Slow positron annihilation studies of Pd-Mg multilayers

<u>Petr Hruška¹</u>, Jakub Čížek¹, Jiří Bulíř², František Lukáč^{1,3}, Wolfgang Anwand⁴, Maciej Oskar Liedke⁴, Ladislav Fekete², Oksana Melikhova¹ and Ján Lančok²

¹Charles University, Faculty of Mathematics and Physics, Prague ²Institute of Physics of the Czech Academy of Sciences, Prague ³Institute of Plasma Physics of the Czech Academy of Sciences, Prague ⁴Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden

Previous study – Pd capped Mg films

Hruška P., Čížek J., et al., J. Phys.: Conf. Ser. 674 (2016) 012024 Hruška P., Čížek J., et al., J. Phys.: Conf. Ser. 505 (2014) 012024

- diffusion of Pd into Mg layer
- metastable Mg-Pd intermetallic phase was formed
- S-parameter enhanced
- positron diffusion length L₊ shortened
- defect structure changed

Hydrogen storage in Pd and Mg

Option 1: Structure refinement of Mg down to nanoscale \rightarrow H absorption enhancement

Option 2: Combining Mg and Pd on nanoscale level \rightarrow H distribution via Pd channels

Pd-Mg multilayers

RF magnetron sputtering room temperature deposition base pressure 10⁻⁵ Pa Ar deposition pressure 3 Pa total thickness 1300 nm

PdMg1 3 layers (400 nm) $2 \times Pd + 1 \times Mg$ Mg/Pd ratio = 0.32

PdMg2 12 layers (100 nm) $6 \times Pd + 6 \times Mg$ Mg/Pd ratio = 0.63 PdMg3

 $\begin{array}{l} 60 \text{ layers (20 nm)} \\ 30 \times \text{Pd} + 30 \times \text{Mg} \\ \text{Mg/Pd ratio} = 0.63 \end{array}$

Slow positron beam SPONSOR

E1 - E2 (keV)

Pd and Mg reference films

	S/S ₀	L ₊ (nm)
Pd film	0.5493(2)	57(2)
Mg film	0.7369(3)	11(2)
FS substrate	0.6326(2)	22(1)

nanocrystalline structure

 \rightarrow positron trapping at grain boundaries nanocrystalline Pd and Mg references \rightarrow initial guesses for VEPFIT

Pd reference film 1300 nm Pd FS substrate

Height Sensor

-232.0 nm

Mg reference film 20 nm Pd cap 1300 nm FS substrate

Height Sensor

1.0 µm

PdMg1 – as deposited

SEM - cross section

AFM - surface

nanocrystalline structure ~ 10 - 100 nm

VEPFIT layers

- 1. Pd top
- 2. Mg middle
- 3. Pd bottom
- 4. FS substrate

PdMg1 – as deposited

as deposited	S/S ₀	L ₊ (nm)
Pd top	0.5427(4)	14.3(5)
Mg middle	0.719(7)	21(6)
Pd bottom	0.550(2)	68(11)
*FS substrate	fixed parameters	

Higher positron affinity in Mg compared to Pd leading to effective broadening of Mg layer.

Pd top and Mg middle layers

- \rightarrow growing on metallic layer with Pd(111) and Mg(0001) texture
- \rightarrow lower S parameter compared to the nanocrystalline reference

Pd bottom layer

 \rightarrow similar to nanocrystalline Pd reference

PdMg1 – H₂ gas loading

as deposited sample (virgin)

textured Pd and Mg layers

hydrogenated sample

- extra PdH peaks
- no MgH₂ peaks
- Pd and Mg peaks remain

H₂ loading of the Pd top layer. Mg layer not hydrogenated!

samples placed in vacuum chamber (10⁻⁴ Pa)

- \rightarrow H₂ gas loading at 20 °C / 4000 Pa / 2 h
- ightarrow phase transformation conditions for 20 nm Pd film

 $\alpha\text{-Pd} \rightarrow \alpha'\text{-PdH}$ phase transformation

- ightarrow plastic deformation of the film
- ightarrow buckling of the film and detachment from the substrate

PdMg1 – hydrogenated

as deposited	S/S ₀	L ₊ (nm)
Pd top	0.5427(4)	14.3(5)
Mg middle	0.719(7)	21(6)
Pd bottom	0.550(2)	68(11)
hydrogenated	S/S ₀	L ₊ (nm)
hydrogenated Pd top	S/S _o 0.5453(4)	L ₊ (nm) 12.3(6)
hydrogenated Pd top Mg middle	S/S ₀ 0.5453(4) 0.749(7)	L ₊ (nm) 12.3(6) 24(8)

hydrogenation of Pd top layer

- \rightarrow hydrogen induced defects
- plastic deformation of Mg layer
- \rightarrow deformation induced defects

detachment of Pd bottom layer

→ substrate-film misfit dislocations disappearance due to the stress relaxation

Higher positron affinity in Mg compared to Pd leading to effective broadening of Mg layer.

PdMg1 – annealing

Annealing

sample placed in vacuum chamber (10⁻⁴ Pa)

- ightarrow annealing under protective Ar atmosphere
- $\rightarrow\,$ isothermal annealing 50 °C / 1 h up to 450 °C
- ightarrow in-situ XRD measurement

XPS measurement (1st and 2nd atomic layers) \rightarrow 98.8 % Pd + 1.2 % Mg

Diffusion of Pd into Mg layer \rightarrow formation of Mg-Pd intermetallic phases (Mg-rich and "balanced").

PdMg1 – annealed

Pd layers enriched with Mg \rightarrow S parameter increase Pd-Mg middle layer \rightarrow S parameter decrease

thinner Pd layers due to higher positron affinity in Mg and diffusion of Pd into middle layer

S/S ₀	L ₊ (nm)
0.5427(4)	14.3(5)
0.719(7)	21(6)
0.550(2)	68(11)
S/S ₀	L ₊ (nm)
0.5453(4)	12.3(6)
0.749(7)	24(8)
0.544(2)	36(10)
S/S ₀	L ₊ (nm)
0.5470(7)	18.7(7)
0.698(6)	18(8)
	2C(0)
	S/S₀ 0.5427(4) 0.719(7) 0.550(2) S/S₀ 0.5453(4) 0.749(7) 0.544(2) S/S₀ 0.5470(7) 0.698(6)

PdMg2 and PdMg3 – as deposited

Height Sensor

nanocrystalline structure ~ 10 - 100 nm

VEPFIT layers

- 1. Pd 1st
- 2. Mg 2nd
- 3. Pd-Mg mixture with average density
- 4. FS substrate

PdMg2 and PdMg3 – H₂ gas loading

Hydrogenation same conditions as for PdMg1

buckling of both films

- → films not detached
- ightarrow hydrogenation of the top Pd layer

H₂ loading of the Pd top layer only. H did not diffuse through Mg layers (100 nm and 20 nm)!

as deposited samples (virgin)

- Pd and Mg texture similar to PdMg1
- MgPd and Mg_{0.9}Pd_{1.1} phases in PdMg3 at RT

hydrogenated samples

- no MgH₂ or PdH peaks
- other Mg and Pd layers not hydrogenated

PdMg2 and PdMg3 - hydrogenated

Pd 1st layer

- → plastic deformation due to phase transformation α -Pd → α' -PdH
- \rightarrow hydrogen induced defects formation

Mg 2nd layer

- \rightarrow plastic deformation of Pd 1st layer
- \rightarrow increase of S parameter of Mg layer

Pd-Mg bottom layers

→ near-substrate layers with similar parameters as virgin sample

PdMg2 and PdMg3 - annealing

PdMg2 and PdMg3 - annealed

mixing of Pd and Mg layers

- \rightarrow S parameter of (originally) Pd layer increases
- \rightarrow S parameter of (originally) Mg layer decreases

layered structure

- \rightarrow conserved for PdMg2 film incomplete transformation into MgPd and Mg_{0.9}Pd_{1.1}
- \rightarrow blurred for PdMg3 film complete transformation into MgPd and Mg_{0.9}Pd_{1.1}

Coincidence Doppler broadening

Conclusions

- 1. PdMg films with 3 different types of layered structure were prepared by RF magnetron sputtering.
- 2. H_2 gas loading led to transformation of top α -Pd layer into α' -PdH phase. This transformation introduce stress which causes buckling of the film. H did not diffuse into Mg layers.
- Formation of Mg-Pd intermetallic phase was elucidated. Pd diffuse into Mg layers and initially form Mg-rich phases. Further Pd diffusion leads to formation of "balanced" phases MgPd and Mg_{0.9}Pd_{1.1}.
- 4. Positrons predominantly annihilate with Mg-rich environment due to higher positron affinity of Mg compared to Pd.