The pulsed low energy positron system PLEPS: applications and new developments

W. Egger, * M. Dickmann, R. Helm, P. Sperr, W. Kögel and G. Dollinger

Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D 85577 Neubiberg, Germany

The pulsed low energy positron system PLEPS [1] is a user facility for defect depth-profiling with positron lifetime measurements using a monochromatic pulsed beam of variable implantation energy at the intense positron source NEPOMUC at the MLZ in Garching, Germany [2].

At present it is possible to measure with PLEPS positron lifetime spectra in the energy range between 0.5 keV and 20 keV with acquisition-rates between 10000-20000 counts per second, depending on the sample. It takes typically a few minutes to measure a lifetime spectrum with 4×10^6 counts at a single energy. A full depth-profile with 10-15 energies requires about 1-2 hours. Depending on the detector, an overall time-resolution of 180 ps-240 ps and peak-tobackground ratios of up to 1.5×10^5 can now be routinely achieved within a time-window of 40 ns [3]. For precise measurements of long lifetimes (> 5 ns) it is now possible to extend the time window to 160 ns at an overall time resolution of 300 ps. The sample temperature can be varied between 80 K and 600 K.

Typical applications of PLEPS comprise the defect identification in thin layers and layered structures of semiconductors [4,5] and insulators [6], the investigation of irratiation induced defects in materials for fusion and fission, as well as the characterization of open volumes in glasses [7], polymers, polymer- and membrane layers [8]. In this talk we will describe the present setup of PLEPS and its performance, show some exemplary applications and give an outlook of future developments.

References

W. Egger, in Proceedings of the International School of Physics "Enrico Fermi", Course CLXXIV (eds. A. Dupasquier and A. P. Mills jr.), IOS Press: Amsterdam, 419 (2010).
Ch. Hugenschmidt, J. large scale research facilities JLSRF 1 (2015).
W. Egger, J. large scale research facilities JLSRF 1, A 25 (2015).
A. Uedono et al., Applied Physics Letters 112, art. no. 182103 (2018).
W. Shi et al., Phys. Rev. Materials 2, art. no. 105403 (2018).
F.V.E. Hensling et al., Scientific Reports 8:8846 (2018).
M. Zanatta et al., Phys. Rev. Lett. 112, 045501 (2014).
C. Van Goethem et al., Macromolecules 51, 9943 (2018).

^{*}Corresponding author, Email: werner.egger@unibw.de