Pásová elektronová struktura pevných látek

Jan Kuriplach, Vojtěch Chlan

Katedra fyziky nízkých teplot MFF UK

LS 2025

2 Pásová struktura PL

н 	- Element															He 													
Dg 3.49	Be 2.29 3.59	$ \begin{array}{c} \mathbf{B}_{c} \\ \mathbb{Z}^{2,29} \\ \mathbb{H}_{3,59} \end{array} \qquad $															F 	De 4.43											
Va Vo H.23 Vo H.23	$ \begin{array}{c c} Mg \\ \searrow 3.21 \\ \scriptstyle \scriptstyle$															Ar 5.31 02													
00 5.23 S	Ca 22 5.58	$\overset{Sc}{\underset{5.28}{\boxtimes}}$	H ^{12.95} 4.68	BCC	V 3.03	BCC	Cr 2.88	Mn 8.91 COB (*)	BCC	α-Fe 2.87	HEX	α-Co 2.51 4.07	FCC	Ni 3.52	FCC	Cu 3.61	HEX	Zn 2.66 4.94	ORTHOR	Ga 4.52 7.66 4.53	DIAM	Ge 5.66	RHOMB	As 3.76 10.55	HEX	Se 4.36 4.95	ORTHOR	Br 6.67 4.48 8.72	Kr کي ^{5.64}
20 80 80 80 80 80 80 80 80 80 80 80 80 80	Sr 20 6.08	¥ 3.65 5.73	Zr 3.23 5.15	BCC	Nb 3.30	BCC	Mo 3.15	H 2.74 H 4.40	HEX	Ru 2.70 4.28	FCC	Rh 3.80	FCC	Pd 3.89	FCC	Ag 4.09	HEX	Cd 2.98 5.62	TETRA	In 3.25 4.95	TETRA	β-Sn 5.83 3.18	RHOMB	Sb 4.31 11.27	HEX	Te 4.45 5.92	ORTHOR	I 7.27 4.80 9.80	20 ^{6.13}
Cs Cg 6.05	Ba 5.02 M	E La 3.75 6.07	Hf 3.20 5.06	BCC	Ta 3.31	BCC	W 3.16	Re 2.76 ≝∺ 4.46	HEX	Os 2.74 4.33	FCC	Ir 3.84	FCC	Pt 3.92	FCC	Au 4.08	TETRA	β-Hg 4.00 2.83	HEX	TI 3.46 5.53	FCC	Pb 4.95	RHOMB	Bi 4.55 11.86	CUB	Po 3.35	1	At 	Rn
	Ra 20 9 9 9 9	Ac 22 5.31																											
			a.	FCC	γ-Ce 5.16	HEX/abac	Pr 3.67 11.83	Nd 3.66 5.91	HEX/abac	Pm 3.65 11.65	RHOMB	Sm 3.63 26.22	BCC	Eu 4.61	HEX	Gd 3.64 5.78	HEX	Tb 3.60 5.69	HEX	Dy 3.59 5.65	HEX	Ho 3.58 5.62	HEX	Er 3.56 5.59	HEX	Tm 3.54 5.56	FCC	Yb 5.49	Eu 3.51 5.56
				FCC	Th 5.08	TETRA	Pa 3.93 3.24	U 2.85 5.87 4.96	ORTHOR	Np 4.72 4.89 6.66	FCC	Pu 4.64	HEX/abac	Am 3.47 11.24	HEX/abac	Cm 3.50 11.33	FCC	Bk 5.00	I	Cf	I	Es 	I	Fm 	I	Md	1	No 	

- Kvantová teorie je dnes základem pro teoretické studium pevných látek (PL).
- I když klasické postupy (např. molekulární dynamika) jsou také někdy použitelné.
- Kvantová teorie PL se tedy snaží o objasnění různých jevů a potřebovali bychom, aby měla dostatečnou kvantitativní přesnost pro porovnání s experimentem či jeho předpověď.
- Kvantová teorie PL v principu potvrzuje 'periodickou tabulku' struktur, ale v některých případech je nutno uvážit efekty jako magnetizmus či vliv relativity.

 Materiálová věda (materials science) je zaměřena více aplikačně a zabývá se všemi materiály (nejen PL).

- "Too much knowledge with too little understanding."
- Motto: Co neumím spočítat, tomu nerozumím.

- Co se dá počítat či studovat teoreticky?
 - Fázová stabilita (strukturní parametry optimalizace struktur).
 - Fázové diagramy (při zahrnutí termodynamiky).
 - Fononové, vibrační vlastnosti.
 - Měrné teplo, optické, elektrické, magnetické vlastnosti.
 - Fermiho plochy.
 - Popis materiálů se silně korelovanými elektrony.
 - Supravodivost.
 - Mechanické vlastnosti.
 - Difuze (intersticiální, substituční; bariéry).
 - Vlastnosti defektů (struktura, interakce, formační energie, nábojové stavy).
 - Hyperjemné parametry, pozitronové charakteristiky, ...
 - Popis neuspořádaných materiálů, kvazikrystalů, volných klastrů.
 - ...

- "Exotické" aplikace:
 - Hledání materiálů s požadovanými vlastnostmi.
 - Predikce nových jevů.
- Zároveň můžeme testovat a zdokonalovat různé teoretické předpoklady (např. aproximace lokální hustoty) při porovnání s realistickými experimenty.
- Zdaleka ne vždy vše funguje dokonale.
- Relevantní výpočty vyžadují různé testy a nastavení mnoha numerických parametrů výpočetních programů a nebo i vývoj nových výpočetních algoritmů.

3 Blochův teorém

Původ pásové struktury

- Proč mají PL pásovou elektronovou strukturu, když atomy mají diskrétní hladiny?
- Protože hladiny se rozštěpí, když spolu atomy začnou interagovat, pokud jsou blízko u sebe.
- Příklad: vypočtená pásová struktura Al

• Hliník je tedy kov, neboť Fermiho energie leží uprostřed pásu.

Původ pásové struktury

• <u>Příklad:</u> vypočtená pásová struktura Si

- Křemík je tedy polovodič, neboť Fermiho energie leží v maximu valenčního pásu.
- Vypočtená šířka zakázaného pásu je pouze $\sim 0.6~{\rm eV!}$

Těsná vazba v jedné dimenzi – konečný řetízek

- Model těsné vazby (*tight-binding model*) je užitečný pro studium elektronových energií (elektronové struktury) v PL a molekulách.
- Tento model je snadno pochopitelný ve srovnání se 'standardními' metodami výpočtu elektronové struktury.
- Budeme uvažovat řetízek identických atomů, které mají stejnou vzdálenost k nejbližším sousedům (nehledě na první a poslední atom, který má pouze jednoho souseda).
- Atomy jsou umístěny v polohách R_1 , R_2 , ..., R_N .
- Například:

• Elektronová vlnová funkce *m*-tého atomu (neuvažujíce interakci se sousedy) je dána atomovou orbitální funkcí $\langle \boldsymbol{r} | m \rangle = \phi(\boldsymbol{r} - \boldsymbol{R}_m)$ (v souřadnicové reprezentaci).

Těsná vazba v jedné dimenzi – konečný řetízek

Vlnové funkce interagujícího systému budeme hledat ve formě

$$\psi(\boldsymbol{r}) = \sum_{j=1}^{N} a_j \,\phi(\boldsymbol{r} - \boldsymbol{R}_j) \,\,, \tag{1}$$

(tj. $\sum_j a_j |j\rangle$) s předpokladem ortogonality orbitalů v různých polohách, tj. $\langle j|m\rangle = \int \phi^*(\boldsymbol{r} - \boldsymbol{R}_j) \phi(\boldsymbol{r} - \boldsymbol{R}_m) d\boldsymbol{r} = \delta_{jm}$.

• Pokud dosadíme předpis (1) do stacionární Schrödingerovy rovnice dostaneme – po provedení maticového elementu s $|m\rangle$ – že

$$Ea_m = \sum_j a_j \langle m | \hat{H} | j \rangle .$$
⁽²⁾

- Předpoklady o $\langle m | \hat{H} | j \rangle$ jsou následující:
 - $\langle m|\hat{H}|m\rangle = E_0,$
 - $\langle m | \hat{H} | \underline{j} \rangle = V$ pro nejbližší sousedy m a j,
 - a $\langle m|\hat{H}|j
 angle =$ 0, pro ostatní atomy.

Těsná vazba v jedné dimenzi – konečný řetízek

• Po použití těchto předpokladů pro a_j dostaneme:

•
$$Ea_1 = E_0a_1 + Va_2$$
,

• $Ea_j = E_0a_j + V(a_{j-1} + a_{j+1})$ pro $j \neq 1, N$,

•
$$Ea_N = E_0 a_N + V a_{N-1},$$

protože matice $\langle m | \hat{H} | j \rangle$ je tridiagonální.

- Další trik je použití $a_j = \sin(j\theta + \delta)$.
- Pak dostaneme: $\delta = 0$ and $\theta = \pi k/(N+1)$ for $k = 1, 2, \dots, N$.
- Následně dostaneme, že vlastní hodnoty energie jsou

$$E_k = E_0 + 2V \cos\left[\frac{k\pi}{N+1}\right] \,. \tag{3}$$

- Některé hodnoty energie jsou větší a některé menší než E₀ v závislosti na hodnotě V a 'pásovém' indexu.
- To je způsobeno interakcí mezi atomy.
- Uvážení periodické okrajové podmínky by vedlo ke skutečným elektronovým 'pásům'.

Těsná vazba v jedné dimenzi – periodický řetízek

- Studium izolovaného řetízku atomů vede na rozštěpení původně degenerované energetické hladiny.
- Co se stane v situaci 1D řetízku identických atomů s periodickou okrajovou podmínkou?
- Máme tedy N atomů a jejich vzdálenost je a.
- Stejně jako v případě konečného řetízku má každý atom jeden elektron ve stavu s (mimo uzavřenou slupku), který je popsán stavem $|n\rangle$ (v souřadnicové reprezentaci to je funkce odpovídající orbitalu s).
- Dále definujeme nebo předpokládáme, že:
 - diagonální maticový element $\langle n|\hat{H}|n\rangle=E_0$,
 - interagují spolu jen nejbližší sousedé: $\langle n\pm 1|\hat{H}|n\rangle=V$,
 - $\langle n|n\rangle = 1$; $\langle n\pm 1|n\rangle = 0$.
- Normalizovaný stav periodického řetízku budeme hledat ve tvaru

$$|k\rangle = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} e^{inka} |n\rangle$$
(4)

pro $k\in (-\pi/a,\pi/a)$ (první Brillouinova zóna).

Těsná vazba v jedné dimenzi – periodický řetízek

• Vlastní energie nalezneme takto:

$$\langle k|\hat{H}|k\rangle = \frac{1}{N} \sum_{n,m} e^{i(n-m)ka} \langle m|\hat{H}|n\rangle =$$

$$= \frac{1}{N} \sum_{n} \langle n|\hat{H}|n\rangle + \frac{1}{N} \sum_{n} \langle n-1|\hat{H}|n\rangle e^{ika} + \frac{1}{N} \sum_{n} \langle n+1|\hat{H}|n\rangle e^{-ika}$$

$$E(k) = \langle k|\hat{H}|k\rangle = E_0 + 2V \cos ka$$
(5)

• Energetická disperzní relace (V < 0):

• Takže místo diskrétní, degenerované energetické hladiny máme nyní spojité spektrum od $E_0 + 2V$ do $E_0 - 2V$, tj. *pás*.

Těsná vazba v jedné dimenzi – periodický řetízek

- Takto lze zkonstruovat velice jednoduchý model 'nanodrátu', který ovšem nebude mít blízko k realitě.
- Zanedbali jsme překryv vlnových funkcí na sousedících atomech, bez něhož nemůžeme mít skutečnou interakci mezi (neutrálními) atomy.
- Vůbec jsme neřešili nerozlišitelnost elektronů na různých atomech (výměna a korelace zanedbány).
- Jádra atomů obecně nejsou v klidu. Je to podstatné?
- Potřebujeme také umět počítat 2D a 3D systémy.
- Jak využít efektivně prostorovou symetrii problému?

2 Pásová struktura PL

- Ve většině případů se budeme zabývat systémy s translační symetrií (hlavně 3D).
- To znamená, že známe translační vektory mříže.
- Ve třech dimenzích jsou to lineárně nezávislé vektory a₁, a₂ a a₃, které určují (ne vždy elementární) buňku našeho krystalu a tedy periodické opakování mříže pro tři nezávislé směry.

• Požadavek lineární nezávislosti znamená, že objem buňky

$$\Omega = \det[\{a_1, a_2, a_3\}] = a_1 \cdot (a_2 \times a_3) \neq 0.$$
(6)

- Buňka (cela) může být i větší než elementární buňka v případě Bravaisových buněk a nebo supercel (studium defektů).
- V případě 1D a 2D systémů máme pouze jeden vektor či dva vektory, přičemž objem je nahrazen délkou či plochou.

- 3D translačních mřížek je 7 typů (krystalografické soustavy): kubická (3), trigonální (1), hexagonální (1), tetragonální (2), (orto)rombická (4), monoklinická (2) a triklinická (1).
- Příklad: kubická soustava (sc, bcc, fcc)

- Pro případ 2D existuje 5 typů translačních mřížek a pro 1D případ pouze jeden.
- A co kvazikrystaly?

20 / 42

- Translační mřížka není ještě krystal: musíme dodat atomovou bázi (vzor, motiv) – ke každému mřížovému bodu přiřadíme jeden nebo více atomů.
- Příklad: křemen SiO₂ (krystalová mříž a přírodní krystal)

mřížka je trigonální v hexagonální 'reprezentaci'

 Pokud je tedy krystal periodický, každá měřitelná fyzikální veličina (*observable*) závislá na souřadnicích bude taky periodická:

$$O(\mathbf{r} + n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) = O(\mathbf{r}),$$
 (7)

kde n_i jsou celá čísla.

- Příklady takových veličin:
 - elektronová hustota a potenciál,
 - lokální (mikroskopické) elektrické a magnetické pole,
 - pozitronová hustota a potenciál,

• . . .

 Vlnová funkce elektronu (či jádra) není přímo měřitelná, takže nemusí být periodická ve smyslu vztahu (7).

 Geometrickou translační mřížku (resp. její hustotu) si můžeme zapsat jako superpozici Diracových δ-funkcí centrovaných na mřížových bodech (*R_n* = n₁*a*₁ + n₂*a*₂ + n₃*a*₃):

$$\mathcal{M}(\boldsymbol{r}) = \sum_{n_1, n_2, n_3 \in \mathbb{Z}} \delta(\boldsymbol{r} - n_1 \boldsymbol{a}_1 - n_2 \boldsymbol{a}_2 - n_3 \boldsymbol{a}_3), \quad (8)$$

přičemž budeme uvažovat pouze případy, kdy translační vektory určují elementární buňku mřížky.

- Platí tedy, že $\int_{\Omega} d\mathbf{r} \, \mathcal{M}(\mathbf{r}) = 1$ ($\int_{\mathbb{R}^3} d\mathbf{r} \, \mathcal{M}(\mathbf{r}) = \infty$).
- Co se stane, když uděláme Fourierovu transformaci $\mathcal{M}({m r})$?
- Definujme nejdříve

$$\mathcal{R}_{\mathcal{M}}(\boldsymbol{k}) = \int \mathrm{d}\boldsymbol{r} \, \mathrm{e}^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} \, \mathcal{M}(\boldsymbol{r}) \,, \tag{9}$$

kde k je tzv. k-vektor (vlnový vektor), tj. reálný vektor, jehož fyzikální dimenze je inverzní délka (souřadnice).

• Dále využijeme toho, že (viz posunutá δ -funkce)

$$\int \mathrm{d}\boldsymbol{r}\,\delta(\boldsymbol{r}-\boldsymbol{r}_0)\mathrm{e}^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} = \mathrm{e}^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}_0}\,. \tag{10}$$

Kombinací vztahu (10) a definice (8) pro R_M(k) (po obrácení znamének u n_i) dostaneme

$$\mathcal{R}_{\mathcal{M}}(\boldsymbol{k}) = \sum_{n_1, n_2, n_3 \in \mathbb{Z}} e^{in_1 \boldsymbol{k} \cdot \boldsymbol{a}_1} e^{in_2 \boldsymbol{k} \cdot \boldsymbol{a}_2} e^{in_3 \boldsymbol{k} \cdot \boldsymbol{a}_3}.$$
 (11)

Lze také ukázat, že v 1D případě

$$\sum_{n \in \mathbb{Z}} e^{inka} = \frac{2\pi}{a} \sum_{m \in \mathbb{Z}} \delta(k - \frac{2\pi}{a}m), \qquad (12)$$

tj. superpozice periodických oscilací se zesiluje pouze v určitých bodech a všude jinde je malá.

24 / 42

- Důkaz je možné provést pomocí faktu, že na pravé straně máme periodickou funkci, kterou rozložíme do řady periodických funkcí e^{inka}, přičemž koeficienty rozvoje jsou všechny rovny 1.
- Alternativně je možné sčítat geometrickou řadu s kvocientem e^{ika} od -N do +N a pak provést limitu $N \to \infty$.
- Označme si

- Domníváme se tedy, že funkce $F_N(k)$ se pro zvětšující N blíží svým chováním superpozici δ -funkcí.
- Ještě potřebujeme určit integrál $F_N(k)$ v intervalu $\left(-\frac{\pi}{a},+\frac{\pi}{a}\right)$.
- $\bullet\,$ Tento integrál se pro $N\to\infty\,$ redukuje na

$$I_{\infty}(-\frac{\pi}{a},+\frac{\pi}{a}) = \lim_{N \to \infty} \int_{-\pi/a}^{+\pi/a} \mathrm{d}k \, F_N(k) = \frac{4}{a} \int_0^\infty \mathrm{d}u \, \frac{\sin u}{u} = \frac{4}{a} \frac{\pi}{2} = \frac{2\pi}{a} \,, \tag{14}$$

takže $\lim_{N\to\infty}F_N(k)$ se v intervalu $(-\frac{\pi}{a},+\frac{\pi}{a})$ chová jako $\frac{2\pi}{a}\times\delta$ -funkce centrovaná v bodě k=0.

- Díky periodě $\frac{2\pi}{a}$ můžeme stejným způsobem vypočíst integrály $I_{\infty}(\frac{\pi}{a}(2m-1), \frac{\pi}{a}(2m+1))$, které budou mít opět hodnotu $\frac{2\pi}{a}$.
- Uzavíráme tedy, že $\lim_{N\to\infty}F_N(k)$ lze identifikovat s nekonečným součtem δ -funkcí centrovaných v bodech $\frac{2\pi}{a}m$ a násobených faktorem $\frac{2\pi}{a}$, jak jsme uvedli ve vztahu (12).
- Souvislost s difrakcí?

- Ve třech dimenzích je situace složitější.
- Potřebujeme přetransformovat náš systém do jiné souřadnicové soustavy tak, abychom mohli součet 3D δ-funkcí zapsat jednoduše pomocí součinu 1D δ-funkcí složek vektoru k v této nové soustavě.
- Zavedeme proto speciální translační vektory v k-prostoru pomocí rovnic

$$\boldsymbol{b}_1 = 2\pi \, \frac{\boldsymbol{a}_2 \times \boldsymbol{a}_3}{\Omega} \,, \quad \boldsymbol{b}_2 = 2\pi \, \frac{\boldsymbol{a}_3 \times \boldsymbol{a}_1}{\Omega} \,, \quad \boldsymbol{b}_3 = 2\pi \, \frac{\boldsymbol{a}_1 \times \boldsymbol{a}_2}{\Omega} \,, \quad (15)$$

takže platí

$$\boldsymbol{a}_i \cdot \boldsymbol{b}_j = 2\pi \,\delta_{ij} \,. \tag{16}$$

- Rovnici (16) lze využít k alternativní definici b_1 , b_2 a b_3 .
- Existují i definice pomocí determinantů určitých matic, což funguje obecně v prostorech jakékoli dimenze.

ullet Vztah (11) pro $\mathcal{R}_{\mathcal{M}}(oldsymbol{k})$ pak můžeme přepsat jako

$$\mathcal{R}_{\mathcal{M}}(\boldsymbol{k}) = \frac{(2\pi)^3}{\Omega} \sum_{m_1, m_2, m_3 \in \mathbb{Z}} \delta(\boldsymbol{k} - m_1 \boldsymbol{b}_1 - m_2 \boldsymbol{b}_2 - m_3 \boldsymbol{b}_3).$$
(17)

• Tento vztah tedy definuje určitou mříž v *k*-prostoru. Až na faktor $\frac{(2\pi)^3}{\Omega}$ udává hustotu mřížových bodů v *k*-prostoru.

- *k*-prostor, jak jsme ho zavedli, se obvykle nazývá *reciproký prostor*. A množina diskrétních bodů $K_m = m_1 b_1 + m_2 b_2 + m_3 b_3$ je potom reciproká mříž.
- Reciproká mříž je tedy Fourierovým obrazem přímé mříže.
- Reciproká mříž k reciproké mříži je mříž přímá.
- Alternativní definice reciproké mříže: $e^{iK_m \cdot R_n} = 1$.

 Pokud se bude elektron pohybovat v periodickém potenciálu, jeho hustota musí být periodická, tj.

$$|\psi(\mathbf{r} + \mathbf{R}_{n})|^{2} = |\psi(\mathbf{r})|^{2},$$
 (18)

kde $\psi(\mathbf{r})$ je vlnová funkce elektronu (tj. $\hat{H}\psi(\mathbf{r}) = \epsilon\psi(\mathbf{r})$).

To znamená, že

$$\psi(\boldsymbol{r} + \boldsymbol{R_n}) = e^{i\alpha} \psi(\boldsymbol{r}),$$
 (19)

kde $\alpha \in \mathbb{R}$ a obecně $\alpha = \alpha(\mathbf{R}_n)$; α nemůže záviset na souřadnici r, neboť $\psi(r+\mathbf{R}_n)$ je zároveň řešením Schrödingerovy rovnice.

• To znamená, že translační operátor \hat{T}_{n} , který je definován jako

$$\hat{T}_{\boldsymbol{n}} \phi(\boldsymbol{r}) = \phi(\boldsymbol{r} + \boldsymbol{R}_{\boldsymbol{n}})$$
(20)

pro libovolnou funkci $\phi(\mathbf{r})$ a $\mathbf{n} = (n_1, n_2, n_3)$, komutuje s Hamiltoniánem a jeho vlastní čísla jsou ve tvaru $e^{i\alpha}$ ($\alpha \in \mathbb{R}$).

- Pokud Hamiltonián a operátory \hat{T}_{n} spolu komutují, musejí existovat společné vlastní funkce.
- Pojďme zjistit tvar vlnové funkce $\psi(\boldsymbol{r})$ podrobněji.
- Zaveďme si tzv. Blochovu vlnu předpisem

$$\psi_{\boldsymbol{k}}(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} u_{\boldsymbol{k}}(\boldsymbol{r}), \qquad (21)$$

kde \boldsymbol{k} je vektor z reciprokého prostoru a $u_{\boldsymbol{k}}(\boldsymbol{r})$ má periodicitu mříže.

- Ukážeme, že pokud je nějaká funkce $\psi(r)$ současně vlastní funkcí všech translačních operátorů \hat{T}_n pro nějaké k, je to Blochova vlna.
- Podle vztahu (19) zavedeme α_i (i=1,2,3) pomocí rovnice

$$\psi(\mathbf{r}+\mathbf{a}_i) = e^{i\alpha_i}\psi(\mathbf{r}).$$
(22)

A definujeme

$$u_{\boldsymbol{k}}(\boldsymbol{r}) = e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}\psi(\boldsymbol{r})$$
(23)

pro

$$\boldsymbol{k} = \frac{1}{2\pi} \sum_{j=1}^{3} \alpha_j \boldsymbol{b}_j, \qquad (24)$$

tj. $lpha_i = m{k} \cdot m{a}_i$, protože $m{a}_i \cdot m{b}_j = 2\pi \delta_{ij}$.

• Potom můžeme pokračovat

$$u_{\boldsymbol{k}}(\boldsymbol{r}+\boldsymbol{a}_{i}) = e^{-i\boldsymbol{k}\cdot(\boldsymbol{r}+\boldsymbol{a}_{i})}\psi(\boldsymbol{r}+\boldsymbol{a}_{i}) = e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}e^{-i\alpha_{i}}e^{i\alpha_{i}}\psi(\boldsymbol{r}) = u_{\boldsymbol{k}}(\boldsymbol{r}).$$
 (25)

ullet Obdobně bychom postupovali pro další lineární kombinace vektorů a_i

$$u_{\boldsymbol{k}}(\boldsymbol{r}+n_{i}\boldsymbol{a}_{i}) = e^{-\mathrm{i}\boldsymbol{k}\cdot(\boldsymbol{r}+n_{i}\boldsymbol{a}_{i})}\psi(\boldsymbol{r}+n_{i}\boldsymbol{a}_{i})$$
(26)
$$= e^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}e^{-\mathrm{i}n_{i}\alpha_{i}}e^{\mathrm{i}n_{i}\alpha_{i}}\psi(\boldsymbol{r}) = u_{\boldsymbol{k}}(\boldsymbol{r}),$$

neboť místo α_i nyní máme $n_i \alpha_i$.

- Stejně bychom postupovali pro libovolnou translaci $\sum_i n_i \boldsymbol{a_i}$.
- Tímto jsme ukázali, že $u_k(r)$ má periodicitu mříže a zároveň můžeme $\psi(r)$ označit jako $\psi_k(r)$ (tj. Blochova vlna pro vektor k).
- Dále z uvedeného postupu vyplývá, že translační operátory \hat{T}_n mohou být rovněž 'indexovány' pomocí k-vektorů a jejich vlastní čísla jsou ${}_{\mathbb{C}}{}^{ik\cdot R_n}$.
- Jinými slovy jsou $\hat{T}_n(k)$ unitárními operátory a budeme o nich více mluvit později v souvislosti se symetriemi krystalové mříže.

- Takže když nyní použijeme toho, že $[\hat{H}, \hat{T}_{n}(k)] = 0$, můžeme konstatovat, že každou vlastní funkci Hamiltoniánu můžeme psát jako Blochovu vlnu, protože Hamiltonián a všechny translační operátory $\hat{T}_{n}(k)$ spolu komutují (pro libovolné k), takže mají společné vlastní funkce.
- Můžeme tedy formulovat *Blochův teorém* (1929) následovně: každá vlastní vlnová funkce elektronu pohybujícího se v periodickém potenciálu má tvar

$$\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\mathbf{k}}(\mathbf{r}), \qquad (27)$$

kde $u_{m k}(m r)$ má periodicitu mříže a m k je vektor z reciprokého prostoru.

• Prostor vektorů $m{k}$ můžeme omezit na oblast (i=1,2,3)

$$-\pi \le \mathbf{k} \cdot \mathbf{a}_i < \pi \,, \tag{28}$$

protože přidáním libovolného bodu K_m z reciproké mříže k vektoru k nedostaneme nic nového.

To nahlédneme z toho, že rovnicí (22) je α_i definováno až na aditivní faktor 2πm_i (m_i ∈ Z).

- To v rovnici (23) odpovídá tomu, že místo k máme $k+K_m$, kde $m = (m_1, m_2, m_3).$
- Takže platí $\psi_{m k}(m r) = \psi_{m k+m K_{m m}}(m r)$ (29)

a podmínku (28) můžeme skutečně akceptovat.

• Jednoduchými úpravami pak ze vztahu (29) dostaneme, že

$$u_{\boldsymbol{k}+\boldsymbol{K}_{\boldsymbol{m}}}(\boldsymbol{r}) = e^{-i\boldsymbol{K}_{\boldsymbol{m}}\cdot\boldsymbol{r}}u_{\boldsymbol{k}}(\boldsymbol{r})$$
(30)

a $e^{-iK_m \cdot r}$ je také periodická funkce ve smyslu vztahu (7).

 Jiným způsobem lze Blochův teorém odvodit pomocí Bornovy-Kármánovy okrajové podmínky.

- Blochův teorém je základem pro výpočet elektronové (fononové) struktury pevných látek.
- Pro každý bod z k-prostoru omezeného podmínkami (28), řešíme Schrödingerovu rovnici.
- Pokud tedy dosadíme Blochovu vlnu přímo do Schrödingerovy rovnice s periodickým potenciálem, dostaneme rovnici pro $u_{\pmb k}$

$$\left[-\frac{\hbar^2}{2m}\Delta + V(\boldsymbol{r}) + \frac{\hbar}{m}\boldsymbol{k}\cdot\hat{\boldsymbol{p}} + \frac{\hbar^2\boldsymbol{k}^2}{2m}\right]u_{\boldsymbol{k}}(\boldsymbol{r}) = \epsilon(\boldsymbol{k})u_{\boldsymbol{k}}(\boldsymbol{r}), \quad (31)$$

což je tzv. $\boldsymbol{k}{\cdot}\boldsymbol{p}{-}rovnice~(\hat{\boldsymbol{p}}=-\mathrm{i}\hbar\nabla).$

- Tuto rovnici řešíme uvnitř buňky určené vektory (a₁, a₂, a₃) s uvážením periodické okrajové podmínky ve všech třech směrech.
- Obecně dostaneme, pro každý vektor k celou sadu energií $\epsilon_i(k)$ (i = 1, 2, 3, ...), které vlastně určují pásy.
- Rovnice (31) je analyticky řešitelná jen pro 'jednoduché' (modelové) periodické potenciály.

V obecném případě musíme najít numerické řešení.

Vlnová funkce a rotace

- Krystal také může mít bodovou (rotační) symetrii.
- Toho se při výpočtech využívá jinak než translační symetrie.
- A sice, že uvažujeme tzv. ireducibilní část první Brillouinovy zóny (BZ) reciprokého prostoru.
- To je nejmenší část BZ, ze které lze operacemi symetrie reciproké mříže získat celou první BZ.
- První BZ je v reciprokém prostoru definována jako Wignerova-Seitzova buňka v přímé mříži.
- Pro primitivní ortogonální buňky je první BZ možno definovat i podmínkou (28).
- Obecně je objem buňky v reciproké mříži stejný jako u první BZ. Je tedy možné použít obojí, ale první BZ bude mít v principu vyšší symetrii.
- Pokud má krystal inverzní symetrii, můžeme zvolit $u_{m k}({m r})$ reálné.
- O symetriích budeme více povídat později.

Brillouinovy zóny

 Brillouinovy zóny a jejich ireducibilní části (spolu s označením bodů) pro kubické mřížky:

prostá prostorově centrovaná plošně centrovaná

• Zobrazení prvních BZ a označení bodů pro další typy mříží je možné nalézt zde: https://en.wikipedia.org/wiki/Brillouin_zone.

Rozdělení PL podle typu elektronové struktury

- Pokud nejvyšší obsazená elektronová hladina (při nulové teplotě) leží uvnitř částečně zaplněného pásu mluvíme o kovech.
- Když je taková hladina na vrchní hraně určitého pásu, mluvíme o systému se zakázaným pásem (další pás s vyššími energiemi je neobsazený).
- Takové systémy obvykle nazýváme polovodiče nebo izolátory, což je poněkud zavádějící, protože to jsou pojmy spojené s vodivostí, i když ta se zakázaným pásem souvisí.
- Následující obrázek toto osvětluje (μ je chemický potenciál, T > 0).

Fermiho plochy

- Fermiho plocha je plocha konstantní energie elektronů v (první BZ) *k*-prostoru, kdy $\epsilon_i(k) = \epsilon_F$ (ϵ_F je Fermiho energie).
- Fermiho plocha existuje pouze v kovech (ϵ_F je uvnitř pásu částečně zaplněného pásu).
- Pro materiály s pásem zakázaných energií bychom mohli v principu zkonstruovat plochu nejvyšších obsazených (valenčních) elektronových stavů.
- Ukázky (vypočtených) Fermiho ploch v Na, Al a Cu:

Fermiho plochy

- Pro spinově polarizované (magnetické) systémy se Fermiho plocha skládá obecně z částí pro elektrony se spinem ↑ a ↓.
- Tvar (topologie) Fermiho plochy je důležitý pro některé vlastnosti, které jsou určeny chováním elektronů v blízkosti ε_F, např. vodivost, magnetická anizotropie.
- Pro alkalické kovy (ve vodivostním pásu je od každého atomu pouze jeden eletron) jsou Fermiho plochy téměř sféricky symetrické (vzhledem ke středu první BZ), což je podobné volným elektronům – viz příklad Na.
- Se vzrůstajícím počtem elektronů se vodivostní pás zaplňuje a mohou se objevit tzv. elektronové nebo děrové 'kapsy' – viz příklad Al.
- Typické jsou také tzv. 'krky' (necks), kdy pro určité směry (od středu BZ) nenajdeme průsečík s Fermiho plochou – viz příklad Cu.
- Určení Fermiho ploch pomocí výpočtu není obtížné (vizualizace je někdy problematická). Existuje také několik experimentalních metod (Compton, pozitrony, ARPES, de Haas-van Alphen).

Fermiho plochy

 Periodická tabulka Fermiho ploch viz http://www.phys.ufl.edu/fermisurface/ (různé barvy odpovídají různým pásům)

1A	2A	3B	4B	5B	6B	7 B		8		1B	2B	3A	4A
H													
Li	Be to the total state of total stat											B	C
Na													Si
K					Cr	Mn		Coup	Nhap	Cu		Ga	Ge
Bb			Ŵ		Mo estate a constant a		Ru	Rh		As			Sn
Cs	Ba	Lu	H	Ta		Re	Os Cos	r		Au	Hg		P
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq

Topologické materiály

- Poslední dekádu tzv. 'topologické' materiály získávají na popularitě.
- Jejich podstatou jsou speciální, tj. topologické efekty v elektronové struktuře.
- Historicky prvním prozkoumaným typem jsou tzv. topologické izolátory (TI) (topological insulators), které jsou nevodivé uvnitř, ale vodivé na povrchu.
- Následující obrázek osvětluje pásovou elektronovou strukturu TI:
- Uvnitř TI je valenční pás zaplněn a vodivostní pás je prázdný. Chemický potenciál (*Fermi level*) se nachází v zakázaném pásu.
- Na povrchu se však elektronové stavy (*surface states*) objevují v celém zakázaném pásu a mohou tedy způsobovat vodivost kovového typu, byť jen na povrchu.

Fonony

- Fonony (kolektivní kmity mříže) běžně popisujeme ve formalizmu druhého kvantování pomocí kreačních (â⁺) a anihilačních (â) operátorů.
- Hamiltonián můžeme zapsat jako (mřížka s jedním atomem na buňku)

$$\hat{H}_{f} = \sum_{k} \sum_{s=1}^{3} \hbar \omega_{ks} (\hat{a}_{ks}^{+} \hat{a}_{ks} + \frac{1}{2}).$$
(32)

- V tomto Hamiltoniánu je opět k z reciprokého prostoru a při zkoumání fononových spekter se můžeme omezit na první BZ (či její ireducibilní část).
- Příklad fononového spektra: vypočtené a naměřené spektrum Al

