Angle resolved (e⁻ + H₂O) measurements near 0°

R.Kadokura,^{1*} A. Loreti¹, A. Kover², A. Faure³, J. Tennyson¹, and G. Laricchia¹

¹UCL Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom

²MTA Institute for Nuclear Research (ATOMKI), Bem ter 18/c, H-4026 Debrecen, Hungary ³Universite Grenoble Alpes, 621 avenue Centrale, 38400 Saint-Martin-d'Heres, France

A fully electrostatic beam [1] characterized by a high angular discrimination ($\approx 0.7^{\circ}$) has been used to measure the total (σ_T) and differential cross section of e⁻ scattering from water vapor. Measurements for σ_T have previously been carried out on the same equipment for e⁺ + H₂O [2].

Although cross sections for electron systems have been investigated since the early 20th century, discrepancies had remained among experimental and theoretical results at low energies until now e.g. [3, 4]. The new results for σ_T [5] are presented in figure 1, together with previous experimental and theoretical determinations. The effect of forward scattering has also been probed in the angular range $0 - 3.5^{\circ}$ and measures of the average (rotationally and vibrationally summed) differential elastic cross sections for energies ≤ 12 eV have been obtained at a scattering angle $\approx 1^{\circ}$ [5]. These measurements provide the first test of theoretical predictions in an angular region experimentally unexplored until now.

Figure 1 Experimental and theoretical cross sections for electron scattering from H_2O . Solid symbols denote direct measurements, hollow symbols denote measurements corrected for forward angle elastic scattering and lines denote theories [5].

References

- [1] A. Kover et al., Meas. Sci. Technol., 25 075013 (2014).
- [2] A. Loreti et al., Phys. Rev. Lett., 117 253401 (2016).
- [3] Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data, 34 1 (2005).
- [4] C. Szmytkowski and P. Mozejko, Optica Applicata, 36 543 (2006).
- [5] R. Kadokura et al., Phys. Rev. Lett., 123 033401 (2019).

*Corresponding author, Email: rina.kadokura.11@ucl.ac.uk