

Defects and porosity in zirconia-based nanomaterials

I. Prochazka¹, J. Cizek¹, O. Melikhova¹, F. Lukac^{1,2}, P. Hruska¹, W. Anwand³, M.O. Liedke³, G. Brauer³, T.E. Konstantinova⁴, I.A. Danilenko⁴

 ¹ Charles University, Faculty of Mathematics and Physics, Dept. of Low Temperature Physics, Prague, Czech Republic
 ² Czech Acad. Sci., Inst. of Plasma Physics, Prague, Czech Republic
 ³ Helmholtz-Centre Dresden-Rossendorf, Inst. of Radiation Physics, Dresden, Germany

⁴ Nat. Acad. Sci. of Ukraine, Donetsk Inst. for Physics and Engineering named after O.O. Galkin, Kyiv, Ukraine

18th ICPA, Aug. 19 – 24, 2018 Orlando, USA

Talk outline

- Introduction/motivation.
- Experiments.
- Results and discussion.
- Conclusions.
- Acknowledgements.

Zirconia (zirconium dioxide, ZrO₂):

- A wide band gap (E_g ≈ 5 7 eV) semiconductor exhibiting a number of useful thermal, electrical, mechanical and chemical properties,
- A basic constituent of many functional materials.
- Doping with proper metal cations benefits in
 - stabilisation of high temperature tetragonal (*t*-) or cubic (*c*-) phases of zirconia down to room temperature,
 - optimisation of other material characteristics.
- Nanopowders suitable starting substances for manufacturing sintered ceramics.

There is still continuing interest in investigations of zirconia nanomaterials doped with various metal cations.

Open-volume defects in doped zirconia nanomaterials.

Nanopowders – GBs related defects dominate.

- Small open-volume defects:
 - vacancy-like misfit defects situated along GBs ($\tau_{v} \approx 0.19$ ns),
 - open volumes at intersections of three GBs (triple points, $\tau_t \approx 0.4$ ns).
- Nano- and mesopores still incomplete knowledge about these structural elements.

Open-volume defects in doped zirconia nanomaterials.

Nanopowders – GBs related defects dominate.

- Small open-volume defects:
 - vacancy-like misfit defects situated along GBs ($\tau_{v} \approx 0.19$ ns),
 - open volumes at intersections of three GBs (triple points, $\tau_t \approx 0.4$ ns).
- Nano- and mesopores still incomplete knowledge about these structural elements.

Nanoceramics.

– metal cation vacancies inside grains ($\tau_{v} \approx 0.17$ ns).

Open-volume defects in doped zirconia nanomaterials.

Nanopowders – GBs related defects dominate.

- Small open-volume defects:
 - vacancy-like misfit defects situated along GBs ($\tau_{v} \approx 0.19$ ns),
 - open volumes at intersections of three GBs (triple points, $\tau_t \approx 0.4$ ns).
- Nano- and mesopores still incomplete knowledge about these structural elements.

Nanoceramics.

– metal cation vacancies inside grains ($\tau_{v} \approx 0.17$ ns).

Positron annihilation spectroscopy (PAS) – efficient tool of defects investigations into doped zirconia nanopowders and nanoceramics.

Introduction / motivation

Scope of the present talk

- Present talk is focused on zirconia nanopowders and ceramics doped with the MgO and CeO₂.
- PAS techniques: the conventional positron lifetime (PLT) spectrometry and the variable-energy slow-positron beam spectroscopy were employed.
- Complementary techniques electron microscopy, mass-density mesurements.

Samples

- **ZrO₂ nanopowders** (dopants Mg²⁺, Ce⁴⁺):
 - Initial nanopowders co-precipitation from water solutions of appropriate salts taken in stoichiometric compositions (developed and performed by Donetsk branch).
 - Calcination @ T_{c} (1 h in air).
 - Characterisation of nanoparticle size by TEM or XRD (mean particle size between 10 and 20 nm).
 - Compaction of calcined nanopowders into pellets (≈15 mm radius and ≈2 mm thickness) – uniaxial pressure P of 5 kbar.

Samples

- **ZrO₂ nanopowders** (dopants Mg²⁺, Ce⁴⁺):
- **Nanoceramics** obtained by sintering compacted ZrO_2 nanopowders @ $T_s = 1500$ °C (1 h in air).

Samples

Basic characteristics of pressure-compacted nanopowders			
Abbrev.; chem. composition (phase ^{a)})	P [kbar]	<i>d</i> [nm]; <i>T</i> _c / duration	
MgSZ; ZrO ₂ +10mol.% MgO (T)	5.0	11 nm; 500 °C/1 h	
CeSZ; ZrO_2 +12mol.% CeO ₂ (T)	5.0	9 nm; 500 °C/1 h	
^{a)} T - tetragonal			

Nanopowders of tetragonal ZrO_2 doped with 3 mol.% Y_2O_3 (*t*-YSZ) and 3mol.% Cr_2O_3 , prepared by the similar technique, were involved for comparison.

Positron lifetime (PLT) spectroscopy

- A BaF₂ fast–fast delayed-coincidence spectrometer (Becvar et al., 2000).
- Measurements were conducted at room temperature in air.
- Positron/positronium lifetimes up to \approx 140 ns were investigated.

Slow-positron beam spectroscopy

Magnetically guided positron beam SPONSOR @ HZDR (Anwand et al., 1995, 2012):

- range of positron energies E from 0.03 to 35 keV,
- single HPGe detector measurements (1.05 keV FWHM, 5×10⁵ counts in 511 keV peak),
- shape parameters, S(E) and W(E),
- relative positronium 3γ -fractions, $F_{3\gamma}(E)$.

PLT spectroscopy

Ortho-Ps data on pressure-compacted nanopowders (lifetimes $\tau_{oPs,i}$, pore radii R_i and rel. intensities I_{Ps})

Sample	т _{оРѕ,1} [ns]	R ₁ [nm] ^{a)}	<i>τ</i> _{oPs,2} [ns]	R ₂ [nm] ^{a)}	I _{Ps} [%]
t-YSZ	7.8 (11)	0.61 (4)	70.7 (22)	6.1 (9)	21.4 (6)
MgSZ	5.6 (6)	0.52 (3)	64.9 (14)	4.4 (3)	17.4 (19)
CeSZ	6.4 (4)	0.55 (2)			0.6 (2)

^{a)} Pore radii estimated from Wada & Hyodo model, corrected for ortho-para conversion in air.

PLT spectroscopy

PLT spectroscopy

Ortho-Ps data on pressure-compacted nanopowders (lifetimes $\tau_{oPs,i}$, pore radii R_i and rel. intensities I_{Ps})

Sample	<i>т</i> _{оРs,1} [ns]	R ₁ [nm] ^{a)}	<i>T</i> _{oPs,2} [ns]	R ₂ [nm] ^{a)}	/ _{Ps} [%]
t-YSZ	7.8 (11)	0.61 (4)	70.7 (22)	6.1 (9)	21.4 (6)
MgSZ	5.6 (6)	0.52 (3)	64.9 (14)	4.4 (3)	17.4 (19)

^{a)} Pore radii estimated from Wada & Hyodo model, corrected for ortho-para conversion in air.

In *t*-YSZ and MgSZ, two ortho-Ps components observed:

- the larger pores ($R_2 \approx 5$ nm),
- the smaller pores ($R_1 \approx 0.6$ nm).

PLT spectroscopy

Ortho-Ps data on pressure-compacted nanopowders (lifetimes $\tau_{oPs,i}$, pore radii R_i and rel. intensities I_{Ps})

Sample	<i>т</i> _{оРs,1} [ns]	R ₁ [nm] ^{a)}	<i>τ</i> _{oPs,2} [ns]	R ₂ [nm] ^{a)}	/ _{Ps} [%]
MgSZ	5.6 (6)	0.52 (3)	64.9 (14)	4.4 (3)	17.4 (19)
CeSZ	6.4 (4)	0.55 (2)			0.6 (2)

^{a)} Pore radii estimated from Wada & Hyodo model, corrected for ortho-para conversion in air.

In CeSZ, only shorter oPs component could be revealed:

• the smaller pores ($R_1 \approx 0.6$ nm) are evidenced.

PLT spectroscopy

- In zirconia-based nanopowders doped with several other metal cations (monoclinic ZrO₂, cubic YSZ, ZrO₂ doped with Eu³⁺, Gd³⁺, Lu³⁺.), similar two-component pattern like the *t*-YSZ and MgSZ case were observed, too:
 - $\tau_{\text{oPs},1}$ ≈ 7.5 ns, $I_{\text{p.o.},1}$ ≈ 0.7 %, R_1 ≈ 0.6 nm;

- $\tau_{oPs,2}$ ≈ 70 ns, $I_{p.o.,2}$ ≈ 7.5 %, R_2 ≈ 4.5 to 8.5 nm, originated likely from cavities between primary nanoparticle aggregates.

PLT spectroscopy

- In zirconia-based nanopowders doped with several other metal cations (monoclinic ZrO₂, cubic YSZ, ZrO₂ doped with Eu³⁺, Gd³⁺, Lu³⁺.), similar two-component pattern like the *t*-YSZ and MgSZ case were observed, too:
 - $\tau_{\text{oPs},1}$ ≈ 7.5 ns, $I_{\text{p.o.},1}$ ≈ 0.7 %, R_1 ≈ 0.6 nm;

- $\tau_{oPs,2}$ ≈ 70 ns, $I_{p.o.,2}$ ≈ 7.5 %, R_2 ≈ 4.5 to 8.5 nm, originated likely from cavities between primary nanoparticle aggregates.

Aggregation of primary nanoparticles (Ito et al., 1999): A pore among primary nanoparticles

A pore among nanoparticle aggregates

PLT spectroscopy

- In zirconia-based nanopowders doped with several other metal cations (monoclinic ZrO₂, cubic YSZ, ZrO₂ doped with Eu³⁺, Gd³⁺, Lu³⁺.), similar two-component pattern like the *t*-YSZ and MgSZ case were observed, too:
 - − $\tau_{\text{oPs},1} \approx 7.5$ ns, $I_{\text{p.o.},1} \approx 0.7$ %, $R_1 \approx 0.6$ nm;
 - $-\tau_{oPs,2} \approx 70 \text{ ns}, I_{p.o.,2} \approx 7.5 \%, R_2 \approx 4.5 \text{ to } 8.5 \text{ nm}, \text{ originated likely from cavities between primary nanoparticle aggregates}.$

Aggregation of primary nanoparticles (Ito et al., 1999):

Aggregates of 14 particles reported in YSZ.

A pore among primary nanoparticles

A pore among nanoparticle aggregates

PLT spectroscopy

- In zirconia-based nanopowders doped with several other metal cations (monoclinic ZrO₂, cubic YSZ, ZrO₂ doped with Eu³⁺, Gd³⁺, Lu³⁺.), similar two-component pattern like the *t*-YSZ and MgSZ case were observed, too:
 - $τ_{oPs,1} ≈ 7.5$ ns, $I_{p.o.,1} ≈ 0.7$ %, $R_1 ≈ 0.6$ nm;

- $\tau_{oPs,2}$ ≈ 70 ns, $I_{p.o.,2}$ ≈ 7.5 %, R_2 ≈ 4.5 to 8.5 nm, originated likely from cavities between primary nanoparticle aggregates.

Aggregates – equal-sized rigid spherical particles:

Packing factor ξ : $\xi = 0.75$ – dense packing, $\xi = 0.64$ – random close packing, $\xi \approx 0.55$ – random loose packing.

PLT spectroscopy

- In zirconia-based nanopowders doped with several other metal cations (monoclinic ZrO₂, cubic YSZ, ZrO₂ doped with Eu³⁺, Gd³⁺, Lu³⁺.), similar two-component pattern like the *t*-YSZ and MgSZ case were observed, too:
 - $\tau_{\text{oPs},1}$ ≈ 7.5 ns, $I_{\text{p.o.},1}$ ≈ 0.7 %, R_1 ≈ 0.6 nm;

Aggregates – equal-sized rigid spherical particles:

 $L = 4 R_{oPs,2} / 3$ – the mean free path in a hole,

then number of particles forming an aggregate is ≈ 7 .

PLT spectroscopy

- In zirconia-based nanopowders doped with several other metal cations (monoclinic ZrO₂, cubic YSZ, ZrO₂ doped with Eu³⁺, Gd³⁺, Lu³⁺.), similar two-component pattern like the *t*-YSZ and MgSZ case were observed, too:
 - − $\tau_{\text{oPs},1} \approx 7.5$ ns, $I_{\text{p.o.},1} \approx 0.7$ %, $R_1 \approx 0.6$ nm;
 - $\tau_{oPs,2}$ ≈ 70 ns, $I_{p.o.,2}$ ≈ 7.5 %, R_2 ≈ 4.5 to 8.5 nm, originated likely from cavities between primary nanoparticle aggregates.

Aggregates – equal-sized rigid spherical particles:

However:

- ? terms 'equal-sized', 'rigid' or 'spherical',
- ? randomness of packing.

PLT spectroscopy

- In zirconia-based nanopowders doped with several other metal cations (monoclinic ZrO₂, cubic YSZ, ZrO₂ doped with Eu³⁺, Gd³⁺, Lu³⁺.), similar two-component pattern like the *t*-YSZ and MgSZ case were observed, too:
 - $\tau_{\text{oPs},1}$ ≈ 7.5 ns, $I_{\text{p.o.},1}$ ≈ 0.7 %, R_1 ≈ 0.6 nm;

- $\tau_{oPs,2}$ ≈ 70 ns, $I_{p.o.,2}$ ≈ 7.5 %, R_2 ≈ 4.5 to 8.5 nm, originated likely from cavities between primary nanoparticle aggregates.
- CeSZ case is an exclusion:
 - the larger pores likely <u>do not occur</u> (aggregation of primary nanoparticles does not take place ?).

Measured mass densities

Mass density data on pressure- compacted nanopowders				
Sample	ρ [g/cm³]	$ ho/ ho_{ m th}$ a)		
t-YSZ	2.922 (5)	0.478		
MgSZ	2.25 (15)	0.37		
CeSZ	2.750 (3)	0.450		
^{a)} ρ_{th} = 6.11 g/cm ³ adopted.				

MgSZ, *t*-YSZ ceramics: $\rho \approx 5.8$ g/cm⁻³ (≈ 95 % of ρ_{th}).

Pressure-compacted nanopowders – random close- (or loose)-packed aggregates of dense packed nanoparticles.

Further evidence for absence of the large pores in CeSZ (contrary to MgSZ and YSZ, RESZ):

- electron microscopy,
- slow-positron beam spectroscopy.

TEM observation on nanopowders

Aggregates of primary nanoparticles: more visible in MgSZ than in CeSZ.

TEM observation on nanopowders

Larger pores: more visible in MgSZ than in CeSZ. Pore sizes: reasonable consistency with PLT data.

Slow-positron beam spectroscopy

Vanishing of $F_{3\gamma}$ in the bulk – the strongest evidence of an absence of large pores in CeSZ:

Slow-positron beam spectroscopy

Vanishing of $F_{3\gamma}$ in the bulk – the strongest evidence of an absence of large pores in CeSZ:

Conclusions

- In zirconia nanopowders doped with yttria, magnesia, two kinds of pores with radii estimated as R₁≈0.6 nm and R₂≈4.5 to 8.5 nm.
- The larger pores are likely cavities between small nanoparticle aggregates (tentatively ≈7 primary nanoparticles).
- **The ZrO₂+CeO₂** seems to contain the *smaller pores* only, but not the large ones, pointing toward an absence of significant particle aggregation. This system thus may receive some attraction for applications when particle aggregation is unwanted.

Acknowledgements

- **ICPA-18 Organisers:** hospitality and providing a possibility to present results at this Conference.
- Finance funding: Czech Science Foundation (project P108/12/G043), Nat. Acad. Sci. of Ukraine (project 89/12-H).
- **The four Institutions:** supporting members of teams in fruitful co-operation on working-out this Contribution.

Thank you for kind listening !

Swan song

Relative positronium (Ps) 3γ -fractions, $F_{3\gamma}(E)$

$$\begin{aligned} F_{3\gamma}(E) &= R(E) - R_{ref} ,\\ \text{where} \quad & R(E) \equiv \frac{V(E)}{A_{2\gamma}(E)} ,\\ R_{ref} &\equiv \frac{V_{ref}}{A_{2\gamma,ref}} . \end{aligned}$$

'ref' state – bulk reference material with no Ps formation, measured with the same setup,

 $A_{2y}(E)$, $A_{2y,ref}$ – 511 keV peak areas,

V(E), V_{ref} – background subtracted areas left to 511 keV peak (480 – 500 keV region).

Schematic view of packing of rigid spherical particles

Particle $I = \frac{d}{V_p} = \frac{\pi}{6} d^3$

Packing factor ξ :

 $\xi = 0.75$ – dense packing, $\xi = 0.64$ – random close packing, $\xi \approx 0.55$ – random loose packing.

$$N_{p} = \xi \cdot V_{ag} / V_{p}$$

