Hydrogen interaction with vacancies in Ti

<u>Petr Hruška</u>¹, Jakub Čížek¹, Jan Knapp¹, Oksana Melikhova¹, Silvie Mašková¹, Ladislav Havela¹, František Lukáč¹

¹Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Hydrogen and defects in Ti

Ti and Ti-based alloys are attractive materials for its mechanical properties (high strength-to-weight ratio, corrosion resistance...).

In many applications they are **exposed to hydrogen** containing environment.

There is an attractive interaction between vacancy and hydrogen atom. The **formation energy is lower for v+H complex** than for empty vacancy. The equilibrium vacancy concentration is enhanced.

Hydrogen-induced defects lead to degradation of mechanical properties of Ti (**Hydrogen assisted cracking** = HAC). In order to elucidate the mechanism of HAC the study of interaction of hydrogen with defects in Ti is required.

Ti-H system

Ab-initio DFT calculations

Density functional theorem (DFT) theoretical modeling by VASP program [1] using projected augmented waves pseudo-potentials [2].

The electron exchange potential was treated with the Perdew-Wang generalized gradient approximation (GGA) [3].

Plane-wave energy cut-off was fixed to 400 eV.

The Brillouin zone was sampled by 4×4×4 *k*-point mesh generated using the Monkhorst–Pack scheme [4].

The structural optimization (lattice relaxation) was stopped when the forces converged to less than 0.01 eV/Å.

[1] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

[2] G. Kresse, D. Joubert Phys. Rev. B 59 (1999) 1758.

[3] Y. Wang, J.P. Perdew, Phys. Rev. B 44 (1991) 13298.

[4] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188.

Ti supercell

N = 216 Ti atoms hcp α -Ti lattice lattice parameters: a = 2.95 Å c = 4.68 Å

central Ti ion removed \rightarrow Ti vacancy

decoration of vacancy with n H atoms in tetrahedral sites \rightarrow v+nH complexes

minimal energy configuration \rightarrow inward/outward lattice relaxation

zero-point energy (ZPE) of H atoms \rightarrow ground state vibration energy

Hydrogen interstitials in Ti

Vacancy formation

our calculations: $E_f = 2.09 \text{ eV}$ previous studies: $E_f = 1.96 - 2.14 \text{ eV}$

8

Vacancy + hydrogen complex energies

v+nH complex formation energy (formation of the complex in Ti lattice)

v+nH complex trapping energy (trapping of interstitial H atom by v+(n-1)H complex)

$$E_{t,v+nH} = E(v + (n - 1)H) + ZPE(v + (n - 1)H)$$

$$+E(H_i) + ZPE(H_i) - E(bulk)$$

$$-E(v + nH) + ZPE(v + nH)$$

Ti lattice with
v+(n-1)H complex
interstitial H atom
Ti lattice with
v+nH complex

v+1H complex

H atom displaced towards the vacancy.

H reduces vacancy formation energy!

v+nH complexes (n = 4, n = 8)

v+4H complex

v+8H complex

inward relaxation

v+nH complex – calculated energies

Vacancies are capable of trapping up to 7 H atoms.

- The most energetically favorable configurations contain 5-7 atoms.
- v+8H complex is energetically unstable and breaks up due to H-H repulsion.

Positron density and lifetime (standard scheme)

single particle Schrödinger equation for positron wave-function

[1] E. Boronski, R.M. Nieminen, Phys. Rev. B. 34 (1986) p. 3820

Positron density – vacancy

positron lifetime – overlap of electron and positron density

$$\frac{1}{\tau} = \pi r_e^2 c \int n_+(\mathbf{r}) n_-(\mathbf{r}) \gamma [n_-(\mathbf{r})] \mathrm{d}\mathbf{r}$$

Positron density – v+H complex

positron lifetime – overlap of electron and positron density

$$\frac{1}{\tau} = \pi r_e^2 c \int n_+(\mathbf{r}) n_-(\mathbf{r}) \gamma [n_-(\mathbf{r})] \mathrm{d}\mathbf{r}$$

Positron density – v+4H complex

positron lifetime – overlap of electron and positron density

$$\frac{1}{\tau} = \pi r_e^2 c \int n_+(\mathbf{r}) n_-(\mathbf{r}) \gamma [n_-(\mathbf{r})] \mathrm{d}\mathbf{r}$$

Positron lifetime of v+nH complexes

inward lattice relaxation

outward lattice relaxation

Hydrogen-charged Ti samples

Ti sample	τ ₁ (ps)	I ₁ (%)	τ ₂ (ps)	I ₂ (%)	τ ₃ (ps)	I ₃ (%)
annealed in vacuum (1000°C / 2 h)	144.6(6)	100	-	-	-	-
electrochemically charged (20°C / 20 mA / 240 h)	96(6)	18(1)	170(3)	79(2)	350(20)	3(2)
H ₂ gas loaded (150°C / 103 bar / 100 h)	73(88)	10(1)	171(2)	88(1)	400(60)	2(1)
free positrons		dislocations v+nH complexes		vacancy clusters		

XRD phase analysis

electrochemically charged Ti \rightarrow loaded side: δ -TiH_x phase \rightarrow opposite side: α -Ti phase

XRD phase analysis

δ -hydride formation

sub-surface region transformed into $\delta\text{-TiH}_2$ inner region remains in $\alpha\text{-Ti}$

optical micrograph of the cross section of H₂ gas loaded Ti

Vacancy clusters

H-induced vacancies agglomerate into vacancy clusters.

Vacancy clusters are likely decorated with H atoms.

We can estimate the minimal size of vacancy clusters from the calculated lifetimes of "empty" clusters.

electrochemically charged Ti H₂ gas loaded Ti \rightarrow n > 7 vacancies \rightarrow n > 16 vacancies

- 1. DFT *ab-initio* theoretical modeling of vacancy-hydrogen complexes in α -Ti was performed.
- 2. Hydrogen atoms significantly reduce vacancy formation energy.
- 3. Vacancies in Ti are capable of trapping up to 7 H atoms occupying tetrahedral sites.
- 4. The lifetime of positrons trapped in v+nH complexes with up to 5 H atoms decreases with increasing number of H.
- 5. For 6 and more H atoms the lifetime increases again due to the outward relaxation caused by repulsive H-H interaction.

- 6. Experimental study revealed that H-loading introduced dislocations created by α -Ti $\rightarrow \delta$ -TiH_x phase transformation.
- 7. δ -TiH_x phase formation is energetically more favorable than formation of enhanced concentration of v+nH complexes in α -Ti matrix.
- 8. H-induced vacancies diffuse and agglomerate into vacancy clusters capable of trapping H.