Doppler broadening – shape parameters

- *S* a measure of e^+ annihilations with valence e^- (low ΔE)
- normalization: S / S_0
- increase of defect concentration \rightarrow increase of S parameter

Doppler broadening – shape parameters

- reference sample: $W_0 \approx 0.03$
- W a measure of e^+ annihilations with core e^- (high ΔE)
- normalization: W / W_0
- increase of defect concentration \rightarrow decrease of *W* parameter

Doppler broadening – shape parameters

P

specimen

t 7

r

Comparison with microhardnes

S-W plot

Pd film, thickness 1080 nm, virgin state

• VEPFIT (model 5) two layers: (i) Pd film, (ii) sapphire substrate

• thin film, Pd layer: $L_{+} = (41 \pm 7) \text{ nm}$

Pd film, thickness 1080 nm, virgin state

- VEPFIT (model 5) two layers: (i) Pd film, (ii) sapphire subs
- thin film, Pd layer: $L_{+} = (41 \pm 7) \text{ nm}$
- well annealed bulk Pd layer: $L_{+} = (151 \pm 4) \text{ nm}$

Hydrogen-induced buckling

Pd film, thickness 1080 nm, step-by-step loaded with hydrogen

Pd film, thickness 1080 nm, step-by-step loaded with hydrogen

Pd film, thickness 1080 nm, step-by-step loaded with hydrogen

Pd film, thickness 1080 nm, step-by-step loaded with hydrogen

Pd film, thickness 1080 nm, step-by-step loaded with hydrogen

x_H = 0.15

Pd film, thickness 1080 nm, step-by-step loaded with hydrogen

 \bullet $S_{\textrm{Pd}}$ - parameter for the Pd layer

Pd film, thickness 1080 nm, step-by-step loaded with hydrogen

- ${\mbox{ \bullet }} S_{\rm Pd}{\mbox{ parameter for the Pd layer }}$
- $L_{+,Pd}$ positron diffusion length for the Pd layer

Pd film, thickness 1080 nm × bulk Pd

S-W plot

