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FOREWORD

Nuclear data are fundamental to the development and application of all nuclear sciences and
technologies. Basic nuclear data, whether measured or calculated, follow a complex process of
evaluation, correction and analysis before becoming directly available in applications. This report
describes such a process in the case of neutron-induced reactions in the resonance range.

As there are no predictive theories for neutron-induced reactions in the resonance energy
range, the basic nuclear data have to be obtained through measurements at dedicated experimental
facilities, such as linear particle accelerators. The measured raw data are then corrected for the
experimental conditions, such as sample impurities, background effects and detector efficiencies.
However, the experimental data thus obtained are not directly suitable for application calculations. A
thorough analysis of the data is necessary to produce a coherent set of applicable data.

F. Fröhner, The author of this report, describes in detail two elements necessary to perform a
correct analysis of experimental data in the resonance energy range: the neutron-nucleus interaction
theory in this energy range and the mathematical formalism of statistical inference. Concerning this
last point, the author expresses his preference for the Bayesian approach, which he considers the
most appropriate.

This report is part of an ongoing effort co-ordinated at an international level, involving
national research institutions and industry. It aims at preserving nuclear data knowledge, in a field
from which a large number of specialists have recently retired. The French Atomic Energy
Commission at Cadarache, Électricité de France and the OECD Nuclear Energy Agency have
contributed to this report. Vincent Greissier translated the report into French and Pierre Ribon
reviewed the original English version and the French translation. Laurent Carraro provided
comments on the mathematical part of the report.
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ABSTRACT. The probabilistic foundations of data evaluation are reviewed, with special emphasis

on parameter estimation based on Bayes' theorem and a quadratic loss function, and on modern

methods for the assignment of prior probabilities. The data reduction process leading from raw

experimental data to evaluated computer �les of nuclear reaction cross sections is outlined, with a

discussion of systematic and statistical errors and their propagation and of the generalised least-

squares formalism including prior information and nonlinear theoretical models. It is explained

how common errors induce correlations between data, what consequences they have for uncer-

tainty propagation and sensitivity studies, and how evaluators can construct covariance matrices

from the usual error information provided by experimentalists. New techniques for evaluation

of inconsistent data are also presented. The general principles are then applied speci�cally to

the analysis and evaluation of neutron resonance data in terms of theoretical models - R-matrix

theory (and especially its practically used multi-level Breit-Wigner and Reich-Moore variants)

in the resolved region, and resonance-averaged R-matrix theory (Hauser-Feshbach theory with

width-uctuation corrections) in the unresolved region. Complications arise because the mea-

sured transmission data, capture and �ssion yields, self-indication ratios and other observables

are not yet the wanted cross sections. These are obtained only by means of parametrisation.

The intervening e�ects - Doppler and resolution broadening, self-shielding, multiple scattering,

backgrounds, sample impurities, energy-dependent detector e�ciencies, inaccurate reference data

etc. - are therefore also discussed.

1. The Probabilistic Basis of Data Evaluation

Historically data evaluation in the modern sense began with the e�ort of Dunnington

(1939), DuMond and Cohen (1953) and collaborators to determine a set of recommended

values of the fundamental physical constants (speed of light, Planck's quantum of action,

�ne-structure constant, etc.), and to establish their uncertainties, by a comprehensive

least-squares �t to all relevant experimental data. As measurements are invariably af-

fected by uncontrollable instrumental errors, inaccurate standards, �nite counting statis-

tics and other sources of uncertainty, data evaluation involves reasoning from incomplete

information, hence probability theory. We begin therefore with a brief review of the

probability-theoretical foundations of data evaluation. This will help tie together various

rules for the extraction of \best" values and uncertainties from experimental data, and

prescriptions for data �tting and adjustment. Most scientists learn these rules and recipes

during laboratory courses and on the job, �nding most books on probability theory full

of intimidating statistical terminology and awkward \ad-hockeries" (Good 1965) arising

frommisconceived attempts to avoid Bayes' theorem with its much-maligned a-priori prob-

abilities. The following exposition which (a) is �rmly based on Bayes' theorem and (b)

utilises recent progress concerning prior probabilities, will be found to lead to a concise

and mathematically simple treatment of parameter estimation and data adjustment in the
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general framework of inductive inference, or learning from real, always error-a�ected and

incomplete observations.

1.1. Probability, a Quantitative Measure of Rational Expectation

All our results in this section will be fairly direct consequences of the basic sum and

product rules of probability theory,

P (AjC) + P ( �AjC) = 1 ; (1)

P (ABjC) = P (AjBC)P (BjC) = P (BjAC)P (AjC) ; (2)

where
A; B; C = propositions such as \the coin shows head"

or \the cross section is larger than 12 b",

AB = both A and B are true ,
�A = A is false ,

P (AjC) = probability of A given C.

Our notation indicates that all probability assignments are conditional, based on

either empirical or theoretical information or on assumptions. Following J. Bernoulli

(1713) and Laplace (1812) we interpret these probabilities as degrees of plausibility or

rational expectation on a numerical scale ranging from 0 (impossibility) to 1 (certainty),

intermediate values indicating intermediate degrees of plausibility. The sum rule tells us

that, under all circumstances C, the more probable A is the less probable is �A, the unit

sum of both probabilities representing the certainty that one of these alternatives must

be true. The product rule says that, under all circumstances C, the probability that both

A and B are true is equal to the probability of A given B, times the probability that, in

fact, B is true. Since A and B enter symmetrically one can also take the probability of B

given A and multiply it by the probability of A.

The interpretation of the P as degrees of plausibility (not the equations among them)

has been criticised by statisticians who insist that by probability one must mean only

\relative frequency in a random experiment" such as coin tossing, in the limit of very

many repetitions, and that one can assign \direct" probabilities of e�ects (observations) if

causes (stochastic laws and their parameters) are given, but not the \inverse" probabilities

of various possible causes if observations are given. They argued that since physical

constants are not random variables that assume given values with certain frequencies one

ought to associate probabilities only with the observational errors, not with the physical

constants. For scientists in general, and data evaluators in particular, this viewpoint is

too narrow. It would not permit them to say that, according to measured data, a physical

constant has such and such a probability to lie between given limits. The task to infer

the values of natural constants, half-lives, reaction cross sections etc. from error-a�ected,

uncertain and incomplete data is not a random experiment that can be repeated at will, but

rather an exercise in inductive inference (reasoning in the face of uncertainty). Laplace's

probability concept seems therefore more appropriate for the evaluation of scienti�c data.

All doubts were dispelled by R.T. Cox (1946). Using the arithmetic of logic, Boolean

algebra, he proved that any formal system of logical inference using degrees of plausibility

must either be equivalent to probability theory as derived from the basic sum and product

rules, or violate elementary consistency conditions. In his proof the most general con-

sistency conditions are cast in the form of two functional equations whose solutions are

just the basic rules. Criticism that Cox had assumed di�erentiability of his probability
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functions was met by A. R�enyi (1954) who gave a proof without that assumption. It is

interesting that Schr�odinger (1947), one of the founders of quantum mechanics, arrived

independently at essentially the same conclusions as Cox: The basic rules, clearly valid

for relative frequencies, are equally valid for Laplacean probabilities. In quantum theory

it has always been understood that probabilities quantify incomplete knowledge but it is

widely believed that classical and quantum mechanical probabilities di�er somehow. Ac-

tually, it can be shown that the quantum mechanical probability formalism is perfectly

consistent with the Laplacean probability concept and the basic sum and product rules

(Fr�ohner 1998). After Cox's proof two things should be clear.

1. Probabilities are not relative frequencies. They can equally well be applied to non-

repetitive situations as to repeated trials.

2. Allegedly superior schemes of logical inference, such as Fuzzy Logic or Arti�cial Intel-

ligence, are equivalent to probability theory at best { if not, they are bound to violate

elementary consistency requirements.

Although probabilities are not the same as frequencies, the two are surely related. In

repetitive situations one �nds that the probabilities are essentially expectation values of

relative frequencies { see e. g. Jaynes (1968) and Fr�ohner (1997).

1.2. Bayes' Theorem, the Rule for Updating Knowledge with New Data

Scienti�c experiments are usually describable by a statistical model, statistical el-

ements being introduced by uncontrollable, seemingly random instrumental e�ects, by

unknown errors and often by the theory itself (e. g. statistical mechanics or quantum the-

ory or the level-statistical theory of compound-nuclear reactions). The statistical model

enables one to calculate the \direct" probability of some set of observed data (\sample"),

provided the physical quantities and statistical parameters of the model are given. In

empirical science the situation is usually reversed: A sample of experimental data is given,

and one wants to �nd the \inverse" probabilities for the various possible values of the

physical quantities and statistical parameters of the model. Direct probabilities (of ef-

fects given the causes) and inverse probabilities (of causes given the e�ects) are related by

Bayes' (1763) theorem. In its simplest form,

P (AjBC) = P (BjAC)P (AjC)
P (BjC) ; (3)

it is an immediate consequence of the symmetry of the product rule (2) with respect to

A and B. The typical situation is that we have data B which depend on the value of

an unknown physical quantity A and on other circumstances C. If we have a statistical

model, represented by the so-called likelihood function p(BjAC), telling us how likely

observation of the data B would be under the circumstances C if the unknown quantity

were in fact A, and if we have also an a priori probability (\prior" for short) P (AjC),
then the updated or a posteriori probability (\posterior") P (AjBC) is proportional to the
product P (BjAC)P (AjC). The prior summarises what we knew about A before the data

became available, the likelihood function conveys the impact of the data, and the posterior

contains the complete information available for further inference and prediction. Laplace

(1812) gave the generalisation to several distinct, mutually exclusive alternatives Aj :

P (Aj jBC) = P (BjAjC)P (Aj jC)P
j P (BjAjC)P (Aj jC) ; j = 1; 2; : : : n; (4)
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normalised to unity as demanded by the sum rule. For continuous alternatives A and

B we replace the �nite discrete probabilities P (AjC), P (BjAC) etc. by in�nitesimal

probabilities p(AjC)dA, p(BjAC)dB etc. with probability densities p(AjC), p(BjAC)
etc., and the sum over alternatives by an integral,

p(AjBC) dA =
p(BjAC) p(AjC) dAR
p(BjAC) p(AjC) dA ; Amin � A � Amax : (5)

These forms of Bayes' theorem can be considered as the cornerstone of data evaluation and

adjustment. They show how prior knowledge (an existing data �le) is to be updated with

new evidence (new data). In all forms, the denominator is just a normalisation constant,

so the formal rule for learning from observations can be stated briey as

posterior / likelihood � prior:

It should be understood that the expressions prior and posterior have a logical rather than

temporal meaning. They simply mean without and with the new data taken into account.

As a fairly realistic illustration let us consider the determination of the decay constant

� of some short-lived radioisotope from decays registered at times t1, t2, : : : tn. Obviously

we must identify � with A, and the data t1; : : : tn with B, while C consists of all other

information about the situation such as applicability of the exponential decay law, purity

of the sample, reliability of the recording apparatus, su�ciently long observation time

for all observable decays to be recorded, etc. The statistical model for the experiment is

represented by the so-called sampling distribution, i. e. by the probability with which we

may \reasonably expect" the various alternatives if we sample once, given the parameters

of the model. In our example this is the probability that, given �, one particular decay,

let us say the i-th one, is recorded in the time interval dti at ti,

p(tij�) dti = exp(��ti)�dti ; 0 < ti <1 : (6)

We shall normally write continuous probability distributions in this form, with the proba-

bility density p multiplied by the relevant di�erential, i. e. as an in�nitesimal probability,

and with the range of possible values explicitly stated. This emphasises the fact that

ultimately all probability distributions are used for the calculation of expectation values,

so that they are parts of integrands, subject to possible change of variables. Since we

generally use the letter p for probability densities irrespective of their functional form, a

change of variable results in p(xj:)dx = p(xj:)jdx=dyjdy � p(yj:)dy. (We simpli�ed the

notation here by omitting explicit reference to the conditioning background information

C).

According to the product rule the joint probability of observing the mutually inde-

pendent data t1; : : : tn, given �, is

p(t1; : : : tnj�)dt1 : : : dtn = exp
�
� �

nX
j=1

tj

�
�n dt1 : : : dtn : (7)

This corresponds to p(AjB)dB above. Multiplying the likelihood function p(t1; : : : tnj�)
by the prior p(�)d� we get

p(�jt1; : : : tn) d� / exp
�
� �

nX
i=1

ti

�
�np(�)d� ; 0 < � <1 : (8)
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We note that in our problem the likelihood function does not depend on all the individual

sample values. They appear only in the form �iti � n�t, so that for given sample size n the

sample average �t carries all the information contained in the data. In statistical jargon �t

is a \su�cient statistic", n an \ancillary statistic", where statistic means any function of

the sample, i. e. of the data.

If we consider all values of � between 0 and 1 as equally probable a priori, so that

p(�)d� / d�, we get

p(�jn�t)d� / e��n
�t�nd� ; 0 < � <1 : (9)

Now the gamma function is de�ned by

�(n+ 1) �
Z
1

0

e�xxndx (10)

(which for non-negative integers is just the factorial n!). It follows that the �nal result of

our Bayesian estimation, properly normalised, can be written as

p(�jn�t)d� = �(n+ 1)�1e�xxndx ; 0 < x � �n�t <1 : (11)

This posterior, a gamma distribution (also known as chi-square distribution with �2 � 2x

and � � 2n + 2 degrees of freedom) represents the complete information about � which

is contained in the data and the assumed prior. Fig. 1 shows chi-square distributions for

various values of �. As the sample size n increases, our posterior becomes more and more

concentrated: The more data are collected the better known is �.

1.3. Recommended Values from Estimation under Quadratic Loss

Most users of radioactive-decay data do not want to be bothered with the details of

a posterior distribution. What they usually want is a recommended decay constant and

its uncertainty, and nothing else. So we calculate, with Eq. 11, the expectation value,

h�i =
Z
1

0

� p(�jn�t) d� =
n+ 1

n�t
; (12)

and the root-mean-square error (also called standard deviation or dispersion or one-sigma

uncertainty),

�� =
h Z 1

0

(�� h�i)2 p(�jn�t) d�
i1=2

=

r
n+ 1

n�t
; (13)

and state our result summarily as h�i � ��. This choice is justi�ed as follows. The

expectation value is that estimate �0 which minimises the expected squared error,

Z
1

0

(�0 � �)2 p(�jn�t) d� = min ; (14)

as is readily veri�ed by di�erentiation with respect to �0 and equating to zero. With

this recommended value the mean squared error (expectation value) is just the variance,

var � � (��)2, which justi�es also our uncertainty speci�cation. What we just did is

called \estimation under quadratic loss" in decision theory. The basic idea is that there

is usually a penalty for bad estimates, the more severe the more the estimate di�ers from
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our result looks reasonable enough, but as we shall see, there is a problem caused by the

rather cavalier fashion in which we have assigned the prior probabilities.

1.4. Generalisation to More Observations and More Parameters

Before we deal more carefully with priors, let us see what impact a second measure-

ment (with a fresh radioactive sample) would have on our knowledge of the decay constant.

Using the posterior distribution of the �rst measurement as the prior for the second one,

we �nd as the new posterior distribution

p(�jt1; : : : tn; t01; : : : t0m) d� / p(t01; : : : t
0

mj�) p(t1; : : : tnj�) d� ; (15)

where t01; : : : t
0

m are the new data. More generally, if there are k measurements, with

associated data sets D1; : : : Dk and likelihood functions L1; : : : Lk, one gets

p(�jD1; : : : Dk) d� /
h kY
j=1

Lj(Dj j�)
i
p(�) d� ; (16)

which shows nicely how Bayes' theorem models the process of learning by experience: Each

new experimental result can be formally incorporated into the existing body of knowledge

by multiplication of the associated likelihood function into the existing probability distri-

bution (and renormalisation). It is by no means necessary that all experiments are of the

same type. In nuclear resonance analysis, for instance, one usually combines likelihood

functions from transmission, capture, scattering and �ssion experiments involving all kinds

of detector and sample geometries in order to obtain best values of resonance energies and

partial widths. With each additional data set the posterior distribution becomes narrower

which means the uncertainty of the estimated parameter becomes smaller. Our example

shows this explicitly: For large n the relative uncertainty of � approaches zero as 1/
p
n.

A last generalisation concerns the estimated parameters. In data evaluation and ad-

justment we deal not only with large bodies of data from many di�erent experiments, but

also with many, usually correlated, parameters that must be determined simultaneously.

Instead of one parameter � one has then a parameter vector � in the equations, instead of

the increment d� one has a volume element dN� in the parameter space, and the prior and

posterior distributions represent joint probabilities for all N parameters (coordinates of

the parameter vector), complete with correlations. Again, resonance analysis provides ex-

amples. With modern shape analysis codes one can simultaneously estimate the resonance

energies and widths of dozens of resonances by �tting appropriate resonance-theoretical

expressions to the combined data from several types of resonance measurements, each

experiment furnishing hundreds or thousands of data points (see Fig. 4 below).

1.5. Closer Look at Prior Probabilities, Group-Theoretic Assignments

We must now deal more rigorously with prior probabilities. In our decay rate example

we have used the prior p(�) d� / d�, which in terms of the mean life � � 1=� can

be rewritten as p(1=�) d�=�2 � p(�) d� / d�=�2. Obviously we could have just as well

estimated � instead of �, and assumed all � equally probable, i. e. p(�) d� / d� . This,

however, would have resulted in a di�erent posterior distribution. It is true that the

posterior depends only weakly on the prior if data are abundant, but from a fundamental

viewpoint this is no consolation. There seems to be a basic arbitrariness about priors,

particularly for continuous parameters.
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For more than a century this seeming arbitrariness has led many statisticians to

repudiate Bayesian parameter estimation and to seek alternative methods that circumvent

priors. Others, comparing this to an attempt to do arithmetic without zero, defended

Bayes' theorem as derivable in a few lines from the basic sum and product rules. So they

used \subjective" priors or, as H. Je�reys (1939), invoked invariance arguments to �nd

priors which avoided ambiguities. An important step forward was taken by A. Wald (1950).

He had started out to �nd better-founded (decision-theoretical) methods of statistical

inference, without Bayes' theorem, but �nished by proving that the optimal strategies for

making decisions (recommending a value, for instance) in the face of uncertainty are just

the Bayesian rules.

Even more important was the application of group theory and information theory

to the problem of priors by E.T. Jaynes (1968, 1973). He demonstrated for a number of

simple but practically important cases that, even if one is completely ignorant about the

numerical values of the estimated parameters, the symmetry of the problem determines

the prior unambiguously. If a so-called location parameter is to be estimated, for instance

the mean � of a Gaussian, the form of the prior must be invariant under a shift c of

location, p(�)d� = p(�+ c)d(�+ c). Otherwise not all locations of the Gaussian would be

equiprobable a priori, contrary to the assumption of complete ignorance. The functional

equation has the solution

p(�) d� / d� ; �1 < � <1 ; (17)

a thoroughly plausible result. Not quite so obvious is the case of a scale parameter such

as the standard deviation � of a Gaussian. If there is no preferred scale, one expects

invariance under rescaling, p(�) d� = p(c�) d(c�). The solution of this functional equation

is

p(�) d� / d�

�
; 0 < � <1 ; (18)

as advocated already by H. Je�reys (1939). Despite its importance and simplicity Jaynes'

(1968) proof seems so little known that we quote it here almost verbatim for the case of

a rate constant which multiplies (or scales) all times and time intervals in a problem (as

� in Eq. 6 does):

Suppose that two observers, Mr. X and Mr. X', wish to estimate a rate constant from

a number of events. If their watches run at di�erent rates so that their measurements of a

given time interval are related by t = ct0, their rate or scale parameters will be related by

�0 = c�. They assign prior probabilities p(�)d� and q(�0)d�0, and if these are to represent

the same state of ignorance, p and q must be the same function so that p(�)d� = p(�0)d�0.

From the two equations for � and �0 one gets the functional equation p(�) = cp(c�). Its

unique solution is Je�reys' prior,

p(�) d� / d�

�
; 0 < � <1 : (19)

Obviously this is the appropriate prior for our decay rate example, since the decay constant

is just such a scale parameter in our equations. It satis�es p(�) d� / d�=� / d�=� which

removes all ambiguity: Whether we estimate the scale parameter � or the scale parameter

� , we always get the same posterior,

p(�jn�t) d� =
e�x xn

�(n)

dx

x
; 0 < x � �n�t <1 ; (20)
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with

h�i = 1

�t
; (21)

��

h�i =
1p
n
; : (22)

This looks neater than our previous result, illustrating Ockham's (1349) principle of par-

simony (\Ockham's razor"): The simpler result is usually the more correct one. If not the

decay constant but the mean life is to be estimated, it is equally easy to �nd

h�i = h��1i = n�t

n� 1
; (23)

��

h�i =
1p
n� 2

; (24)

applicable if n > 2.

Other examples of priors derived from group-theoretical invariances can be found in

the works of Jaynes (1968, 1973, 1976, 1980). In the language of group theory the prior

corresponding to invariance under a group of transformations is the right invariant Haar

measure on this group (see Berger 1985, ch. 6.6)

The non-normalisability of such \least informative" priors is sometimes criticised, and

they are called \improper" priors. Now one can employ instead a broad normalisable prior

of convenient (\conjugate") mathematical form. In our example this would be a gamma

distribution. The posterior would then, of course, depend on the width of this prior. If

one lets the width grow inde�nitely one �nds always that the posterior tends toward the

posterior obtained much more easily with the least informative prior. Our least informative

priors can therefore be considered as limits of extremely broad, normalisable distributions

on the linear (d�) and on the logarithmic (d�=� = d ln�) scale, just as Dirac's delta

function is the limiting case of extremely narrow, normalised distributions. There are no

conceptual or mathematical di�culties if one keeps in mind that both the least informative

priors and the \most informative" delta function are, in this sense, nothing but convenient

shorthand notations for extremely broad and extremely narrow distributions, meaningful

only in convolution with other, less extreme distributions.

1.6. Bayesian Parameter Estimation for the Univariate Gaussian

Let us apply least informative priors also to the principally and practically important

univariate Gaussian distribution. Suppose a repeated measurement of the same physi-

cal quantity � has produced the results x1; : : : xn, with experimental errors that can be

assumed as normally distributed. The sampling distribution is then

p(xj j�; �) dxj = 1p
2��2

exp
h
� 1

2

�xj � �

�

�2i
dxj ; �1 < xj <1 ; (25)

with unknown error dispersion �. The prior expressing complete ignorance of location

(mean) and scale (width) of the Gaussian is (see Jaynes 1968)

p(�; �) d� d� / d� d�

�
; �1 < � <1 ; 0 < � <1 : (26)

The posterior is thus

p(�; �jx1; : : : xn) d� d� / 1

�n
exp

h
� 1

2�2

nX
j=1

(xj � �)2
i d� d�

�
: (27)
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In terms of sample mean and sample variance,

�x � 1

n

nX
j=1

xj ; (28) s02 � 1

n

nX
j=1

(xj � �x)2 ; (29)

the exponent can be written as

1

2�2

nX
j=1

(xj � �)2 =
h
1 +

��� �x

s0

�2ins02
2�2

� (1 + u2)v : (30)

The posterior joint probability for � and �, properly normalised and in simpli�ed notation,

can thus be presented in the following two forms that correspond to the two factorisations

of the basic product rule (2),

p(�; �j�x; s0; n) d� d�

= p(ujv; n)du p(vjn)dv =
e�vu

2

p
�

p
v du

e�vv(n�1)=2

�(n�1
2
)

dv

v

= p(vju; n)dv p(ujn)du =
e�(1+u

2)v [(1 + u2)v]n=2

�(n
2
)

dv

v

du

B( 1
2
; n�1

2
) (1 + u2)n=2

;

�1 < u � �� �x

s0
<1 ; 0 < v � ns02

2�2
<1 ; (31)

where B( 1
2
; n�1

2
) � �( 1

2
)�(n�1

2
)=�(n

2
) is a beta function. Note that u is essentially �, and

v is essentially ��2, and that in both factorisations the posterior depends on the sample

only through the sample mean �x and the sample variance s02 (apart from the sample size

n). These quantities are therefore \jointly su�cient statistics" in frequentist terminology.

In the �rst factorisation the probability distribution of � given � is Gaussian while that

of ��2 is a gamma distribution. In the second one the probability distribution of � given

� is a gamma distribution while that of � is a Student t-distribution. The two alternative

factorisations display explicitly the two marginal distributions for � and �:

If only � is of interest, whatever � may be, we integrate over all possible values of the

\nuisance parameter" � (or v) to get the marginal distribution of possible � values,

p(�j�x; s0) d� =
du

B( 1
2
; n�1

2
)
�
1 + u2

�n=2 ; �1 < u � �� �x

s0
<1 : (32)

This is Student's t-distribution for t � u=
p
� with � = n�1 degrees of freedom, see Fig. 2

and Appendix A. Its mean and variance are hui = 0 and hu2i = 1=(n� 3), hence

h�i = �x ; (33) var � =
s02

n� 3
: (34)

We encounter here the (plausible) frequentist recipe to use the sample mean as \estimator"

for the population mean. No �nite and real standard error can be stated as long as n � 3.

On the other hand the half width is always well de�ned and can be used to indicate

the width of the t-distribution, as is common practice in the case n = 2, the Cauchy

distribution (known to physicists also as Lorentzian or as symmetric Breit-Wigner pro�le).
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The case with one datum only, n = 1, must be treated di�erently because s0 = 0

precludes the de�nition of u, but this is easy. The posterior is simply

p(�; �jx1) d� d� / 1p
2��2

exp
h
� 1

2

��� x1

�

�2 id� d�
�

; (41)

from which one gets the marginals

p(�jx1) d� � d�

j�� x1j ; (42)

p(�jx1) d� / d�

�
: (43)

The marginal distribution of � has a sharp maximum at the observed value but that of

� is seen to be still equal to the least informative prior { which makes sense, because

a sample of size n = 1 can tell something about the location but nothing whatsoever

about the spread of a distribution. This is but one example showing that the Bayesian

method is consistent with common sense even in extreme cases, in particular for very small

samples, where other methods tend to fail. We mention that the posterior (31) for n > 1

was found long before the prior (26) became available, but those who know R.A. Fisher's

(1935) \�ducial" approach will appreciate how much simpler and more straightforward

the Bayesian derivation is, and how easily it is extended to the case n = 1 (Je�reys

1939). Furthermore, the derivation can be extended in a straightforward way to the

mulivariate Gaussian distribution. With appropriate generalisations of scalar relationships

to matrix form, from variance (mean square error) to covariance matrix (�2 ! C), from

univariate di�erential to multivariate volume element (dx ! d(x) � Q
� dx� , d(�

2) !
d(C) � Q��� C�;�) etc., one �nds matrix expressions that look very similar to the scalar

expressions for the univariate Gaussian { see Appendix A (and Fr�ohner 1990).

Quite generally Bayesian parameter estimation is logically and mathematically sim-

pler than alternative approaches, and at least as rigorous. Concepts like bias, e�ciency,

su�ciency, admissibility, James-Stein shrinking (see e. g. Berger 1985), essential for fre-

quentist estimation methods, need not be introduced at all since they appear automatically

as more or less incidental features of the posterior distribution and its mean and variance.

There is no danger that best estimates are obtained outside the range of allowed values,

as happens sometimes with other methods. Although reaction rates or cross sections are

inherently positive quantities, measured data may well contain negative data points after

background subtraction. It would be wrong to discard the negative points. One can rely

on the fact that the prior always guarantees the correct range of the estimated quanti-

ties, e. g. � > 0, regardless of the range of observable values admitted by the likelihood

function, e. g. �1 < xj < +1. The basic simplicity and superiority of the Bayesian

approach as compared to other estimation methods has been demonstrated quite forcefully

by Jaynes (1976) with a whole series of real-life examples.

The joint posterior distribution of the mean � and the variance �2 is the complete

information about the parameters of a Gaussian which can be extracted from the data.

From the posterior we can obtain recommended values and their uncertainties for quadratic

or other loss functions as we have seen. Often, however, one is not only interested in

the parameters of the statistical model but also in predictions of the outcome of further

measurements. This, in fact, may be the reason why a statistical model was introduced in

the �rst place. What can we say, after having deduced the posterior (31) for the parameters

of the Gaussian model, about the outcome of one further measurement, x � xn+1? One
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might think of taking the Gaussian with the a posteriori most probable, or with the average

values of the parameters, or of averaging the Gaussian over the posterior distribution of

its parameters. The last alternative is the correct one. This becomes clear if we write

down the joint probability of x, � and � for given data �x and s02, then use the product

rule, and �nally integrate out the \nuisance parameters" � and �, which yields

p(xj�x; s0) dx / dx

Z
d�

Z
d� p(xj�; �) p(�; �j�x; s0)

/ dx

Z
1

0

dv

Z
1

�1

du e�(u�w)
2v=n e�vv(n�1)=2 ; (44)

where u, v are de�ned as before and w � (x��x)=s0. Integrating �rst over the Gaussian (all

u), then over the remaining gamma distribution (all v) we get, for n > 1, the \predictive"

distribution

p(xj�x; s0) dx = dy

B( 1
2
; n�1

2
) (1 + y2)n=2

; �1 < y � x� �x

s0
p
n+ 1

<1 : (45)

Although the sampling distribution is Gaussian, the predictive distribution for the

outcome of an additional measurement is not a Gaussian but a t-distribution. It is true

that the t-distribution approaches a Gaussian for large n, but for �nite n it is always

broader (see Fig. 2). The best estimate for any function f(x) of the next datum is its

expectation value hfi with respect to the predictive distribution.

1.7. Assignment of Probabilities by Entropy Maximisation

Jaynes (1968, 1973, 1978, 1980) considered also the case that one is not completely

ignorant a priori about numerical values. He showed how probabilities can be assigned

in a well de�ned way if at least vague information is available about average quantities,

for instance estimates of expectation values such as �rst and second moments. The key

concept is that of information entropy, introduced by C.E. Shannon (1948) as the unique

measure of the indeterminacy or missing information implied by a given probability dis-

tribution. The information entropy of a discrete probability distribution pj with mutually

exclusive alternatives j is (up to a constant)

S = �
X
j

pj ln pj : (46)

Shannon proved that this is the only measure of indeterminacy that satis�es the following

requirements:

(i) It is a smooth function of the pj .

(ii) If there are N alternatives, all equally probable, then the indeterminacy and hence S

must grow monotonically as N increases.

(iii) Mere grouping of alternatives cannot make any di�erence: If we add the entropy quan-

tifying ignorance about the true group, and the suitably weighted entropies quantify-

ing ignorance about the true member within each group, we ought to �nd the same

overall entropy S as for ungrouped alternatives.

For continuous distributions with probability density p(x) we take the seemingly analogous

expression

S = �
Z
dx p(x) ln p(x) : (47)
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Let us now assume that we do not know p(x) but that we have global information about

it in the form of expectation values for several known functions fk(x),

hfki =
Z
dx p(x) fk(x) ; k = 1; 2; : : : K : (48)

What is the probability density p(x) which satis�es these K equations without implying

any other, spurious information or hidden assumptions? The answer is provided by the

principle of maximal entropy: If we want compatibility with the given information, yet

minimal information content otherwise, we must vary p(x) in such a way that its entropy

is maximised, S = max, subject to the K constraints (48). The well known solution to

this variational problem, obtained with the technique of Lagrange multipliers, is

p(x) =
1

Z
exp

�
�

KX
k=1

�kfk(x)
�
: (49)

This probability density is manifestly positive for real �k, and properly normalised to

unity with

Z =

Z
dx exp

�
�

KX
k=1

�kfk(x)
�
: (50)

The Lagrange multipliers �k must be found from the K constraints (48) or from the

equivalent equations

hfki = � @

@�k
lnZ : (51)

The latter way is more convenient if Z can be expressed as an analytic function of the

Lagrange parameters.

Each time a new \global" datum hfki becomes available one must multiply the ex-

isting distribution by a factor exp[��kfk(x)] (and renormalise). This shows how one can

generalise to the case where a given prior distribution m(x)dx is to be updated with new

global data hfki: The updated probability density must have the form

p(x) =
m(x)

Z
exp

�
�

KX
k=1

�kfk(x)
�

(52)

with

Z =

Z
dxm(x) exp

�
�

KX
k=1

�kfk(x)
�
: (53)

The Lagrange multipliers can be found from Eqs. 48 or 51 as before. This result can be

obtained by maximisation of the relative information entropy (cross entropy)

S = �
Z
dx p(x) ln

p(x)

m(x)
; (54)

subject to the constraints (48). The cross entropy has the required invariance under change

of variable, in contrast to Eq. 47 which we now recognise as restricted to the special case

of a uniform prior for the integration variable x.
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The maximum entropy algorithm (48)-(51) ought to look familiar to physicists: It

constitutes nothing less than the missing rationale for Gibbs' axiomatic approach to ther-

modynamics. There the maximised information entropy, multiplied by Boltzmann's con-

stant, is Clausius' thermodynamic entropy, and the normalisation constant Z is the parti-

tion function from which all macroscopically observable or controllable ensemble averages

can be obtained by suitable di�erentiation. For instance, if E is the (non-negative) energy

of the particles of a thermodynamical system, about which nothing is known except their

average energy (determined by the temperature of the system), one gets the canonical

distribution, p(EjhEi) / exp(��E), i. e. a Boltzmann factor with the inverse tempera-

ture appearing as Lagrange parameter. If also the average number of particles is known

one obtains the grand-canonical ensemble, p(E;N jhEi; hNi) / exp(��E � �N), with the

chemical potential as a second Lagrange parameter, and so forth.

Data evaluators are mostly confronted with data reported in the form hxi ��x. Our

notation indicates that we interpret these numbers as the measurer's best estimate under

quadratic loss. The �rst two moments, hxi and hx2i, of an unknown distribution are

thus given. (Remember that (�x)2 = var x = hx2i � hxi2.) If the range of the variate

is �1 < x < 1, the maximum entropy algorithm yields for this kind of information

p(x) / exp(��1x��2x2) as the least restrictive, least informative, hence most conservative

and most objective probability density. This is obviously a Gaussian that in terms of the

input data must have the form (con�rmed, of course, by the maximum entropy algorithm)

p(xjhxi;�x) dx =
1p

2�(�x)2
exp

h
� 1

2

�x� hxi
�x

�2i
dx; �1 < x <1 : (55)

The case of an inherently positive variate, 0 < x <1, is reduced to the case just considered

if we substitute y = lnx, so that �1 < y < 1. With known �rst and second moment

on the log (y-)scale we get a Gaussian on the log scale, i. e. a lognormal distribution on

the linear (x-)scale. If we know only the mean hxi, and x is inherently positive, we get

a decreasing exponential. We encounter here one of the reasons for the ubiquity of these

distributions in statistics and data analysis.

Traditionally the Gaussian is considered appropriate only if the variate is a�ected by

very many independent \random" errors so that the central limit theorem is applicable,

or it is invoked merely for mathematical convenience, with stern warnings about the dire

consequences if the true distribution is not Gaussian. The maximum entropy principle can

not eliminate those consequences but it prevents bad conscience or paralysis: If nothing

but the best value (mean) and the root-mean-square error (standard deviation) is given,

the optimal probability distribution for further inference is the corresponding Gaussian,

whatever the unknown true distribution may happen to be. In contrast to the central

limit theorem, the maximum entropy principle works also for correlated data.

Another myth is that systematic errors are to be described by rectangular probability

distributions. If we do not know their sign but have at least a vague idea about their

possible magnitude (from the state of the art, for instance), the maximum entropy principle

tells us to use a Gaussian with zero mean and a width corresponding to that magnitude,

rather than a rectangular distribution.

Generalisation to multivariate distributions is straightforward. Take, for instance, a

set of experimental errors hxji � xj � �j , j=1, 2, : : : n, about which only the expectation

values h�j�ki, i. e. their variances and covariances are known. The errors �j are the

Cartesian coordinates of the vector variate �, and the expectation values h�j�ki are the

elements of the symmetric, positive de�nite covariance matrixC = h��yi, where the dagger
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denotes the transpose. For each expectation value Cjk = Ckj we introduce one Lagrange

multiplier �jk = �kj . The maximum entropy distribution is then

p(�jC) dn� = 1

Z
exp

�
�
X
j

X
k

�j�jk�k

�
dn� : (56)

Normalisation is easy in the coordinate system in which the square symmetric matrix � is

diagonal. We therefore substitute �0 = O�, where O is the orthogonal matrix that renders

�0 = O�Oy diagonal, det �0 = det �, and dn�0 = dn�. The n-dimensional integral Z

factorises then into n elementary integrals over univariate Gaussians,

Z =
Y
j

Z
d�j

0 exp
�� �0jj�j

02
�
=

r
�n

det �
: (57)

The relationship between the matrix � of Lagrange parameters and the given covariance

matrix C can be obtained by di�erentiation of lnZ, see Eq. 51. One �nds

Cjk = � @

@�jk
lnZ =

1

2
(��1)jk ; (58)

since di�erentiation of the determinant with respect to an element of the matrix yields

the cofactor for this element, which for a nonsingular matrix is equal to the corresponding

element of the inverse matrix times the determinant. The distribution with the highest

entropy among all those having the same covariance matrix C is therefore

p(�jC) d(�) = 1p
det (2�C)

exp
�
� 1

2
�yC�1�

�
d(�) ; �1 < �j <1 ; (59)

where h�i = 0, h��yi = C, det (2�C) = (2�)n det C, and d(�) � dn�. Thus we �nd, for

given second moments, an n-variate Gaussian centred at the origin. Since nothing was

assumed about �rst moments of the errors, i. e. about the center of their distribution,

there is no reason to prefer either negative or positive �j , and so the algorithm yields

symmetry about zero. What if only the variances Cjj are known, but not the covariances

Cjk, as often happens in practice? In this case only the Lagrange parameters �jj appear

in (56), i. e. the matrices � and C are a priori diagonal. Unknown covariances can

thus be taken as zero, and this simple rule can be applied also in cases where some

covariances are known and others not. This is another example, after the vanishing �rst

moments, for a general property of maximum entropy distributions: All expectation values

vanish unless the constraints demand otherwise. Thus there is no di�erence whether we

set unknown averages equal to zero after introducing Lagrange parameters for them, or

whether we ignore them right from the beginning. With � = hxi � x one can rewrite the

error distribution (59) in the form

p(xjhxi;C) d(x) = 1p
det (2�C)

exp
�
� 1

2
(x� hxi)yC�1(x� hxi)

�
d(x) ;

�1 < xj <1 (60)

which is the multivariate generalisation of the univariate Gaussian distribution (55).

It should be clear by now that entropy maximisation is a powerful tool for the as-

signment of prior or any other probabilities. A fascinating and very informative review of

the maximum entropy method, including a wide variety of applications from hypothesis

testing to non-equilibrium thermodynamics and uctuation theory, was given by Jaynes

(1978).
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1.8. Approximation: Maximum Likelihood

The more abundant the data are, the less important is the prior distribution. There-

fore it is often a reasonable approximation to use a constant prior, as we did initially in

our decay constant example. This means that the posterior probability density is taken

as equal to the likelihood function. The widely used maximum likelihood method consists

essentially of the rule to recommend that parameter value (or vector) which maximises

the likelihood function. Since the likelihood function depends only on the sample, the

parameter value (or vector) maximising it can depend on nothing else: It is a statistic,

and its \direct" probability distribution, i. e. the probability that its deviation from the

true value (or vector) will fall between given limits if a sample is taken, can be calculated

as the integral of the likelihood function over a corresponding domain of the sample space.

If the distribution so obtained is narrow, the true parameter is likely to be close to the

particular maximum likelihood estimate obtained from a particular sample. The distribu-

tion of the statistic must therefore be related to the Bayesian posterior. In simple cases,

when su�cient statistics exist, one can, in fact, rigorously deduce the Bayesian posterior

from the distribution of the maximum likelihood estimate. This is R.A. Fisher's (1935)

�ducial approach. In such favorable cases one �nds that the maximum-likelihood result

coincides with the Bayesian result obtained with the appropriate least informative prior.

We illustrate this with our decay constant example. The likelihood function in Eq.

7 becomes maximal for � = 1=�t, the maximum likelihood estimate is therefore the same

as the Bayesian \point" estimate (21). The probability for the su�cient statistic �t to be

found in the in�nitesimal interval d�t if a sample is drawn can be obtained by integration

of the likelihood function over a spherical shell with radius �t and thickness d�t in the space

of the ti. With polar coordinates, �t = r2, d�t = 2rdr, dnt / r2n�1 dr d
, and (trivial)

integration over the angular coordinates 
 one gets

p(�tjn; �) d�t / e��nr
2

r2n�1 dr ; 0 < r �
p
�t <1 : (61)

After normalisation the right-hand side of this proportionality relation is the same as

the Bayesian posterior (20) obtained with Je�reys' prior. Obviously we have here the

universal probability distribution of the product �n�t which we may interpret either as the

probability of � given n�t (one particular sample, a continuum of possible decay constants)

or, equally well, as that of n�t given � (one particular decay constant, an n-dimensional

continuum of possible samples for each positive integer n).

The maximum likelihood method, one of the techniques invented to circumvent priors,

is thus in favorable cases equivalent to the Bayesian approach, but even then it is more

cumbersome: First one must identify su�cient statistics, then one must calculate their

\direct" probability distribution by integration of the likelihood function over a suitable

domain in sample space, and �nally one must \invert" to get the probability distribution

of the parameters. In more complicated cases su�cient statistics may not exist at all, and

even if they exist approximations may be required so that the maximum likelihood result

only approximates the exact Bayesian result.

1.9. Approximation: Least Squares

The next approximation to be discussed, the least-squares method, is the most im-

portant one for data evaluation and adjustment. As the simplest example we consider the

case that a quantity � has been measured n times, under di�erent experimental conditions,

and that we are given the results in the form xj ��j . These numbers are best interpreted
as means and standard errors of unspeci�ed probability distributions. Whether these are
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Gaussians or not, the maximum entropy principle tells us to base all further inference on

Gaussians if the unknown errors can have any value between �1 and +1. The likelihood

function is the product of these Gaussian error distributions, and the appropriate prior

for the location parameter � is uniform, hence the posterior is also a Gaussian,

p(�jfxj ; �jg) d� / exp
h
� 1

2

X
j

�xj � �

�j

�2i
d� : (62)

Introducing ��2-weighted sample averages,

�x �
P

j �
�2
j xjP

j �
�2
j

; (63) �2 �
P

j �
�2
j �2jP

j �
�2
i

=
nP
j �

�2
j

; (64)

likewise x2, and normalising properly, we get

p(�jfxj ; �jg) d� =
1q

2��2=n

exp
h
� (�� �x)2

2�2=n

i
d� ; (65)

with mean and variance

h�i = �x ; (66) var � � (��)2 =
�2

n
: (67)

The relative standard error of the result, ��=h�i, is seen to be proportional to 1=
p
n

again. The best estimate under quadratic loss is the ��2-weighted average over all data.

It minimises the sum of squares in the exponent of the posterior (62). This least-squares

property will be met again in the multivariate generalisation:

Let us consider

� observables yj ; j = 1; 2; : : : J (e. g. neutron capture data),

� parameters x� ; � = 1; 2; : : : M (e. g. resonance parameters),

� a theoretical model y = y(x) (e. g. the R-matrix theory of resonance reactions),

where x = fx1; : : : xMg, y = fy1; : : : yJ)g are vectors in parameter space and in sample

space, respectively. UsuallyM < J but we shall see that this is not necessary. Now suppose

that before the data became available one had prior knowledge about the parameter vector,

in the form of an estimated vector � and a covariance matrix A = h�� ��yi, with �� �
��x, describing the uncertainties and correlations of the estimated parameters. The prior

probability distribution of x, given � and A, is then to be taken as

p(xj�;A) d(x) / exp
h
� 1

2
(� � x)yA�1(� � x)

i
d(x) ; (68)

where d(x) � dMx is the volume element of the M-dimensional parameter space (not to

be mistaken for the in�nitesimal vector dx).

Suppose further that measurements yielded a data vector �, a�ected by experimental

errors whose uncertainties and correlations are speci�ed by the covariance matrix B =
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h�� ��yi, with �� � � � y, so that the likelihood to obtain these values, given the true

vector y of observables, is

p(�jy;B) d(�) / exp
h
� 1

2
(� � y)yB�1(� � y)

i
d(�) ; (69)

where d(�) � dJ� is the volume element in the J-dimensional sample space.

These probability assignments are the multivariate Gaussians dictated by the maxi-

mum entropy principle (compare Eq. 59). Multiplying prior distribution and likelihood

function we get the posterior distribution,

p(xj�;A;�;B) d(x)
/ exp

h
� 1

2
(� � x)yA�1(� � x)� 1

2
(� � y(x))yB�1(� � y(x))

i
d(x) : (70)

So far we neglected correlations between prior information and new data. This is, however,

not always possible, for instance if the prior information stems from older measurements

in which the same techniques and standards were employed as in the new measurements.

Generalisation to this situation is not di�cult. Eq. 70 shows that we can consider the

old parameter estimates and the new data on the same footing. Prior estimates and their

uncertainties have exactly the same impact as if they were data obtained in a measurement

of the special observables y� = x�. So we can combine the vectors x and y(x) in a

hypervector z(x) � fx;y(x)g. If the corresponding data vector � � f�;�g and the

associated covariance matrix C � h�� ��yi are given, the maximum entropy distribution

is

p(xj�;C) d(x) / exp
h
� 1

2
(� � z(x))yC�1(� � z(x))

i
d(x) ; (71)

where C now contains also covariances between prior estimates and new data, h��� ��ii.
This posterior distribution is the most general, most detailed result of our Bayesian param-

eter estimation. It contains in analytic form all information about the parameter vector

x that the given prior information and the new data contain.

The remaining task is condensation into a recommended parameter vector and its

uncertainty. Decision theory tells us what to do if a loss function is given. If none

is given we assume quadratic loss which entails that we must recommend the updated

posterior mean vector hxi and specify the uncertainties and correlations by the posterior

covariance matrix h�x �xyi, with �x � x � hxi. For a linear model y(x) the necessary

integrations are easy as we shall see in Sect. 2.2. For a nonlinear model one must either

integrate numerically, which is not practical if many parameters are to be estimated (except

perhaps with Monte Carlo techniques), or one must resort to the method of steepest

descent (Laplace approximation). The latter means essentially that the exact posterior

is replaced by a multivariate Gaussian with the same maximum and the same curvature

tensor at the maximum so that the integrand is well approximated at least in the domain

that contributes most to the integral. This is accomplished by Taylor expansion of the

exponent of Eq. 71 about its minimum and truncation after the bilinear terms. (see

e. g. Bernardo and Smith 1994, Lange 1999). The maximum, i. e. the a posteriori most

probable parameter vector x̂, is speci�ed by

(� � z(x̂))yC�1(� � z(x̂)) = min : (72)

This is the formal statement of the principle of least squares in its most general form.

(In the principal-axes system the quadratic form appears as a sum of squares, whence the

name).
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In frequentist statistics the least-squares principle is introduced more or less ad hoc, or

it is derived from the maximum-likelihood principle which in turn is introduced at hoc. In

both cases only the likelihood function is utilised. Here we recognise that the least-squares

condition is a natural consequence of more fundamental premises, and that it demands

maximisation not only of the likelihood function but of the full posterior distribution.

Without simplifying too much one may say that generalised least squares is nothing but

Bayesian parameter estimation under quadratic loss in Laplace approximation, in problems

where only data and data uncertainties are given so that the maximum entropy principle

demands Gaussians whether the unknown true distributions are Gaussian or not. An ad

hoc least-squares principle is not needed.

We conclude this chapter by summarising the essential di�erence between the frequen-

tist (also called orthodox or classical or sampling-theoretical) and the Bayesian approach

to inductive inference as follows. Frequentists average over all imaginable outcomes of

a measurement, conditional on given causes, whereas Bayesians average over all possible

causes, conditional on the one observed outcome and prior knowledge. There can be no

doubt that the Bayesian approach is the appropriate one for a physicist who must infer

cross sections or cross section parameters from uncertainty-a�ected observations.
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2. Evaluation of Nuclear Data for Applications

In the following sections we shall discuss some of the more practical aspects of data

evaluation, with special attention to the least-squares formalism, to statistical versus sys-

tematic errors and how the latter cause correlations. Historically data evaluation in the

modern sense began with the e�ort of Dunnington (1939), Cohen, DuMond and collabo-

rators (1957, 1992))to determine a recommended set of fundamental constants (Planck's

constant, �ne-structure constant, electron mass, etc.), and to assess the uncertainties, by a

comprehensive least-squares �t to all relevant experimental data. At about the same time

the rapidly growing nuclear industry began to develop a voracious appetite for accurate

nuclear data, especially neutron and photon cross sections, but also nuclear structure and

decay data. The data for nuclear reactions induced by neutrons having \thermal" ener-

gies around 25.3 meV were evaluated with �rst priority (see Westcott et al. 1965, Lemmel

1975), but the expanding scope of nuclear technology, from thermal �ssion reactors to fast

�ssion reactors and eventually to fusion reactors, brought a corresponding expansion of the

energy range of interest. Modern neutron data �les contain millions of cross section values

covering the whole range from 10 �eV to at least 20 MeV for hundreds of isotopes, and

computers are indispensable for their maintenance and utilisation. Nuclear data provide a

highly developed example of the process leading from experimental raw data to evaluated

data �les.

2.1. Stepwise Preparation of Nuclear Data for Applications

Nuclear (and other scienti�c) data for technological applications are usually prepared

in several steps, by di�erent groups of specialists. Let us take neutron cross section data

to illustrate these steps.

1. Measurement: Experimenters take data, typically at steady-state or pulsed acceler-

ators, the latter permitting use of the time-of-ight method. This method produces,

in one experimental run and therefore under exactly identical conditions, large num-

bers of data points covering wide energy ranges with high resolution. The simplest

type of measurement is that of the total cross section �. One measures that fraction of

a beam of particles of given energy (given ight time) which traverses, without inter-

acting, a sample of given thickness n (atoms/barn). This fraction, the transmission,

is 1� ��n for a very thin layer of material. For the whole sample it is

T = lim
�n!0

(1� ��n)n=�n = e
�n�

: (73)

In practice the transmission is obtained as the ratio of the count rates from a \sample-

in" and a \sample-out" run. The incoming ux and the detector e�ciency cancel out,

so there is no calibration uncertainty. Background noise, however, requires correc-

tions. If the cross section has resonance structure one employs both \thin" and

\thick" samples in order to obtain good accuracy of the extracted cross sections, at

the resonance peaks as well as in the valleys between resonances.

Partial cross sections are more di�cult to measure. Experimentally one obtains a

reaction yield, for instance by recording the �ssion products or capture gamma rays

emitted from a thin sample under neutron bombardment. The reaction yield is de�ned

as that fraction of beam particles which undergoes a reaction of the measured type in

the sample. It is a sum of contributions from multiple-collision events where the beam

particle undergoes zero, one, two etc. scattering collisions before it �nally induces the

recorded reaction,
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Requests for Nuclear Data, known as the WRENDA list.

Measured data are collected by a network of data centers, each operating within its

agreed service area:

NNDC (National Nuclear Data Center) at Brookhaven, USA,

servicing the USA and Canada;

NEADB (NEA Data Bank, OECD) at Saclay, France,

servicing the non-American OECD coutries;

CJD (Centr po Jadernym Dannym) at Obninsk, Russia,

servicing the territory of the former Soviet Union;

NDS (Nuclear Data Section, IAEA), at Vienna, Austria,

servicing all other countries.

Regular data exchange ensures that the data base is essentially the same at all four

centers. Evaluated data are also collected, notably the �les ENDF (USA), JEF (NEADB

member countries), JENDL (Japan), and BROND (Comecon countries). The centers pro-

duce also the widely used bibliographic Computer Index to Neutron Data (CINDA). The

well known \barn book" (Mughabghab et al. 1984) containing comprehensive resonance

parameter tables and cross section plots, is a product of NNDC. Similar networks of data

centers compile and distribute charged-particle data and nuclear structure and decay data.

The ENSDF �le contains evaluated data of the latter type, it is the machine-readable o�-

spring of the well known Nuclear Data Sheets and the Table of Isotopes (Lederer et al.

1979).

Comparable international cooperation involving data bank networks exists in me-

teorology, high-energy physics, materials research, aerospace research, and many other

scienti�c and technological areas.

2.2. Iterative Least-Squares Fitting

Most of the parameter estimation work in the analysis of clean data (step 3. in the

last section) is based on the least-squares method. Let us therefore return to the least

squares condition,

(� � z(x̂))yC�1(� � z(x̂)) = min : (76)

We recall that the vector � is the combined set of prior parameter estimates and of

measured data, � = f�;�g = f�1; : : : �M ; �1; : : : �Jg. The measured data may come from

quite di�erent types of measurements which, of course, must be mathematically described

by the corresponding coordinates of the model vector y(x).

Without prior information about the parameters one has simply

(� � y(x))yB�1(� � y(x)) = min : (77)

If one neglects also the correlations between the data �j , so that the matrix B becomes

diagonal, one gets the equations for \primitive" least-squares �tting which is still employed

in many �tting codes. It utilises only the new data and their uncertainties, ignoring all

prior information that may be available. The resulting parameter estimates and their

uncertainties must then be combined with the prior information, derived for instance

from previous measurements, by some kind of weighted averaging after the �t. Now a

fundamental tenet of inductive logic is that the probabilities should encode all the available

information, prior knowledge as well as new evidence. It is therefore more correct {

and also more convenient { to include the prior estimates (or �rst guesses) and their

uncertainties (variances) right from the beginning in the form of a prior distribution as in
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Eq. 70. Moreover, the convergence of nonlinear least-squares �tting is always improved {

often dramatically { after inclusion of prior information by means of Gaussian or similar

priors. One need not worry too much about unknown input correlations. According to the

maximum entropy principle we may simply neglect those that we do not know, and set the

corresponding elements of the input covariance matrix equal to zero. On the other hand it

is not di�cult to construct complete input covariance matrices if the uncertainties of the

input data are well documented, with clear speci�cation of the various error components

including their root-mean-square errors. This will be explained below but for now we shall

assume that the input covariance matrix C is given, at least in diagonal form.

Let us try to calculate the parameter estimate under quadratic loss, i.e. the mean and

the (output) covariance matrix of the posterior distribution (71). Numerical integration

is always possible but in order to get analytic expressions we must employ the Laplace

approximation (method of steepest descent, saddle point integration) which is strictly

exact only in the case of a linear model y(x). For nonlinear models it is adequate for most

practical purposes but one must keep in mind that it may fail if nonlinearities are severe

across the peak of the posterior. Taylor expansion of the exponent of Eq. 71 around its

minimum at x = x̂ yields

Q(x) � (� � z(x))yC�1(� � z(x))

= Q(x̂) + (x� x̂)yA0�1(x� x̂) + : : : (78)

The most probable parameter vector x̂ is de�ned by rQ = 0 (with r� � @=@x�), i. e. by

the \normal" equations

S(x̂)yC�1(� � z(x̂)) = 0 ; (79)

and the matrix A0 by

A0�1 �
1

2

�
rryQ

�
x=x̂

= S(x̂)yC�1S(x̂) + : : : ; (80)

where S is the rectangular matrix of sensitivity coe�cients

Sj� =
@zj

@x�
: (81)

The vector x̂ can be found from the normal equations (79) by Newton-Raphson iteration: If

one has, after n steps, an approximate solution xn, one can insert the linear approximations

z(x̂) ' z(xn) + S(xn)(x̂� xn) (82)

and S(x̂) ' S(xn) in the normal equations and solve for x̂. The improved solution found

in this way is

xn+1 = xn +
�
S(xn)

yC�1S(xn)
�
�1
S(xn)

yC�1
�
� � z(xn)

�
: (83)

So one can start with the a priori most probable value, x0 = �, on the right-hand side,

calculate an improved value x1, reinsert it, and so on, until stationarity is achieved within

single precision of the computer (or until some other reasonable convergence criterion is

satis�ed). In each step we must recalculate z(x) and the sensitivity matrix S(x). For a

linear model z is a linear function of x, i.e. Eq. 82 is exact for n = 0, with S not depending
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the prior estimates of parameters and data. In neutron data evaluation and cross section

parametrisation the number M of parameters is usually much smaller than the number J

of experimental data points. The opposite is true for group constant adjustment, since the

number M of adjusted group constants in a data library is usually much larger than the

number J of integral data (measured reactor responses). The equations are the same in

both cases. The iterative Bayesian least-squares formalism is employed in the resonance

analysis code SAMMY (Larson and Perey 1980) and in the Hauser-Feshbach program

FITACS (Fr�ohner et al. 1982) that is used to analyse resonance-averaged neutron cross

section data in the unresolved resonance region. Experience with these codes has clearly

shown the advantage of explicit inclusion of a-priori information via a Gaussian prior.

Because the prior constrains the parameter search smoothly to a reasonable domain, the

(linear programming) problems encountered with sharp boundaries are avoided, and con-

vergence is dramatically improved relative to earlier \primitive" least-squares versions of

these codes which did not utilise prior uncertainties. A typical problem with \primitive"

least-squares �tting, viz. lack of convergence if too many parameters are adjusted simulta-

neously, is practically eliminated with the generalised least-squares scheme which tolerates

large numbers of adjusted parameters (e. g. several dozens in resonance analysis), even if

the prior uncertainties are quite large.

It must be kept in mind, however, that the covariance formalism based on �rst-order

error propagation, and hence the least-squares approach to data adjustment and model

�tting, is exact only for linear models but not in general. Di�erent estimates can result in

nonlinear least-squares data combination depending on whether an evaluator has the raw

data available or whether he can only use reduced data with covariance information. A

much discussed example of this was \Peelle's Pertinent Problem" (see Fr�ohner 1997).

In reactor physics one often works with relative errors, (�j � zj)=�j , and with the

corresponding relative covariance matrix elements h��j ��ki=(�j�k), and relative sensitivity
coe�cients, Sj�=�j . This amounts to the replacements

� � z! D(� � z) ; C! DCD ; S! DS with Djk = �jk=�j : (86)

Obviously the inserted diagonal matrices D are canceled by their inverses in the least-

squares equations, so the use of relative quantities changes only the form of the equations

but not the content. The advantage is, of course, that relative (e.g. percentage) errors and

sensitivities are easier to grasp and to remember which makes it easier to compare them and

to assess their relative importance in problems with many physically di�erent parameters.

Di�culties arise, however, if the values �j are much smaller than their uncertainties so

that one must divide essentially by zero. In this case it is better to use absolute rather

than relative values.

Occasionally the question is raised whether it is correct to use the (measured or a

priori estimated) data �j as reference or whether it is not better to use the true values

zj . The answer is simple: True values are principally unknown, so it is not possible to

use them as reference for instance in computer �les of relative covariance matrices and

sensitivity coe�cients. All one can do is to use the best estimates that are available at

a given stage. Before least-squares adjustment these are the prior parameter estimates

�� and the experimental data �j , hence the quantities �j . After the adjustment one

has improved parameter estimates hx�i and improved calculated data yj(hxi), and those

are then the correct reference values for the relative output covariance matrices. True

values are never available, they appear only in the equations as arguments of probability

distributions, i. e. as possible values, and are integrated out whenever expectation values

or other recommended quantities are computed for practical applications.
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2.3. Statistical Errors: Poisson Statistics

We must now discuss the error information that is needed for the construction of the

covariance matrixC� that describes the uncertainties of the data and their correlations. In

practically all nuclear data measurements one detects and counts particles of a particular

type, for instance �ssion fragments signalling nuclear �ssion events, or gamma quanta

signalling radiative capture events. The count rates are a measure of the corresponding

�ssion or capture probabilities (conventionally expressed as nuclear �ssion or capture cross

sections). In the limit of in�nite counting time, and in the absence of other errors, one

would measure the probabilities (in the frequentist sense) directly, but in practice there is

always some statistical uncertainty about the limiting count rate (or cross section) because

of the �nite counting time. What can we say about the true rate �, and especially about

its uncertainty, if n events have been registered during a time t?

Constant count rate means that there is a well-de�ned average time interval hti be-
tween counts. With this global information the maximum entropy principle yields imme-

diately the familiar exponential interval distribution of Poisson statistics,

p(tj�) dt = e
��t

� dt ; 0 < t <1 : (87)

The Lagrange multiplier, the rate constant, is the reciprocal of the mean interval, � =

1=hti. Knowing the interval distribution one can write down the joint probability that

counts are registered in in�nitesimal time intervals dt1; dt2; : : : dtn within some time span

t, and integrate over all possible locations of these intervals. The result is the probability

of n counts registered at arbitrary times within the interval t, given the rate constant �,

P (nj�; t) d� =
e
��t(�t)n

n!
; n = 0; 1; 2; : : : (88)

This is the Poisson distribution. Bayes' theorem with Je�reys' prior for the scale parameter

� yields immediately the inverse probability (Sect. 1.5, Eq. 20)

p(�jt; n) d� =
e
�x

x
n

�(n)

dx

x
; 0 < x � �t <1; (89)

with

h�i =
n

t
; (90)

��

h�i
=

1
p
n
: (91)

The relative uncertainty is nothing but the familiar 1=
p
n rule for the estimation of stati-

stical uncertainties, widely used for all kinds of tallies in statistics generally and in Monte

Carlo work in particular. More general problems, for instance the determination of a count

rate in the presence of a background, are also readily solved with the Bayesian method

(see Loredo 1990, Fr�ohner 1997).

2.4. Systematic Errors: Correlated Uncertainties and their Propagation

We must now discuss briey the basic types of systematic errors and how they induce

correlations between estimates. As before we denote the unknown errors of the data by

��i = �i� yi. If they were of purely statistical origin they would be uncorrelated, and the

elements of the covariance matrix B would be

h��j ��ki = �jk var �j � �jk(��j)
2
; (92)



33

i. e. the matrix would be diagonal. This is assumed in many \primitive" least-squares

codes: each squared error is weighted by the reciprocal variance. Besides the statistical

errors there are, however, always experimental errors from ux determination, detector

calibration, timing uncertainty, etc. In contrast to the statistical errors these so-called

systematic errors are common to a whole set of data, for instance to all the data accumu-

lated in the time channels during a time-of-ight experiment. Quite generally, correlations

between data are usually caused by common errors. To see this we write the unknown total

errors in the form

��j = ��
0

j
+ ��

0
; (93)

where ��0
j
is the statistical, and ��

0 the systematic error. The latter is the same for the

whole data set so it does not carry a subscript. The elements of the covariance matrix B

are

h��j ��ki = h(��0
j
)2i�jk + h(��0)2i ; (94)

since the statistical errors of di�erent data points are uncorrelated, h��0
j
��
0

k
i = h(��0

j
)2i�jk,

with zero mean, h��0
j
i = 0, and since there is no correlation between statistical and

systematic errors, h��0
j
��
0i = 0. We conclude that common, i. e. systematic, errors

always produce correlations between the elements of an experimental data set.

The most frequent systematic errors are those that shift the observed value (e.g.

background errors) and those that multiply them (e.g. errors in ux normalisation or

detector calibration). If we vary a subtracted background b for one of the data points,

we must do the same for all others: all the reported values �j must be varied together.

This is, of course, the literal meaning of covariance. More generally, if the reported data

were obtained from raw count rates aj by application of common corrections b, c, : : :, the

total errors are ��j ' (@�j=@aj)�aj + (@�j=@b)�b + (@�j=@c)�c + : : :. Now the statistical

errors and usually the common errors, too, are uncorrelated, so that all their covariances

vanish, h�aj �aki = h�aj �bi = h�b �ci = 0. The overall covariance elements depend then

only on mean square errors (variances) of the components and on sensitivity coe�cients

(derivatives),

h��j ��ki '
�
@�j

@aj

�2
(�aj)

2
�jk +

@�j

@b
(�b)2

@�k

@b
+

@�j

@c
(�c)2

@�k

@c
+ : : : (95)

This shows that for the construction of covariance matrices the evaluator needs from the

measurers

� root-mean-square errors for all error components,

� information about the data reduction so that he can calculate the sensitivity coe�-

cients.

If he is told that the data reduction consisted in subtraction of a common background b

and multiplication by a calibration factor c, i. e. �j = (aj � b) � c, he has no di�culty to

calculate h��j ��ki ' �jk(c�aj)
2 + (c�b)2 + �j�k(�c)2=c2. Obviously it is essential that

experimentalists state clearly, and in su�cient detail, the various statistical and systematic

error components when they report data, whereas they need not worry about correlations

since these can be constructed readily from the error components, even for very large data

sets (by computer, if necessary, see N. Larson 1986, 1992). For an instructive example of

correlated data uncertainties and their impact on estimated parameters see the discussion

of resonance energy standards by F. Perey (1978).

The merging of statistical and systematic errors into a total error is often considered

as incorrect. Our equations show, however, that it is perfectly straightforward to calculate
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the mean square total error as the sum of the mean square errors (variances) of all error

components, statistical as well as systematic. The dividing line between the two error

types is debatable anyway: One person's statistical error may well be another person's

systematic error. The only problem with a sum of mean square errors is that by itself it

does not reveal how much of it is statistical and how much systematic, i. e. how much

correlation there may be. This question can only be answered if the physical meaning and

the standard errors of all the error components are known.

A somewhat related criticism has been raised against least-squares combination of

data obtained from di�erent sources: Suppose a constant count rate, for example back-

ground noise, is measured repeatedly, with counts nj registered during time intervals tj .

The ��2
j
-weighted sample average, calculated with relative uncertainties equal to 1=

p
nj

as is appropriate for counts, turns out to be
P

j
tj=
P

j
(t2
j
=nj). This does not look right

and has been mistaken as evidence that there is something fundamentally wrong with the

least-squares formalism which needs to be cleared up and remedied. The cause of the

di�culty is, however, not the least-squares formalism but its employment in a situation

where a non-Gaussian sample distribution { the Poisson distribution { is known to apply.

There is no need here to replace unknown distributions by Gaussians via entropy max-

imisation or the central limit theorem and then use least squares. The correct posterior

is a product of Poisson probabilities, Eq. 88, and of Je�reys' prior for the rate constant.

The resulting estimates, h�i =
P

j
nj=

P
j
tj and ��=h�i = 1=

qP
j
nj , involve the total

number of counts and the total counting time in precisely the way common sense expects

from Eqs. 90 and 91. The lesson is that the least-squares method should not be used blindly

if the available information admits a more rigorous treatment. This is another illustration

of the fundamental truth that the correct solution of a probabilistic problem requires all

given information to be utilised.

The statement that experimentalists need not worry much about correlations should

not be misunderstood. It does not mean that correlations are unimportant. It means only

that they are not needed for the construction of covariance matrices provided the data

reduction procedure and all relevant root-mean-square errors are adequately documented.

The correlated output uncertainties of cross sections or cross section parameters, contained

in the posterior covariance matrix h�x �xyi, constitute highly relevant information for users

of the data. The uncertainty of any function f of the cross sections x�, for example the

calculated criticality of a nuclear reactor, is given in linear approximation by the square

root of

h(�f)2i =
X
�

X
�

@f

@x�
h�x��x�i

@f

@x�
; (96)

where h�x��x�i is an element of the covariance matrix, and where the derivatives or

sensitivity coe�cients are to be calculated with the best estimates hx�i. It is obvious

that a good sensitivity study is not feasible without the covariance matrix. In the past it

appeared repeatedly as if nuclear data were not accurate enough for certain applications

when covariance information was ignored. When it was properly taken into account the

accuracy turned out to be quite acceptable due to negative terms in the double sum from

anticorrelated (compensating) errors. Hence those who extract cross section parameters

from experimental data should not just state the parameters and their uncertainties, but

also at least the more important elements of the covariance matrix.

We close the subsection by noting that the covariance matrix elements C�� are related

to the standard errors �x� =
p
var x� and the correlation coe�cients ��� as follows,

C�� � h�x� �x�i = �x�����x� ; (97)
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with ��� = 1. The Schwarz inequality constrains the range of the correlation coe�cients,

�1 � ��� �
cov (x�; x�)

p
var x�

p
var x�

� +1 : (98)

Uncertainties can thus be stated in several equivalent ways:

1. as variances and covariances,

2. as relative variances and relative covariances,

3. as standard errors and correlation coe�cients,

4. as relative standard errors and correlation coe�cients.

By far the most economic and mnemotechnically safest way is the last one (at least if the

data are not vanishingly small compared to the uncertainties). First, relative (percent-

age) standard errors are more easily grasped, remembered and compared than absolute

ones, especially if the data vectors contain physically distinct quantities (e. g. resonance

parameters and cross sections, or group cross sections and self-shielding factors). Second,

relative standard errors and correlation coe�cients have a clearcut intuitive meaning in

contrast to variances and covariances. If I am told that the variances of x and y are 0.04

and 0.000009 and that their covariance is -0.000012 I am helpless. Only with the further

information that the recommended values are x = 10 and y = 0:1 can I �nd out that the

relative standard errors are 2% for x and 3% for y and that the correlation coe�cient is

-0.02. Had I been told the last three �gures right away I would have understood immedi-

ately that both quantities are known with good accuracy and that their anticorrelation is

negligible for most purposes.

It is hard to understand why the present ENDF-6 format (Rose and Dunford 1990)

admits only variances and covariances. A format extension to standard errors and cor-

relation coe�cients would enable evaluators and users to work with uncertainty �les that

are much easier to construct, read, and update, hence considerably less error-prone than

the existing ones, without being bulkier.

2.5. Goodness of Fit

The quality and consistency of a least-squares �t is indicated by the posterior value

of

�
2 � (� � z)yC�1(� � z) : (99)

The smaller the residues j�j � zj j are, the better is the �t, and the smaller is �
2. In-

consistencies, such as a wrong theoretical model (an overlooked resonance, for instance)

or underestimated errors, tend to make �2 too large, while overestimated errors make it

too small. In order to see what too large or too small means we consider the probability

distribution of the variate �2 (in sample space, for given parameters). For a linear model

y(x) it is easy to see that the distribution of �2 is a gamma distribution: The maximum

entropy distribution of the data vector �, given the true vector z, is

p(�jz;C) d(�) / exp
h
�

1

2
(� � z)yC�1(� � z)

i
d(�) = exp

�
�

�
2

2

�
d(�) : (100)

We simplify by an orthogonal transformation to the principal-axes system in which �
2 is

a sum of N =M + J squares,

�
2 =

NX
j=1

�� 0
j
� z

0

j

�0
j

�2
�
X
j

�
2
j
: (101)
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The primes indicate the principal-axes system and the �02
j
are the elements of the diagonal

matrix C0 = OyCO, with OyO = 1. The relative deviations �j can be considered

as Cartesian coordinates in the space of the �i. The corresponding volume element is

invariant under the orthogonal transformation (rotation) O,

d(�) = d(�0) / d(�) / �
N�1

d�d
 : (102)

In the last term we introduced polar coordinates with the radial coordinate �, as suggested

by Eq. 101. With this volume element it is trivial to integrate Eq. 100 over the angular

coordinates 
. The resulting radial distribution can be written as a �
2 distribution with

N degrees of freedom,

p(�2jz;C) d�2 =�
�
N

2

�
�1

exp
�
�

�
2

2

��
�
2

2

�N=2�1 d�
2

2
;

0 < �
2 � (� � z)yC�1(� � z) <1 : (103)

Unfortunately we do not know the true vector observable z = z(x). All we know is

the estimate ẑ � z(x̂), where x̂ satis�es the least-squares condition (76) or the normal

equations (79) which we now write in more abbreviated form as

ŜyC�1(� � ẑ) = 0 : (104)

Because of this system of M equations not all �j are mutually independent but only J of

them. Taylor expansion about the estimate x̂ yields (compare Eqs. 78 and 80)

�
2 = �̂

2 + (x� x̂)y(ŜyC�1Ŝ)(x� x̂); (105)

where

�̂
2 =

NX
j=1

�� 0
j
� ẑ

0

j

�
0

j

�2
�
X
j

�̂
2
j
: (106)

For a linear theory one has z0 = ẑ0 +OyS(x� x̂) and therefore

�j = �̂j +
1

�
0

j

X
k;�

O
y
jk
Sk�(x� � x̂�) : (107)

One can now replace the integration variables �j by �̂j for j = 1; 2; : : : J and by x� for

j = J+1, J+2, : : : N . The Jacobian for this substitution is constant because of the linear

relationship (107) between old and new variables, so that

d(�) / d(�) / �̂
J�1

d�̂ d
̂ d
M
x : (108)

Integrating (100) over all angular coordinates and all x� one �nds �nally the distribution

of the sum of square deviations �̂2 that can be calculated from known quantities,

p(�̂2jẑ;C) d�̂2 =�
�
J

2

�
�1

exp
�
�

�̂
2

2

��
�̂
2

2

�J=2�1 d�̂2
2

;

0 < �̂
2 � (� � ẑ)yC�1(� � ẑ) <1 : (109)
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This chi-square distribution with J degrees of freedom is broader than the chi-square

distribution (103) with J +M degrees of freedom. Its mean and variance are

h�̂2i = J ; (110) var �̂
2 = 2J : (111)

This result is exact for linear theoretical models z(x), for nonlinear models it is valid in

saddle point (Laplace) approximation. It certainly applies whenever iterative least-squares

�tting (see Sect. 2.2) works. The last two equations show that a good �t is characterised

by a chi-square value close to the number J of data points, roughly between J �
p
2J and

J+
p
2J . The statement that a �t \yielded a chi-square of 1031 for 1024 data points" would

therefore indicate good consistency between input data and theoretical model. A much

higher chi-square could point to underestimated uncertainties, and it is fairly common

practice in this case to multiply all input uncertainties (i. e. the matrix elements of C)

by a common scale factor so as to enforce �2 = J (and to adjust the posterior parameter

covariance matrix accordingly). This is dangerous, however, because a high value of chi-

square could also be due to an inadequate theoretical model (incorrectly assigned level

spins or overlooked weak resonances, for instance, in resonance analysis). A suspiciously

small chi-square, on the other hand, could indicate too conservative uncertainty estimates,

but it could also be due to tampering with the data such as elimination of data (\outliers")

which seem to contradict a favourite theory. Rescaling of the uncertainties should therefore

be considered only after one has made sure that there is nothing obviously wrong with the

model or the input.

In \primitive" least-squares �tting, where prior information is neglected, the same

argumentation leads to the widely used result that �̂2 = (�� ŷ)yB�1(�� ŷ) obeys a chi-
square distribution with J�M degrees of freedom so that �̂2 is expected roughly between

(J �M) �
p
2(J �M) and (J �M) +

p
2(J �M). The statement of the goodness of

�t must now include both the number of measured data points and of parameters. A

\chi-square of 1031 for 1024 data points and 20 adjusted parameters (1004 degrees of

freedom)" would indicate reasonable consistency.

2.6. Inconsistent Data

One of the thorniest problems in data evaluation is that of inconsistent data. Sup-

pose we are given the results of n completely independent and experimentally di�erent

measurements of the same physical quantity, �, in the form xj � �j , j = 1; 2; : : : ; n. If

the separation of any two values, jxj � xkj, is smaller or at least not much larger than

the sum of the corresponding uncertainties, �j + �k, the data are said to be consistent

or to agree \within error bars". (The probability that two equally precise measurements

yield a separation greater than �j + �k = 2� is only erfc 1 ' 0:157 for two Gaussian

sampling distributions with the same standard deviation �). If some or all separations are

much larger, the data are not consistent with the stated uncertainties. Inconsistencies are

caused by unrecognised or malcorrected experimental e�ects such as backgrounds, dead

time of the counting electronics, instrumental resolution, sample impurities, calibration

errors, etc. As already mentioned, a popular quick �x consists in increasing all input errors

by a common factor until chi-square has the expected value (and all error bars overlap).

This, however, does not change the relative weights, hence there is the same penalty for

overoptimistic as for conservative uncertainty assignments. The following Bayesian treat-

ment provides more justice. It considers not only the claimed uncertainties but also how

far a given datum is from the average.

What can we say about unrecognised errors? If we know only the data but not how

they were measured, positive and negative errors are equally probable, hence the probabil-

ity distribution for the unrecognised error �j of the j-th experiment should be symmetric
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about zero, and the same distribution should apply to all measurements. Let us therefore

assume, in accordance with the maximum entropy principle, Gaussian distributions for all

�j ,

p(�j j�j) d�j =
1p
2��j2

exp
h
�

1

2

�
�j

�j

�2i
d�j ; �1 < �j <1 : (112)

The probability to measure the value xj , given the true value �, the unrecognised error

�j , and the uncertainty �j due to all recognised error sources, is then given by

p(xj j�; �j ; �j) dxj =
1p
2��j2

exp
h
�

1

2

�
xj � �� �j

�j

�2i
dxj ; �1 < xj <1 : (113)

If the dispersions �j of unrecognised errors are known, the joint posterior distribution for

� and the �j is

p(�; �jx;�; � ) d� d(�) / d�

nY
j=1

d�j exp
h
�

(xj � �� �j)
2

2�j2
�

�j
2

2�j2

i
: (114)

(�, �, � on the left-hand side are to be understood as vectors in sample space, with

coordinates �j , �j , �j .) Completing squares in the exponent we can easily integrate over

the �j . The resulting posterior distribution for � is a Gaussian,

p(�j�x; s) d� =
1q

2�(�2 + �2)=n

exp
h
�

(�� �x)2

2(�2 + �2)=n

i
d� ; �1 < � <1 ; (115)

with

h�i = �x ; (116) var � =
1

n
(�2 + �2) (117)

where the overbars denote averages over j (over measurements) with weights 1=(�j
2+�j

2).

Integrating (114) over � we �nd the joint distribution of the unrecognised errors,

p(�jx;�; � ) d(�) / exp
h
�

1

2
(�� x)yA�1(�� x)�

1

2
�yB�1�

i
d(�) ; (118)

where A�1 and B�1 are positive de�nite, symmetric matrices de�ned by

(A�1)jk � �j
�2
�jk �

�j
�2
�k
�2P

l
�l
�2

; (119) (B�1)jk � �j
�2
�jk : (120)

This product of two multivariate Gaussians is a multivariate Gaussian again, with mean

vector h�i = CA�1x and inverse covariance matrix C�1 = A�1 +B�1, so that

(A�1 +B�1)h�i = A�1x : (121)

Solving the last equation for h�ji one obtains

h�ji =
�j
2

�j
2 + �j

2
(xj � �x) : (122)

The best estimate of �j is thus the deviation xj � �x of the j-th datum from the (weighted)

mean �x, multiplied by a \shrinking factor" �j
2
=(�j

2 + �j
2) that is close to zero if the
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expected unrecognised error is much smaller than the known uncertainty �j , and close

to unity if it is much larger. This, however, is trivial: If we know the variances �j
2 of

the unrecognised errors then these are not really unrecognised. We know as much about

them as about the other errors. We can therefore add variances as usual to get the total

mean square errors �j
2 + �j

2. Their reciprocals are expected to appear as weights in all

j-averages, and this is in fact what we have just found.

The simplest nontrivial case is obtained if the �j can be considered not as the actual

root-mean-square unrecognised errors but merely as their estimates, based for instance

on the general quality of the various measurements, on the accuracy of the techniques

employed, perhaps even on the credibility of the experimentalists as judged from their

past record. (Note that it is perfectly all right to put �j = 0 for those experiments that

can be considered as una�ected by unrecognised errors). The unknown true variance can

then be taken as �j
2
=c, where c is an adjustable common scale parameter with prior p(c)dc,

and the joint probability for � and the vector � as

p(�; �jx;�; � ) d� d(�) / d�

Z
1

0

dc p(c)

nY
j=1

c
1=2

d�j exp
h
�
(xj � �� �j)

2

2�j2
�
c�j

2

2�j2

i
: (123)

Integrating over all �j one gets the posterior distribution of �,

p(�jx;�; � ) d� / d�

Z
1

0

dc p(c)

nY
j=1

(�j
2 + �j

2
=c)�1=2 exp

h
�

1

2

(�� xj)
2

(�j2 + �j
2=c)

i
: (124)

If we have no numerical information at all about the scale parameter c Je�reys' prior dc=c

appears appropriate. The integration over c is then easy if the known uncertainties are

unimportant. With �j = 0 for all j the integrand becomes essentially a gamma distribution

of c, integration over which yields Student's t-distribution,

p(�j�x; s0) d� =
du

B( 1
2
;
n�1

2
)
�
1 + u2

�n=2 ; �1 < u �
�� �x

s0
<1 ; (125)

with

h�i = �x ; (126) var � =
s
02

n� 3
; (127)

where s02 � x2 � �x2, the overbars denoting sample averages weighted by �j
�2. Thus the

uncertainty of � in this extreme case is equal to the sample variance s02, determined by

the scatter of the data xj (sometimes called the \external error"). This is, of course, just

what we found when we discussed estimation of � from a sample drawn from a Gaussian

with unknown standard deviation (Eq. 34). For large n the distribution of � is practically

Gaussian.

In the general case, �j > 0, �j > 0, the integral (124) with Je�reys' least informative

prior p(c)dc / dc=c diverges logarithmically because the integrand becomes proportional

to 1/c for c ! 0. The Bayesian formalism signals in this way that the prior information

is not su�cient for de�nite predictions. Is there anything we know in addition to the fact

that c is a scale parameter? Actually, if the �j are our best estimates of the uncertainties

caused by unrecognised errors, we expect c to be close to unity. The maximum-entropy

prior constrained by hci = 1 is

p(c) dc = e
�c

dc ; 0 < c <1 : (128)
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This is almost as noncommittal as Je�reys' prior, decreasing also monotonically as c

increases, but normalisable and giving less weight to the extrema. With this prior both

the c-integral and the normalisation constant of the posterior �-distribution (124) are �nite

and can be calculated numerically without di�culty. Fig. 8 shows a real-life example, the

posterior distribution of the 239Pu �ssion cross section for 14.7 MeV neutrons, together

with the Gaussian distributions representing the six experimental results listed in Table I.

Prior uncertainties of �j = 0:1 b were assigned to all experiments indiscriminately, based on

the state of the art. The posterior mean and the root-mean-square uncertainty, computed

numerically, are also given in Table I.

2.7. Estimation of Unknown Systematic Errors

What can we learn about the unrecognised systematic errors �j from the set of in-

consistent data, xj � �j , j = 1; : : : n? With the prior (128) it is easy to integrate the

posterior probability distribution (124) �rst over the gamma distribution of c, then over

the Gaussian distribution of �. The result can be written in the form

p(�jx;�; � ) d(�) / exp
h
�

1

2
(�� x)yA�1(�� x)

i h
1+

1

2
�yB�1�

i
�n=2�1

d(�) ; (129)

with the matrices A and B de�ned as before, eqs. 119 and 120. In order to get the mean

vector and the covariance matrix of this distribution in analytic form we employ saddle

point integration, replacing the exact distribution by a multivariate Gaussian with the

same maximum and the same curvature at the maximum,

p(�jx;�; � ) � exp[�F (�)] ' exp[�F (�̂)�
1

2
(�� �̂)y(rryF )

�=�̂(�� �̂)] ; (130)

where the nabla operator has coordinates ri � @=@�j . Thus we have

h�i ' �̂ ; (131) h�� ��yi '
�
(rryF )

�=�̂

�
�1

: (132)

The most probable vector �̂ must be found by solving the equation

rF = A�1(�� x) +
n+ 2

2

B�1�

1+ �yB�1�=2
= 0 (133)

and the approximate covariance matrix as the inverse of

rryF = A�1 +
n+ 2

2

B�1(1+ �yB�1�=2)�B�1� �yB�1

(1+ �yB�1�=2)2
; (134)

evaluated at � = �̂. With the de�nitions (119) and (120) of A and B we obtain

�̂j = xj � �x+ �̂��
n+ 2

2

�j
�2
�j

2
�̂j

1 +
P

k
�k
�2�̂2

k
=2

; (135)

where �x and �̂� are �j
�2-weighted averages. This is suitable for iteration. Inserting �̂j '

xj� �x for all j as �rst estimate on the right-hand side one �nds the second approximation,

�̂j '
h
1�

n+ 2

2

�j
�2
�j

2

1 +
P

k
�k
�2(xk � �x)2

i
(xj � �x) ; (136)
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and by repetition better and better approximations. Our treatment of unrecognised sys-

tematic errors is an example of the \hierarchical" (here: two-stage) Bayesian method. It

involves repeated application of Bayes' theorem: The sampling distribution (113) depends

on parameters �j with the prior (112) that, in turn, depends on the \hyperparameter" c

with the \hyperprior" (128) if we replace �2
j
by �

2
j
=c.

The �nal estimates and their uncertainties (square roots of the diagonal elements of

the matrix h�� ��yi for our 239Pu problem, obtained in this way, are listed in the last col-

umn of Table I. No signi�cant unrecognised errors are found for the measurements 1, 5 and

6, whereas 2, 4 and perhaps 3 seem to be a�ected by unrecognised errors that are of the

same order of magnitude as the uncertainties stated by the authors. Of course, these con-

clusions could have been drawn already from the experimental data (and especially from

the pictorial representation by Gaussians in Fig. 8), but our formalism provides quantita-

tive support for our common sense also under less obvious circumstances. Furthermore,

it sheds some light on a much advertised recent estimation method:

Our second approximation (136) resembles the James-Stein estimators (Stein 1956)

that, since their introduction, have caused a great deal of excitement, confusion and a

ood of papers. C. Stein showed, using the frequentist de�nition of risk (square error

averaged over all possible samples, for a given set of parameters) that estimators similar

to (136) have sometimes lower risk than the estimates resulting from Bayesian estimation

under quadratic loss (that minimise the square error averaged over all possible parameters,

for the sample at hand). Many improvements have been suggested to Stein's original

estimators, based on frequentist distribution theory and more or less educated guesswork.

For instance, the \plus rule" estimator

�j
� '

h
1�

n� 2

n

�
2

s02

i
+
(xj � �x) ; (137)

was proposed for the special case of equal uncertainties (�j = � for all j). The subscript

+ means that only positive values of the \shrinking factor" are accepted. For negative

values one must put �j
� = 0. Moreover, the \plus rule" estimator is to be used only for

n � 3. Wild discussions arose about the \paradox" that the estimator for �j depends

not only on xj but on all the other, independently sampled xk; k 6= j. The question was

raised whether inclusion of other unrelated data would not improve the estimate. (\If I

want to estimate tea consumption in Taiwan will I do better to estimate simultaneously

the speed of light and the weight of hogs in Montana?" (Efron and Morris 1973). So-called

parametric empirical Bayes recipes seemed to o�er some insight, e. g. replacement of �2

in Eq. 121 (in the case �j = � for all j) by the sample variance s
02. However plausible

such recipes may seem (see e.g. Berger 1985), without rigorous justi�cation they remain

ad-hockeries.

Under the same circumstances (�j = �; �j = �) our Eq. 136 yields

h�ji '
h
1�

(n+ 2)�2

ns02 + 2�2

i
(xj � �x) ; (138)

valid for all n � 2, without discontinuities or questions of interpretation. A paradox

exists only for frequentists who deny themselves the use of priors. For a Bayesian there

is no paradox. He or she encodes the information that the data are all of the same type,

measured in related and hence comparable experiments, in a second-stage prior which

induces correlations and \shrinking" factors in a natural way. Speed of light data are

unrelated, hence excluded. From the Bayesian viewpoint, on the other hand, it seems odd
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run" (averaged over many samples) are not very relevant for data evaluation, where one

must infer best values (for quadratic or any other loss) from one available sample. It may

be true that an estimator with low risk is closer to the true value for a larger fraction

of all possible samples than an estimator which ensures minimal quadratic loss, but for

the remaining fraction of samples the errors tend to be so much larger that the apparent

advantage turns into a net disadvantage (see Jaynes 1976). In any case, the Bayesian

two-stage method yields, in second saddle point approximation, estimators which are

similar to, but especially for small samples better than, James-Stein estimators. Moreover,

iteration yields all the possible improvement and also the uncertainties in a systematic and

unambiguous way, without the bizarre discontinuities (Efron and Morris 1973) of many

improved James-Stein estimators. The Bayesian method leaves no room for guesswork

once loss function, statistical model and priors are speci�ed.

Obviously, the correct interpretation of data inconsistencies is never easy, and the

old saying that \data evaluation is more an art than a science" remains true to a certain

extent, in spite of much progress toward formalisation and quanti�cation during the last

three decades.
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3. Resonance Theory for the Resolved Region

If nuclei of a given species, e. g. 235U, are bombarded by neutrons, one observes

nuclear reactions such as elastic scattering, radiative capture, or �ssion. The probabilities

for those (n,n), (n,), or (n,f) processes, customarily expressed as cross sections in units

of barn (1 b = 10�24 cm2), depend sensitively on the energies of the incident neutrons.

The scattering cross section, for instance, is mostly close to the geometrical cross section

of the nuclei (several barns) but at certain energies it rises suddenly by several orders of

magnitude. Similar resonance behaviour, at the same energies, is exhibited by the capture

and �ssion cross sections. Fig. 9 (top and middle) shows this behaviour for the nucleus
238U for which elastic scattering and radiative capture are the only energetically allowed

neutron reactions at low energies.(Subthreshold �ssion is negligibly small.) For 235U one

would see resonances also in �ssion in this energy range. Each of these resonances is due to

excitation of a relatively long-lived (quasi-stationary) state of the compound nucleus that

is formed temporarily if a neutron interacts with a target nucleus. Note the di�erent peak

shapes: The resonances in the capture cross section are symmetric whereas those in the

scattering cross section are asymmetric with pronounced minima and sizable "potential"

scattering between resonances.

The impact of the resonances on the neutron spectrum in a power reactor is shown

in Fig. 9 (bottom). The conspicuous dips in the neutron ux coincide with the resonance

peaks in the cross sections. The explanation is simple: Neutrons cannot survive long at

energies where 238U, the main fuel constituent, has high cross sections, because there they

are soon captured (removed completely) or scattered (transferred to some other, usually

lower) energy. As a result the ux is depleted at the 238U resonances. Smaller dips in the

ux are due to other, less abundant fuel components such as the �ssile 235U.

At low energies the resonances appear fairly well separated but as the energy increases

their spacings decrease while their widths increase. Eventually they overlap so much that

the compound resonance structure is averaged out and only much broader structures

survive, such as the size (or single-particle) resonances described by the optical model,

or the giant dipole resonances observed in photonuclear reactions. As a rule only the

resonances at relatively low energies can be observed directly. At intermediate energies

they are not fully resolved because of limited instrumental resolution, although the real

disappearance of compound resonance structure due to excessive level overlap occurs only

at still higher energies. Thus one distinguishes the resolved resonance region from the

unresolved (or at best partially resolved) resonance region.

The more nucleons belong to the compound system the �ner is the resonance struc-

ture. Typical level spacings observed in neutron reactions are of the order

MeV for light,

keV for medium-weight,

eV for heavy nuclei.

The level spacings of target nuclei with even nucleon number are generally larger than

those of nuclei with odd nucleon number. Magic or near-magic nuclei have untypically large

level spacings. The heavy, doubly-magic nucleus 208Pb, for instance, has level spacings

resembling those of light nuclei.

Thermal motion of the target nuclei causes Doppler broadening of the resonance

peaks observed in the laboratory system: As the target temperature increases, the peaks

become broader while their areas remain practically constant. This changes the average

scattering, capture and �ssion rates and the whole neutron balance in a �ssion reactor. As a
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consequence the safety characteristics of the various �ssion reactor designs depend crucially

on the cross section resonances of the main fuel constituents and in particular on their

Doppler broadening. The Doppler e�ect is the only natural phenomenon that promptly

counteracts a sudden power excursion in a �ssion reactor. Thermal expansion has the

same tendency but is much slower. Quite generally one demands that the temperature

rise accompanying a power excursion must result in less neutrons produced per neutron

absorbed so that the �ssion chain reaction does not get out of hand. In more technical

terms the prompt Doppler reactivity coe�cient must be negative.

In shielding applications the minima displayed by the scattering and hence also by

the total cross section (the sum of all partial cross sections for scattering, capture, �ssion

etc.) provide dangerous energy "windows" for neutrons. In fusion reactor designs such

as ITER (International Thermonuclear Experimental Reactor), at present on the drawing

boards, steel shielding is foreseen for the superconducting magnet coils. The windows in

the total cross sections of the main steel components limit the e�ciency of the shielding

signi�cantly (see Fig. 10 for 56Fe).

These examples should su�ce to illustrate the importance of cross section resonances

in nuclear science and technology. Resolved resonances are described most conveniently

by R-matrix theory. It attained its standard form with the comprehensive review article

of Lane and Thomas (1958). This article is required reading for each specialist in the �eld.

Briey the principles of R-matrix theory are as follows. All collisions are considered as

binary, an ingoing wave function describing the two incident particles, an outgoing wave

function the two emerging reaction products. The incident particles could be, for instance,

a neutron and a 235U nucleus, the reaction products could be two �ssion fragments, or

an excited 236U nucleus and a photon, or a 235U nucleus in its ground state and an

elastically scattered neutron. Since the nuclear forces have short range but are not well

understood otherwise, one divides con�guration space into (i) an external region, where

nuclear forces are negligible so that the well known wave functions for free or at most

electromagnetically interacting particles can be used, and (ii) an internal region, where

nuclear forces predominate. Although the internal wave function is unknown, it can at

least be written as a formal expansion in terms of the eigenfunctions of an eigenvalue

problem. This eigenvalue problem is de�ned by the (nonrelativistic) Schr�odinger equation

with prescribed logarithmic derivatives of the eigenfunctions at the boundary between

the two regions. Matching external and internal wave functions at the boundary, and

demanding �nite probabilities everywhere, one �nds that for a given ingoing wave all

outgoing waves, and hence all cross sections, are parametrised by the eigenvalues and

eigenvector components of the problem. These can be identi�ed with the energies and

decay amplitudes of the quasi-stationary compound states. All this will be discussed in

detail below.

Although the principles of resonance theory are quite simple, the general expressions

can look rather formidable to the beginner. We cannot give full derivations (those can be

found in the review paper of Lane and Thomas 1958), and the basic quantum-mechanical

collision theory (see e. g. Lynn 1968) will be assumed to be known, but we shall try

to present the formalism in all the detail that is needed for applications in science and

technology. The practically important variants are

- the Blatt-Biedenharn formalism

- " single-level Breit-Wigner approximation (SLBW)

- " multi-level " - " " (MLBW)

- " (multi-level) Adler-Adler "

- " (multi-level) Reich-Moore "
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The �rst one is quite general. It shows how cross sections can be expressed in terms

of the unitary, symmetric collision matrix (S matrix) with special emphasis on angular

distributions and on particle spins. It can be combined with any of the other four which

provide di�erent approximations to the collision matrix.

3.1. The Blatt-Biedenharn Formalism

Our notation in this and the following subsections will be basically that of Lane

and Thomas (1958). We recall that in nuclear reaction theory one talks about reaction

channels. Each channel is fully speci�ed by

�, the partition of the compound system into reaction partners,

e. g. 235U + n or 236U +  (both involving the same compound nucleus)

J, the total angular momentum in units of h�,
`, " orbital " " " " " h�,
s, " channel spin " " " h�.

The angular momenta satisfy the quantum-mechanical triangle relations

~J = ~̀+ ~s; i:e: j`� sj � J � `+ s; (139)

~s = ~I +~i; i:e: jI � ij � s � I + i; (140)

where ~I and ~i are the spins (in units of h�) of the two collision partners. Total energy,

total angular momentum and (for all practical purposes) parity are conserved in nuclear

reactions.

We further remember that for spinless, neutral particles one can solve the nonrela-

tivistic Schr�odinger equation for the boundary condition "stationary ingoing plane wave

+ stationary outgoing spherical wave" with the result

d��� = ���
2

�

�� 1X
`=0

(2`+ 1)(1� U`)P`(cos#)
��2 d

4�

(141)

for the di�erential elastic-scattering cross section.The de Broglie wave length 2���� =

h�=(��vrel) corresponds to the relative motion of the collision partners, with reduced mass

�� and relative speed vrel. The angular-momentum eigenfunctions P` are Legendre poly-
nomials of order `. The sum terms with ` = 0; 1; 2; : : : are said to belong to the s-, p-, d-, f-

: : : wave, a historical nomenclature taken over from atomic spectroscopy (where it refers to

the so-called sharp, principal, di�use, fundamental series of spectral lines). The collision

function U` describes the modi�cation of the `-th outgoing partial wave relative to the

case without interaction. Its absolute value gives the reduction in amplitude, its argument

the phase shift caused by the interaction. With P`P`0 = (``000; L0)2PL, where (``
000; L0)

is a Clebsch-Gordan coe�cient vanishing unless j`� `0j � L � `+ `0 and (�)`+`0 = (�)L,
one can write the di�erential cross section as a linear expansion in Legendre polynomials,

d��� = ��
2
1X
L=0

BLPL(cos#)d
 ; (142)

with coe�cients

BL =
1

4

X
`;`0

(2`+ 1)(2`0 + 1)(``000; L0)2(1� U�
`
)(1� U`0) : (143)



49

Blatt and Biedenharn (1952) worked out the generalisation for particles with spin and for

partition-changing (rearrangement) collisions. For zero Coulomb interaction they obtained

d���0 =
��
2

(2i+ 1)(2I + 1)

X
s;s0

1X
L=0

BL(�s; �
0s0)PL(cos#)d
 ; (144)

with coe�cients

BL(�s; �
0s0) =

(�)s�s0
4

X
J1;J2

X
`1;`2

X
`
0

1
;`

0

2

�Z(`1J1`2J2; sL) �Z(`
0

1J1`
0

2J2; s
0L)

� (���0�`
1
`
0

1
�ss0 � UJ1

�`1s;�
0`

0

1
s0
)�(���0�`

2
`
0

2
�ss0 � UJ2

�`2s;�
0`

0

2
s0
) ; (145)

�Z(`1J1`2J2; sL) =
p
(2`1 + 1)(2`2 + 1)(2J1 + 1)(2J2 + 1)

� (`1`200; L0)W (`1J1`2J2; sL) ; (146)

whereW (`1J1`2J2; sL) is a Racah coe�cient, see e. g. Fano and Racah (1959) or de-Shalit

and Talmi (1963). Our phase convention is that of Lane and Thomas (1958); a slightly

di�erent convention is used in the Z tables of Biedenharn (1953). The Z coe�cients vanish

unless the quantum-mechanical triangle relations for the vector sums,

~̀
1 + ~̀

2 = ~L = ~̀0
1 +

~̀0
2 (147)

~̀
i + ~s = ~Ji = ~̀0

i
+ ~s0 (i = 1; 2) (148)

are ful�lled. Parity conservation demands (�)`�� = �i = (�)`0��0 , where ��;��0 are

the eigenparities of the ingoing and outgoing particles (positive for neutrons, protons, �-
particles and photons) and �i is the parity of the compound system with total angular

momentum Ji (i = 1,2). If there is Coulomb interaction between the collision partners

additional terms must be included, see Lane and Thomas (1958).

Let us integrate Eq. 144 over angles. All terms with L < 0 vanish because of the

orthogonality of the PL and because of

�Z(`1J1`2J2; s0) = (�)J1+s
p
2J1 + 1 �J1J2�`1`2 ; (149)

(see de-Shalit and Talmi 1963) and one �nds

���0 = ���
2

�

X
J

gJ
X
`;`0

X
s;s0

�����0�``0�ss0 � UJ

�`s;�0`0s0

��2 ; (150)

where the so-called spin factors

gJ � 2J + 1

(2i+ 1)(2I + 1)
(151)

are weights for the various possible total angular momenta.

We cannot go into the details of angular distributions but we do point out that they

show interference between di�erent partial waves, e. g. s and p wave, whereas angle-

integrated cross sections do not. The latter are simple sums over terms with given ` and
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Table 2. Possible combinations of target spin I, orbital angular momentum ` and
channel spin s resulting in total spin J , parity � and spin factor g,
for positive target parity �0 and projectile spin i = 1=2.
(For negative target parity all signs must be reversed.)

I�0 ` s J� g
P
g wave

0+ 0 1=2 1=2+ 1 1 s

1 1=2 1=2�; 3=2� 1; 2 3 p

2 1=2 3=2+; 5=2+ 2; 3 5 d

etc.

1=2+ 0 0 0+ 1=4 1 s

1 1+ 3=4
1 0 1� 3=4 3 p

1 0�; 1�; 2�; 1=4; 3=4; 5=4
2 0 2+ 5=4 5 d

1 1+; 2+; 3+ 3=4; 5=4; 7=4
etc.

1+ 0 1=2 1=2+ 1=3 1 s

3=2 3=2+ 2=3
1 1=2 1=2�; 3=2� 1=3; 2=3 3 p

3=2 1=2�; 3=2�; 5=2� 1=3; 2=3; 3=3
2 1=2 3=2+; 5=2+ 2=3; 3=3 5 d

3=2 1=2+; 3=2+; 5=2+; 7=2+ 1=3; 2=3; 3=3; 4=3
etc.

s, without cross terms, see Eq. 150. Nevertheless, a certain connexion exists between dif-

ferent partial waves. As already mentioned, the compound system and its quasi-stationary

states are characterised, apart from energy, by total angular momentum, J , and parity,

�. Table 2 shows, for given target spin and positive parity, the possible combinations

of `, s and J for incident particles with spin i = 1=2. Certain J� combinations can be

formed through more than one channel if ` > 0 and I > 0. If I�0 = 1=2+, for instance,
resonances with J� = 1� can be excited by the two p waves with s = 0 and s = 1, and

the 2+ levels can be excited by the d waves with s = 0 and s = 1. The neutron widths

(that give the strength of the excitation, see below) for 1� and 2+ levels are therefore

sums of two partial widths for the two channel spins. For I�0 = 1+ the 1=2+ levels can

be excited even by partial waves with di�erent `, an s wave with s = 1=2 and a d wave

with s = 3=2, while the 3=2+ levels are excitable by three partial waves, an s wave with

s = 3=2 and two d waves with s = 1=2 and s = 3=2, and so on.

So we �nd that each quasi-stationary compound state shows up as a resonance in all

open channels that are not excluded by the spin and parity selection rules. The intensities

(peak areas) may di�er, but the resonance width must be the same in all those channels,

being proportional to the reciprocal half life of the compound state. In this context it

should be understood that the customary terms s- or p-wave resonance actually mean

that the level can be excited at least by the s or p wave but possibly also by higher-order

partial waves with the same parity. To give an example: The 3=2+ s-wave resonances

observed in neutron reactions with target nuclei having I�0 = 1+ contain also a d-wave

component. It is true that at low incident energies the s-wave component is much larger
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because of the higher centrifugal barrier for d-wave neutrons (see below) but it must

be realised that certain d, f, ... resonance sequences are masked by coinciding s, p, ...

sequences. This is important e. g. for the statistical interpretation of observed level

densities or for the simulation of resonance e�ects in the unresolved resonance region with

resonance \ladders" obtained by Monte Carlo sampling (see Section 4 below).

3.2. The Exact R-Matrix Expressions

The angle-integrated cross section ���0 , Eq. 150, can be written as a sum over partial

cross sections, �cc0 , obtained by summing over all entrance channels c � f�J`sg and exit

channels c0 � f�0J`0s0g that lead from partition � to partition �0. In slightly simpli�ed

notation we write

�cc0 = ���
2

c
gcj�cc0 � Ucc0 j2 : (152)

Note that for c 6= c0 the partial cross section is proportional to the quantum-mechanical

probability jUcc0 j2 of a transition from channel c to channel c0, and to the probability

gc of getting the correct angular momentum J from the spins of the collision partners.

The Kronecker symbol �cc0 arises since ingoing and outgoing particles cannot be distin-

guished if c = c0. The kinematical factor ���
2
c
relates probability and cross section. The

collision matrix U, often called scattering or S matrix, is symmetric because for all practi-

cal purposes we can consider nuclear (and Coulomb) interactions as invariant under time

reversal. Moreover, U is unitary since the probabilities for transitions into the various

channels must add up to unity,
P

c0
jUcc0 j2 = 1. From the unitarity of U and Eq. 152 it

follows that the total cross section for entrance channel c is a linear function of Ucc,

�c �
X
c0

�cc0 = 2���
2

c
gc(1�Re Ucc) ; (153)

in contrast to the partial cross sections which depend quadratically on the Ucc0 . The

expressions obtained are thus simplest for the total cross section, most complicated for

elastic scattering (because of the Kronecker symbol). It is therefore more convenient to

calculate �cc as the di�erence between �c and the other partial cross sections rather than

directly from Eq. 152. The reciprocity relation between the cross sections for a reaction

c! c0 and the inverse reaction c0 ! c,

�c0c

gc0��
2
c0

=
�cc0

gc��
2
c

(154)

follows immediately from the symmetry of U.

These equations are quite general. In order to introduce resonances we invoke R-

matrix theory which allows us to express U in terms of the channel matrix R (see Lane

and Thomas 1958, Lynn 1968),

Ucc0 = e�i('c+'c0)P 1=2
c

�
[1�R(L�B)]�1[1�R(L� �B)]

	
cc0
P
�1=2

c0

= e�i('c+'c0)
�
�cc0 + 2iP 1=2

c
[(1�RLo)�1R]cc0P

1=2

c0

	
; (155)

Rcc0 =
X
�

�c�c0

E� �E
; (156)

L0
cc0
� Lcc0 �Bcc0 = (Lc �Bc)�cc0 � (Sc + iPc �Bc)�cc0 : (157)
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Alternatively the collision matrix can be expressed in terms of the level matrix A,

Ucc0 = e�i('c+'c0)
�
�cc0 + i

X
�;�

�
1=2

�c
A
��
�
1=2

�c0

�
; (158)

�
1=2

�c
� �c

p
2Pc ; (159)

(A�1)�� = (E� �E)��� �
X
c

�cL
o

c
�c : (160)

Note: Roman subscripts refer to reaction channels, Greek subscripts to compound levels,

and 1 is the unit matrix. Three groups of physical quantities appear in these equations:

First, there are the resonance parameters, viz. formal level energies E� and probability

amplitudes �c for decay (or formation) of compound states � via exit (or entrance)

channels c, all neatly wrapped up in the R matrix (156), each level contributing one sum

term (a hyperbola in terms of energies E). The �c can be positive or negative, with

practically random signs except near the ground state. Cross section formulae are usually

written in terms of partial widths ��c and total widths �� �
P

c
��c rather than decay

amplitudes.

The second group, hard-sphere phases 'c and logarithmic derivatives Lc, depend only
on the (known) in- and outgoing radial wave functions Ic and Oc at the channel radius ac,

'c � argOc(ac) = arc tan
Im Oc(ac)

Re Oc(ac)
; (161)

Lc � ac
O0
c
(ac)

Oc(ac)
=
h
rc
@ lnOc

@rc

i
rc=ac

: (162)

The Sc � Re Lc are called shift factors for reasons that will become clear later on, the

Pc � Im Lc are centrifugal-barrier penetrabilities. The quantities Bc and ac form the third

group. They de�ne the eigenvalue problem with eigenvalues E�. Their choice is largely a

matter of convenience. The Bc are logarithmic derivatives of the radial eigenfunctions at

the channel radii ac. These radii de�ne the boundary between the internal and the external
region. They must be chosen so large that the nuclear interaction can be safely neglected

if the distance rc between the collision partners is larger, otherwise they are arbitrary. It

is best to choose ac just slightly larger than the radius of the compound nucleus (see Lynn

1968). A reasonable choice for neutron channels is ac = (1:23A1=3 + 0:80) fm, where A
is the number of nucleons in the target nucleus. We mention here that in applied work

all energies, resonance widths etc. are given in the laboratory system, as for instance

in the widely used resonance parameter compilation of Mughabghab et al. (1981, 1984)

known as the \barn book", or in that of Sukhoruchkin et al. (1998), or in computer �les

of evaluated nuclear data.

For neutral projectiles the outgoing radial wave functions are proportional to the

spherical Hankel functions of the �rst kind, h
(1)

`
,

Oc = I�
c
= ikcrch

(1)

`
(kcrc)

� ' i`eikcrc if kcrc �
p
`(`+ 1)

�
; (163)

where kc = 1=��c. The properties of the Hankel functions yield the recursion relations

L0 = ikcac = iP0 ; L` = �`� (kcac)
2

L`�1 � `
; (164)

'0 = kcac ; '` = '`�1 + arg(`� L`�1) ; (165)
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Table 3. Channel wave functions and related quantities

for neutral projectiles (� � kcrc; � � kcac)

` Oc 'c Sc Pc

0 ei� � 0 �

1 ei�
�1
�
� i
�

�� arc tan�
�1

�2 + 1

�3

�2 + 1

2 ei�
� 3

�2
� 3i

�
� 1

�
�� arc tan

3�

3� �2
�3(�2 + 6)

�4 + 3�2 + 9

�5

�4 + 3�2 + 9
...

...
...

...
...

with which Table 3 is constructed. Note that Sc = 0 for ` = 0, and that Sc ! �`
for kcac ! 0 (at low energies). Therefore, Bc = �` is a good choice for the resolved

resonance region: Quite generally it simpli�es all R-matrix expressions, and in particular

it eliminates shift factors rigorously for s waves and, as we shall see below, approximately

also for higher-order partial waves. This means that the cross section peaks occur at

the formal resonance energies E� as they should, instead of being shifted. Sc and Pc for
photon and �ssion channels are usually taken as constant.

The basic resonance parameters E�, �c depend on the unknown nuclear interaction.

They can therefore not be calculated from �rst principles (except for simple models like a

square well potential, see below). In typical applications of R-matrix theory they are just

�t parameters, adjustable to experimental data. Depending on the choice of Bc they can

be either real and constant or complex and energy-dependent.

The Wigner-Eisenbud version of R-matrix theory is obtained if the boundary

parameters Bc are chosen as real constants. (Wigner and Eisenbud 1947). The resonance

parameters E� and �c are then also real and constant, and the energy dependence of the

collision matrix U is solely due to the 'c and Lc, both known functions of kcac, i. e. of

energy. This makes the Wigner-Eisenbud version the most convenient formalism for most

purposes, especially with the choice Bc = �`. It is easily checked that the real R matrix

yields a unitary collision matrix, which means the partial cross sections, Eq. 152, add up

exactly to the correct total cross section, Eq. 153. A certain problem is, however, the

need to invert either the channel matrix 1�RLo of Eq. 155, or the inverse level matrix

A�1 of Eq. 160. Both matrices have very high rank. In practice the di�culty is overcome

by various approximations to the inverse level matrix as will be shown below.

The Kapur-Peierls version of R-matrix theory is obtained with the choice Bc = Lc,
i. e. Lo

c
= 0 (Kapur and Peierls 1938). This removes the need for matrix inversion com-

pletely, since 1 � RLo = 1, but leads to complex resonance parameters which depend

implicitly on energy in a rather obscure way as now the very de�nition of the eigenvalue

problem varies with energy, and thus the eigenvalues and the whole system of eigenfunc-

tions, too. Moreover, the unitarity of the collision matrix is not manifest because the R
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matrix is complex. In spite of these handicaps, formulae of the Kapur-Peierls type are

useful in narrow energy ranges, in particular for the description of Doppler broadening.

We shall write the complex and energy-dependent Kapur-Peierls parameters as E�, g�c in
order to distinguish them from the real and constant Wigner-Eisenbud parameters E�,

�c. Thus

Ucc0 = e�i('c+'c0)
�
�cc0 + i

X
�

G
1=2

�c
G
1=2

�c0

E� �E

�
; (166)

G
1=2

�c
= g�c

p
2Pc : (167)

Note that the Kapur-Peierls form of the collision matrix (and hence the corresponding total

cross section expression) involves a simple sum over levels, whereas the Wigner-Eisenbud

expression (158) involves a double sum.

The R-matrix equations reviewed so far are practically all that is needed in applied

work from the whole apparatus of resonance theory. They ought to be thoroughly under-

stood, however, and experience shows that this is not easy for the beginner. He might

therefore wish to look at a simple illustration that shows the essential steps in the de-

velopment of the theory and exhibits the meaning of the various quantities without the

complications of spin algebra and matrix notation. Such an illustration is o�ered by the

spherical optical model, especially with a square-well complex potential, for which ev-

erything can be calculated explicitly (see Fr�ohner 1998a), the results being of practical

relevance for the unresolved resonance region.

3.3. The Practically Important Approximations

A convenient starting point for the practically important versions of R-matrix theory

is the inverse level matrix. We shall consider the following representations and approxi-

mations.

Wigner-Eisenbud representation (exact)

with Bc real and constant:

(A�1)�� = (E� �E) ��� �
X
c

�cL
o

c
�c (168)

(eigenvalues E� and decay amplitudes �c real, constant, energy dependence of Lo
c
known)

Kapur-Peierls representation (exact)

with Bc = Lc :

(A�1)�� = (E� �E) ��� (169)

(eigenvalues E� and decay amplitudes g�c complex, energy dependences implicit, obscure)

Single-level Breit-Wigner approximation (SLBW)

Only one level retained, all others neglected:

(A�1)�� ! E0 �E �
X
c

Lo
c
2
c
� E0 +��E � i�=2 (170)

(level shift � and total width � =
P

c
�c real, energy dependences explicit, well known)
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Multi-level Breit-Wigner approximation (MLBW)

O�-diagonal elements of A�1 neglected:

(A�1)�� = (E� �E �
X
c

Lo
c
2
�c
) ��� � (E� +�� �E � i��=2) ��� (171)

(level shift �� and total width �� =
P

c
��c real, energy dependences explicit, well known)

Reich-Moore approximation

O�-diagonal contributions from photon channels, c 2 , are neglected:

(A�1)�� = (E� +�� �E � i��=2) ��� �
X
c62

�cL
o

c
�c (172)

(real level shift �� from photon channels usually absorbed in real, constant E�, radiation

width �� =
P

c2
��c real, usually taken as constant; other energy dependences explicit)

Adler-Adler approximation

Energy dependence of Lo
c
neglected:

(A�1)�� = (E� �E) ��� �
X
c

�c

q
Lo
c
(E�)Loc(E�)�c (173)

The Reich-Moore approximation is most, SLBW least accurate among these approxi-

mations. With a suitable choice of the boundary parameters the level shifts �� vanish at

least locally. At low energies this is accomplished for neutron channels with Bc = �` (see
Table 3) as mentioned before. Table 3 shows also that the centrifugal-barrier penetrabili-

ties Pc = P` for neutrons, and hence all neutron widths,

��c(E) � 2P`(E)
2
�c

= ��c(jE�j) P`(E)

P`(jE�j) (c � f�J`sg 2 n) ; (174)

contain (at least) a factor
p
E. Additional factors in the p-, d-, : : : penetrabilities behave

for low energies as E;E2; : : : As a consequence s-wave levels dominate at low energies while

p-wave levels show up only at higher energies, d-wave levels at still higher energies, etc.

The absolute values in the conventional de�nition (170) of the neutron width make

it applicable not only to compound states with E� > 0 but also to subthreshold (bound,

"negative") states with E� < 0 although, strictly speaking, the centrifugal-barrier penetra-

bilities P`(E) and thus the widths vanish below the reaction threshold (E < 0). Neutron

widths given in tables and computer �les are to be understood as ��c(jE�j). Another

convention concerns the signs of the width amplitudes. They are important in the multi-

channel case but get lost when widths are calculated. It is therefore customary to tabulate

partial widths with the sign (relative to the neutron width amplitude) of the correspond-

ing width amplitude. From a principal viewpoint it would be more appropriate (and less

confusing) to list the width amplitudes rather than the partial widths { neither do they

depend on energy, nor do they vanish below the threshold, and the signs must not be

explained either { but it is too late to change ingrained habits.

The shifts and penetrabilities for photon and �ssion channels can usually be taken as

constant. Hence these shifts vanish if we choose Bc = Sc, and the �ssion and radiation

widths do not depend on energy. Let us now look at the cross section expressions resulting

from the various representations and approximations.
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3.3.1. Kapur-Peierls Cross Section Expressions

In anticipation of Doppler broadening we write the Kapur-Peierls collision matrix

(166) in the form

Ucc0 = e�i('c + 'c0)
h
�cc0 �

X
�

G
1=2

�c
G
1=2

�c0

G�=2
( � + i��)

i
; (175)

where the symmetric and asymmetric resonance pro�les or line shape functions  � and

�� are de�ned by

 � + i�� � iG�=2

E � E� =
G2
�
=4

(E � ~E�)2 +G2
�
=4

+ i
(E � ~E�)G�=2

(E � ~E�)2 +G2
�
=4

(176)

and the real Kapur-Peierls resonance energies ~E� and widths G� by

E� � ~E� � iG�=2 : (177)

The symmetric resonance pro�le is essentially (if we disregard the weak energy dependences

of E� and of G�) a Lorentzian, and the asymmetric pro�le is its energy derivative. The

resulting cross section expressions are

�c = 4���
2

c
gc

n
sin2 'c +Re

h
e�2i'c

X
�

G�c

G�

( � + i��)
io

; (178)

�cc0 = �c�cc0 � 4���
2

c
gcRe

hX
�

G
1=2

�c
G
1=2

�c0

G�

Wcc0(E��)�( � + i��)
i
; (179)

Wcc0(E��) � �cc0 + i
X
�

G
1=2
�c G

1=2

�c0

E� � E��
: (180)

The resonance pro�les contain the rapid, resonance-related energy variations that are

sensitive to Doppler broadening, while the other quantities vary slowly with energy. We

stress that although the weak energy dependences of the Kapur-Peierls parameters are

not known explicitly, the Kapur-Peierls formalism is formally exact.

3.3.2. SLBW Cross Section Expressions

The collision matrix for a single level,

Ucc0 = e�i('c + 'c0)
�
�cc0 +

i�
1=2

c
�
1=2

c0

E0 +��E � i�=2

�
; (181)

is unitary. The resulting cross section expressions are

�c = 4���
2

c
gc
�
sin2 'c +

�c

�
( cos 2'c + � sin 2'c)

�
; (182)

�cc0 = 4���
2

c
gc
�c�c0

�2
 (c 6= c0) ; (183)

�cc = �c �
X
c0 6=c

�cc0 ; (184)
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Because of the slow variation of the sines and cosines with energy the total cross

section resonances look di�erently at di�erent energies: At low energies they look as in

Fig. 11, with the interference minimum ("window") on the low-energy side. This shape

is typical for the resolved region. At higher energies the symmetric term becomes less

and less important until the asymmetric term dominates. At still higher energies, when

'c � �, resonances appear as dips rather than peaks (a famous example is the 2.35 MeV

resonance of 16O+n) and eventually the interference windows reappear on the high-energy

side of the peaks.

In practice one must, however, describe cross sections with many resonances. One

can simply add SLBW resonance terms (and add potential scattering for �c and �cc).
This is the SLBW de�nition of the ENDF format (cf. Rose and Dunford 1990) that is

used world-wide for applications-oriented, computer-readable libraries of evaluated neu-

tron data. Since this ad-hoc recipe does not originate from a unitary collision matrix the

unitarity constraint 0 < �c < 4���
2

c
gc is not guaranteed. In fact, this "many-level" SLBW

approximation is notorious for the occurence of nonphysical negative total and scattering

cross sections. The reason is easy to understand: At low energies negative contributions

can only come from the asymmetric pro�les of resonances above. On average they are

compensated by positive contributions from resonances below, but if the resonances above

are unusually strong or those below unusually weak, scattering cross sections can become

negative in the interference minima. Less noticeable but often equally bad is the opposite

e�ect: SLBW peak cross sections can exceed the unitarity limit if resonances above are

weak or those below strong.

3.3.3. MLBW Cross Section Expressions

The MLBW approximation is better than the many-level SLBW approximation. The

collision matrix following from Eq. 171,

Ucc0 = e�i('c + 'c0)
�
�cc0 + i

X
�

�
1=2

�c
�
1=2

�c0

E� +�� �E � i��=2

�
; (190)

involves a simple sum over resonances, as the Kapur-Peierls collision matrix does. It follows

that we can take over the Kapur-Peierls expressions with the replacements E0
�
! E�+��,

G� ! �� =
P

c
��c, G

1=2

�c
! �

1=2

�c
, whence

�c = 4���
2

c
gc

h
sin2 'c +

X
c

��c

��
( � cos 2'c + �� sin 2'c)

i
; (191)

�cc0 = �c�cc0 � 4���
2

c
gcRe

hX
�

�
1=2

�c
�
1=2

�c0

��
Wcc0(E��)�( � + i��)

i
; (192)

Wcc0(E��) = �cc0 + i
X
�

�
1=2
�c �

1=2

�c0

E� �E� � i(�� + ��)=2
: (193)

Since the partial cross sections (192) were derived from the collision matrix as absolute

squares (see Eq. 152), they are guaranteed to be positive, and they are again linear

functions of the line pro�les  � and �� de�ned exactly as in the SLBW case, Eq. 185.

We recognise further that �c, Eq. 191, is just the "many-level" SLBW approximation. As
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the MLBW collision matrix is not unitary, however, �c is not the sum of the partial cross

sections, Eq. 192. The MLBW approximation as de�ned in the ENDF format (cf. Rose

and Dunford 1990) is even cruder, in fact it is an SLBW/MLBW hybrid: Only elastic

scattering is actually calculated in MLBW approximation. All other partial cross sections

are calculated in (many-level) SLBW approximation, and the total cross section as the

sum over all partials. This avoids negative cross sections yet prevents neither unphysical

peak cross sections nor badly described interference minima for strongly overlapping levels.

For light and medium-mass nuclei and for �ssile actinides the MLBW approximation is

therefore often inadequate, although it works quite well for compound systems with widely

spaced, narrow levels like 232Th+n or 238U+ n.

Note that the calculation of MLBW partial cross sections according to Eqs. 192

and 193 involves double sums over levels. Even with modern computers this can be

time-consuming if hundreds of levels are to be included, as is not unusual with modern

evaluated �les. It is then better to calculate the partial cross section directly from the

collision matrix (i. e. from Eqs. 152 and 190) which involves only a single sum over levels.

For Doppler broadening, however, the representation (192), (193) in terms of line shape

pro�les has advantages as will be seen below.

3.3.4. Reich-Moore Cross Section Expressions

Usually very many photon channels contribute to the sum
P

c
�cL

o

c
�c in the inverse

level matrix A�1, Eq. 160. While their contributions all add up with the same sign in

the diagonal elements, they tend to cancel in the o�-diagonal elements because the decay

amplitudes have practically random signs but comparable magnitudes. Therefore the error

is quite small if one simply neglects all photon channel contributions to the o�-diagonal

elements, as proposed independently by Thomas (1955) and by Reich and Moore (1958).

The resulting inverse level matrix, Eq. 172, belongs evidently to an eigenvalue problem

with E� replaced by E� � i��=2, with a "reduced" R matrix

Rcc0 =
X
�

�c�c0

E� �E � i��=2
(c; c0 62 ) ; (194)

reduced in the sense that it is de�ned in the subspace of nonphotonic channels only. The

only traces of the eliminated photon channels are the total radiation widths, �� , in the

denominators. A similar complex R function is encountered in the R-matrix treatment

of the optical model (see Fr�ohner 1998a) which suggests that the imaginary part of the

denominators in the reduced R matrix and the imaginary part of the complex potential

are di�erent consequences of the same phenomenon: absorption into compound states and

subsequent decay into eliminated channels.

From the reduced R matrix one gets a reduced collision matrix and therefrom the cross

sections for all retained nonphotonic channels in the usual way, Eqs. 152-153. The reduced

R matrix is of low rank, hence inversion of 1 � RLo is easy. In fact, the highest rank

employed in neutron resonance analyses up to now is 3 (1 elastic, 2 �ssion channels). Cases

with rank 2 involve 1 elastic plus 1 �ssion or 1 inelastic channel. For the overwhelming

majority of neutron resonance data the only energetically allowed processes are merely

elastic scattering and radiative capture, for which 1-channel Reich-Moore expressions are

su�cient, with R functions instead of R matrices. (An example is the 1-channel Reich-

Moore �t to 56Fe total cross section data displayed in Fig 10.) The capture cross section

can be found from

�c = ���
2

c
gc
X
�

��

�����
X
c0 62

P
1=2
c [(1 �RLo)�1]cc0P

�1=2

c0
�
1=2

�c0

E� �E � i��=2

�����
2

(195)



60

(cf. Reich and Moore 1958). We point out that this approximation is exact in the limit

of vanishing radiation widths (more generally: vanishing widths for eliminated channels)

in which it reduces to the general Wigner-Eisenbud formalism. It is also exact in the

limit of one single level since in this case the Reich-Moore level matrix A reduces to the

corresponding SLBW level matrix. Otherwise it is so exact that although the reduced

collision matrix cannot be unitary - because of transitions into eliminated channels - the

overall collision matrix can still be considered as unitary, i. e. as conserving probability

ux, so that the capture cross section may alternatively be obtained as the di�erence

�c = �c �
X
c0 62

�cc0 ; (196)

with �c calculated from the reduced collision matrix element Ucc according to Eq. 153.

Experience has shown that with this approximation all resonance cross section data can

be described in detail, in the windows as well as in the peaks, even the weirdest multilevel

interference patterns (see Fig. 10). It works equally well for light, medium-mass and heavy

nuclei, �ssile and non�ssile. It is often believed that the Reich-Moore approximation can

only be applied to �ssile nuclei, but actually the retained channels can be of any type

- elastic, inelastic, �ssion, even individual photon channels such as those for transitions

to the ground state or to speci�c metastable states. Furthermore, computer programs

written for the Reich-Moore formalism can be used for general Wigner-Eisenbud R-matrix

calculations - one must simply set all radiation widths (eliminated-channel widths) equal

to zero.

It might be expected that with all these advantages the Reich-Moore formalism is the

most widely used one, but this is not true. The main reason is that Reich-Moore cross

sections cannot be expressed as sums over Breit-Wigner resonance pro�les, at least not

without some preparatory work. This is often considered as a disadvantage for Doppler

broadening computations. We shall see below, however, that the problem is not as serious

as some believe. Among resonance analysts there is no question that the Reich-Moore

approximation is superior to the other single- and multi-level variants of R-matrix theory.

3.3.5. Adler-Adler Cross Section Expressions

The approximation (173) for the matrix A�1 is a generalisation for the s-wave ex-

pression used by Adler and Adler (1970), a generalisation that preserves symmetry with

respect to the level indices � and �. Diagonalisation of the level matrix A yields the colli-

sion matrix in Kapur-Peierls form, Eqs. 172-173, but with parameters E� and g�c that do
not depend on energy, in contrast to genuine Kapur-Peierls parameters. The correspond-

ing cross section expressions are often not written for speci�c channels (c, c',: : : ) but for

speci�c reaction types (x = f, , : : : , total), restricted to ` = 0:

� �
X
c2n

�c = �p +
1p
E

X
�

1

��

�
G
(T )

�
 � �H

(T )

�
��

�
; (197)

�x �
X
c2n

X
c02x

�cc0 =
1p
E

X
�

1

��

�
G
(x)

�
 � �H

(x)

�
��

�
; (x = ; f; : : :) ; (198)

where �p is the potential-scattering cross section, G
(x)

�
=(��

p
E) andH

(x)

�
=(��

p
E) are sums

over all coe�cients of  � and �� in Eqs. 178-180, with �� � ��=2 and
p
E coming from

Pc(E). The sums over � are over levels irrespective of J�, with spin factors absorbed in
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the coe�cients G
(x)

�
andH

(x)

�
. These coe�cients, together with the level energies �� � E0

�
,

(half) widths �� and the potential-scattering cross section �p (or an e�ective radius) are the
Adler-Adler parameters. In principle one could de�ne them even for isotopic mixtures, by

similarly absorbing the relative abundances in the coe�cients. The approximation (173)

means essentially that the energy dependence of level shifts and total widths is neglected

in the resonance denominators. Therefore the Adler-Adler approximation works well for

�ssile nuclei, for which �� � �� +��f = const, but not so well for light or medium-mass

nuclei, for which �� � ��n = 2Pc(E)
2
�n
.

3.3.6. Conversion of Wigner-Eisenbud to Kapur-Peierls Parameters

Wigner-Eisenbud parameters can be converted to Kapur-Peierls parameters as fol-

lows (Fr�ohner 1978). The collision matrix must be invariant under a change of boundary

parameters, e. g. from Bc = �` to ~Bc = Lo
c
. (We shall use the tilde for Kapur-Peierls

quantities.) Eq. 155 shows that this implies (1 �RLo)�1R = ~R, which with the abbre-

viations

K � Lo1=2RLo1=2 ; ~K � Lo1=2 ~RLo1=2 (199)

yields

(1�K)�1 = 1+ ~K : (200)

The Kapur-Peierls resonance energies E� are the complex poles of ~K, i. e. the solutions of

det [1�K(E�)] = 0 (201)

because A�1 = C[A]=det A for any nonsingular matrix A, where we use the notation

det (A) for the determinant and C[A] for the matrix of cofactors. The residues are ob-

tained from Eq. 200. In the limit E ! E� one gets [1+ ~K(E)]cc0 ' Lo
c

1=2g�cg�c0L
o

c0
1=2=(E�

E�) on the right hand side, while on the left one has fC[1�K(E�)]gcc0=det [1 �K(E�)],
where Taylor expansion of the determinant gives det [1 � K(E)] ' (E � E�) tr fC[1 �
K(E�)]K0(E�)g. Hence the residues at the pole E� are

g�cg�c0 =
1p

Lo
c
(E�)Loc0(E�)

fC[1�K(E�)]gcc0
tr fC[1�K(E�)]K0(E�)g ; (202)

where tr denotes the trace and K0 is the derivative of K,

K 0

cc0
(E) =

@

@E
Lo
c

1=2Rcc0L
o

c0
1=2 '

q
Lo
c
(E)Lo

c0
(E)

X
�

�c�c0

(E� �E)2
: (203)

So we know how to calculate residuals from given poles, but how do we �nd the poles

corresponding to given Wigner-Eisenbud parameters, i. e. how can we solve the deceptively

simple-looking Eq. 201? Fortunately we know already the MLBW approximation E� �
E� + �� � i��=2, see Eq. 190. We may take it as an initial guess to be improved by

iteration. In order to �nd an iteration scheme we write the determinant (201) in the form

det (1�K) = 1� tr K+ F (K) ; (204)

where � tr K+ F (K) is the sum of det (�K) and all its principal minors (cf. e. g. Korn

and Korn 1968), in particular





63

Conversion of Reich-Moore to Kapur-Peierls parameters works in the same way, the

only change being that E� must be replaced by E� � i��=2, and �� by �� � �� ev-

erywhere. Fig. 12 shows cross sections calculated from Reich-Moore parameters directly

and from Kapur-Peierls parameters after conversion. Conversion of Wigner-Eisenbud to

Adler-Adler parameters by matrix inversion is possible for instance with the POLLA code

(de Saussure and Perez 1969).

3.4. External Levels

R-matrix theory shows that the cross sections in a limited energy range depend not

only on the \internal" levels in that range but also on the \external" levels below and

above. Problems arise in practical resonance �tting and parametrisation work because

below the neutron or proton threshold (E < 0) the compound levels are unobservable and

therefore unknown. Above the analysed range, resonances may still be observable but less

and less well resolved as energy increases, because instrumental resolution worsens while

level density grows and resonance widths increase { all of which makes the distinction

between single resonances and unresolved multiplets increasingly di�cult and eventually

impossible. If the unknown external levels are simply omitted one cannot �t the exper-

imental data satisfactorily. In particular with elastic scattering and total cross section

data one gets troublesome edge e�ects and problems with the potential scattering cross

section between resonances. Various ad hoc methods have been developed in the past to

cope with the unknown external levels, from simulating them by \picket fence" or Monte

Carlo sampled �ctitious resonance sequences (\ladders") to repeating the internal levels

periodically below and above the internal region. The following sections present better

founded, well tested and more convenient methods that have been available since decades

but are not as widely used as they deserve.

3.4.1. Statistical Representation of External Levels

Modern evaluated nuclear-data libraries contain parameters for hundreds of reso-

nances per isotope. Such large numbers suggest a statistical treatment of the more distant

levels if a cross section is to be calculated at a given energy. Moreover, there are always

enormous numbers of unknown levels both below and above the resolved resonance region

contributing noticeably to the R matrix, in particular near the edges of this region. In

order to include them at least statistically we split the (Reich-Moore) R matrix for a given

level sequence (given J�) into a sum over the unknown (\distant" or \external" levels)

and another one over the known (\local" or \internal") levels,

Rcc0 = R0
cc0

+

�X
�=1

�c�c0

E� �E � i��=2
; (207)

and replace the sums in the distant-level term by integrals,

R0
cc0

=
�X

�

�
�X

�=1

� �c�c0

E� �E � i��=2

'
�Z 1

�1

�
Z

E+I=2

E�I=2

�dE0
Dc

hcc0i E
0 �E � i��=2

(E0 �E)2 + ��2

=4
; (208)

where E and I are midpoint and length of the interval containing the local levels, 1=Dc =

1=DJ is the density of levels with spin J (and given parity) that is needed if the sums
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are to be approximated by integrals, and �� is the average radiation width. Especially

for heavy nuclei the radiation width, as a sum over very many partial radiation widths,

does not vary much from level to level so that �� ' �� . Since (E0 � E)2 � ��2

=4 for

the distant levels we can neglect ��2

=4 in the last expression. Moreover we can neglect the

o�-diagonal elements of the average matrix hcc0i because of the practically random signs

of the �c. With the usual de�nition of the pole strength sc and its Hilbert transform, the

distant-level parameter R1
c
,

sc � h2
c
i

Dc

; (209) R1
c
(E) � C

Z
1

�1

dE0
sc(E

0)

E0 �E
; (210)

where C
R
denotes a (Cauchy) principal-value integral, and neglecting the (weak) energy

variation of both these quantities in the internal region, we �nd in Reich-Moore approxi-

mation

R0
cc0
(E) =

h
R1
c
+ 2sc

�
ar tanh

E �E

I=2
+

i��I=4

I2=4� (E �E)2

�i
�cc0 (211)

The cyclometric or area function ar tanh x = (1=2) ln[(1+x)=(1�x)] (where ar stands for
area, not arcus) is the inverse hyperbolic tangent, also written, in somewhat misleading

fashion, tanh�1 x or arc tanh x. The analogous distant-level contribution to the general

Wigner-Eisenbud R matrix is obtained if one simply puts �� = 0 and �� = 0 everywhere:

R0
cc0
(E) =

h
R1
c
+ 2scar tanh

E �E

I=2

i
�cc0 : (212)

If the pole strength is not taken as constant in the internal region but as varying linearly

the only modi�cation is that sc is to be interpreted as sc(E) and that an additional term

�s0
c
(E)I appears which can, however, be absorbed in R1

c
. Experience has shown that it

is usually quite adequate for �tting purposes to adjust merely two constants, R1
c

and sc.
The pole strength sc is related to the strength function S` commonly employed in

applied neutron resonance work by

S` � 2kcacsc
p
1eV=E : (213)

This follows from the (historical) de�nition of reduced neutron widths as the neutron

widths taken at the arbitrary reference energy Er = 1 eV. For s-wave resonances one has

�0
n
= 2P0(Er)

2
n
. The same convention has been used later on also for p-, d-, : : : resonances

so that reduced neutron widths for single channels c = fnJ`sg are quite generally de�ned

as �c
n
= 2P0(Er)

2
c
. Averaging and dividing by the mean level spacing Dc one obtains

the strength function Sc = 2P0(Er)sc with P0(Er) = kcac
p
1eV=E, that is the right-hand

side of Eq. (213). The optical model suggests, and experiment con�rms, that one can

usually take sc = s`, hence Sc = S`, which we used on the left-hand side.

The distant-level parameter R1
c
(E) is essentially the di�erence between the contribu-

tions to the R matrix from the resonances below and above E. It is negative if the levels

below (including the bound ones) have more strength than those above, and positive if the

levels above are stronger. Near E the integrand is practically an odd function of E0�E, so
that the contributions from nearby levels tend to cancel. As a consequence mostly distant

levels contribute, whence the name, and typical values are small, jR1
c
j � 1. In applied

neutron resonance work the e�ective nuclear radius,

R0
c
= ac(1�R1

c
) (for s-wave channels), (214)
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is often employed instead of the distant-level parameter. The reason is that at low energies

the potential scattering cross section appears modi�ed by a smooth contribution from the

distant levels with the result

�pot
c

! 4�a2
c
(1�R1

c
)2 = 4�R02 for kc ! 0 ; (215)

It has been concluded that the hard-sphere phases ought to be computed as functions

of kcR
0

c
rather than kcac but that is wrong, notwithstanding fairly common practice and

misleading ENDF formats. The e�ective radius is well de�ned and applicable only in the

low-energy limit, and only for the s-wave. For accurate scattering or total cross section

calculations beyond the thermal range one needs the distant-level parameter as the more

fundamental, generally valid concept. It modi�es the R matrix, not the hard-sphere phase

shift.

We conclude that input from optical-model calculations, e. g. from the plots of

s- and p-wave strength functions and of e�ective nuclear radii given in the barn book

(Mughabghab et al. 1981, 1984), can be used to estimate the contribution of distant

levels. If it is neglected, one gets troublesome edge e�ects near the boundaries of the

internal range (with explicitly given resonances).

3.4.2. Representation of the Edge Terms by Two Broad Resonances

The statistical representation of external levels is quite convenient for cross sec-

tion parametrisation but an even simpler one is obtained if we approximate the energy-

dependent \edge" (area function) terms in Eqs. 211 and 212 by the tails of two very broad

resonances of equal strength, located symmetrically below and above the internal range,

2sc

n
ar tanh

E �E

I=2
+ i

�

I

h
1�

�E �E

I=2

�2i�1o
' 2

n

E� �E � i�=2
+

2
n

E+ �E � i�=2
:

(216)

We want to �x the parameters E+ � E = E � E�, 
2
n
, and � in such a way that

the right-hand side becomes similar to the left-hand side. A suitable degree of similarity

is attained, for example, if both sides have equal values, slopes (�rst derivatives) and

curvatures (second derivatives) at the mid-energy E. The resulting three equations for

three unknowns can be solved rigorously. The solution can be further simpli�ed with

� � I which yields the �nal approximations

E� ' E �
p
3

2
I; (217)

2
n
' 3

2
Isc (218)

� ' � : (219)

(Eq. 218 can be rewritten with Eqs. 174 and 213 as �n� ' (3=2)IS`
p
jE�j=1 eVv`(jE�j)

with v` � P`=P0.) Insertion on the right-hand side of Eq. 216 reveals that they are tanta-

mount to the approximations ar tanhx ' 3x=(3�x2) and 1=(1�x2) ' 3(3+x2)=(3�x2)2.
Fig. 13 shows that the di�erences between the original functions and the approximations

are small over most of the range. Towards the edges they become larger but since the ap-

proximations stay �nite there, in contrast to the original functions, this is not necessarily







68

parameters of all internal levels are given, and also the level-statistical approximation R0
cc

to the external part of the R matrix. These parameters, usually determined by �tting

internal resonance data, will not reproduce given thermal cross sections exactly but we

can �ne-tune by adding one bound (\negative") level with appropriate parameters. At

thermal energies only s-wave resonances must be considered, all other resonances being

negligible due to the small centrifugal-barrier penetration factors P`. With the natural

choice B0 = 0 one has L0
c
= i'c = ikcac, so the Reich-Moore collision function for each

s-wave channel (one for zero, two for nonzero target spin) is

Ucc = e�2ikcac
1 + i

X
�

��n=2

E� �E � i��=2

1� i
X
�

��n=2

E� �E � i��=2

(c 2 n) : (220)

The summation is over all s-wave levels, internal as well as external ones, that have the

spin and parity implied by c. We now split the sum into three parts, namely the internal-

level part (� = 1; 2; : : :�), the external-level part R0
cc

calculated either from Eq. 211 or

with two broad levels, Eqs. 217-219, and a third part from the additional bound level

(� = 0). Solving for the third part (� = 0) we get

�cc � i�n=2

E0 �E � i�=2
= �

�X
�=1

i��n=2

E� �E � i��=2
� ikcacR

0
cc
+
Ucc � e�2ikcac
Ucc + e�2ikcac

: (221)

The right-hand side, denoted by �cc, can be calculated from the given resonance param-

eters and the prescribed thermal cross sections with

Ucc =
�
1� �c

2���2
c
gc

�
� i

s
�cc

���2
c
gc
�
� �c

2���2
c
gc

�2
; (222)

as follows from the basic equations (152) and (153). Separating real and imaginary part

of Eq. (225) one �nds

Re �cc =
��n�=4

(E �E0)2 + �2

=4

< 0; (223)

Im �cc =
�(E �E0)�n=2

(E �E0)2 +�2

=4

< 0 for E0 < 0; (224)

and �nally

E0 = E � Im �cc

Re �cc

�

2
; (225)

�n

2
= � j�ccj2

Re �cc

�

2
: (226)

With only two equations for the three unknowns E0, �n, � we can choose one of them

arbitrarily. The weak variation of radiation widths from level to level suggests to set �
equal to the average radiation width of the internal levels,

� = � ; (227)
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but exact reproduction of the thermal cross sections is ensured also with any other choice.

The sign ambiguity in Eq. 222 is due to the fact that the cross sections depend only on

Re Ucc and jUccj2. Usually the plus sign can be discarded immediately because it yields

E0 > 0 contrary to the assumption of a bound level.

For thermally �ssile nuclei one �nds that Eqs. 225 and 226, although no longer

rigorous, are valid in good approximation at least in the usual situation where there is

no resonance very close to the thermal energy, so that �c � 4���
2
c
gc. There is now an

additional equation for the �ssion width,

�f

2
= � j�cf j2

Re �cc

�

2
; (228)

with

j�cf j2 � �cf

���2
c
gc
�

�X
�=1

��n�nf=4

(E �E�)2 + �2
�
=4
� S0

r
E

1 eV

�f

I

h
1�

�E �E

I=2

i
�1

; (229)

where �cf is the thermal �ssion cross section for the entrance channel c.
If, for target nuclei with nonzero spin, the level spins are unknown and only g�n is

known for the unbound levels but not g and �n separately, one �nds the equations

E0 = E � Im �nn

Re �nn

g�

2
; (230)

g�n

2
= � j�nnj2

Re �nn

g�
2
; (231)

g�f
2

= � j�nf j2
Re �nn

g�
2
; (232)

with

�nn = �i
�X

�=1

(g�n)�=2

E� �E � i��=2
� ikaR0

nn
+
Unn � e�2ika
Unn + e�2ika

; (233)

�nf = �
�X

�=1

(g�n)���f=4

(E �E�)2 + �2
�
=4
� S0

r
E

1 eV
� �f

���2
; (234)

and

Unn =
�
1� �

2���2

�
� i

r�
2kacoh

�2
�
� �

2���2

�2
: (235)

The directly oservable total and �ssion cross sections at the thermal energy are sums

over the two s-wave channels c (with spins I + 1=2 and I � 1=2), � =
P

c
�c and �f =P

c

P
c02f

�cc0 . The total widths are to be approximated by �� ' (2g�n)�+��+��f . The

same external-level term R0
nn
, i. e. the same distant-level parameters, strength functions

and average radiation widths were assumed for both spin states, and the channel subscript

of �c and kc was dropped. Furthermore we used the relationship between the coherent

scattering length acoh and the elastic scattering cross sections for the two spin states,

acoh =
X
c

r
gc�cc

4�
: (236)
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Specialisation to one spin state (target spin zero, g� = gc) or to non�ssile nuclei (�f = 0,

��f = ��f = 0) leads to the equations given above.

With the bound-level parameters calculated analytically in this way the cross sections

are usually well reproduced not only at the thermal energy, E = 0.0253 eV, but in the

entire thermal region below the �rst resonance. Sometimes it happens, however, that the

calculated �ctitious bound level is much closer to the neutron threshold than the �rst

unbound level (i. e. jE0j < E1). Although the calculated capture or �ssion cross section

curve goes through the prescribed point it shows normal 1=v behaviour only below the

\mirror energy" jE0j. Around that energy the curve changes towards 1=v5 behaviour

(before the resonance at E1 makes it rise again). The single-level Breit-Wigner formulae

(183) and (185) explain this: The asymptotic behaviour at low and high energies due to a

bound level at E0 < 0 is the same as that of an unbound level at the mirror energy jE0j > 0

(see Fig. 15). It is easy, however, to restore an actually observed 1=v shape all the way up

to the �rst unbound resonance, without changing the correctly calculated thermal cross

sections, simply by increasing the (arbitrarily chosen) radiation width that scales the other

resonance parameters, see Eqs. 225-226 and 230-232. The computed changeover from 1=v
to 1=v5 can thereby be shifted toward energies above E1 where it is harmless because

other resonances dominate.

3.5. Doppler Broadening

In practical applications resonance cross sections are mostly needed in Doppler-

broadened form. It is sometimes claimed that for light nuclei Doppler broadening can

be neglected. This may be true for the broad s-wave levels but certainly not for the nar-

row p-, d-, : : :wave levels that in the case of the so-called structural materials (iron, nickel,

chromium, cobalt, manganese etc.) contribute signi�cantly to resonance absorption and

activation.

3.5.1. Free-Gas Approximation

Doppler broadening in nuclear reactions is caused by the thermal motion of target

nuclei. Consider a parallel beam of monoenergetic particles with laboratory velocity v,

colliding with target nuclei whose velocities u are distributed in such a way that p(u)d3u
is the fraction with velocities in a small three-dimensional region d3u around u in velocity

space. If �1 and �2 are the densities of beam and target particles, respectively, the number

of reactions occurring per unit time and unit volume is

�1�2

Z
d3u p(u) jv � uj�(jv � uj) � �1�2v�(v) ; (237)

where �(jv�uj) is the unbroadened cross section for a relative speed jv�uj between the

collision partners, and �(v) the e�ective or Doppler-broadened cross section for incident

particles with speed v. It is obvious from this de�nition that a 1=v cross section is not

a�ected by Doppler broadening. Let us now assume that the target nuclei have the same

velocity distribution as the atoms of an ideal gas, viz. the Maxwell-Boltzmann distribution

p(u)d3u =
1

�3=2
exp

�� u2

u2
T

�d3u
u3
T

�Mu2
T

2
� kT

�
; (238)

where M is the mass of the target nucleus and kT the gas temperature in energy units.

Integrating over all possible relative velocities w � v�u and employing polar coordinates
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where

� �
s

4EkT

M=m
(241)

is called the Doppler width. For E � �, which is usually satis�ed above a few eV, one can

simplify by retaining only the �rst two terms of the expansion
p
EE0 = E+(E0�E)=2+: : :

in the exponent, by neglecting the second exponential, and by shifting the lower limit of

the integral to �1. The result is

p
E�(E) =

1

�
p
�

Z
1

�1

dE0 exp
h
�
�E0 �E

�

�2ip
E0 �(E0) ; (242)

which means Gaussian broadening of the reaction rate on the energy scale with a width

�.

3.5.2. Cubic Crystal

Lamb (1939) found the expression (241) also for radiative capture of neutrons by the

nuclei of a Debye crystal, in the practically most important case � + � > 4kTD , where
TD is the Debye temperature that is a measure of the binding force holding the atoms

at their positions in the lattice, high for tightly bound and low for weakly bound atoms.

The only di�erence between an ideal gas and a Debye crystal is that one must calculate

the Doppler width not with the true temperature T but with an e�ective temperature TL
given by

TL = T
� T

TD

�3 3
2

Z
TD=T

0

dxx3 coth
x

2
= T

�
1 +

1

20

T 2
D

T 2
�+ : : :

�
(243)

that is usually - at room temperature - a few percent higher than T . In the approximation

of quasi-free scattering one �nds the same result for scattering, and for cubic crystals in

general (Fr�ohner 1970). The correction as a function of TD=T is given in curve form by

Lamb (1939). Problems with the Debye temperature of crystals containing both light and

heavy nuclei { example: 238UO2 { are discussed by Lynn (1968).

3.5.3. Gaussian Broadening with Voigt Pro�les

In Kapur-Peierls representation, Eqs. 178-180, all resonance cross sections appear

as linear superpositions of symmetric and asymmetric line shape pro�les (plus a slowly

varying potential scattering cross section in case of �c and �cc). Since the shape pro-

�les contain the rapid, resonance-type variations while everything else varies slowly we get

Doppler-broadened cross sections in good approximation if we simply replace the unbroad-

ened ("natural") line shapes of the Kapur-Peierls expressions by the Gaussian-broadened

pro�les introduced by Voigt (1912)

 � =
1

�
p
�

Z
1

�1

dE0e�(E
0
�E)2=�2 G2

�
=4

(E0 � ~E�)2 +G2
�
=4
; (244)

�� =
1

�
p
�

Z
1

�1

dE0e�(E
0
�E)2=�2 (E0 � ~E�)G�=2

(E0 � ~E�)2 +G2
�
=4
; (245)

where �, ~E� and G� are to be taken at E0 = E. This means that all weak energy depen-

dences are neglected locally, over the range (few Doppler widths) of the Gaussian weight
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function, but that their long-range e�ect is fully taken into account. Doppler broaden-

ing by means of the Voigt pro�les is popular because fast subroutines are available for

their computation (see e. g. Bhat and Lee-Whiting 1967). In Adler-Adler approximation

their utilisation is straightforward. In other representations one must �rst convert from

Wigner-Eisenbud to Kapur-Peierls parameters. In SLBW and MLBW approximation this

is trivial, one has simply ~E� = E� + ��, G
1=2

�c
= �

1=2

�c
, G� = �� (cf. Eqs. 170-171).

In Reich-Moore approximation one must �rst convert iteratively as explained in Subsect.

3.3.6. This is easy to program and does not add signi�cantly to computing time, especially

if used together with a fast algorithm for Gaussian broadening.

3.5.4. Gaussian Broadening with Turing's Method

A fast algorithm for Gaussian broadening of functions having poles in the complex

plane (meromorphic functions) was proposed by Turing (1943). The simplest meromorphic

function, with a single pole, is the combination  +i� of natural resonance pro�les that we

encountered in the resonance formulae of Sect. 3.3. Turing's method is therefore widely

used for the calculation of Voigt pro�les. He introduced arti�cial, equidistant poles along

the real axis and applied contour integration (see e.g. Bhat and Lee-Whiting 1967) to get

 + i� =
1

�
p
�

1X
n=�1

�E e�(En �E)2=�2 i�=2

En �E0 + i�=2

+
p
�
�

�

e�(E �E0 + i�=2)2=�2

1� e�2�i(E �E0 + i�=2)=�E
P + F ; (246)

where �E is the (arbitrary) spacing of the arti�cial poles, En = E + n �E is a grid point

(arti�cial pole), and

P =

8><
>:
0

1=2

1

9>=
>; for

�=2

�

8><
>:

>

=

<

9>=
>;
��

�E
; (247)

jF j � 2p
�

h
1 +

�E �E0

�=2

�2i1=2���1� �2��2

� �E

�2����1 e�(��=�E)2

1� e�2(��=�E)2
: (248)

We recognise that Turing's approximation consists of (i) a simple sum approximation to

the integral with bin width �E, (ii) a term involving the pole energy E0 + i�=2 and a

discontinuous factor P, and (iii) an error term F which becomes small for �E < � because

of the factor exp[�(��=�E)2]. The pole term is a correction to the sum, needed only in

the neighbourhood of narrow peaks (poles close to the real axis) for which the bin width

of the sum approximation is too coarse, but negligible elsewhere as speci�ed by the factor

P. With the choice �E ' 0:7� one can neglect the error term completely and still obtain

relative accuracies of 10�7 or better (Bhat and Lee-Whiting 1967). Applying Turing's

method to each term of the Kapur-Peierls cross section expressions (178) or (179) one

�nds

p
E�(E) ' 1

�
p
�

NX
n=�N

�E e�(En �E)2=�2p
En�(En)

+ �
p
ERe

X
�

C�G�

e�(E � E�)2=�2

1� e�2�i(E � E�)=�E
P� ; (249)
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where C� is the coe�cient of  � + i�� in Eq. 178 (for total cross sections) or in Eq. 179

(for partial cross sections), and the factors P� are analogous to P , Eq. 247.

The �rst term on the right-hand side is again the sum approximation to the integral.

Due to the rapidly decreasing weight in the wings of the Gaussian one needs only the

sum terms with �5 � n � +5 for the usual accuracy of about 0.1% required in typical

applications. Moreover, the natural (unbroadened) cross section �(En) can be calculated

directly from the unconverted Wigner-Eisenbud or Adler-Adler parameters given in the

evaluated �les. Double sums are not needed: Natural MLBW cross sections are directly

obtained from the collision matrix (190), Reich-Moore cross sections from the reduced R

matrix (194). In both cases one needs only single sums over levels. The computer time

needed for the histogram approximation (�rst sum in Eq. 250) is therefore practically the

same in all four approximations: SLBW, MLBW, Reich-Moore and Adler-Adler.

The pole term in Eq. 249, on the other hand, requires Kapur-Peierls parameters,

but only for narrow resonances (nonvanishing P�) and only near their peaks where weak

energy dependences can be neglected. Adler-Adler parameters need not be converted at

all, for SLBW and MLBW the conversion is trivial. Only in Reich-Moore approximation

must one convert by iteration as explained in Subsect. 3.3.6, but merely at few energies,

namely at the formal resonance energies of the narrow resonances. The extra time needed

for this preparation is only a small fraction of the total time required for comprehensive

point cross section calculations for which time savings are important.

Turing's method can be applied, of course, not only to Gaussian broadening on the

energy scale, Eq. 242, but also to Gaussian broadening on the speed (or momentum) scale

with the free-gas kernel, Eq. 239. In the latter case there is even an extra bonus: The width

of the Gaussian weight function does not depend any more on energy (or momentum), so

the Gaussian weights needed (for �5 � n � +5, say) can be computed once and for all

before the calculation begins. Another bonus of Turing's method is the introduction of

a natural grid depending only on the e�ective temperature, which is convenient for fast

point cross section calculation, producing automatically less points at higher temperatures

where broadened cross sections are smoother. The method is convenient not only for cross

section �tting, as is sometimes thought, but quite generally whenever Doppler-broadened

multi-level point cross sections are needed. The program DOBRO is written along these

lines (Fr�ohner 1980). Employing the exact free-gas kernel it generates Doppler-broadened

MLBW and Reich-Moore cross sections about equally fast as SLBW cross sections from

given resonance parameters. The key idea is not to insist on Voigt pro�les but to apply

the best technique for their computation { Turing's method { directly to the multi-level

cross section expressions.

3.5.5. Broadening of Tabulated, Linearly Interpolable Point Data

A widely used method for the generation of Doppler-broadened resonance cross sec-

tions starts from natural cross sections �k given at energies Ek such that for any interme-

diate energy E linear interpolation is possible,

�(E) =
(E �Ek)�k+1 + (Ek+1 �E)�k

Ek+1 �Ek

(Ek � E � Ek+1) (250)

with some speci�ed accuracy. The linear variation with energy translates into a quadratic

variation with speed,

�(v) = ak + bkv
2 ; (251)
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where ak and bk are constant coe�cients. Linearly interpolable point cross section tables

are typical for evaluated nuclear data �les. Insertion in Eq. 239 yields

�(v) =
X
k

Z
w
k+1

wk

dw

uT

w2

v2

h
e�(w � v)2=u2

T � e�(w + v)2=u2
T

i
(ak + bkw

2) : (252)

Each sum term corresponds to a linear piece of the cross section representation. Substi-

tuting x = (w � v)=uT we �nd that for each sum term we need the integrals

2p
�

Z
x
k+1

x
k

dt e�t
2

tn = In(xk)� In(xk+1) for n = 0; 1; 2; 3; 4 (253)

with

In(x) � 2p
�

Z
1

x

dt e�t
2

tn =
1p
�
e�x

2

xn�1 +
n� 1

2
In�2(x) : (254)

I0 and I1 are easily calculated whereupon the others can be obtained with the last recursion
relation (that results from partial integration):

I0(x) = erfc x ;

I1(x) =
1p
�
;

I2(x) =
1

2
erfc x+

1p
�
e�x

2

x

I3(x) =
1p
�
e�x

2

(x2 + 1) ;

I4(x) =
3

4
erfc x+

1p
�
e�x

2

(x3 +
3

4
x) ; (255)

This is the basis of the SIGMA1 code (Cullen andWeisbin 1976). It should be noted that in

spite of the title of the paper the method is not exact since the linear interpolation between

the tabulated cross sections is an approximation that introduces some error. (In modern

evaluated �les relative deviations of up to 0.5 % or at best 0.1 % are admitted within

each linear piece.) It should also be realised that exponentials and error functions must

be calculated for each linear piece of the cross section representation. If the cross sections

�k are not given but must be calculated �rst, the SIGMA method is de�nitely slower and

in any case less accurate than the Turing approach, and the choice of an irregular grid

permitting interpolation with a speci�ed accuracy, with a minimum of grid points, may

be problematic, whereas the Turing method provides a suitable grid automatically.

3.6. Practical Analysis of Resonance Cross Section Data

We mentioned in Section 2 that the determination of cross sections from experimental

data is best accomplished via extraction of resonance parameters. In fact all resolved reso-

nance cross sections that go into reactor calculations and similar applications are generated

from resonance parameters. It might be asked whether one cannot use the best measured

high-resolution cross sections directly and thus eliminate the need for resonance parame-

ter extraction. There are several reasons why the determination of resonance parameters

cannot be avoided if resonance reactions are to be described and predicted accurately.
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(1) Resonance parameters along with consequent utilisation of resonance theory enable

us to represent the often staggering detail of cross section structure by comparably

few numbers.

Example: The presently analysed number of resonances of the compound system
238U+n is of the order of 1000. If subthreshold �ssion is neglected they are speci�ed

by about 4000 parameters (E0; �n; � ; J�) whereas a reasonably accurate pointwise
representation of the scattering and capture cross section requires about 5 � 104 data
points or 105 numbers. If one considers also angular distributions and di�erent tem-

peratures one gets easily several million data points that would be needed to describe

the behaviour of 238U in a reactor.

(2) Doppler broadening of resonances for arbitrary temperatures can be calculated reli-

ably only from resonance parameters but not from point data.

(3) Resonance parameters and the R-matrix formalism guarantee consistency with phys-

ical constraints such as the unitary limits for the total cross section in each reaction

channel (0 � �c � 4���
2
c
gc) or Wick's limit for scattering in the forward direction

(d�cc(0)=d
 � �2
c
=(4���c)

2).

Another consistency is more subtle but practically at least equally important, espe-

cially for the calculation of self-shielding. Theory tells us that there is a rigid relation-

ship between the line shape in one reaction channel and the line shape corresponding

to the same compound level in other channels. This relationship is guaranteed if cross

sections are generated coherently from resonance parameters, whereas for experimen-

tal data sets a common energy scale is always problematic.

(4) At least equally important is the fact that even the best measured resonance data

are a�ected by resolution and Doppler broadening and (except transmission data)

by self-shielding and multiple scattering. The only reliable way to correct for these

e�ects is full-scale parametrisation by �tting resonance-theoretical curves to the data.

The �tted quantities should not be some sort of reduced data resembling cross sec-

tions, such as logarithms of transmission values, but the observables themselves, e. g.

transmissions and capture, �ssion, or scattering yields. It is then straightforward to

include resolution and temperature broadening, self-shielding and multiple scattering,

sample impurities and other e�ects in the theoretical model.

(5) Extrapolation into the region of unmeasured or unresolved resonances by level-stati-

stical (Hauser-Feshbach) cross section calculations requires statistical parameters such

as level desities and strength functions. These in turn must be estimated from resolved

resonance parameters.

In order to understand the more practical problems of resonance �tting let us review

in some detail the principal types of experimental resonance data that must be modelled by

the �tting algorithm. The observables are more or less complicated functions or functionals

of the cross sections, rather than cross sections themselves.

3.6.1. Observables

As already mentioned in Sect. 2.1, the simplest measurement is that of the total cross

section �. One mesasures the fraction of a beam of particles of given energy that traverses

without interaction a sample of given areal thickness n (nuclei/b),

T = e�n�: (256)
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The total cross section is thus proportional to the logarithm of the observable.

The (n,x) reaction yield Yx (x = f, , n', p, �, : : :), i. e. the fraction of beam particles

inducing an (n,x) reaction in the sample, is a sum of contributions from events where the

(n,x) reaction is preceded by 0, 1, 2, : : : scattering collisions,

Yx = Yx0 + Yx1 + Yx2 + : : : ; (257)

with

Yx0 = (1� T )
�x
�
;

Yx1 = (1� T )
�n

�

D
(1� T1)

�x1

�1

E
1
;

Yx2 = (1� T )
�n

�

D
(1� T1)

�n1

�1

D
(1� T2)

�x2

�2

E
2

E
1

etc. (258)

The numerical subscripts indicate the number of preceding collisions so that 1 � T1, for
example, is the probability that after the �rst collision the scattered neutron interacts

again somewhere in the sample. The brackets h i1, h i2, : : : denote spatial and angular

averages over all possible 1st, 2nd, : : : collisions. In each elastic collision the energy of the

projectile changes from E to

E0 = E
A2 + 2A�c + 1

(A+ 1)2
(259)

if the target particle is initially at rest. Here �c is the cosine of the centre-of-mass scattering

angle and A the projectile-to-target mass ratio. Note that in the resonance region small

energy changes can cause dramatic cross section changes. The multiple-collision yields Yx1,
Yx2, : : : are therefore increasingly complicated functionals of the cross sections �x, �n and

�. If inelastic scattering is energetically allowed the brackets h i1 etc. include also averages
over all possible scattering modes (residual reactions). The thin-sample approximation,

Yx = n�x if n� � 1 ; (260)

is often accurate enough for �ssion yields since �ssile samples must be extremely thin so

that the �ssion fragments signalling (n,f) events can get out out. In capture data analysis,

on the other hand, one must usually include the self-shielding factor (1 � T )=(n�) and
multiple-collision contributions because the weak self-absorption of the photons signalling

(n,) events enables measurers to improve count rates by employing thick samples.

Sample thickness e�ects, i. e. self-shielding and multiple scattering, are also important

in scattering measurements. In analogy to Eqs. 257-258 one has

dYn = dYn1 + dYn2 + dYn3 + : : : (261)

with

dYn1 =
1� T

�

d�n
d


D
T1

E
1
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1� T

�
�n

D1� T1
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1� T
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D1� T1
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E
3

E
1
d


etc. (262)
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where d
 is a solid-angle element covered by the detector.

From our discussion of reaction yields it should be clear that, unless samples are very

thin, extraction of (n,x) cross sections from (n,x) yields involves also the total cross section.

Quite generally one can say that total cross section data are a prerequisite to good partial

cross section analysis. Another data type, valuable in particular for level-statistical tests

in the unresolved resonance region is obtained in self-indication measurements. One places

two samples in the beam, a �lter sample (thickness n1) and a detector sample (thickness

n2), both consisting of the same material. The probability for a beam particle to induce

an (n,x) reaction in the second sample is

Sx(n1; n2) = T (n1)Yx(n2) : (263)

In this way one measures essentially the transmission of the �lter sample with a detector

system that has enhanced e�ciency across the resonance peaks (across the transmission

dips).

Ideally the resonance parameter analysis is based on data measured with isotopically

pure samples and proceeds more or less as follows.

(1) From transmission data one determines basically

E0, �n, �, g for ` = 0 ;
E0, g�n, for ` � 0 :

(2) The transmission results permit calculation of sample-thickness corrections for (n,x)

yield data from which one obtains basically

E0; �x if �n; g are known
E0; g�x if only g�n is known

(3) If transmission results are not available (p-, d-, : : : levels are not easily seen in trans-

mission measurements) one gets only

E0, g�n�x=� if g�n is not known

In less ideal cases there are complications because of sample impurities { mostly

other isotopes of the same element in enriched materials, oxygen in oxide samples or from

corrosion, but also hydrogen from adsorbed water vapour. Other unavoidable experimental

complications are briey described in the next subsection.

3.6.2. Experimental Complications

Backgrounds are a main source of uncertainties in resonance analysis. In time-of-ight

measurements there are always two types of background: constant and time-dependent.

Constant backgrounds may be due to radioactivity of the sample and its environment or to

cosmic radiation. Time-dependent backgrounds are induced by the accelerator pulses or by

sample e�ects. An example is the background caused by resonance-scattered neutrons in

time-of-ight measurements of neutron transmission or capture. It reects the resonance

structure of the scattering cross section, hence uctuates violently with time of ight (or

energy). This inuence of the sample makes \sample-out" background determinations

often questionable. Therefore one uses \notch" �lters, special samples placed in front of

the sample under study. The ideal notch �lter has a few widely spaced resonances and

is so thick that at the corresponding dips (notches) all beam particles are removed and

only the background is observed during the actual run. Of course, no \true" data can

be measured across the notches, so one uses several complementary �lters. Notch �lters
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provide an improvement over sample-out background determination but do not completely

remove the problems caused by the presence of the sample.

Resolution broadening is another source of complications. All experimental data are

resolution broadened. The true observables are

T (E) =

Z
dE0 r(E0; E)T (E) ; (264)

Y x(E) =

Z
dE0 r(E0; E)Yx(E) ; (265)

etc., where dE0 r(E0; E) is the probability that an event observed at the energy E (or the

corresponding ight time) was actually due to a beam particle with an energy E0 in dE0.
The main causes for the deviations E �E0 in time-of-ight data are

- �nite accelerator burst width (tb) ;
- �nite time channel width (tc) ;
- electronic drift, jitter (td) ;
- uncertain starting point of ight path

(e. g. in moderator slab or booster)

and end point

(e. g. in sample or Li glass detector) (�L) ;
�nite angular resolution (��) :

The resolution function r(E0; E) is often taken as a Gaussian,

r(E0; E) =
1

W
p
�
e�(E

0
�E)2=W 2

(266)

with, for instance (Fr�ohner and Haddad 1965),

W = 2E
h
2
��L
L

�2
+

E

3mL2

�
t2
b
+ t2

c
+ t2

d

�i1=2
= E

p
c1 + c2E : (267)

Slight adjustment of c1 and c2 may improve the �t but frequently the true resolution

functions have tails and the Gaussians must be replaced by other, asymmetric resolution

functions such as �2 functions (Fr�ohner 1978) or Gaussians with tails.

Detector e�ciency and ux are a third important source of uncertainties for partial

cross section measurements where the observables are count rates,

c = 'Yx� (' 'n�x� if n� � 1) : (268)

Absolute determination of the ux ' and the e�ciency � is di�cult and is therefore avoided

where possible. Often one measures relative to a reference sample (subscript r) in the same

ux to get
c

cr
=

Yx�

Yr�r
(' n�x�

nr�r�r
n� � 1; nr�r � 1); (269)

where Yr is known with good accuracy. This eliminates the need to know the ux but one

may still have problems with n=nr and �=�r as the thin-sample approximation shows. If

the energy dependence of �=�r is known one can calibrate by normalising to an accurately

known cross section value, for example the thermal cross section. If no suitable known

value is available one can often use the saturated-resonance (\black sample") technique.
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One uses a special sample which is so thick that at a well known resonance the transmission

is negligibly small. Quite generally one has

(1� T )
�x
�
< Yx < 1� T : (270)

Because of c = 'Yx� this yields at the resonance peak, E = E0, where the sample is black,

T ' 0,

c < �' < c
�(E0)

�x(E0)
: (271)

If �(E0) ' �x(E0) (i. e. � ' �x) this de�nes, without further calculation, a quite accurate

value of �'. The 4.91 eV resonance of 197Au+n, for example, has frequently been used in

this way for black-sample normalisation of capture data. Serious problems are encountered

if the detector e�ciency varies from isotope to isotope or, even worse, from resonance to

resonance. This has been a persistent source of di�culties with capture measurements.

Here the detector response depends on the gamma spectrum (binding energy, transition

strength to low-lying levels etc.) which uctuates from level to level in an unpredictable

way, especially for light and medium-mass nuclei.The problem could be overcome only

with massive liquid-scintillator or crystal scintillator detectors that surround the sample

in 4� geometry and absorb most of the capture gamma rays.

Self-shielding and multiple scattering a�ect mostly neutron capture and scattering

data. As the Eqs. 257-258 and 261-262 show the two e�ects are intertwined and cannot

be treated separately. Both together are referred to as sample-thickness e�ects. An

analytical treatment is not possible in the resolved resonance region because of the violently

uctuating scattering and capture cross sections and the need to describe the data in

detail, not just in an average sense. The only reliable way is Monte Carlo simulation of

multiple-collision neutron histories based on the detailed resonance cross sections, on the

appropriate probability distributions for free paths and scattering angles, and on the exact

sample geometry (cf. Fr�ohner 1989 for details). The feasibility of straightforward Monte

Carlo simulation of sample-thickness e�ects in capture resonance �tting was demonstrated

with the FANAC code (Fr�ohner 1978).

3.6.3. Spin and Parity Assignment

The conventional least-squares �tting algorithm employs derivatives (sensitivities),

hence it is directly applicable only to continuous probability distributions. Therefore res-

onance parameter determination by nonlinear least-squares �tting is straightforward only

for resonance energies and widths, for which a continuum of possible values exists so that

derivatives for Newton-Raphson iteration can be calculated. For spins and parities, having

discrete values, derivatives are not available. One could imagine a combinatorial generali-

sation of the least-squares method including also discrete probability distributions, but in

resonance analyses involving dozens or even hundreds of levels the number of possible spin-

parity combinations for which least squares must be found is forbidding. Therefore a �rst

assignment of spins and parities is usually based on inspection of transmission data. Most

s-wave resonances are easily recognised because pronounced interference between resonant

and potential scattering makes them quite asymmetric (see Fig. 11), whereas p- and d-

wave resonances tend to be narrower and symmetric because of small potential-scattering

cross sections and small centrifugal-barrier penetrabilities at low energies.

A �rst rough categorisation of those narrow levels for which only g�n is known from

transmission analysis can be based on the expected average neutron widths. If the expec-

tation values hg�ni`J for the possible (`; J) combinations are given, one can calculate the
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corresponding probabilities for (`; J) by means of Bayes' theorem (Bollinger and Thomas

1968). The prior is proportional to the density of levels with spin J and parity � = (�)`
which can be taken as independent of parity, �`J = �J . With the rough approximation

�J / 2J +1 one gets, for example, s-, p- and d-wave level densities in the ratio 1:3:5 if the

target spin is zero (see
P
gJ column in Table 2). The likelihood function is given by the

Porter-Thomas distribution (see Chapter 4 below)

p(g�nj`; J) d(g�n) =
he�x x�=2

�( �
2
)

dx

x

i
`J

; 0 < x`J � �`J

2

g�n

hg�ni`J <1 ; (272)

where �( �
2
) is a gamma function and �`J the number of channel spins (1 or 2) that can be

combined with ` to give J (cf. Eqs. 139-140 and Table 2). Since dx=x does not depend

on `; J the resulting posterior probability is

P (`; J jg�n) = �J [e
�xx�=2]`JX

`;J

�J [e
�xx�=2]`J

;

` = 0; 1; 2; : : : ;
��`� jI � 1=2j�� � J � `+ I + 1=2 ; (273)

where I is the target spin. The average widths involve products of level spacings DJ =

1=�J and strength functions S`,

hg�ni`J = gJ�`JDJS`
p
E=1 eV v`(E) : (274)

Estimates of the average widths can therefore be based on observed mean level spacings

and on observed or optical-model strength functions S`. The functions v` � P`=P0 (with

P0 = ka) are relative centrifugal-barrier penetrabilities, equal to unity for the s wave.

For the other partial waves one has v` ' (ka)2`=[(2` � 1)!!]2 if ka � p
`(`+ 1) (i. e.

at low energies). This means that in the resonance region only partial waves with ` =

0, 1, 2 and (at most) 3 need be considered. The others are e�ectively suppressed by

high centrifugal barriers. A spin-parity assignment based merely on comparison of the

observed width with estimated average widths for the various possible `J combinations is,

of course, purely probabilistic, subject to revision if new evidence becomes available such

as a characteristic s-wave interference minimum of the total cross section.

The ultimate spin-parity information is provided by scattering data since angular

distributions di�er markedly for s-, p- and d-levels. Usually one compares precalculated

angular distributions for isolated resonances with the observed ones. In practice the re-

sonances are, however, rarely isolated but interfere with other levels having the same spin

and parity. Moreover, angular distributions exhibit interference even between di�erent

partial waves, for instance between s- and p-wave amplitudes. A certain amount of trial

and error concerning spins and parities is therefore unavoidable during the initial phase of

resonance �tting, even in the ideal case where high-resolution double-di�erential data are

available. With increasing energy the interference e�ects become more troublesome and

eventually analysis of resolved resonances must be replaced by analysis of average cross

section data as is discussed in the following chapter.
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4. Statistical Resonance Theory for the Unresolved Region

We have already begun to use resonance statistics when we estimated the contribution

of external (\distant") levels to the R-matrix in Subsect. 3.4.7. Now we shall apply it more

systematically to the so-called unresolved resonance region, where limited instrumental res-

olution permits only observation of resonance-averaged, seemingly smooth cross sections,

although resonances exist and make themselves felt in phenomena such as temperature-

dependent absorption and self-shielding. Cross section averages, mean square uctuations

(variances) and other cross section functionals such as beam attenuation or temperature-

dependent self-shielding can be calulated and predicted at least probabilistically if one

knows the statistics of the unseen resonances, in particular the probability distributions

of their spacings and partial widths. The Statistical Model of nuclear (and atomic) reso-

nance reactions emerged in the nineteen-�fties (see Porter 1965 for key publications). It is

based on the probability theory of Hamiltonian matrices, i. e. on joint probability distri-

butions (\ensembles") of their matrix elements constrained by their symmetries and other

global characteristics. The Gaussian Orthogonal Ensemble of real symmetric matrices was

recognised as implying theoretical distributions of partial widths and level spacings that

agree with the observed ones. Analytic cross section expressions, in terms of mean level

spacings and average partial widths, could be deduced at �rst only for resonance-averaged

total sections, whereas the expressions found for partial cross sections were approximate,

valid only in the limit of well separated, weakly overlapping resonances. For strong level

overlap this so-called Hauser-Feshbach problem remained unsolved until 1985.

4.1. Level Statistics

We begin with basic level statistics, in particular with the (local) distributions of the

R-matrix resonance parameters, level energies E� and decay amplitudes �c.

4.1.1. The Porter-Thomas Hypothesis

The decay amplitudes �c of R-matrix theory are essentially values of the internal

radial eigenfunctions at the channel entrance, representing the overlap of the �-th eigen-

function and the external (\channel") wave function at the matching radius rc = ac (see

Lane and Thomas 1958, Lynn 1968). For a compound system with A + 1 nucleons they

are (3A + 2)-dimensional integrals over the surface of the internal region in con�guration

space. The integrands oscillate rapidly so that positive and negative contributions nearly

cancel. The integrals are therefore expected to be close to zero, and positive or negative

with equal probability, depending on the unknown particulars of the �-th eigenstate. Un-

der these circumstances a Gaussian distribution of the �c with mean zero seems to be a

reasonable guess. In fact, the maximum entropy principle of probability theory (see Sect.

1.7) tells us that, if we know only that the distribution has zero mean and �nite variance

h2c i, the most conservative and objective probability distribution for all further inference

is indeed the Gaussian,

p(cjh2c i)dc =
1p
�
e�x2 dx ; �1 < x � cp

2h2c i
<1 : (275)

With d2c = 2cdc and p(cjh2c i)dc � p(2c jh2c i)d2c this becomes the distribution

hypothesised by Porter and Thomas (1956),

p(2c jh2c i)d2c =
e�yp
�y
dy 0 < y � 2c

2h2c i
<1 ; (276)
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where �( �
2
) is a Gamma function (not a width), and

2x �
X
c2x

2c ; (278) h2xi = �h2c i : (279)

The generalised Porter-Thomas distribution applies to two-channel neutron widths (� =

2, exponential distribution) and, with an e�ective (not necessarily integer) number �

of �ssion channels, to �ssion widths (� small) and to total radiation widths (� large,

distribution delta-like: radiation widths uctuate little from level to level). Large e�ective

� for total radiation widths are not unexpected because of the usually large number of

allowed radiative transitions to lower-lying compound states. That � is small for total

�ssion widths, however, was a surprise. The hundreds of possible pairs of �ssion fragments,

each with many possible excited states, would seem to imply equally many partial �ssion

widths, and a correspondingly large e�ective �.

The puzzle was solved by �A. Bohr (1955). He pointed out that before scission can

occur the compound system must pass the saddle point of the potential-energy surface (in

the space of deformation parameters) beyond which Coulomb repulsion prevails over nu-

clear cohesion. At the saddle point most of the excitation energy is tied up as deformation

energy, so only little remains for other modes of excitation whose spectrum resembles that

of the low-lying states observed at the ground state deformation. Energy, angular momen-

tum and parity conservation allow access to only few of these transition states, regardless

of the huge number of �nal partitions. Therefore the �ssion channels are correlated in

such a way that the �ssion width can be approximated as a sum over a small number of

terms, one for each transition state ("saddle point channel"). For �ssion, therefore, � is

the e�ective number of open saddle point channels rather than the number of reaction

channels in the usual sense.

This illustrates that the level-statistical "laws" are not as rigid as the resonance

formalism discussed in Chapter 3. They hold mainly for highly excited compound states

for which all single-particle, collective, or other simplicity is lost. Reecting more our

ignorance than truly random phenomena they are not really applicable where the states

considered are simple and well understood. Recognition of the role of collective transition

states of a �ssioning nucleus, for example, enables us to modify and, in fact, to simplify the

statistical description of �ssion resonances. In the model case of neutron interaction with

a complex square-well potential, where everything can be calculated explicitly, nothing at

all is random or unspeci�ed, and the reduced neutron widths (essentially squared decay

amplitudes) turn out to be all equal instead of exhibiting a Porter-Thomas distribution

(see Fr�ohner 1998a).

4.1.2. Wigner's Surmise and the Gaussian Orthogonal Ensemble

It proved to be much more di�cult to �nd the distribution of level spacings in a

given J� level sequence than to �nd the partial-width distributions. Early in the game

Wigner (1957) tried a bold guess. He took issue with the Poisson distribution tried by

others according to which the probability of �nding a level spacing E�+1 �E� in a small

interval dD at D is just proportional to dD, independent of the distance to the preceding

level. He pointed out that level energies are eigenvalues of Hamiltonian matrices, and

that matrix ensembles always exhibit eigenvalue repulsion (vanishing probability for zero

level spacing) so that at least for small spacings the probability should be proportional to

DdD. Assuming proportionality also for large D he got immediately what is now known
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deviation �, this ensemble plays a similar role for those matrices as the Gaussian distribu-

tion does for scalar distributions with given spread. It is called the Gaussian orthogonal

ensemble (GOE) because it is invariant under orthogonal transformations and because

the matrix elements have independent Gaussian distributions. Actually Wigner derived

it from the requirements of rotational invariance (all orthogonal bases must be equiva-

lent in quantum mechanics) and of independently distributed matrix elements, but the

independence requirement was criticised as unphysical, in conict with the predominant

two-body character of nuclear forces. In the maximum entropy approach independence is

a natural consequence of the limited input information. In any case Wigner's suggestion

that the GOE provides a mathematically simple model of level statistics has been fully

con�rmed. Porter and Rosenzweig (1960) demonstrated that for very large matrices (very

many compound states) the GOE yields the Porter-Thomas distribution of partial widths.

The GOE level spacing distribution for 2�2 matrices is exactly Wigner's surmise, while for

larger matrices it is very close as shown by Mehta (1960) and Gaudin (1961), see Fig. 17.

The level spacings are correlated in such a way that a relatively large spacing is

followed by a short one more often than not, and vice versa. The resulting correlation

coe�cient is

�(D�;D�+1) � cov (D�;D�+1)p
var (D�) var (D�+1)

' �0:27 (282)

for large matrices. The eigenvalue sequence is therefore remarkably regular (\sti�"), with

almost equidistant level positions, di�ering noticeably from a \random" sequence with

Poisson interval distribution. All this is in excellent agreement with observed nuclear

(and atomic) level statistics, at least in limited energy ranges where slow variations of the

mean level spacing and of average partial widths can be neglected. Seeming deviations

from GOE predictions usually vanish if the long-range ("secular") variations of the level-

statistical parameters are properly taken into account.

The Gaussian orthogonal ensemble, constrained only by the �nite spread of the eigen-

value spectrum, cannot be expected to reproduce more speci�c nuclear features such as

fermion gas level densities, shell e�ects, giant dipole resonances or �ssion barriers. In fact,

the semicircular GOE level density obtained by Wigner (1957) di�ers from the Gaussian-

like densities found in more realistic shell model calculations (see Brody et al. 1981).

Although the distributions of level energies and partial widths can locally be taken as

those of the GOE, their parameters (level density, average widths) vary slowly with en-

ergy. These secular variations are described by macroscopic models of the nucleus { level

densities, for instance, by the fermion gas model or, at higher energies, by the shell model

with residual interaction; neutron, proton and alpha particle strength functions by the

optical model; photon strength functions by the giant-dipole resonance model; �ssion

strength functions by �ssion barrier models.

4.1.3. Transmission Coe�cients

The appropriate theory for the unresolved resonance region is Hauser-Feshbach theory

with width uctuation corrections. It is obtained if one averages R-matrix cross section

expressions over the GOE. The essential parameters are strength functions or the closely

related transmission coe�cients. For particle (neutron, proton, alpha) channels the latter

are de�ned by

Tc � 1� j �Uccj2 = 4�scPc

j1� �RccLoc j2
: (283)

The denominator, with
�Rcc � R1c + i�sc ; (284)
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accounts for overlap and interference e�ects due to nearby and distant levels, sc and R
1

c

being the pole strength and the distant-level parameter already encountered in the context

of external levels, Eqs. 209 and 210. The transmission coe�cient is thus essentially 2�

times the ratio of average e�ective particle (e. g. neutron) width to mean level spacing.

For photon and �ssion channels one uses analogously

T = 2�
��

Dc

; (285) Tf = 2�
��f

Dc

: (286)

Transmission coe�cients for particle channels can be obtained from the optical model

which describes the interaction between an incident particle and the target nucleus by a

complex potential, in analogy to the di�raction and absorption of light by the proverbial

cloudy crystal ball. The complex potential is adjusted so that the resonance-averaged

total cross section is well reproduced over the whole unresolved resonance range and far

above. For nuclei of similar size, e. g. actinides like 235U, 238U and 239Pu, one expects

similar potential wells and thus similar average total cross sections. This is in fact what

one observes { see for instance the neutron transmission measurements and optical-model

�ts performed by Poenitz et al. (1981) on a whole series of heavy nuclides. The optical

model has therefore considerable predictive and systematising power.

It must be kept in mind, however, that it is essentially a single-particle model where

scattering means direct (potential) scattering only, while absorption means compound nu-

cleus formation and includes not only �nal radiative capture and �ssion but also compound

scattering, i. e. reemission of the incident particle (or one indistinguishable from it) from

the compound nucleus. Moreover, the angular distributions calculated from a complex

potential that reproduces the total cross section correctly are not exactly equal to the

resonance-averaged double-di�erential scattering derived from the R matrix formalism.

The only directly observable cross section type obtained from the optical model is thus

the (average) total cross section. Fits to scattering or other partial cross section data

require due account of compound scattering except far above the unresolved resonance

region where compound processes are unimportant.

The main insights gained from optical-model studies of neutron induced reactions are

that the strength functions and distant-level parameters vary but little over the relatively

narrow resolved resonance range, and little from nucleus to nucleus. Furthermore, they

can usually be taken as depending only on orbital angular momentum as was mentioned

already in the context of Eq. 213. Transmission coe�cients for inelastic, for example

(n,n') or (p,p'), channels can be calculated with the same expressions as for elastic (n,n)

or (p,p) channels but with the particle energy E replaced by E � Ec, where Ec is the

excitation energy transferred to the residual nucleus.

The total photon transmission coe�cient for the J� resonance sequence is dominated

by electric and magnetic dipole transitions,

T J�
 =

X
c02;J�

[TE1
c0 + TM1

c0 ] ; (287)

where the summation is over all accessible exit channels c0, i. e. all allowed dipole transi-

tions from the compound state with spin J and parity � to lower lying levels. The electric

dipole contributions are commonly taken as having the classical Lorentz form of giant

dipole resonances,

TE1
c0 / E4



(E2
 �E2

0)
2 + (�E)2

; (288)
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where E is the photon energy of the transition, E0 and � are energy and width of the giant

dipole resonance where all protons vibrate against all neutrons. Empirically it is found

that for spherical compound nuclei with A nucleons one has E0 ' MeV=A1=6, � ' 33

MeV=A1=3. For magic nuclei � is smaller by a factor of 0.6, for near-magic nuclei with Z

or N di�ering from a magic number by 1 or 2 the factor is about 0.8, and for deformed

nuclei it is about 1.2 (see Holmes, Woosley, Fowler and Zimmerman 1976). The magnetic

dipole contributions are smaller. They are often approximated by the simple Weisskopf

estimate

TM1
c / E3

 (289)

or neglected altogether. The sum (287) over �nal levels, for arbitrary excitation energy

U , can be calculated as an integral
R U
0
dE�J(U � E) : : :, with e. g. a Gilbert-Cameron

level density �J , and normalised to the photon strength function 2��J ��
J�
 in the resolved

resonance region (empirically obtained at least for s-wave resonances from their radiation

widths and spacings, inferred for others via the theoretical spin distributions discussed

below).

Fission transmission coe�cients were derived by Hill and Wheeler (1939). For single-

hump �ssion barriers of identical parabolic shapes for all transition states they have the

form

T J�
f =

X
c2f;J�

1

1 + exp[2�(Ec �E)=h�!]
; (290)

where E is the energy of the incident particle, Ec the height of the barrier on the same

energy scale, h�! is proportional to the inverse curvature of the parabola, and the sum

is over all �ssion transition states (saddle point channels) consistent with J and �. For

double-hump barriers it is often su�cient to combine the transmission coe�cients TA for

the inner barrier and TB for the outer one by adding reciprocals,

1

T J�
f

=
1

T J�
A

+
1

T J�
B

; (291)

in analogy to resistors in series. More general expressions are given for example by Van-

denbosch and Huizenga (1973). Again the sum (290) must be calculated as an integral

over a suitable density of transition states, see Lynn (1974).

Mean level spacings or their reciprocals, nuclear level densities, are seen to play the

role of scale factors in the theory. Their spin and energy dependence has a strong inuence

on the behaviour of resonance-averaged cross sections and will be discussed next.

4.1.4. Nuclear Level Densities

Compound nuclear levels can be observed in two energy regions { near the ground

state up to few MeV (e. g. by neutron capture gamma ray spectroscopy or Coulomb

excitation), and at the neutron separation energy of about 7 MeV (by observation of

resonances in neutron and proton induced reactions). At those higher excitation energies

the level density is found to be several orders of magnitude larger than near the ground

state. An explanation of such a rapid increase of level densities with excitation energy must

start from the basic features of nuclei that are incorporated in the nuclear shell model:

The nucleons, obeying Fermi-Dirac statistics and therefore Pauli's exclusion principle,

move almost independently in the potential well created by their mutual interaction. Let

us denote the �-th energy eigenvalue of the well by �� , and the occupation number of the
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�-th level in the i-th nuclear state by ni� (0 or 1 for fermions). For independent nucleons

the total nucleon number and the total energy of the i-th nuclear state are then

Ni =
X
�

ni� ; ni� = 0; 1 : (292)

Ei =
X
�

ni��� ; �� > 0 : (293)

The actual two-dimensional density of compound nuclear states,

�(N;E) =
X
i

�(N �Ni)�(E �Ei) ; (294)

admits only discrete possibilities. A smooth density can be obtained if we prescribe arbi-

trary non-negative values of N and E as weighted averages

N =
X
i

piNi ; (295) E =
X
i

piEi : (296)

The maximum entropy principle tells us how to choose the weights pi under these two

constraints. The most conservative choice, ensuring a minimum of spurious information,

is the grand-canonical ensemble (�rst introduced by Gibbs in thermodynamics),

pi =
1

Z
e�Ni��Ei ; (297) Z =

X
i

e�Ni��Ei ; (298)

with Lagrange multipliers � and �. Noting that the partition function Z is the Laplace

transform of the level density �, Eq. 294, we conclude that the level density must be

related to the partition function by inverse Laplace transformation,

Z(�; �) =

Z
1

0

dN

Z
1

0

dE �(N;E) e�N��E ; (299)

�(N;E) =
1

2�i

Z i1

�i1

d�

Z i1

�i1

d� Z(�; �) e��N+�E

=
1

2�i

Z i1

�i1

d�

Z i1

�i1

d� eS ; (300)

where S is the information entropy for arbitrary Lagrange parameters � and �,

S = �
X
i

pi ln pi = lnZ � �N + �E : (301)

Saddle point integration, i. e. expansion of S about its maximum at � = �̂, � = �̂ and

truncation after the quadratic terms, yields the following remarkable relationship between

level density and entropy

�(N;E) ' eŜq
det (2�rryŜ)

; (302)

where we introduced the di�erential vector operator r � (@=@�̂ @=@�̂)y. The Lagrange
parameters �̂, �̂ at the maximum are just those following from the maximum entropy
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algorithm, and the maximised information entropy Ŝ � S(�̂; �̂) is the physicists' thermo-

dynamic entropy divided by Boltzmann's constant.

Let us consider the partition function. We note that summation over all possible com-

pound nuclear states is the same as summation over all possible sets of fermion occupation

numbers,

Z =
X
i

e�Ni��Ei =
Y
�

(1 + e����� ): (303)

Expanding the last product one recognises in fact that each state is represented by one

sum term, each sum term being a product of exponentials for all the occupied levels and of

unit factors for the empty ones, as demanded by Eqs. 292 and 293. Taking the logarithm

and approximating the sum by an integral one obtains

lnZ =
X
�

ln(1 + e����� ) '
Z
1

0

d� g(�) ln(1 + e����) ; (304)

where g(�) is the density of single-particle levels. In the ground state, with total energy

E0, all levels are occupied up to the so-called Fermi edge �F , so that

N =

Z �F

0

d� g(�) ; (305) E0 =

Z �F

0

d� g(�)� : (306)

The nucleus is thus described as a condensed (\degenerate") fermion gas. The condensa-

tion is weakened as excitation increases and more and more empty levels are created below

the Fermi edge while levels above are �lled. As long as only a relatively narrow energy

band around the Fermi edge is a�ected, where the energy variation of g(�) is negligible,

one can use the approximation

lnZ ' �N � �E0 +
g(�F )

�

� (�� ��F )
2

2
+
�2

6

�
(307)

(see e. g. Bohr and Mottelson 1969). Entropy maximisation with this partition function

yields two coupled equations for �̂ and �̂,

�̂ = �̂�F ; (308) E �E0 =
�2

6

g(�F )

�̂2
; (309)

and �nally the fermion gas level density formula

�(N;E) ' exp
p
4aUp

48U
; (310)

where U � E � E0 is the excitation energy, and a � (�2=6)g(�F ), called the fermion gas

level density parameter, depends on N because of Eq. 305.

Van Lier and Uhlenbeck pointed out, following a hint by Goudsmit, that in the

special case of equidistant single-particle levels, i. e. for a harmonic-oscillator potential,

the fermion gas level density can be calculated exactly (see Ericson 1960). The possible

excitation energies are integer multiples of the spacing d � 1=g. For U=d = 1, 2, 3, 4 : : :

one has 1, 2, 3, 5 : : : di�erent states (occupation patterns). As can be seen from Fig. 18

(top) the number of states is equal to the number of di�erent partitions of the integer U=d,

partition being de�ned here in the number-theoretic sense as a decomposition in positive
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integer summands. The number of partitions can be calculated with a recursion formula

due to Euler (1753). The resulting rigorous level density histogram is plotted together

with the approximate fermion gas curve in Fig. 18 (bottom). The agreement is good

except at the lowest excitation energies. The rapid, almost exponential rise of the level

density with increasing energy is evident.

So far we neglected the di�erence between protons and neutrons and their spins. It is

straightforward to generalise to nuclei with Z protons, N neutrons, and spin orientation

quantum number M . The result is Bethe's (1937) famous level density formula (see also

Gilbert and Cameron 1965)

�(Z;N;E;M) ' exp
p
4a[U �M2=(2ghm2i)]

12
p
2ghm2i[U �M2=(2ghm2i)]3=2 (311)

with

g � gp + gn ; (312) ghm2i � gphm2
pi+ gnhm2

ni ; (313)

where gp and gn are the single-particle level densities for protons and neutrons, mp andmn

their spin orientation quantum numbers. (The potential well and hence the single-particle

levels for protons di�er from those for neutrons because of the Coulomb interaction.)

UsuallyM2=(2ghm2i) is much smaller than U . This leads to the approximate factorisation

�(Z;N;E;M) � !M (U) ' !(U)
e�M2=2�2

p
2��2

(314)

into the total state density

!(U) =

1X
M=�1

!M (U) =

p
2�

3

e

p
4aU

(4aU)5=4
a ; (315)

and a Gaussian distribution over the various orientation quantum numbers M , with vari-

ance

�2 = ghm2i
r
U

a
: (316)

The Gaussian is correctly normalised to unity since the Euler-MacLaurin summation for-

mula yields
P
1

M=�1 e�M
2=2�2 =

R
1

�1
dM e�M

2=2�2 =
p
2��2 �rst for integer but then

also for half-integer M . The standard deviation � is often called the spin cut-o�. Typical

values are � � 3 for medium weight nuclides such as the structural materials Fe, Ni, Cr

and � � 4:5 for actinides like Th, U, Pu.

It must be realised, however, that in the absence of external �elds one can distinguish,

and count as separate resonances, only nuclear states jJ;Mi with di�erent total angular

momentum (level spin) J . States di�ering merely in spin orientation,M = �J ,�J+1,: : : J ,
are degenerate, hence indistinguishable. This means that we ought to count only one of

these alternatives, for example only the states with M = J , jJ; Ji, if we want the density
�J of levels with given J . Now the states contributing to !J and !J+1 can be arranged

in two columns as follows,

jJ; Ji
jJ + 1; Ji jJ + 1; J + 1i
jJ + 2; Ji jJ + 2; J + 1i
...

...
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rent level density theories that include explicit shell model levels, residual interaction,

deformation, collective rotations and vibrations, and the superuidity of nuclear matter

at low excitation energies, are based on Bethe's thermodynamical (maximum entropy)

approach.

An example is the widely used composite level density formula of Gilbert and Cameron

(1965). It accounts in a heuristic way for nucleon pairing e�ects and for the empirically

observed behaviour of level densities near the ground state where collective modes preclude

a purely statistical treatment of compound states. It is composed of two parts, a constant-

temperature part valid at low excitation energies and a smoothly joining fermion gas

(Bethe) part valid at high energies, with parameter systematics derived from a large body

of nuclear structure data near the ground state and of resonance data above the neutron

and proton separation energies. The density of levels with spin J and arbitrary parity is

described by Eq. 317 with

!p
2��2

=

8>>><
>>>:

p
2

3

exp
p
4aU

(4aU)3=2
ap
cA1=3

if U � Ux,

p
2

3

exp
p
4aUx

(4aUx)3=2
ap
cA1=3

exp
�U � Ux

T

�
if U � Ux,

(318)

the high-energy part of which is obtained if one puts, following Jensen and Luttinger

(1952), hm2i = cA2=3 with A = Z +N and c = 0:146. The e�ective excitation energy,

U = B +E � P (Z)� P (N) ; (319)

is taken as the sum of the neutron binding energy B and the kinetic neutron energy E,

corrected for the energies P (Z) and P (N) that are needed for pair breaking if all protons

or all neutrons are paired, i. e. if the proton number Z or the neutron number N is

even. Below the matching energy the spin cut-o� is often taken as a linear function of U ,

vanishing at the ground state, so that

2�2 =

8><
>:
cA2=3

p
4aU ; U � Ux,

cA2=3
p
4aUx

U + P (Z) + P (N)

Ux + P (Z) + P (N)
U � Ux

(320)

Bethe's fermion gas form for high energies and the constant-temperature form for low

energies are required to join smoothly at the matching energy Ux. The temperature T (in

energy units) following from the matching condition is given by

T =
�
1� 3p

4aUx
+

Jmin

4aUxcA2=3

�
�1
r
Ux

a
; Jmin =

�
0 for even A,
1
2

for odd A,
(321)

where the third term is usually negligible. Typical values in the resolved resonance region

are T � 1:4 MeV for structural materials like Fe, Ni, Cr and T � 0:4 MeV for actinides

like U and Pu. Gilbert and Cameron give empirical parameters a, Ux, P (Z), P (N) for

many compound nuclei, as well as analytical formulae for their systematics, e. g.

Ux =
�
2:5 +

150

A

�
MeV; (322)

so that level densities can be estimated even in the absence of nuclear structure data (level

schemes) for low-lying levels or resonance data (cross sections) above the neutron binding
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energy. This is valuable, for instance, if �ssion cross sections are to be calculated, for which

one needs the transition state densities at the saddle point deformation. Those are not

directly observable but are expected to be similar to the state densities near the ground

state deformation and therefore at least roughly describable by the constant-temperature

part of the composite level density formula. Other examples are nuclei in metastable

states or short-lived radionuclides, data for which are di�cult to measure but are needed

for burnup and transmutation calculations in nuclear technology or for nucleosynthesis

studies in astrophysics.

As already mentioned the Gaussian Orthogonal Ensemble has a semicircular eigen-

value distribution, and more physical ensembles such as the shell model with statistically

treated residual interaction have eigenvalue spectra resembling Gaussians. Is this not in

conict with the nearly exponentially increasing level density of the Bethe formula? The

answer is that the Bethe formula is valid for modest excitation, where only few single-

particle levels around the Fermi edge are a�ected and neither the �nite depth of the

single-particle potential nor unbound continuum states have any e�ect yet. As excitation

energy grows, however, more and more nucleons are lifted from levels below the Fermi edge

to levels above and even to continuum states that no longer involve the intact compound

nucleus. The level density of a given compound nucleus rises therefore to a maximum but

then it decreases again, in Gaussian-like fashion, due to growing competition by unbound

states representing nuclear transmutation and destruction. The Bethe formula appears

thus as an approximation to the low-energy tail of a nearly Gaussian density function

(see Grimes 1980), certainly applicable in the unresolved resonance region but not at GeV

excitation energies.

4.1.5. Information from Resolved Resonances

Global information about strength functions or transmission coe�cients can be ob-

tained from optical-model systematics. More speci�c prior information for a given com-

pound system comes, however, from resolved resonances. The transmission coe�cient for

a particle channel c = f�J`sg is related to the corresponding average partial width by

Tc = 2���c=Dc (we absorb the multi-level correction denominator of Eq. 283 in the partial

width) but the observable (\lumped") neutron widths are sums of partial widths for all

channels compatible with the level characteristics J and �. Neglecting the weak channel

spin dependence of the transmission coe�cients predicted by the optical model one gets

for the average neutron width

h�ni`J = �`JDJS`
p
E=1eVv`(E) ; (323)

where �`J is the number of channel spins (1 or 2) that can be combined with ` to give

J . This is essentially Eq. 274 that we employed to �nd the Bayesian probability of the

characteristics J and ` (or rather �) of a resonance with given value of g�n. One can now

introduce the usual de�nition of the reduced neutron width,

�`n �
�np

E=1eV v`(E)
; (324)

replace the ensemble average by the sample average,

hgJ�`ni '
1

N

NX
�=1

(g�`n)� ; (325)
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multiply both sides by gJ�J and sum over all J compatible with `. With
P

J gJ�`J = 2`+1

and N=
P

J �J ' �E one �nds eventually the widely used recipe for estimating neutron

strength functions from all the g�`n values found in an energy interval �E,

S` '
PN

�=1(g�
`
n)�

(2`+ 1)�E
: (326)

It has the advantage that neither the resonance spins nor the level densities must be known.

Only the products g�`n are needed which is often all that is known for the weaker reso-

nances. Moreover, the estimator is fairly insensitive to missing levels as these have small

reduced widths and therefore contribute little to the sum, and it is similarly insensitive to

wrong ` assignments that again a�ect mainly the weak levels.

The problem of missing levels is encountered head-on if the level density is to be esti-

mated. Weak resonances are often not seen at all in transmission measurements whereas

at least some of them show up in capture and �ssion yield data. A mere counting of

observed peaks in some energy interval �E is then not enough. Nor is a �t to the Wigner

distribution very helpful because missing levels tend to distort the whole observed level

spacing distribution. A better way to estimate the fraction of missing levels is to look

at the neutron width distribution where only the portion below some detection threshold

is a�ected. Without threshold we have the complete Porter-Thomas distribution (277)

which we now write, with the abbreviations G � g�`n, � � hg�`ni, and n � �`J=2, as

p(Gj�; n) dG =
e�x xn

�(n)

dx

x
; 0 < x � n

G

�
<1 : (327)

With the likelihood function
Q

j p(Gj j�; n) for a sample G1, G2,: : : GN reduced widths

and with Je�reys' prior d�=� for the scale parameter � one gets the posterior

p(�jG1; : : : GN ; n) d� =
e�y ynN

�(nN)

dy

y
; 0 < y � nN

�G

�
; (328)

where �G � (G1 + : : : + GN )=N is the sample average. With this gamma distribution it

is easy to calculate the expectation values hy�1i = 1=(nN � 1) and hy�2i = 1=[(nN �
1)(nN � 2)] and then the estimate under quadratic loss,

h�i = nN

nN � 1
�G ; (329)

��

h�i =
1p

nN � 2
; (330)

with n = 1=2 for single-channel neutron widths (` = 0 or I = 0) and n = 1 for two-channel

neutron widths (` > 1 and I > 0). Note how big the uncertainty is even for large samples

{ e. g. 10 % for a sample of 204 s-wave resonances.

The case of a given detection threshold Gc > 0 can be treated in complete analogy.

The sampling distribution is now a truncated Porter-Thomas distribution of G (gamma

distribution of x),

p(Gj�; n;Gc) dG =
e�x xn

�(n; xc)

dx

x
; xc � n

Gc

�
< x � n

G

�
<1 ; (331)

normalised by the incomplete gamma function,

�(n; xc) �
Z
1

xc

e�x xn�1 dx ; (332)
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which we recognise as the probability of a level to be observable. It depends on the

estimated parameter, in contrast to the gamma function �(n) that we had before. The

posterior for the sample G1, G2,: : : GN is thus

p(�jG1; : : : GN ; n) d� =
1

Z

e�y ynN

�(n; cy)N
dy

y
; 0 < y � nN

�G

�
; (333)

where c � Gc=(N �G), so that cy = xc. The normalisation is given by

Z =

Z
1

0

e�y ynN

�(n; cy)N
dy

y
: (334)

The needed expectation values hy�1i and hy�2i involve similar integrals,

hy�ki = 1

Z

Z
1

0

e�y ynN�k

�(n; cy)N
dy

y
; k = 1; 2 ; (335)

and the same is true for the expected fraction of unobservable (missing) levels, 1�h�(n; cy)i
with

h�(n; cy)i = 1

Z

Z
1

0

e�y ynN

�(n; cy)N�1
dy

y
: (336)

The particular incomplete gamma functions needed for neutron (and proton) widths are

�(
1

2
; xc) =

p
� erfc

p
xc ; (337)

�(1; xc) = exp(�xc) : (338)

This shows that at least for n = 1, i. e. two possible channel spins, the integrals can be

calculated analytically: The width estimate under quadratic loss is

h�i = N �Ghy�1i = N

N � 1
( �G+Gc) ; (339)

��

�
=

1p
N � 2

; (340)

while the observed fraction of levels is expected to be

h�(1; cy)i =
�
1 +

Gc

N( �G�Gc)

�
�N

: (341)

For n = 1=2 one must integrate numerically, or use the Laplace approximation which

yields the same estimate for � as the maximum likelihood method. For a more general

discussion of missing level estimators, including unknown, energy-dependent and di�use

thresholds as well as unresolved multiplets, see Fr�ohner (1983).

4.2. Resonance-Averaged Cross Sections

The usual task in the unresolved resonance region is that average cross sections or

cross section functionals like the average transmission are to be calculated, in an averaging

interval wide enough to contain many resonances but so narrow that secular variations

of level statistics and other weak energy dependences can be neglected. We may then

simplify our equations by choosing boundary parameters such that locally Loc = iPc, and

by absorbing Pc in the decay widths �c. Furthermore, we shall write S instead of U for
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the S matrix, as is customary in the literature on average cross sections. The average

collision matrix is then (compare Eqs. 155-160, 209-210, 284)

Sab = e�i('a + 'b)
�
(1� i�R)�1(1+ i�R)

�
ab

= e�i('a + 'b)
�
�ab + 2i

X
�;�

�aA���b

�
; (342)

with

(A�1)�� = (E� �E)��� � i
X
c

�c�c : (343)

4.2.1. Average Total Cross Section

In order to average the total cross section we must average the collision matrix element

Scc over suitable energy bands, beam pro�les or resolution functions. This is easy with a

Lorentzian weight function,

S(E) =

Z
1

�1

dE0
I=�

(E0 �E)2 + I2
S(E0)

=
1

2�i

Z
1

�1

dE0
� 1

E0 �E � iI
� 1

E0 �E + iI

�
S(E0) ; (344)

where 2I is the full width at half maximum of the Lorentzian. Due to causality the collision

matrix has no poles above the real axis (see Lane and Thomas 1958), so if we close the

contour by a large upper semicircle (with vanishing contribution) it encloses only the pole

at E + iI of the Lorentzian, and the residue is

S(E) = S(E + iI) : (345)

As we may neglect weak energy dependences we need only replace R(E) by R(E + iI),

with

Rab(E + iI) =
X
�

�a�b

E� �E � iI

'
Z
1

�1

dE0

Dc

ab

E0 �E � iI
' (R1a + i�sa)�ab : (346)

In the last approximation we exploited the fact that because of the random signs of the �c
the average matrix ab is practically diagonal. Furthermore, we introduced the de�nitions

of pole strength and distant-level parameter, Eqs. 209-210, and neglected the variation of

the pole strength over the peak region of the Lorentzian { exactly as in our treatment of

external levels (Subsect. 3.4.1). The �nal result is

�c = 2���
2

cgc(1�Re Scc) ; (347)

Scc = e�2i'c 1 + i(R1c + i�sc)

1� i(R1c + i�sc)
: (348)

The resonance-averaged total cross section is thus expressed by the pole strength and the

distant-level parameter, quantities that can be obtained either from statistical analysis
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of resolved resonances or from optical-model phase shifts (after speci�cation of a channel

radius).

4.2.2. Average Partial Cross Sections: Heuristic Recipes

In contrast to the total cross section the average partial cross sections,

�ab = ���
2

agaj�ab � Sabj2 ; (349)

are no linear function of S but require averaging over quadratic terms like S�abScd. These

have poles above as well as below the real axis which prevents contour integration with

a Lorentzian weight function. Under the usual ergodicity and stationarity conditions of

good statistics - many resonances and negligible variation of the parameter distributions

within the averaging interval - one can replace the energy average by an ensemble average

(i. e. expectation value) over the GOE, i. e. over the joint distribution of level energies and

decay amplitudes. The ensemble average is readily obtained in the limit of widely spaced

("isolated") resonances that overlap so weakly that multi-level e�ects and eigenvalue cor-

relations can be neglected. Assuming generalised Porter-Thomas (�2) distributions for

the partial widths one obtains in many-level SLBW approximation

�ab = �p;a�ab + ���
2

aga
TaTb

T

�
1 +

2

�a
�ab

� Z 1

0

dx
Y
c

�
1 +

2Tc

�cT
x
�
��ac��bc��c=2

(350)

(Dresner 1957, Lane and Lynn 1957), where �p;a is the potential-scattering cross section,

Tc � 1� jSccj2 is the transmission coe�cient for channel c, T �Pc Tc, and �c the degree

of freedom for the partial widths ��c = 22�c (remember that Pc is absorbed in 2�c). The

approximation Tc ' 2���c=Dc, valid for vanishing level overlap, was used to write the result

in terms of the Tc. This is the Hauser-Feshbach formula with elastic enhancement (�rst

pair of parentheses) and width uctuation correction (integral) - see Moldauer (1975). We

recall that �c = 1 for single channels but that in practical applications one often uses

lumped channels, with an e�ective ��c di�ering from unity, in order to represent e. g.

all �ssion or capture channels or all particle channels that have the same total angular

momentum and parity and thus involve the same compound levels. The number of photon

channels is usually so large (except for light and magic nuclei) that one may put

Y
c2

�
1 +

2Tc

�cT
x
�
��c=2 ' lim

��!1

�
1 +

2T

��T
x
�
���=2

= e�xT=T ; (351)

where T �
P

c2 Tc. The many photon channels can thus be represented approximately

by an exponential factor in the integral (\Dresner factor") of Eq. 331. Generalisation

of the Hauser-Feshbach formula to arbitrary level overlap turned out to be extremely

di�cult. Of course one could always resort to Monte Carlo sampling of level spacings

and decay amplitude from their probability distributions, with subsequent point cross

section calculation and averaging. The desired cross section average is thus obtained,

although with the statistical uncertainty and lack of analytical transparency typical for the

Monte Carlo method. From such numerical Monte Carlo studies two practically important

analytical recipes were deduced heuristically, by trial and error and educated guesswork.

The �rst recipe, due to Moldauer (1980), consists in using the Hauser-Feshbach for-

mula, strictly valid only for weak level overlap, also for strong overlap, but with �p;a
interpreted as the \direct" or \shape elastic" cross section,

�p;a = ���
2

agaj1� Saaj2 ; (352)
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and with the exact expression for the particle-channel transmission coe�cients,

Ta =
4�sa

j1� i �Raaj2
: (353)

Furthermore, the �c are considered as depending on the Tc. The dependence is chosen so

as to �t a large body of Monte Carlo results while giving the correct limit for small level

overlap (small transmission coe�cients). Moldauer's heuristic recommendation is

��c = [1:78 + (T 1:218
c � 0:78)e�0:228 T ]�c : (354)

The second practically important prescription is due to Hofmann, Richert, Tepel and

Weidenm�uller (1975) who, in the spirit of Bohr's original compound-nuclear model (no

memory of compound formation), take the partial cross sections as factorisable,

�ab = �p;a�ab + ���
2

aga
VaVb

V

�
1 + (!a � 1)�ab

�
; (355)

with V � P
c Vc. The elastic enhancement factors !c are expected to approach 3 for

vanishing and 2 for very strong level overlap (Satchler 1963). The authors found their

Monte Carlo results adequately reproduced with

!a = 1 +
2

1 + T
0:3+1:5Ta=T
a

+ 2
�Ta
T
� 1

n

�2
; (356)

where n is the number of open channels. With these heuristic values of the !a one can

calculate the Va from

Va =
Ta

1 + (!a � 1)Va=V
: (357)

by iteration, beginning with Vc = Tc. The last equation follows from the unitarity of S.

Both prescriptions yield similar results for intermediate and strong absorption (me-

dium and strong level overlap). Moldauer's recipe is convenient for lumped channels and,

by construction, it yields the correct limit for vanishing overlap and few (nonphotonic)

channels at low energies where the factorisation approximation fails. Other approximate

analytic expressions were derived with picket fence models (e. g. Janeva et al. 1985) and

disordered picket fence models (M�uller and Harney 1987).

4.2.3. Average Partial Cross Sections: The Exact GOE Average

For decades all attempts at solving the Hauser-Feshbach problem had failed. In this

situation the information-theoretic maximum entropy principle seemed to o�er a possi-

bility to bypass all \microscopic" resonance details by treating them as a kind of noise

superimposed on the \macroscopic" average behaviour described by the optical model.

The probability distributions of the S- and R-matrix elements were found by entropy

maximisation constrained by given (optical model) averages �S and �R (Mello 1979, Mello

et al. 1985, Fr�ohner 1986) which in principle o�ered the possibility to average the cross

section expressions over these distributions rather than the GOE. In practice, for many

channels, this looked still very di�cult.

Only few months after the maximum-entropy distributions of the S and R matrix

had been published, Verbaarschot, Weidenm�uller and Zirnbauer (1985) presented a direct
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solution to the Hauser-Feshbach problem of �nding an analytic expression for the average

partial cross sections, i. e. to average analytically over the GOE resonance parameter dis-

tributions, with given transmission coe�cients. These authors started from an expression

involving a GOE Hamiltonian coupled to the channels. In our notation it reads

jSabj2 = j�ab + i
X
�;�

~�aA��~�bj2 ; (358)

(A�1)�� = H�� �E��� � i
X
c

~�c~�c ; (359)

which is a generalisation of what Eqs. 158-160 give for jSabj2. The tilde indicates that

the Hamiltonian has its general, nondiagonal form, so that H�� and ~�a replace E����
and �a of Eq. 160. By a formidable display of analytic skill the authors managed,

with new tools from the many-body theory of disordered systems, to reduce the ensemble

average (expectation value) of jSabj2 over the GOE to a threefold integral. Making full

use of the symmetries of the GOE, of a generating function involving both commuting

and anticommuting (Grassmann) variables, of the Hubbard-Stratonovitch transformation

to simplify the integrations, then going to the limit of in�nitely many levels (n ! 1 for

the rank of H) by the method of steepest descent, they derived the awsome triple-integral

expression

jSabj2 = jSabj2 + TaTb

8

Z
1

0

d�1

Z
1

0

d�2

Z 1

0

d�
�(1� �)j�1 � �2jp

�1(1 + �1)
p
�2(1 + �2)(�+ �1)2(�+ �2)2

�
�Y

c

1� Tc�p
1 + Tc�1

p
1 + Tc�2

��
�ab(1� Ta)

�
�1

1 + Ta�1
+

�2

1 + Ta�2
+

2�

1� Ta�

�2

+ (1 + �ab)

�
�1(1 + �1)

(1 + Ta�1)(1 + Tb�1)
+

�2(1 + �2)

(1 + Ta�2)(1 + Tb�2)
+

2�(1� �)

(1� Ta�)(1 � Tb�)

��

(360)

for the absolute square of the collision matrix element that had caused the di�culties

with its poles below and above the real axis in the complex energy plane. The channel

product allows a similar treatment of the many weakly absorbing photon channels as in

the Hauser-Feshbach formula:

Y
c

1� Tc�p
1 + Tc�1

p
1 + Tc�2

' e�(�1+�2+2�)T=2
Y
c62

1� Tc�p
1 + Tc�1

p
1 + Tc�2

; (361)

with T �
P

c2 Tc as in Eq. 351.

Verbaarschot (1986) veri�ed that in the limit of small level overlap the GOE triple in-

tegral (360) yields the Hauser-Feshbach formula (350) with elastic enhancement and width

uctuation correction. Thus the GOE triple integral is the long-sought rigorous solution

to the Hauser-Feshbach problem, eliminating all uncertainties associated with picket fence

models or heuristic analytic formulae inferred from Monte Carlo results. These uncer-

tainties had always been bothersome because width uctuation corrections are often quite

substantial (see e. g. Lynn 1968, Gruppelaar and Re�o 1977). An important point is

that above a few eV resonance-averaged cross sections are practically independent of tem-

perature: Energy averaging involves essentially sums over peak areas, and since those are
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invariant under Doppler broadening (in Kapur-Peierls, Adler-Adler, MLBW and SLBW

form we have
R
dE  � = ���=2 and

R
dE �� = 0, irrespective of temperature, see Appen-

dix B), the same is true for average cross sections. Thus the GOE triple integral, valid for

unbroadened resonances, gives also correct averages over Doppler-broadened resonances.

4.2.4. Analysis of Resonance-Averaged Data

Figs. 20-22 show average total, capture and inelastic scattering cross section data

for 238U and theoretical curves �tted to all these data simultaneously. The �tting was

done by least-squares adjustment of average resonance parameters, viz. of s-, p-, d- and

f-wave neutron strength functions (which are essentially transmission coe�cients for neu-

tron channels) and of radiation widths scaled by the mean level spacing (transmission

coe�cients for the lumped photon channels) with the code FITACS (Fr�ohner et al. 1982).

The main energy dependences are introduced by the centrifugal-barrier penetration fac-

tors Pc for the neutron widths and by the employed composite level density formula of

Gilbert and Cameron (1965), whereas the strength functions and radiation widths vary

only little in the energy range covered. The total cross section was calculated with Eqs.

347-348, the partial cross sections with the Hauser-Feshbach formula in the form proposed

by Moldauer (1980), Eqs. 350-354, and cross-checked with the GOE triple integral, Eqs.

360-361. Similar �ts to many more 238U data de�ned eventually a new evaluation for 238U

in the unresolved resonance region that was adopted for the evaluated data libraries JEF-2

and ENDF/B-VI (Fr�ohner 1989). The �nal adjusted average resonance parameters are

fully consistent with the resolved resonance parameters determined at lower energies, and

also with optical-model calculations at higher energies up to 10 MeV. The error estimates

from the least-squares �ts indicate that, after decades of world-wide e�ort, the average

total and capture cross sections of 238U in the resolved resonance region are �nally known

with about the accuracies requested for applications in nuclear technology (1-3%). For

inelastic scattering this goal is not yet achieved, the uncertainties there are still of the

order of 5 - 15% .

Accurate average cross sections are, however, only part of the story. The other part

concerns the resonance structure, i. e. the resonance uctuations around the average

cross section curves. They are implicitly given by the level-statistical model, in particular

by the GOE distributions of level spacings and partial widths together with the mean

values parametrising these distributions. The presence of unresolved resonance structure

manifests itself in sample-thickness and self-shielding e�ects. As the simplest illustration

consider the relationship between the average transmission of a slab of material with

thickness n (atoms/b) and average total cross section h�i,

he�n�i = e�nh�i he�n(� � h�i)i = e�nh�i
�
1 +

n2

2
var � �+ : : :

�
: (362)

The last pair of parentheses represents a correction for resonance e�ects, containing the

cross section variance (mean square uctuation) and higher moments of the cross section

distribution which quantify the resonance structure. Solving for the average cross section

one gets

h�i = 1

n
lnhe�n�i+ 1

n
ln
�
1 +

n2

2
var � �+ : : :

�
: (363)

Often the �rst term on the right-hand side is presented by measurers as the total cross

section but the true average is seen to be always larger. Although the correction is small

for well resolved data it becomes important for resonance-averaged data. It is dangerous to









106

which involves the covariance between the total and capture cross section structure,

cov (�; �) � h(� � h�i)(� � h�i)i = h��i � h�ih�i : (366)

(For positive covariance the two arguments tend to vary in the same sense - if one

increases, the other one is likely to increase too - for negative covariance they tend to vary

in opposite directions.) In practice the radiators are not ideally thin, so that the capture

cross section � ought to be replaced by the capture yield y that includes self-shielding

and multiple-collision capture. Both e�ects require Monte Carlo techniques, in addition

to ladder sampling one must now also simulate multiple-collision events in the radiator

(for details see Fr�ohner 1989a). Fig. 25 shows that the measured data and the Monte

Carlo results are in good agreement again, indicating that also the capture cross section

structure is adequately represented by the average resonance parameters of the JEF-2

evaluation.

4.3. Group Constants

We saw that for a given average total cross section the average transmission (in

some �nite energy interval containing many resonances) of a thick sample is larger if the

cross section uctuates than if it is smooth (see Eq. 362). This means that the sample

becomes less transparent as the temperature rises, due to the smoothing e�ect of Doppler

broadening. (Thermal expansion of the sample counteracts this e�ect to some degree.)

In a reactor region �lled with a mixture of materials a temperature increase means that

(n,x) processes, e. g. (n,) reactions in 238U, become more probable with increasing

temperature because the ux depletion across the resonances (cf. Fig. 9) becomes weaker

as the resonance structure is smoothed out. In order to calculate these complicated e�ects

one simpli�es by using group constants, i. e. suitably de�ned cross section averages. The

(n,x) reaction rate for a given nuclide, averaged over the region and over a �nite (group)

interval �E, can be written as

h'�xi = fxh�xih'i with h: : :i �
Z
�E

dE

�E
: : : (367)

The group boundaries are usually taken as equidistant on a logarithmic energy scale,

i. e. on a linear lethargy scale, so that there is always the same number of groups per

energy decade. The cross section �x is to be understood as Doppler broadened. Since

h�xi does not depend on temperature (apart from edge e�ects at group boundaries which

become negligible if the group interval contains many resonances) the main temperature

dependence for given average ux is contained in the so-called self-shielding or Bondarenko

factor fx.

4.3.1. Bondarenko Factors

The self-shielding factor depends not only on temperature but also on the cross sec-

tions of all other nuclides in the mixture, the so-called dilution. The data �led in group

constant sets for technological applications are (cf. e. g. Bondarenko et al. 1964)

- cross sections for in�nite dilution h�xi ;
- self-shielding factors fx =

h'�xi
h'ih�xi ;

stored for each nuclide on a grid of temperatures and dilution cross sections �d, e. g.
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T = 300, 900, 1500, 3100 K ,

�d = 0, 1, 10, 100, 1000, 10 000, 100 000, 1 000 000 b .

The self-shielded group cross section

�x � fxh�xi (368)

is de�ned so that multiplication with the group-averaged ux ' gives the correct reaction

rate. With the de�nition of the covariance one can write

fx = 1 + cov
� '

h'i ;
�x

h�xi
�
: (369)

Now the ux is low where the cross section is high, so the two are anticorrelated, the

covariance is negative, hence fx < 1. On the other hand fx must be positive since

otherwise the average reaction rate would become negative. It follows (at least in the

case of many levels within the group interval) that one has 0 < fx < 1. We can be

more explicit by invoking the narrow-resonance approximation, valid in the important

case that the resonances are narrow as compared to the mean energy loss of scattered

neutrons. In this approximation the ux is proportional to the reciprocal macroscopic

total cross section, ' / 1=(� + �d), where � =
P

x �x is the total cross section of the

nuclide considered. One has then in narrow-resonance approximation

fx =
h�x=(� + �d)i

h�xi h1=(� + �d)i =
R
1

0
dn e�n�dhe�n��xi=h�xiR
1

0
dn e�n�dhe�n�i ; (370)

Since �d is a constant in the Bondarenko scheme one recognises that fx ! 1 if either

T ! 1 (smooth total cross section) or �d ! 1 (in�nite dilution). Therefore h�xi is
called the group cross section for in�nite dilution (or the unshielded group cross section).

In groups containing many resonances it is just the average cross section in the usual sense.

The last expression shows how self-shielding factors are related to self-indication ra-

tios, Eq. 365, and average transmissions, Eq. 362. If those latter quantities can be

predicted accurately for thick samples the self-shielding factor, too, can be predicted well.

With the results shown in Figs. 15 and 16, and because of the positive correlation between

numerator and denominator in the last equation, it is concluded that the self-shielding fac-

tors for the unresolved resonance region of 238U can be calculated to 1-2% accuracy from

the JEF-2 average resonance parameters.

4.3.2. Analytic and Monte Carlo Methods for Group Constant Generation

The practically most important technique for group constant generation is the analytic

method (Fr�olich 1965, Hwang 1965). The averages in the last equation are calculated

on the basis of level statistics in narrow-resonance approximation. The simplest version

includes the following additional approximations:

- Cross sections are written as sums over SLBW terms ("many-level" Breit-Wigner

approximation).

- Doppler broadening is described by the symmetric and asymmetric Voigt pro�les  

and �.

- Interference between resonance and potential scattering (terms with �) are neglected

- Level-statistical averages are calculated for each level sequence with the other se-

quences approximately represented by a smooth cross section included in �d.



109

The result can be written in the form

��x = fxh�xi = (�p + �d)
�
1�

X
s

h�Jis
Ds

�
�1X

s

h�xJis
Ds cos 2's

; (371)

where �p is the potential scattering cross section of the nuclide considered, h: : :is denotes
an average over all partial widths for the s-th level sequence, the summations are over all

sequences, and J is the integral

J(�; �) �
Z
1

0

dx
 (x; �)

 (x; �) + �
(372)

introduced by Dresner (1960). It involves the symmetric Voigt pro�les (compare Eq. 244

and Appendix B)

 (x; �) =
1

�
p
�

Z
1

�1

exp
h
�
�x� y

�

�2i dy

1 + y2
; (373)

where � � 2�=� is the Doppler width in units of the natural half width at half maximum,

�/2, and x � 2(E �E0)=� is the distance to the resonance peak at E0 in the same units.

Furthermore,

� =
�d + r

�̂
; (374) �̂ = 4���

2
g
�n

�
cos 2' ; (375)

with r describing eigenvalue repulsion in approximate form. This is the fastest method

available for group constant generation. It is employed in many widely used codes, e. g.

ETOX (Schenter et al. 1969), MIGROS (Broeders and Krieg 1977), NJOY (MacFarlane

et al. 1982), and GRUCON (Sinitsa 1983).

The slowing-down method uses Monte Carlo sampled resonance ladders so that the

calculation of average reaction rates can be reduced to the case of resolved resonances.

The TIMS code (Takano et al. 1980) is an example. Monte Carlo sampled resonance

ladders are also used in the subgroup/multiband methods pioneered by Nikolaev et al.

(1970) and Cullen (1974) (see also Ribon and Maillard 1986). One stores, for each of few

(e. g. four) subgroups/bands, the weights �i and the band averages �i, �xi representing

in a crude way the cross section distribution within an energy group. They must be found

by matching averages obtained from ladder cross sections as follows,

h�xi =
X
i

�i�xi ; (376) h�i =
X
i

�i�i ; (377)

D �x

� + �d

E
=
X
i

�i�xi

�i + �d
; (378)

D 1

� + �d

E
=
X
i

�i

�i + �d
: (379)

The subgroup/multiband method is essentially a coarse but e�cient variant of the prob-

ability table method (Levitt 1972) where one generates from sampled resonance ladders

the whole multivariate probability density

p(�; �n; � ; : : :) = p(�)p(�nj�)p(� j�; �n) : : : : (380)

The distribution of the total cross section, p(�), is stored together with the conditional

probabilities p(�nj�), p(� j�; �n) etc. in suitably discretised form, so that macroscopic
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(isotope-weighted, Doppler broadened) cross sections rather than resonance parameters

may be sampled directly.

5. Concluding remarks

The �rst part of the present overview is devoted to the probabilistic tools of data

evaluators, with the objective to make readers aware of how modern probability theory

has advanced and simpli�ed the treatment of data uncertainties, in particular with respect

to utilisation of prior knowledge, assignment of probabilities representing vague or global

information, and handling of systematic errors and the correlations induced by them { ar-

eas where conventional statistics had not much to o�er. The Bayesian scheme of learning

from observations is illustrated with typical applications to counting statistics, data eval-

uation, and model �tting. Bayesian parameter estimation leaves no room for guesswork

about \estimators" and their more or less desirable properties (absence of bias, su�ciency,

e�ciency, admissibility etc.) once prior, statistical model and loss function are speci�ed.

Under quadratic loss the optimal estimate consists of (posterior) mean value and mean

square error (or, for mutivariate problems, mean vector and covariance matrix) rather than

modes or medians and frequentist con�dence intervals. The least-squares method emerges

as a natural consequence of the information-theoretic maximum-entropy principle in the

practically most important cases where the given input consists of data with standard

(root-mean-square) errors and, perhaps, correlations. Generalisation to nonlinear models

is straightforward. There has also been some progress with respect to discrepant data but

there is need for more work. The ENDF format used world-wide for evaluated nuclear

reaction data is not yet satisfactory for the storage of uncertainty information. Storage of

the intuitively clear standard errors and correlation coe�cients instead of the inconvenient

and error-prone variances and covariances should be admitted and encouraged.

The remainder of the overview is speci�cally devoted to the evaluation of resolved and

unresolved resonance data. The close relationship between R-matrix theory, the statistical

model of resonance reactions, Hauser-Feshbach theory with width-uctuation corrections

and the optical model is explained. Doppler broadening is treated in some detail for the

practically important resonance formalisms and for tabulated cross sections. Experimental

e�ects like resolution broadening, self-shielding and multiple-scattering, backgrounds and

impurities are also discussed. The entire exposition is brief by necessity but it is hoped

that enough material and references are presented to newcomers and non-specialists to

have an adequate starting base for further study and professional work. Especially in

the unresolved resonance region there is considerable need for methods development and

creative programming, in both the �ssion and the fusion reactor �eld. Missing level esti-

mation is still based essentially on the maximum likelihood approximation as reviewed by

Fr�ohner (1983). A more rigorous Bayesian approach seems feasible and worthwhile but

has to be worked out. Those who are particularly interested in analysis and evaluation of

resonance data or in a rigorous R-matrix treatment of the spherical optical model will �nd

additional material in the 1988 ICTP proceedings (Fr�ohner 1989a). Nuclear data evalua-

tion methods and procedures were also discussed in considerable depth, with emphasis on

practical experience, by Poenitz (1981) and Bhat (1981).
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Appendices

Appendix A: Practically Important Probability Distributions

In this appendix we summarise briey the probability distributions which are most

important in nuclear data evaluation and analysis, together with their parameter estimates

under quadratic loss (means and variances). The notation is as follows:

P (AjI) probability of A given information I

p(xjI) dx in�nitesimal probability of x in dx given I,

with probability density p(xjI)
univariate distributions

hxi mean (expectation value)

var x � h(x� hxi)2i = hx2i � hxi2 variance (mean square error)

�x � pvar x standard deviation (root-mean-square

or standard error)

multivariate distributions

hxi mean vector

d(x) =
Q

� dx� volume element in x-space

C = h(x� hxi)(x � hxi)yi covariance matrix

C�� = �x�����x� covariance matrix element

��� = ��� correlation coe�cient

(�1 � ��� � +1, ��� = 1)

The dagger indicates transposition (Hermitean conjugation of real vectors and matrices).

Expectation values are denoted by angular brackets, hxi, sample averages by overbars, x.

A.1. Binomial and Beta Distributions

Applications: Bernoulli trials with two possible outcomes (success or failure, positive

or negative parity, fermion level occupied or not, : : :).

Sampling distribution (probability of success, in 1 trial):

P (1j1; �) = � : (A1)

Likelihood function for s successes in n trials (binomial distribution):

P (sjn; �) =
�
n

s

�
�s(1� �)n�s s = 0; 1; 2; : : : n � 1 : (A2)

Case 1 { Total ignorance about parameter �, admitting even the possibility that there is

one alternative only, � = 0 or 1.

Least informative (group-theoretic) prior (Haldane's rule, see Jaynes 1968):

p(�)d� / d�

�(1� �)
; 0 � � � 1 : (A3)

Posterior (beta distribution):

p(�js; n)d� = B(s; n� s)�1�s�1(1� �)n�s�1d� ; 0 � � � 1 ; (A4)
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with B(x; y) � �(x)�(y)=�(x+ y) (beta function) and, for x = n integer, �(n) = (n� 1)!

(gamma function). Parameter estimates under quadratic loss:

h�i = s

n
; (A5) var � =

1

n+ 1

s

n

�
1� s

n

�
: (A6)

As long as only successes or only failures occur the probability remains overwhelmingly

concentrated at � = 1 or � = 0, with zero variance. As soon as there is at least 1 success

(s � 1) and one failure (n� s � 1) other expectation values are obtained and the variance

becomes �nite.

Case 2 { If there is no doubt a priori that one has genuine Bernoulli trials with two

alternatives, the appropriate prior is equal to what Eq. (A4) would give after observation

of one success and one failure (Bayes-Laplace rule):

p(�)d� = d� ; 0 < � < 1 : (A7)

Posterior (beta distribution):

p(�js; n)d� = (n+ 1)!

(n� s)!s!
�s(1� �)n�sd� ; 0 < � < 1 : (A8)

Estimate under quadratic loss:

h�i = s+ 1

n+ 2
; (A9) var � =

1

n+ 3

s+ 1

n+ 2

�
1� s+ 1

n+ 2

�
: (A10)

(A9) is Laplace's rule of succession.

A.2. Poisson and Gamma Distributions

Applications: Radioactive decay, counting statistics, rare events with constant average

rate of occurrence.

Average time interval

hti = � (A11)

Maximum entropy distribution for this constraint, Lagrange parameter �:

p(tj�) dt = e�t � dt ; 0 < t <1 (A12)

(exponential interval distribution) with

hti = � = 1=� = �t : (A13)

Probability for n events between 0 and t, in time-ordered but else arbitrary intervals dt1,

dt2,: : : dtn (Poisson distribution):

P (nj�; t) = e��t �n
Z t

0

dtn

Z tn

0

dtn�1 : : :

Z t2

0

dt1

= e��t �n
1

n!

Z t

0

dtn

Z t

0

dtn�1 : : :

Z t

0

dt1

=
e��t (�t)n

n!
; n = 0; 1; 2; : : : ; (A14)
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with expectation values

hni = �t ; (A15) var n = �t : (A16)

Prior for rate � (Je�reys' prior for scale parameters)

p(�) d� / d ln� =
d�

�
; 0 < � <1 : (A17)

The likelihood function for n events during observation time t is the Poisson distribution

(A14).

Posterior (gamma distribution):

p(�jt; n) d� =
e��t (�t)n

�(n)

d�

�
; 0 < � <1 : (A18)

Estimate under quadratic loss:

h�i = var � =
n

t
; (A19)

��

�
=

1p
n
: (A20)

Note: Posterior and estimate are the same if number of events n and observation time t

were accumulated during several distinct measurements (runs).

A.3. Univariate Gaussian

Applications: Unknown errors, uncontrollable uctuations, error propagation, com-

bination of data from various sources, etc., valid if many independent components act

together (central limit theorem) or if only means and standard deviations are known

(maximum entropy principle) with possible errors or deviations between �1 and +1.

Sampling distribution (probability of possible deviation or error x� �, given true value �

and standard deviation �):

p(xj�; �) dx =
1p
2��2

exp
h
� 1

2

�x� �

�

�2i
dx ; �1 < x <1 : (A21)

Likelihood for x-values in dx1; : : : dxn at x1; : : : xn:

p(x1; : : :xnj�; �) dx1 : : : dxn

=
1

(2��2)n=2
exp

h
� 1

2�2

nX
j=1

(xj � �)2
i
dx1 : : : dxn

=
1

(2��2)n=2
exp

n
� ns02

2�2

h
1 +

� �x� �

s0

�2io
dx1 : : : dxn : (A22)

This depends on the sample only through the sample mean and the sample variance,

�x � 1

n

nX
j=1

xj ; (A23) s02 � 1

n

nX
j=1

(xj � �x)2 = x2 � �x2 : (A24)
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Case 1 { Location parameter � and scale parameter � both unknown.

Least informative (group-theoretic) prior:

p(�; �) d� d� / d� d�

�
; �1 < � <1; 0 < � <1 : (A25)

Posterior:

p(�; �j�x; s0; n)

= p(ujv; n)du p(vjn)dv = e�vu
2

p
�

p
v du

e�v v(n�1)=2

�(n�1
2
)

dv

v

= p(vju; n)dv p(ujn)du = e�(1+u
2)v [(1 + u2)v]n=2

�(n
2
)

dv

v

du

B( 1
2
; n�1

2
)(1 + u2)n=2

;

�1 < u � �� �x

s0
<1 ; 0 < v � ns02

2�2
<1 ; (A26)

The two factorisations correspond to the two forms of the fundamental product rule for

joint probabilities.

Marginal distribution for u (Student's t distribution with t = u
p
n� 1, n � 1 degrees of

freedom):

p(ujn)du = du

B( 1
2
; n�1

2
)(1 + u2)n=2

; �1 < u <1 ; (A27)

and for v (gamma or chi-square distribution with �2 = 2v, n� 1 degrees of freedom):

p(vjn)dv = e�vv(n�1)=2

�(n�1
2
)

dv

v
; 0 < v <1 : (A28)

Parameter estimate under quadratic loss: With the marginal distributions one �nds readily

hui, hvi, var u, var v and the estimates

h�i = �x ; (A29) var � =
s02

n� 3
; (A30)

h��2i = n� 1

n
s0�2 ; (A31) var ��2 = 2

n� 1

n2
s0�4 : (A32)

The estimated parameters are uncorrelated, cov (u; v) = huvi � huihvi = 0 implies

cov (�; ��2) = 0 : (A33)

Case 2 { If � is known the posterior is simply

p(�j�; n) d� =
1p

2��2=n
exp

h
� (�� �x)2

2�2=n

i
d� ; �1 < � <1 : (A34)

Estimate under quadratic loss:

h�i = �x ; (A35) var � =
�2

n
: (A36)
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Case 3 { Repeated uncorrelated measurements of �, results reported as x1��1; : : : xn��n.
Sampling distribution with maximal entropy:

p(xj j�j) dxj = 1q
2��2j

exp
h
� 1

2

�xj � �

�j

�2i
dxj ; �1 < xj <1 : (A37)

Likelihood function:

p(x1; : : : xnj�; �1; : : : �ng)dx1 : : : dxn / exp
h
� 1

2

nX
j=1

�xj � �

�j

�2i
dx1 : : : dxn (A38)

Posterior:

p(�jfxj ; �jg) d� =
1q

2��2=n

exp
h
� (�� �x)2

2�2=n

i
d� ; �1 < � <1 ; (A39)

where the overbars denote weighted averages over the sample (over measurements),

�x �
P

j �
�2
j xjP

j �
�2
j

; (A40) �2 �
P

j �
�2
j �2jP

j �
�2
j

=
nP
j �

�2
j

: (A41)

Estimate under quadratic loss:

h�i = �x ; (A42) var � =
�2

n
; (A43)

A.4. Multivariate Gaussian

Applications: Propagation of correlated errors, least-squares �tting in multidimen-

sional sample and parameter spaces. Derivations follow closely those for the univariate

Gaussian, resulting in formally similar vector and matrix expressions. Roman subscripts

(j; k) denote trials or sample members, Greek subscripts (�; �) denote parameters (Carte-

sian coordinates in parameter space).

Sampling distribution (probabilities of possible vector deviations or errors x � �, given
true vector � and covariance matrix C):

p(xj�;C) d(x) = 1p
det (2�C)

exp
h
� 1

2
(x� �)yC�1(x� �)

i
d(x) ; �1 < x� <1 :

(A44)

Likelihood for x-vectors in d(x1); : : : d(xn) at x1; : : :xn:

p(x1; : : :xnj�;C) d(x1) : : : d(xn)

=
1

det (2�C)n=2
exp

h
� 1

2

nX
j=1

(xj � �)yC�1(xj � �)
i
d(x1) : : : d(xn)

=
1

det (2�C)n=2
exp

h
� n

2

�
tr (CC�1) + (x� �)yC�1(x��)�id(x1) : : : d(xn) :

(A45)

This depends on the sample only through the sample mean vector and the sample covari-

ance matrix,

x � 1

n

nX
j=1

xj ; (A46) C � 1

n

nX
j=1

(xj � x)(xj � x)y = xxy � xxy : (A47)
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Case 1 { Location parameters �� and covariance matrix elements C��0 = �����0��0

unknown.

Least informative (group-theoretic) prior in m-dimensional parameter space (� = 1; :::m):

p(�;C) d(�) d(C) / d(�) d(C)

det C(m+1)=2
=

d(�) d(C�1)

det C�(m+1)=2
;

�1 < �� <1; 0 < �2� � C�� <1; �1 < ���0 � C��0p
C��C�0�0

< +1 : (A48)

Posterior: With the identities exp(� tr V) = det fexp(�V)g and det (1+uuy) = 1+uyu =

1 + u2 one �nds

p(�;Cjx;C; n)

= p(ujV; n)d(u) p(Vjn)d(V)

=
exp(�uyVu) d(u)p

det (�V�1)

det fexp(�V)V(n�1)=2g
�m(m�1)=4

Qm
�=1 �(

n��
2
)

d(V)

det V(m+1)=2

= p(ujn)d(u) p(Vju; n)d(V)

=
(1 + u2)�n=2d(u)Qm

�=1 B(
1
2
; n�1

2
)

det fexp[�(1+ uuy)V] [(1 + uuy)V]n=2g
�m(m�1)=4

Qm
�=1 �(

n+1��
2

)

d(V)

det V(m+1)=2
;

(A49)

where, in close analogy to the univariate case, we de�ned the vector

u � S0�1(�� x) ; �1 < u� <1 ; (A50)

and the positive de�nite, real symmetric matrix (with real positive eigenvalues)

V � n

2
S0C�1S0 ; 0 < det V <1 ; (A51)

with the positive de�nite, real symmetric matrix S0 de�ned by

C = S02 (A52)

(in the principal-axes system of C). The two factorisations correspond to the two forms

of the fundamental product rule for joint probabilities.

Marginal distribution for u (multivariate t distribution)

p(ujn)d(u) = (1 + u2)�n=2d(u)Qm
�=1 B(

1
2
; n�1

2
)

(A53)

and for V (multivariate gamma distribution or Wishart distribution)

p(Vjn)d(V) =
det fexp(�V)V(n�1)=2g
�m(m�1)=4

Qm
�=1 �(

n��
2
)

d(V)

det V(m+1)=2
: (A54)
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Parameter estimate under quadratic loss: With the marginal distributions one �nds hui,
huuyi, hVi, and �nally

h�i = x ; (A55) h(�� x)(�� x)y = C

n�m� 2
; (A56)

hC�1i = n� 1

n
C
�1

: (A57)

Case 2 { If C is known the posterior is simply

p(�jC; n) d(�) = 1p
det (2�C=n)

exp
h
� n

2
(�� x)yC�1(�� x)

i
d(�) ;

�1 < �� <1 : (A58)

Estimate under quadratic loss:

h�i = x ; (A59) h(�� h�i)(� � h�i)yi = C

n
: (A60)

Case 3 { Repeated correlated measurements of �, results reported as vectors xj and

covariance matrices Cjk (j; k = 1; : : : n).

De�nitions:

x �

0
BB@
x1
x2
...

xn

1
CCA (A61) C �

0
BB@
C11 C12 : : : C1n

C12 C22 : : : C2n
...

...
. . .

...

C1n C2n : : : Cnn

1
CCA : (A62)

Likelihood:

p(xj�;C) d(x) / e�Q=2 d(x) ; (A63)

where

Q =
X
j;k

(xj � �)y(C�1)jl(xk � �)

=
X
j:k

tr [(C�1)jk(�� xk)(�� xj)
y]

= n tr [((xxy � xxy)C�1] + n(�� x)yC�1(�� x) : (A64)

The overbars denote weighted averages over the sample (over measurements),

x �
�X

j;k

(C�1)jk

�
�1X

j;k

(C�1)jkxk ; (A65)

xxy �
�X

j;k

(C�1)jk

�
�1X

j;k

(C�1)jkxkx
y
j ; (A66)

C �
�X

j;k

(C�1)jk

�
�1X

j;k

(C�1)jk(C
�1)jkCkj = n

�X
j;k

(C�1)jk

�
�1

(A67)
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Posterior:

p(�jx;C) d(�) = 1q
det (2�C=n)

exp
h
� n

2
(�� x)yC�1(�� x)

i
d(�)

�1 < �� <1 ; (A68)

Estimate under quadratic loss:

h�i = x ; (A69) h(�� h�i)(� � h�i)yi = C

n
(A70)

Appendix B: Mathematical Properties of the Voigt Profiles  and �

The shapes of Doppler broadened isolated resonances can be described by the sym-

metric and asymmetric Voigt pro�les  (x; �) and �(x; �). The arguments

x � E �E0

�=2
; (B1) � � �

�=2
(B2)

depend on the resonance energy E0, the total width �, the Doppler width � (see Eq. 110),

and the bombarding energy E (all in the laboratory system).

De�nition:

 (x; �) =
1

�
p
�

Z
1

�1

e�(x� x0)2=�2 dx0

1 + x02
=  (�x; �) (B3)

�(x; �) =
1

�
p
�

Z
1

�1

e�(x� x0)2=�2 x0dx0

1 + x02
= ��(�x; �) (B4)

Special arguments:

at resonance energy, E = E0

 (0; �) =

p
�

�
e1=�

2

erfc
1

�
(B5) �(0; �) = 0 (B6)

for zero temperature, T = 0

 (x; 0) =
1

1 + x2
(B7) �(x; 0) =

x

1 + x2
(B8)

Convergent series:

 (x; �) =
1

�
e(1 � x2)=�2

1X
n=0

1

n!

� x
�2

�2n
�
�� n+

1

2
;
1

�2

�
(B9)

�(x; �) =
1

�
e(1� x2)=�2

1X
n=0

1

n!

� x
�2

�2n+1
�
�� n� 1

2
;
1

�2

�
(B10)
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where �(a; t) is the incomplete gamma function, with

�(a+ 1; t) = a�(a; t) + etta =

Z
1

t

dt0e�t
0

t0a (B11)

�(
1

2
; t) =

p
� erfc

p
t (B12)

Asymptotic series for low temperatures (small �):

 (x; �) =

1X
n=0

(2n+ 1)!!

2n+ 1

�
� �2

2

�n� 1

1 + x2

�n+1=2
cos[(2n+ 1) arc tanx] (B13)

�(x; �) =

1X
n=0

(2n+ 1)!!

2n+ 1

�
� �2

2

�n� 1

1 + x2

�n+1=2
sin[(2n+ 1) arc tanx] (B14)

whence

 (x; �) + i�(x; �) =

1X
n=0

(2n+ 1)!!

2n+ 1

�
� �2

2

�n� 1

1 + x2
+

ix

1 + x2

�2n+1
(B15)

Relationship with complex probability integral:

 (x; �) + i�(x; �) =

p
�

�
W
�x+ i

�

�
; (B16)

where

W (z) =
1

�i

Z
1

�1

e�t
2

t� z
dt = ez

2
�
1 +

2ip
�

Z z

0

e�t
2

dt
�

(B17)

Derivatives:

@ 

@x
=

2

�2
(�� x ) (B18)

@�

@x
=

2

�2
(1�  � x�) (B19)

Integrals:

Z
1

�1

 (x; �)dx = � (B20)

Z
1

�1

�(x; �)dx = 0 (B21)
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