

Study of structure and defects in Pd films and Pd-Mg multi-layers loaded with hydrogen

<u>P. Hruška^{1,2}</u>, J. Čížek¹, O. Melikhova¹, F. Lukáč^{1,3}, C. Correa^{1,2}, M.O. Liedke⁴, W. Anwand⁴, L. Fekete² and J. Bulíř²

FACULTY OF MATHEMATICS AND PHYSICS Charles University

18th International Conference on Positron Annihilation

August 23, 2018, Orlando, Florida, USA

Hydrogen in Pd and Mg

Magnesium

Palladium

2. Pd-Mg multi-layers

thin films

- \rightarrow hydrogen distribution via Pd
- \rightarrow interaction of Pd and Mg atoms
- \rightarrow nanocrystalline to epitaxial structure
- \rightarrow Pd/Mg composition control

RF magnetron sputtering

- base pressure 10⁻⁵ Pa
- deposition pressure 3 Pa (Ar atmosphere)
- 4 magnetron targets

Pd films

- thickness ~1.4 μm
- single-crystalline substrates \rightarrow sapphire (0001)
 - → Si (100)
- deposition temperature
 → 20°C
 → 500°C
- single-layer deposition

Pd-Mg multi-layers

- thickness ~1.3 μ m
- amorphous substrates
 → fused silica (FS)
- deposition temperature $\rightarrow 20^{\circ}C$
- multi-layer deposition

Slow positron beam SPONSOR

SPONSOR in HZDR

- ²²Na source with W moderator
- 0.03 35 keV positron energies
- S and W line-shape parameters
- 2D-coincidence measurement

VEPFIT modelling

- S(E) curves fitting
- linear parameters
 - S parameter of a layer
- non-linear parameters
 - diffusion length L₊
 - layer thickness

CDB

- single positron energy
 measurement
- resolution function with 1.8 keV FWHM
- CDB ratio curves

Pd films

nanocrystalline Pd sapphire substrate, RT

nanocrystalline Pd Si substrate, RT

- Pd (111) texture
- deposition at room temperature
 - \rightarrow nanocrystalline film
- deposition at elevated temperature
 - \rightarrow oriented polycrystalline film
 - \rightarrow Pd₂Si phase precipitation

oriented polycrystalline Pd sapphire substrate, 500°C

^{-11.7} nm

4.9 nm

Height Sensor

3.0 um

nanocrystalline Pd + Pd₂Si Si substrate, 500°C

Height Sensor

3.0 µm

Virgin Pd films

2-layer VEPFIT model

- Pd film + substrate
- S parameter of the Pd layer
- positron diffusion length L₊

- nanocrystalline Pd
- positron trapping at grain boundaries
- smaller grains \rightarrow shorter positron diffusion length

matfyz

- oriented polycrystalline Pd
 - positron trapping at misfit dislocations
 - increase of positron diffusion length
 - decrease of the S parameter

nanocrystalline Pd + Pd₂Si precipitates

- positron trapping at grain boundaries
- larger grains \rightarrow longer positron diffusion length
- enhanced S parameter \rightarrow Pd₂Si precipitates
- uniform distribution of Pd₂Si particles

	temperature	substrate	S	L ₊ (nm)
	RT	sapphire	0.5382(1)	16.2(3)
	RT	Si	0.5429(2)	29.9(6)
	500°C	sapphire	0.5167(2)	71.6(7)
$\overline{}$	500°C	Si	0.5577(2)	32.5(9)
—	1000°C / 2 h	bulk Pd	0.49807	151

Hydrogen gas loading of Pd films

hydrogen loading 60 kPa H₂ for 12 h, RT loading cycle hydrogen unloading 10⁻⁴ Pa vacuum for 12 h, RT hydrogen loading $\alpha\text{-Pd}$ to $\alpha\text{'-PdH}$ phase transformation lattice expansion and plastic deformation formation and movement of dislocations anisotropic expansion of Pd films stress accumulation in the film buckling and detachment of the film

ex-situ measurement virgin Pd films vs 1 loading cycle vs 10 loading cycles

 α -Pd

 α '-PdH

- buckling already after
 1 loading cycle
- adhesion improvement by Pd₂Si phase

Hydrogen-loaded Pd films (RT deposited)

nanocrystalline films - 2 competitive processes:

- hydrogen trapping at open volume defects \rightarrow S parameter decreased
 - formation of hydrogen-induced dislocations
 - \rightarrow S parameter increased

٠

matfyz

additional processes:

- artificial prolongation of diffusion length due to non-uniform distribution of defects
 → dislocation glide during buckling
- 1 loading-unloading cycle → buckling

Hydrogen-loaded Pd films (500°C deposited)

oriented polycrystalline film

- 1 loading cycle
 - \rightarrow formation of H-induced dislocations
 - \rightarrow S parameter increased, L_ decreased
- 10 loading cycles
 - \rightarrow H trapping in dislocations
 - \rightarrow S parameter unchanged, L₊ decreased

matfyz

nanocrystalline film + Pd₂Si precipitates

- same behavior as for nanocrystalline films
 - \rightarrow H trapping at open volumes
 - \rightarrow H-induced dislocations
- film adhesion improved
 - \rightarrow film attached after 10 loading cycles

Pd-Mg multi-layers

PdMg2 (13 layers) 7 x Pd (100 nm) + 6 x Mg (100 nm)

PdMg3 (34 layers) Pd (100 nm) + 18 x Mg (20 nm) + 15 x Pd (20 nm)

Pd (111) and Mg (0001) texture
nanocrystalline columnar structure

Height Sensor

^{1.0} µm

Virgin Pd-Mg multi-layers

3 positron states superpositions

- a) annihilation on Pd surface and in the top Pd layer
- b) annihilation in Pd and Mg inner layers
- c) annihilation in Pd/Mg layers and in FS substrate

Pd and Mg reference

- bulk Pd and Mg
- nanocrystalline Pd and Mg film

bare FS substrate measurement

2 linear dependences in S-W plot

- Pd surface + Pd layer
- Pd/Mg layers (+ FS substrate)

(a) (b) + (c)

Virgin Pd-Mg multi-layers

- positron trapping at grain boundaries
 - \rightarrow enhanced S parameter
 - \rightarrow shorter diffusion length
- higher fraction of GBs in Pd compared to Mg
- larger grains in bottom Pd compared to top Pd

4-layer VEPFIT model

sample	layer	S	L+ (nm)	thickness (nm)
	Pd top	0.5427(4)	14.3(5)	352(8)
PdMg1	Mg middle	0.719(7)	21(6)	395(10)
	Pd bottom	0.550(2)	68(11)	530(60)
	Pd top	0.5326(7)	6.3(2)	44.1(9)
PdMg2	Mg sub-top	0.618(3)	30(5)	180(20)
	Pd/Mg mixed	0.5842(4)	3(17)	1070(30)
	Pd top	0.476(8)	5.7(3)	5.8(2)
PdMg3	Mg sub-top	0.596(2)	10(20)	40(40)
	Pd/Mg mixed	0.6225(3)	17(2)	1300(100)

*FS parameters fixed from bare FS measurement

- effective narrowing of Pd layer due to higher positron affinity of Mg compared to Pd
- decrease of S parameter of Mg layer due to annihilations with Pd
- lower S parameter near substrate due to different grain sizes

Hydrogen loaded Pd-Mg multi-layers

hydrogen loading 4 kPa H₂ for 2 h, RT

hydrogen unloading 10⁻³ Pa vacuum for 2 h, RT

- moderate loading conditions
- phase transformation α -Pd to α '-PdH
- top Pd layer transformed into hydride
- Mg layers and inner Pd layers not transformed

- buckling of all multi-layers
 - \rightarrow dislocations in all Pd/Mg layers
 - \rightarrow stress released by dislocation movement
- adhesion properties
 - \rightarrow strong Pd Mg adhesion
 - → weak Pd FS adhesion

Hydrogen loaded Pd-Mg multi-layers

- S parameter increased in all layers
 - \rightarrow formation of hydrogen-induced dislocations in the whole volume
- top Pd layer hydrogenated
 - \rightarrow hydrogen trapping at open volumes (lower S)
 - \rightarrow hydrogen-induced dislocations (lower L₊)
- reduced density of dislocations in near substrate layers
 - \rightarrow decreased S parameter
 - \rightarrow artificially prolonged diffusion length
 - \rightarrow glide of dislocations to the "bottom surface"
- layer thicknesses same as in virgin multi-layers
- same 2 linear dependences in S-W plot

CDB measurement

- dominant annihilations with Pd electrons
- open-volume defects decorated with Pd
 - \rightarrow improvement of hydrogen absorption???
- annealing of multi-layer
 - \rightarrow diffusion of Pd into Mg layers

- PdMg3 multi-layers
 - virgin
 - hydrogen-loaded
 - annealed up to 450°C
- measurement at 9 keV positron energy

- 10 12 Pd/Mg layers covered
- 200 nm implantation, 250 nm FWHM

fraction of Pd				
uniform Pd distribution	0.61			
virgin sample	0.76			
hydrogen-loaded sample	0.76			
annealed sample (up to 450°C)	0.85			

Conclusions

Pd films

- nanocrystalline Pd
- oriented polycrystalline Pd
- hydrogen loading

• Pd₂Si precipitates

Pd-Mg multi-layers

- nanocrystalline structure
- hydrogen loading

• annihilation sites

- \rightarrow positron trapping at grain boundaries
- \rightarrow positron trapping at misfit dislocations
- \rightarrow formation of H-induced dislocations
- \rightarrow H trapping at open volumes
- \rightarrow dislocation glide during buckling
- \rightarrow uniform distribution in the film \rightarrow improved adhesion to the substrate
- \rightarrow positron trapping at grain boundaries
- \rightarrow top Pd layer transformed into hydride
- \rightarrow H-induced dislocations in the whole volume
- \rightarrow dislocation glide during buckling
- \rightarrow strong Pd-Mg adhesion
- \rightarrow open volumes decorated with Pd atoms \Rightarrow improved H absorption???
- \rightarrow diffusion of Pd into Mg layers by annealing

Thank you for your attention.