following
paragraphs, these models and algorithms are described. Applications of the Bayesian models
can be found in many areas, ranging from diagnostics in medicine and engineering (e.g. the
notorious MS Office Assistant [Horvitz et al., 1998]) to signal processing, robotics and financial
risk management [Neil et al., 2005]. Use of Bayesian models can be also beneficial in solving
non-probabilistic problems, such as pattern recognition in images.

Basic notation

The following notation will be used in this article. Uppercase names will be used for random
variables, such as X or Rain, lowercase names will denote their values, e.g. true. Standard
notation will be used to express the probability and the conditional probability of variables, such
as P (X = x1) and P (Rain = true|X = x1). The probability distribution of a random variable,
which is a vector of probabilities of the variable’s values, will be denoted by P(Rain). The joint
probability distribution of multiple variables is then denoted by P(X, Y ). Using this notation
in an expression does not mean multiplication of a vector, but it is rather a simplification of a
set of equations, where specific values from the distribution are substituted.

Working with probability

When considering a probabilistic problem, we specify it by describing its probability space,
which consists of a set Ω of elementary events, a set Σ of events which are subsets of Ω,
and a probability measure P : Ω → [0, 1] (for a formal definition, see [Matoušek, Vondrák ,
2001]). We can then name a set of random variables which map events to values in discrete
or continuous value ranges. For example, in the case of describing a toss of two coins, the
elementary events would represent the four possible outcomes, events could be e.g. “no head
came up”, “one head” and “two heads”, and we could have a random variable H with range
{0, 1, 2} which will give us the number of heads in the toss. Finally, we can describe a full
joint probability distribution, which specifies the probabilities of all possible combinations of
values of all variables. In its simplest form it is a multidimensional table, where each dimension
corresponds to one variable. In case we had three random variables A,B,C, each with a range
{0, 1, 2}, the full joint distribution would take a form of a table of size 3x3x3, containing values
of P (A = 0, B = 0, C = 0), P (A = 0, B = 0, C = 1), etc.
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Due to a representation, we can answer queries about the problem domain. An example
of such query can be “What are the probabilities of diseases of a patient with fever”, which in
our notation would translate to computing the distribution P(Disease|Symptom = fever).

To answer queries about the problem domain, we can use the so-called marginalization
method. This method consists of summing out all variables that are not of interest while
respecting the eventual observed evidence values. This produces a probability distribution
of the queried variable or variables. By generalizing this method, we get a general inference
procedure:

P(X|e) = α ·P(X, e) = α ·
∑

y

P(X, e, y) (1)

where X is the variable of interest, e is the observed evidence, Y is the set of remaining
unobserved variables and α is the normalization constant which ensures that the resulting
distribution correctly sums up to 1.

The disadvantage of this approach is the size of the full joint distribution of more complex
systems, which grows exponentially with the number of variables. It may be also difficult to
determine the exact probabilities of rare events (e.g. a rare combination of diseases). Fortu-
nately, not all values contained in the full joint distribution are necessary if we have some further
knowledge about the domain. This assumption is the main idea behind the Bayesian models
introduced in the next section.

There are two principles which allow us to improve the efficiency of general inference
in probabilistic systems. The first one is independence between variables: variables X and
Y are said to be independent if P(X|Y ) = P(X) (or, equivalently, P(Y |X) = P(Y ) or
P(X, Y ) = P(X) ·P(Y )). Knowing the dependence relations between variables, we can factor
the variable set into dependent subsets, which reduces the full joint distribution into separate
joint distributions on these subsets. We will also use the notion of conditional independence:
P(X, Y |Z) = P(X|Z) ·P(Y |Z), which specifies that variables X and Y are independent of each
other given the value of variable Z.

The other important tool is the Bayes’ rule, which allows us to work with distributions of
dependent variables. It is specified by the following formula:

P(X|Y ) =
P(Y |X) ·P(X)

P(Y )
(2)

Bayesian networks

The so-called Bayesian network, as described e.g. in Chapter 14 of [Russel,Norvig, 2003], is
a structure specifying dependence relations between variables and their conditional probability
distributions, providing a compact representation of the full joint distribution of the whole
system. It is defined by the following elements:

• a set of nodes, where each node represents a single variable
• a set of directed connections on these nodes, forming a directed acyclic graph, where a

link specifies a dependence relationship between variables
• a conditional probability table (CPT) for each node in the graph, specifying a probability

distribution of the corresponding variable conditioned by its parents in the graph (i.e.
P(Xi|Parents(Xi)) ).

We can retrieve the probability of any event in a system described by a Bayesian network
using the following formula:

P (x1, ..., xn) =
n∏

i=1

P (xi|parents(Xi)) (3)

where parents(Xi) denotes the specific values of the Xi’s parent variables. This implies that
the Bayesian network fully describes the full joint distribution of the system.
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Exact inference

Because a Bayesian network describes the full joint probability distribution, the general
inference method can be used for inference in Bayesian networks. The formula of general in-
ference (see Eq. 1) only needs to be adjusted to work with the CPT tables representation.
The expression is evaluated by looping over values of the variables that are summed out, which
unfortunately causes the complexity of this algorithm to be exponential in the number of vari-
ables.

There are methods for improving the complexity of this approach. The variable elimination
algorithm attempts to evaluate the equation in an optimal manner, by ordering the variables,
storing reusable intermediate results and removing unnecessary variables. This algorithm is effi-
cient for answering individual queries. For computing the posterior probabilities of all variables
in the network, however, the clustering algorithm is better. It transforms the Bayesian network
graph in order to make it singly connected by merging nodes that violate the single connectivity
condition. In a singly connected network, the exact inference is only linear in the size of the
network, the complexity of the inference is however only moved to the merged CPT tables.

Approximate inference

The problem of exact inference in Bayesian networks is NP-hard, because it contains infer-
ence in propositional logic as a special case. Because of this, approximate inference algorithms
have been designed, which can give good estimations of the results in reasonable time. The gen-
eral approach to approximation of posterior probabilities of queried propositions is sampling :
a large number of samples is generated according to the distributions in the network, and the
posterior probability is then estimated by the ratio of samples that fit the query to the total
number of samples.

The basic algorithm, called direct sampling, is applicable when there is no observed evi-
dence. The nodes of the network are traversed in topological order (i.e. parent is always visited
before its children) and their values are chosen randomly from their distribution, conditioned by
values of their parents. A sample consists of such an assignment of all variables in the network.
Accuracy of this method improves with growing numbers of samples.

In case we have observed some evidence values, we can proceed in a manner similar to direct
sampling and simply discard samples that do not conform with the evidence. This approach
constitutes the rejection sampling algorithm. It is obvious that the more evidence we have,
and the less probable it is to appear in a sample, the more samples are rejected, which makes
it harder to obtain results with reasonable accuracy. The fraction of usable samples drops
exponentially with growing number of evidence variables.

The problem of extensive rejections can be solved by using algorithms which produce only
samples that agree with the observed evidence. The likelihood sampling algorithm weights each
sample by the probability the evidence values would be produced as a part of it. The query
is then answered by a weighted sum of the samples that conform to it. Its disadvantage is its
low accuracy in case the evidence has a low probability of occurring or in case it appears late
during the sampling process, in which case it does not influence the sampling process.

The Markov chain Monte Carlo (MCMC) algorithm, described in [Pearl, 1987], also gener-
ates only samples that conform to the evidence. Furthermore, the samples are generated with
respect to the evidence regardless of where it is in the network. The network is considered to
be in a particular state with all its variables assigned, and each such state constitutes a sample.
Next network state is generated by randomly choosing one of the non-evidence variables and
choosing its new value according to its distribution, conditioned by its Markov blanket - the
parents of the node, its children, and parents of the children. The fraction of samples with the
network in a certain state is then proportional to the posterior probability of this state. A query
can be answered by summing the fractions of states conforming to the query.
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Temporal models

Many problems involve reasoning about a probabilistic system that changes with time, for
example when controlling a mobile robot. The uncertainty in such system can be caused by
noisy sensors or a complex dynamic environment. Bayesian models described in the previous
chapter can be extended to be applicable in such cases. Several of these models are described
in this chapter. For more detailed descriptions, see Chapter 15 of [Russel,Norvig, 2003].

One of the main concepts in this chapter is that of a time slice, a moment in time in which
the system is in a defined observable state. We will denote the hidden variables at time t as Xt,
the observable variables as Et and their particular observed values as et. We will also use Xa:b

to denote the sequence of variables from Xa to Xb inclusive.
Several assumptions are necessary to make the problem computationally feasible. First, we

assume that the changes in the system are caused by a stationary process, which means that
the rules of state transitions do not change over time. Next, we make the so-called Markov
assumption - that the current state of the system depends only on a finite number of previous
states. Then, we can call the system a Markov process. In a first-order Markov process, the
current state depends only on the immediately preceding state, which, in our notation, can
be written as P(Xt|X0:t−1) = P(Xt|Xt−1). The conditional distribution P(Xt|Xt−1) is called
the transition model, which is common for all time slices t because of the stationary system
assumption. Beside the transition model, we need to specify the sensor model, which influences
the way in which the state described by Xt manifests itself in the values of evidence variables
Et. It is specified by a conditional distribution P(Et|Xt).

Inference in temporal models

There are several basic inference tasks performed with the temporal models:

• Filtering : computing the probability distribution of the current state of the system, based
on the evidence observed so far. It can be expressed as computing P(Xt|e1:t).

• Prediction: finding the probability of states of the system in the future, based on the
evidence observed up to now. It consists of computing the distribution P(Xt+k|e1:t) for
some k > 0.

• Smoothing : computing the probability of a state the system was in in the past, based on
the evidence observed before and after the relevant time slice. It consists of computing
the distribution P(Xk|e1:t) for some 0 ≤ k < t. The new evidence ek+1:t, unavailable at
time k, helps to estimate the state of the hidden variables more accurately.

• Finding the most likely explanation: finding the sequence of values of variables X1:t which
is most likely the cause of the observed evidence e1:t. It can be also written as finding the
value of argmaxx1:tP (x1:t|e1:t). The Viterbi algorithm can be used to find this sequence.

Hidden Markov model

In this and the following section, two special cases of the above described model are in-
troduced, which are often used in practice because of their superior properties. The Hidden
Markov model is a restriction of the above described temporal Bayesian model in the sense that
the set of hidden variables Xt consists of only a single discrete variable. The transition model
and the sensory model can then be specified in the form of matrices, which allows the basic
tasks such as filtering to be expressed in terms of matrix operations. Systems with multiple
hidden variables can be turned into a Hidden Markov model by merging the variables and their
CPT tables.

The matrix description of the transition and sensor models allows the basic algorithms to
be formulated in terms of matrix operations. This formulation makes it possible for some of
these algorithms to be performed more efficiently. For example the smoothing algorithm can
be modified to require only constant space, in the following way: the forward message is first
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propagated through the sequence without storing the results in each step, then it is propagated
backward from ft:t along with the backward message by computing the forward message from
the previous step via inverting the equation for conventional computation of the next forward
message.

Kalman filter

The Kalman filter, introduced in [Kalman, 1960], is used to describe systems consisting of
continuous variables, such as objects (robots, airplanes) moving through space. The transition
and sensory models are defined by conditional densities, which are usually represented by some
form of Gaussian distribution function (e.g. linear Gaussian or multivariate Gaussian distribu-
tion). The advantage of such representation is that the family of Gaussian distributions is closed
under the standard Bayesian network operations, such as one step prediction or conditioning
on new evidence, which are frequently used in the inference algorithms.

The disadvantage of Kalman filters is the failure to model systems which are not linear,
e.g. in the presence of an obstacle in the space or presence of non-continuous conditions in the
system. Such systems can be modeled with the use of switching Kalman filter, which consists
of several Kalman filters modeling different variants of the system with different weights. A
weighed sum of their predictions is then used.

Dynamic Bayesian network

The Dynamic Bayesian network (DBN) model is the most general of temporal models, and
the two models described above can be thought of as its special cases. It can combine discrete
and continuous variables in the Xt set, making the network general enough to describe even the
most complex system, but also making the inference algorithms more complicated.

Exact inference can be performed in the DBN model by simply unrolling the sequence
of time slices to form one big Bayesian network, then using one of the previously described
algorithms. The obvious disadvantage of this naive approach is the computation cost, growing
with each new time slice.

The sampling methods, such as likelihood weighting, are applicable to DBNs. But because
the evidence variables are in this case always “downstream” from the state variables, the gener-
ation of the samples is done without any influence from the evidence whatsoever. This leads to
a poor performance of the likelihood weighting algorithm. A better alternative is the particle
filtering algorithm, which keeps the population of samples in regions of the state space with
high probability. The idea behind this algorithm is to resample the population in each time
slice, based on the likelihood of the samples conditioned by the evidence. This results in an
efficient approximation algorithm.

Bayesian learning

Apart from finding a suitable network structure, which is still not a well solved problem,
the learning of Bayesian networks can be viewed as searching in a space of hypotheses. This
approach is described in more detail in Chapter 20 of [Russel,Norvig, 2003]. The individual
hypotheses consist of a full set of network parameters. The idea of Bayesian learning is to
assign probabilities to the hypotheses and update them based on the observed evidence.

Predictions can be made using all possible hypotheses, by weighting their separate pre-
dictions by the likelihood the hypothesis produced the observed data, and then summing the
predictions. If the hypotheses space is too complex, approximations can be used to simplify
this task. The Maximum a posteriori (MAP) approximation uses only the hypothesis with the
highest likelihood to make the predictions.
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Application of probabilistic methods in pattern recognition

The use of probabilistic models can be beneficial even for problems that are not inherently
probabilistic. An example of such application is presented in an article by LeCun [LeCun
et al., 1998]. Here, the Viterbi algorithm is used to solve the problem of separating objects
prior to their classification as a part of hand-written text recognition. The article describes
two approaches to this problem: the Heuristic Over-Segmentation and the Space-Displacement
Neural Networks. The former approach consists of using a heuristic to make a large number
of cuts hoping that the correct segmentation will be their subset, and then using a classifier to
recognize the segments and their combinations. The latter approach simply uses the classifier
on neighboring locations in the presented image. Both approaches produce an interpretation
graph, which describes all possible interpretations of the input in terms of paths traversing it
from its start node to its end node. The classifier outputs can be considered to be the observed
evidence variables, while the actual hand-written characters are the hidden variables. From
this point of view, the output of the classifier behaves as a Hidden Markov Model. The Viterbi
algorithm is then used to find the most probable sequence of characters, producing the final
output of such pattern recognition model. This model is also globally trainable with a gradient
descent algorithm which aims to minimize the penalty of the path with the lowest penalty and
correct classification.

Conclusion

The Bayesian models represent a well-studied and effective way to describe and reason
about problems that include uncertainty. They have a very large range of applications, from
medicine and engineering to information processing. The temporal Bayesian models are used to
describe probabilistic systems that change in time, they are applied to problems varying from
signal processing to modeling physical processes. Furthermore, application of these models can
be beneficial to problems which are not inherently probabilistic, such as the pattern recognition
in images.
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