• positrons emitted by $^{22}Na\ \beta^+$ radioisotope

• mean positron penetration depth $\int_{-\infty}^{\infty} z P(z)$

$$\int_{0}^{\infty} z P(z) dz = \frac{1}{\alpha}$$

example:

Mg:
$$\alpha^{-1} = 154 \ \mu m$$

Al: $\alpha^{-1} = 99 \ \mu m$
Cu: $\alpha^{-1} = 30 \ \mu m$

• probability that a positron penetrates into a depth z $P(z) = \alpha e^{-\alpha z}$

$$\alpha \left[\mathrm{cm}^{-1} \right] = 16 \frac{\rho \left[\mathrm{g} \, \mathrm{cm}^{-3} \right]}{E_{\mathrm{max}}^{1.4} \left[\mathrm{MeV} \right]}$$

 ρ – material density $E_{\rm max} = 0.545 \, {\rm MeV} \quad ({\rm pro}^{22}{\rm Na})$

Positron work function	material	ϕ_+
	Al (100)	-0.16(3)
	Al (111)	0.065(3)
	Cr (100)	-1.76(5)
	W (100)	-3.0(1)
5	W (110)	-3.0(2)
	Ne	0.61(1)
Crystal zero	Ar	1.55(5)
S 0 Δ μ ₊ Δ Ψ ₊ Vacuum		
$-10 - V_{+}(r) = -V_{coul}(r) + V_{corr}(r)$ Bottom of		
Lowest band		

Examples of positron moderator geometries

Examples of positron moderator geometries

back-scattering

venetian blind

transmission geometry

moderator efficiency:

$$\varepsilon = \frac{N_{thermalizd}}{N_{incident}}$$

 $N_{thermalizd}$ moderator efficiency: Е $N_{\it incident}$ e` solid Ne 1e-2 Cold Ne gas finger 1e-3 inlet MODERATION EFFICIENCY 1e-4 W foil 1e-5 1e-6 1e-7 1e-8 1e-9 1955 1960 1965 1970 1975 1980 1985 1990 YEAR

polycrystalline W foil

- ²²Na source for slow positron beam
- iThemba Labs (Jižní Afrika)
- 50 mCi = 1.85 GBq
- conventional positron source $A \approx 1 \text{ MBq}$
- source for slow positron beam $A \approx 1$ GBq

²²Na source for slow positron beam

- ²²Na source for slow positron beam
- output window 5 μ m Ti foil
- transmission geometry of moderator
- slow positron yield

- continuous slow positron beam (Helmholtz-Zentrum Dresden Rossendorf)
- selection of slow positrons bending of the beam
- magnetic guiding of the beam using solenoids

- continuous slow positron beam (Helmholtz-Zentrum Dresden Rossendorf)
- selection of slow positrons bending of the beam
- magnetic guiding of the beam using solenoids

²²Na positron source + W moderator

- slow positron beam (MFF UK)
- selection of slow positrons bending of the beam
- magnetic guiding of the beam using solenoids

²²Na positron source+ W moderator

accelerator

Implantation profile of monoenergetic positrons

 AE^{r}

 ρ

 \overline{Z}

 \bullet monoenergetic positrons with energy E

$$P(z,E) = \frac{mz^{m-1}}{z_0^m} \exp\left[-\left(\frac{z}{z_0}\right)^m\right]$$

$$z_0 = \frac{AE^r}{\rho\Gamma\left(1 + \frac{1}{m}\right)} \qquad A = 4 \times 10^{-3} \text{ gcm}^{-2} \text{keV}^{-r}$$
$$m = 2$$
$$r = 1.6$$

• mean penetration depth:

- study of defect depth profile
- investigation of thin films
- measurement of positron back-diffusion

Characterization of defects in Pd

- characterization of defects using a slow positron beam with variable energy
- mean positron diffusion length: $L_{+} = (151 \pm 4)$ nm

Characterization of defects in Pd

- characterization of defects using a slow positron beam with variable energy
- plastic deformation \rightarrow increase of *S*, shortening of L_+

Characterization of defects in Pd

- characterization of defects using a slow positron beam with variable energy
- nanokrystalline Pd film positron trapping in misfit defects at grain boundaries

Nb film with thickness of 1.1 μm covered by a Pd cap with thickness of 20 nm

• thickness (1100 \pm 50) nm (profilometry)

 $(1120 \pm 20) \text{ nm (TEM)}$

column like crystallites
crystallite width ≈ 50 nm

Measurement of positron back-diffusion

- measurement of positron diffusion length $L_{\rm +}$

• presence of defects \rightarrow shortening of L_+

• defect concentration:

$$c_{V} = \frac{1}{\nu \tau_{B}} \left(\frac{L_{+,B}^{2}}{L_{+}^{2}} - 1 \right)$$

 $L_{+,B}$ – positron diffusion length in defect-free sample $L_{+,B}$

$$L_{B,+} = \sqrt{D_+ \tau_B}$$

v – specific positron trapping rate

Measurement of positron back-diffusion

- example: vacancies in FeAl alloys
- measurement of positron lifetime

$$c_V = \frac{1}{\nu_V} \frac{I_2}{I_1} \left(\frac{1}{\tau_B} - \frac{1}{\tau_V} \right)$$

- free positron component cannot be resolved in positron lifetime spectra when its intensity $I_1 < 5\%$ (saturated positron trapping)
- it corresponds to vacancy concentration $c_V > 2 \times 10^{-4}$

$$c_{V} = \frac{1}{\nu_{V}\tau_{B}} \left(\frac{L_{+,B}^{2}}{L_{+}^{2}} - 1 \right)$$

- measurement of positron back-diffusion
- positron diffusion length can be determined when $L_+ < 1$ nm
- it corresponds to vacancy concentration $c_V > 7 \times 10^{-2}$

Quenched-in vacancies in Fe-Al alloys – positron lifetime spectroscopy

Quenched-in vacancies in Fe-Al alloys – positron lifetime spectroscopy

- lifetime τ_2 of positrons trapped in vacancies
- increasing concentration of Al ions around vacancies

- two layers:
- (i) oxide on the surface 15-20 nm (ii) Fe-Al alloy

Quenched-in vacancies in Fe-Al alloys

• Fe₇₅Al₂₅ : positron lifetime spectroscopy: $c_V = (7.0 \pm 0.5) \times 10^{-5}$ positron back-diffusion : $c_V = (5 \pm 1) \times 10^{-5}$

Quenched-in vacancies in Fe-Al alloys

