Annealing behaviours of open spaces in thin Al₂O₃ films deposited on semiconductors studied using monoenergetic positron beams

<u>A. Uedono,</u>^{1*} W. Egger,² T. Koschine,² C. Hugenschmidt,³ M. Dickmann,³ and S. Ishibashi⁴

¹Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan ²Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, 85577 Neubiberg, Germany

³Physics Department E21 and Heinz Maier-Leibnitz Zentrum, Technische Universität München, 85748 Garching, Germany

⁴Research Center for Computational Design of Advanced Functional Materials, AIST, Tsukuba, Ibaraki 305-8568, Japan

Metal-oxide-semiconductor gate stacks for GaN-based power devices have been studied extensively. The deposition of gate oxides is known to introduce carrier traps at the interface, and they are the major obstacles in device fabrication. Because the interfacial reaction of the insulator and GaN could occur easily, knowledge on the interface reaction between oxides and GaN is a key to developing GaN-based MOS devices. We used monoenergetic positron beams to study reactions between Al₂O₃ and GaN and annealing behaviors of open spaces in Al₂O₃ [1]. 25-nm-thick Al₂O₃ films were deposited on GaN by using ALD method. After the deposition, the samples were annealed up to 900°C for 5 min in N₂ atmosphere. Figure 1 shows S-E curves for Al₂O₃/GaN before and after annealing treatments. The *S* value at $E\cong1$ keV corresponds to the annihilation of positrons in the Al₂O₃ film. After annealing at 800°C, observed increase in *S* at E=2 keV was due to the trapping of positrons by vacancies introduced by the reaction between

Al₂O₃ and GaN. The inset shows the depth distributions of *S* obtained from fitting. The lifetime spectra of positrons in Al₂O₃ were measured, and they were decomposed into three components. For as-deposited sample, the values of τ_1 , τ_2 , and τ_3 were obtained as 0.262 ns (54%), 0.580 ns (45%), and 1.77 ns (1%) respectively. The positron lifetimes in γ -Al₂O₃ were simulated. Fig. 2 shows the atomic configurations used in the

calculation and positron density distributions. It was found that τ_1 with agreed the calculated positron lifetimes for clusters of Annealing $V_{\rm Al}$. behaviours of open spaces in Al₂O₃ was discussed based on the experiments and simulation. References

[1] A. Uedono *et al.*, *J. Appl. Phys.* **123**, 155302 (2018).

Fig. 1 S-E curves for Al₂O₃/GaN. The inset shows the depth distributions of *S*.

Fig. 2 Atomic configurations of γ -Al₂O₃ [(a) and (c)] and distributions of positron densities [(b) and (d)].

*Corresponding author uedono.akira.gb@u.tsukuba.ac.jp