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X-RAY DIFFRACTION BY FINITE AND IMPERFECT 
CRYSTAL LATTICES 

BY P. P. EWALD 
Department of Mathematical Physics, Queen's University, Belfast 

ABSTRACT. The Fourier transform of a crystal is a representation which, if fully 
known, would be equivalent to, and give the same information as, the usual description of 
a crystal. At the same time the Fourier transform is very closely related to the diffraction 
properties and it offers the best survey of the diffraction data obtained, and of those missing, 
for a discussion of crystal shape and of crystal imperfection. The desirability of an exact 
quantitative x-ray study of the perfection of an individual metal single crystal before and 
during plastic deformation is urged. 

§ I. F O U R I E R  T R A N S F O R M  A N D  D I F F R A C T E D  A M P L I T U D E  

O R  discussing x-ray diffraction the reciprocal lattice has found general 
application, but it is not generally realized that the reciprocal lattice is only an F incomplete representation of the Fourier transform of the crystal and that much 

clearness of discussion can be gained by making full use of the conception of the 
Fourier transform. 

If the diffracting body is characterized by the density-distribution of scattering 
matter p (x), the Fourier transform of p is the function F (b) in the Fourier integral 
representation 

p (X) = 1 F (b) e2nz(bx) dub; F (b) =I p (x) e-Zr*(bx) dv,. ......( I) 

Here b is the coordinate vector in Fourier space and dVb its element of volume. 
(bx) is the scalar product of the two vectors and since this must be a pure number, 
in order to make sense in the exponent, b must have the dimension of the reciprocal 
of a length, since x is a length in physical space. Both integrals are to be extended 
over the whole of their space. 

To connect F (b) with diffraction by the crystal, imagine that a plane mono- 
chromatic x-ray wave of wave vector k, (I k, [ = I/A) falls on an element dv, of the 
body situated at x. Suppose that we observe at great distance the wave scattered 
classically in an arbitrary direction, thus of wave vector k, where I k I = I k, I .  
Omitting the factor Elr, where E is the amplitude of the incident wave and Y the 
distance of the observer from the crystal, the diffracted wave will have the amplitude 
p (x) dv, e2nz(ki-k,X). Putting k-k,=b (the dimension of b is I/A), the total 
amplitude obtained from the body is 

F (b) = j (XI e-zrz'bx) dv I. ......( 2 )  

For a given direction of incidence k,, the vector b connects the origin 0 of the 
Fourier space with any point on the sphere of reflection drawn through 0 with A 



I 68 P. P. Ewald 
as centre, where OA = - kl . If we intercept all diffracted waves k proceeding from 
a given point of propagation A, we obtain a spherical section of the Fourier trans- 
form. By observing the effects of a monochromatic wave at all directions of 
incidence and of diffraction, we can at best explore the region of the Fourier trans- 
form of p (x) that is included in a sphere of radius 2/h surrounding the origin. This 
is a re-statement of the fact that the resolving power of a radiation of wave-length h 
is finite. The more details we wish to obtain concerning p (x), the shorter must 
be the wave-length employed for diffraction. The  non-classical Compton scattering, 
however, sets a limit to the applicability of short wave-length diffraction. 

From the quite general formulae (I) we see that the Fourier transform is an 
equivalent way of representing the crystal, and that it has the advantage of giving 
nearly all properties of the crystal in a form ready for physical app1ication.t The  
symmetry of equation (I)  with regard to p (x) and F (b) furthermore shows that 
for every result obtained by interpreting p (x) as the density in crystal space and 
F (b) as the diffracted amplitude, a corresponding result may be obtained by inter- 
changing the interpretation of the two spaces and functions. 

$ 2 .  T H E  PEAK F U N C T I O N S  A N D  T H E  O P E R A T I O N  O F  F O L D I N G  

In  order to establish the correspondence for a number of examples, it is con- 
venient to introduce two conceptions. The first is that of apeak function of content 
m, i.e. a function which is zero everywhere except at one point x = p ,  where it is 
infinite to such an order that its integrated value is m. We write this function 
ZPm (x); it may be obtained(') from a Gaussian distribution 

by passing to the limit U -+ 0, or from other suitable functions by a similar process. 
If we introduce a peak function at every lattice point x,,  we obtain a lattice peak 
function zm. This will be the distribution p (x) for a simple lattice of point-like atoms 
of mass m. 

The second convenient conception is that of foZding two functions, e.g. p (x) 
and U (x). Designating by G (rho fold sigma) the result of folding the fold, we 
define 

the integration to extend over all space. 
From the theory of Fourier transforms it is known that multiplying and folding 

are corresponding operations in the two spaces, i.e. folding p and U in crystal space 
leads to a transform obtained by multiplying the transforms of p and U in Fourier 
space and vice versa('). 

t No discussion will be given in this paper of the difficulties arising from the fact that, by 
observing intensities, the absolute values 1 F (b) I only can be obtained. These difficulties are present 
also in the study of lattices without imperfections; the Patterson diagram is the direct unamplified 
presentation of the experimental results (cf. W. L. Bragg, Nature, 143, 73,  (1939)). In  this paper 
we shall only deal with ordinary Fourier transforms based on F (b), not on I F (b) I. 
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Let us fold a function p (x) into a lattice peak function o=Z1. Since Z1 (y -X) 

is zero unless y - x = xI is a lattice vector, the fold thus reduces to 

2.1 (Y) =?p (Y -xJ; . . . . * . ( 5 )  

that is, by folding with a lattice peak function, p (x) is repeated from each lattice 
point xL, and, as far as overlapping occurs, the sum is to be taken. 

J 3. S T R U C T U R E  F A C T O R S  

Let us take p to be the density due to a single atom or a molecule. The 
transform of p then is the atomic or molecular structure factor f (b). The  transform 
of a crystal lattice peak function 21 (x) is the ordinary reciprocal lattice, i.e. a 
lattice peak function Z1/vn (b) in Fourier space, giving peaks of content l / v a  at the 
lattice points b,. By folding the molecular density distribution into Z1 (x), we 
obtain the crystal with extended basis. On the other hand, the transform will be 
found by multiplying Z1Ioa (b) into f (b), i.e. the transform is a peak function having 

peaks of content - f (b,) at the lattice points b,. 

For the study of molecular constitution it is really the molecular structure 
factor or Fourier transform of the molecule that one tries to extract from x-ray? 
or electr~n-diffraction(~) measurements, i.e. one tries to obtain the whole function 
f (b) from the evidence concerning the values f (b,) at the lattice points. 

I 

va 

54. T H E  U N B O U N D E D  A N D  T H E  B O U N D E D  C R Y S T A L  

(I)  Any perfectly periodic distribution p (x) has a lattice peak function as 
Fourier transform. The fact that F (b) is zero except for the values b = b, implies 
infinitely high resolving power. A diffracted beam exists only when the sphere of 
reflection actually passes through a point of the reciprocal lattice. A perfectly 
periodic distribution is, of course, infinite and unbounded. 

(2) Let us call a regular crystal a finite part of the perfectly periodic crystal cut 
out by a closed boundary, without allowing any re-arrangement of the atoms to 
take place. Mathematically, the density-distribution ps (x) of the finite crystal is 
obtained by multiplying the distribution pm (x) of the perfectly periodic crystal 
into a shape function s (x), which is defined as having value I inside and o outside 
the boundary of the finite crystal: 

The Fourier transform S (b) of the shape function can be interpreted as the dif- 
fraction effect of a continuum, of scattering density I ,  having the same shape as 
the crystal. For a prismatic shape function (depending on two coordinates only) the 
transform will be a two-dimensional function similar to the familiar amplitude- 
curve of diffraction produced by a light wave behind a diaphragm having the form 
of the cross-section of the prism. 

Ps (XI ‘ P -  (XI s (X)’ 

t The idea of using the structure factor or transform of a single molecule seems to have been 
first formulated by A. Hettich(3). 
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The  transform of ps is obtained by folding the shape transform into the lattice 

peak function, representing the transform of pa. The result will he a function 
consisting of a repetition of the shape transform round each lattice point b,. If 
the regular crystal contains a great number of atoms in all directions, the diffraction 
effect of the shape will extend only over a s q l l  angular range, i.e. it will be narrow 
as compared to the angular separation of the diffracted beams of different orders, 
owing to the atomic distances in the crystal. The shape transform does not therefore 
extend far into the cell of the reciprocal lattice, and practically no overlapping of 
the shape transforms occurs in consequence of the folding operation (figure I). 

Figure I. Schematic drawing of Fourier space with the reciprocal lattice of the perfectly 
periodic crystal and the shape transform surrounding each lattice point. 

The  shape transform may be regarded as a representation of the resolving power 
of the crystal due to its finite size and particular shape. If the sphere of reflection 
passes through sufficiently large values of the shape transform, a diffraction effect 
will be observed even if the conditions of reflection are not fulfilled for the un- 
limited lattice. 

$ 5 .  E X A M P L E S  O F  S H A P E  T R A N S F O R M S  

Special cases of shape transform are : (a) The crystal jlake. Along the normal 
to the flake the distribution of the shape transform is the same as that of the 
diffracted amplitude behind a slit of the same width as the flake, i.e. it is of the form 
z-1 sin z. As a rough approximation the transform can be represented by a little 
rod normal to the flake, of length I INd,  where N is the number of net planes of 
spacing d which the flake contains. The  length of the rod is thus IjN of the spacing 
of the points of the reciprocal lattice in the direction normal to the flake. A closer 
representation should take account of the varying value of the shape transform 
along the axis of the rod, and of the fact that, for flakes only a few atomic layers 
thick, the secondary maxima of the shape transforms overlap midway between the 
nodal points of the reciprocal lattice, so that the transform may reach appreciable 
values there. 
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The need for replacing the points of the reciprocal lattice by little rods was first 

encountered by K i r ~ h n e r ( ~ )  in his discussion of electron diffraction. In  metals the 
x-ray work of Preston(@ on AlCu and of Bradley(') on FeNiCu has led to the same 
construction. Guinier('), in a recent thesis remarkable for the experimental 
method which it discloses, has investigated the shape factor of the segregated 
particles in the AlCu system by studying the diffraction in the neighbourhood of 
the primary monochromatized ray. If the schematic reciprocal lattice shown in 
figure I were correct, there would be no advantage in studying the surroundings 
of (000) rather than those of any (hkl). It should not, however, be overlooked that 
the atomic structure factor has to be multiplied by the distribution shown in 
figure I ,  and that the intensity of the effect is very much greater near (000) than 
near any other point. 

(b) If the crystal is rod-shaped OY needle-shaped, the shape transform is flat and 
flake-like. In  the plane normal to the axis of the needle the central maximum will 
be surrounded by secondary maxima of decreasing intensity. 

( c )  The shape transforms of a sphere and of a cylinder are expressible by Bessel 
functions, as is well known from diffraction optics. If the particles are very small, 
the secondary maxima belonging to adjacent lattice points of the reciprocal lattice 
can overlap midway between the points, and this means that for some directions 
the regular inner structure enhances the effect due to the smallness of the spherical 
particle. 

If we interchange the meaning of the two spaces, we see that an abrupt falling 
off of intensities of higher order is to be expected in crystals the molecules of 
which have a density-distribution falling off in an oscillating manner after the 
pattern of a Bessel function. Such a distribution may be approximated to by a 
spherical-shell structure, and this might give an explanation of the sudden decline 
of intensities with increasing order which has been claimed for some protein 
molecules. 

( d )  L a ~ e ( ~ )  has shown that the shape transform can be easily worked out for 
any shape bounded by planes. A general feature of the transform is that it shows 
intensity spikes normal to the boundary planes and thus is of a star-like appearance. 
The  familiar diffraction pattern obtained from a rectangular or triangular opening 
is an example of a shape-star in two dimensions. Laue and Riewe('') worked out the 
transform of an octahedron and gave a beautiful interpretation of the electron- 
diffraction effects observed by Cochrane('') and by Bruck"" on submicroscopic 
silver crystals. A similar technique would doubtless make it possible to find the 
form of minute precipitates at the initial stage of segregation in some alloys. 

If there are a great many diffracting crystallites, the definiteness with which the 
shape transform is manifested depends on the equality of shape, size, and orientation 
of these crystallites. Homogeneity in both respects should be expected in the case 
of alloys carefully heat-treated. The homogeneity was remarkable in Cochrane's 
case of silver films electrolytically deposited on a rock-salt base. 

(e) As a last example of a Fourier transform, let us consider a lattice formed of 
Gaussian atoms, i.e. atoms with a distribution of scattering-density according to a 
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Gaussian function(3). The transform(') of a Gaussian of width U is again a Gaussian 
of width 11m: 

It follows that if we build up a lattice of Gaussian atoms by folding p into a lattice 
peak function, the transform is given by the coefficients 

This transformation shows the easiest way of taking into account the influence of 
temperature movement on the diffraction, by replacing the actual instantaneous 
position of the atoms by an averaged Gaussian distribution of scattering mass. 
The transform F, is then the Debye temperature factor. An anisotropy of the 
atomic temperature oscillations can easily be taken into account by substituting 
( X / M ) ~  + + ( ~ / y ) ~  for x2/a2 in p (x), i.e. by substituting an ellipsoidal Gaussian 
for the spherical Gaussian. The  transform f(b) is then a reciprocal ellipsoidal 
Gaussian. In  the case of magnesium, cadmium and similar hexagonal metals, 
this has been Brindley's(13) procedure to account for the abnormally quick or slow 
falling away of the intensities of the reflections on the basal plane as compared to 
the other reflections. 

Waller's exact treatment of the influence of heat motion on the diffraction has 
been discussed in a simplified way by the author(15) by means of the reciprocal 
lattice, and recently Mauguin and Laval(16) have resumed this study of the Fourier 
transform from both the theoretical and the experimental sides. 

Returning to the simple transform of Gaussians and reversing the significance 
of the spaces, we obtain a physical interpretation of Laue's method of discussing the 
relation between line-width and particle-size. For this discussion, Laue(") replaces 
the true pattern surrounding each lattice point of the reciprocal lattice, i.e. the true 
shape transform, by a mathematically simple smooth function having the same 
maximum value and the same width or integral value. The  line-width is then 
obtained by discussing the intersection of these substituted functions with the 
sphere of reflection. Laue uses two simple functions for the substitution, one being 
an ellipsoidal Gaussian and the other one an algebraic function: 

Both shape transforms do not extend far from the lattice points b,. The shape of 
the crystal corresponding to a, (b) is an ellipsoidal Gaussian again, with half-width 
covering a great many cells. The  smoothing out of the true shape transform in 
Laue's discussion is thus equivalent to substituting for the true, sharply bounded, 
particle an average one in which the masses fall off exponentially with the square 
of the distance from the centre. The function u2 (b) is the shape transform for a 
crystal of similar mass distribution, differing only in that the decay of the masses 
is exponentially proportional to the first power of the distance from the centre. 
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It is easy to understand that in either way an expression can be given to the 

average size and shape of the particles but also that these will cease to be appropriate 
if we have to deal with a distribution around a standard uniform size rather than 
with one ranging down to zero size. 

(f) The shape transform S (b) is always centro-symmetrical in the sense that 
S ( -b)=SX (b), where the * denotes the complex conjugate value. This follows 
from equations (I)  for every real function of x. By the folding operation of S (b) 
into the lattice peak function, the resulting Fourier transform of the finite regular 
crystal will be centrosymmetrical about each lattice point. If, therefore, acentric 
distributions are found experimentally, these cannot be explained by particle-size 
or crystal-shape. Such is the case in M r  Preston’s@) beautiful work on aluminium- 
copper alloys where monochromatic streaks were obtained streaming out from 
normal reflection spots on one side only. This could be interpreted in the reciprocal 
lattice by making the lattice points the corner points of little cube-edges directed 
away from the origin. Any shape effect could only result in replacing the point by 
a centrosymmetrical set of lines. 

6. S O M E  R E M A R K S  O N  T H E  E X P E R I M E N T A L  S T U D Y  
O F  S H A P E  T R A N S F O R M S  

There are two points I would like to emphasize regarding the study of shape 
transforms. The first is that the shape transform can be studied equally in any 
order of diffraction, since it is the same round each point of the: reciprocal lattice. 
In  order to obtain a complete survey one has to produce reflections of the same 
order under varying incidence, so as to obtain a variety of intersections of the shape 
transform with the sphere of reflection. Evidently data obtained on different orders 
can also be combined into one picture provided it has been established that the 
diffuseness of the reciprocal lattice is due to a shape factor. The surroundings of 
the primary beam (000) have the special advantage of higher intensity due to the 
atomic factor. It is necessary to use monochromatized rays in order to obtain a 
clear background near the primary beam. Guinier@) has done this without sacrifice 
of intensity, by using a focusing bent-crystal monochromatizer. The aperture of 
this must, however, be kept small compared to the angular width of the shape 
transform for the wave-length employed. 

The  second point is the desirability of studying the shape transform in single- 
crystal photographs, after the manner of Preston, Guinier, and others. X-ray micro 
methods, such as those developed by Kratky(”) to obtain diagrams from regions 
of a crystal I/IOO mm. wide, should prove of great value in preventing the blurring 
which is bound to occur as a result of the superposition of shape transforms from 
crystallites varying in size and orientation. 

It would lead us too far to discuss the representation of deformed lattices 
by the Fourier transform. The  methods discussed above allow one, for example, 
to obtain directly the essential properties of the curves given recently by 
KochendOrfer(I9) for the diffraction on a lattice with a sinusoidal displacement of the 
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reflecting planes. But I would like to stress the importance of making a close x-ray 
study of the reflecting power of a single metal crystal before and after plastic 
deformation, in order to ascertain the size and perfection of the coherent domains in 
the crystal. The reflecting power of a crystal of the mosaic type is many times that 
of a perfect crystal, and it has been shown by Renninger(") that in a crystal such 
as rock salt both types of curves can be realized to within about 5 per cent, on the 
same material, according to treatment. The measurement of the integrated re- 
flection allows one to determine the size of the coherent domains, while the study 
of the angular distribution of the reflected radiation shows the angular spread of the 
orientation of these domains. If a small proportion of a metal single crystal was 
picked out as being approximately perfect with regard to its x-ray diffraction, this 
would give a much more definite starting point for an x-ray study of the initial 
stages of plastic deformation than the unspecified material which has been used 
for this purpose up to the present. Although an investigation of the type of those 
carried out by Allison('') and by Parratt("') on calcite and by Renninger on rock 
salt is laborious, it should be worth while performing it on a metal crystal in view 
of the importance of obtaining as accurate data as possible on the fundamental 
process of gliding. 
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