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Hydrogen-induced defects lead to degradation of
mechanical properties of Ti (Hydrogen assisted
cracking = HAC). In order to elucidate the
mechanism of HAC the study of interaction of
hydrogen with defects in Ti is required.
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Hydrogen and defects in Ti

Ti and Ti-based alloys are attractive materials for its
mechanical properties (high strength-to-weight
ratio, corrosion resistance…).
In many applications they are exposed to hydrogen
containing environment.

There is an attractive interaction between vacancy
and hydrogen atom. The formation energy is lower
for v+H complex than for empty vacancy. The
equilibrium vacancy concentration is enhanced.

Hydrogen and defects in Ti
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Ti-H system

-Ti (hcp) -TiHx (fcc)

“low temperature” titanium
H in interstitial sites

hydride phase TiHx

1.5 < x ≤ 2

Ti-H system
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Ab-initio DFT calculations

Density functional theorem (DFT) theoretical modeling by VASP program [1]
using projected augmented waves pseudo-potentials [2].
The electron exchange potential was treated with the Perdew-Wang
generalized gradient approximation (GGA) [3].
Plane-wave energy cut-off was fixed to 400 eV.
The Brillouin zone was sampled by 4×4×4 k-point mesh generated using the
Monkhorst–Pack scheme [4].
The structural optimization (lattice relaxation) was stopped when the forces
converged to less than 0.01 eV/Å.

[1] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
[2] G. Kresse, D.  Joubert Phys. Rev. B 59 (1999) 1758.
[3] Y. Wang, J.P. Perdew, Phys. Rev. B 44 (1991) 13298.
[4] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188.

Ab-initio DFT calculations
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Ti supercell

central Ti ion removed 
 Ti vacancy

decoration of vacancy with n H atoms
in tetrahedral sites 
 v+nH complexes

minimal energy configuration
 inward/outward lattice relaxation

N = 216 Ti atoms 
hcp -Ti lattice 
lattice parameters: a = 2.95 Å

c = 4.68 Å

central Ti

H in tetrahedral sites

Ti supercell

zero-point energy (ZPE) of H atoms
 ground state vibration energy
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Hydrogen interstitials in Ti

𝐸𝑓,H𝑖 = 𝐸 H𝑖 + 𝑍𝑃𝐸 H𝑖 − 𝐸 bulk −
1

2
𝐸 H2 + 𝑍𝑃𝐸(H2)

H insertion 
energy

Ti lattice with 
H interstitial H atom

Ti lattice

ZPE of H 
interstitial

H insertion energy in T-site:
calculated Hi = -0.49 eV
measured Hi = -0.54 eV

8 nearest neighbor interstitial 
tetrahedral sites around vacancy

Hydrogen interstitials in Ti
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Vacancy formation

our calculations: Ef = 2.09 eV
previous studies: Ef = 1.96 – 2.14 eV

𝐸𝑓,v = 𝐸 v −
𝑁 − 1

𝑁
𝐸(bulk)

vacancy
formation

energy

Ti lattice 
with vacancy

Ti lattice 
without vacancy

Vacancy formation
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Vacancy + hydrogen complex energies

𝐸𝑓,v+𝑛H = 𝐸 v + 𝑛H + 𝑍𝑃𝐸 v + 𝑛H −
𝑁 − 1

𝑁
𝐸 bulk −

𝑛

2
𝐸 H2 + 𝑍𝑃𝐸(H2)

Ti lattice with 
v+nH complex

ZPE of n 
H atoms

Ti lattice
H2 molecule

ZPE of 
H2 molecule

n H atoms

𝐸𝑡,v+𝑛H = 𝐸 v + 𝑛 − 1 H + 𝑍𝑃𝐸 v + 𝑛 − 1 H

−𝐸 v + 𝑛H + 𝑍𝑃𝐸 v + 𝑛H

+𝐸 H𝑖 + 𝑍𝑃𝐸 H𝑖 − 𝐸 bulk

Ti lattice with 
v+(n-1)H complex

interstitial H atom

Ti lattice with 
v+nH complex

v+nH complex formation energy (formation of the complex in Ti lattice) 

v+nH complex trapping energy (trapping of interstitial H atom by v+(n-1)H complex) 

Vacancy + hydrogen complex energies
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v+1H complex

H atom displaced towards the vacancy.

22.5 %

H reduces vacancy formation energy!

trapping energy Et = -0.10 eV

complex formation energy       Ef = 1.88 eV
vacancy formation energy        Ef = 2.09 eV

H trapping in vacancy is energetically favorable!

v+1H complex
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v+nH complexes (n = 4, n = 8)

v+4H complex v+8H complex

inward relaxation outward relaxation

+5.6 %

+5.6 %

-1.3 %

-1.3 %

-1.3 %

-1.3 %

-1.3 %

-1.3 %-20.4 %

-20.4 %

-13.7 %
-13.7 %

+3.8 %

+1.3 %

-4.5 %
-4.5 %

-1.7 %-1.7 %

v+nH complexes (n = 4, n = 8)
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v+nH complex – calculated energies

H trapping 
favorable

H trapping 
NOT favorable

lowest formation energy

Vacancies are capable of trapping up to 7 H atoms. 
The most energetically favorable configurations contain 5-7 atoms.
v+8H complex is energetically unstable and breaks up due to H-H repulsion.

v+nH complex – calculated energies
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Positron density and lifetime (standard scheme) 

positron lifetime

−
ℏ2

2𝑚0
𝛻2𝜓+(𝒓) + 𝑉𝐶(𝒓)𝜓+(𝒓) + 𝑉𝑋 𝑛−(𝒓) 𝜓+(𝒓) = 𝐸+𝜓+(𝒓)

single particle Schrödinger equation for positron wave-function

Coulomb potential of 
electrons and nuclei

electron-positron correlation potential

1

𝜏
= 𝜋𝑟𝑒

2𝑐  𝑛+ 𝒓 𝑛− 𝒓 𝛾 𝑛−(𝒓) d𝒓

enhancement factor

Local Density Approximation [1]

[1] E. Boronski, R.M. Nieminen, Phys. Rev. B. 34 (1986) p. 3820

Positron density and lifetime (standard scheme)
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Positron density – vacancy

positron lifetime – overlap of electron and positron density

1

𝜏
= 𝜋𝑟𝑒

2𝑐  𝑛+ 𝒓 𝑛− 𝒓 𝛾 𝑛−(𝒓) d𝒓

electron density in basal (0001) plane positron density in basal (0001) plane

Positron density – vacancy
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Positron density – v+H complex

1

𝜏
= 𝜋𝑟𝑒

2𝑐  𝑛+ 𝒓 𝑛− 𝒓 𝛾 𝑛−(𝒓) d𝒓

electron density in basal (0001) plane positron density in basal (0001) plane

Positron density – v+H complex

positron lifetime – overlap of electron and positron density



15

Positron density – v+4H complex

1

𝜏
= 𝜋𝑟𝑒

2𝑐  𝑛+ 𝒓 𝑛− 𝒓 𝛾 𝑛−(𝒓) d𝒓

electron density in basal (0001) plane positron density in basal (0001) plane

Positron density – v+4H complex

positron lifetime – overlap of electron and positron density
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Positron lifetime of v+nH complexes

non-relaxed lattice
 linear decrease of lifetime

relaxed lattice
(lowest energy configuration)
 inward relaxation (n≤5)
 outward relaxation (n>6)

inward lattice relaxation

outward lattice relaxation

Positron lifetime of v+nH complexes
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Hydrogen-charged Ti samples

Ti sample t1 (ps) I1 (%) t2 (ps) I2 (%) t3 (ps) I3 (%)

annealed in vacuum

(1000°C / 2 h)
144.6(6) 100 - - - -

electrochemically charged

(20°C / 20 mA / 240 h)
96(6) 18(1) 170(3) 79(2) 350(20) 3(2)

H2 gas loaded

(150°C / 103 bar / 100 h)
73(88) 10(1) 171(2) 88(1) 400(60) 2(1)

free positrons
dislocations

v+nH complexes
vacancy clusters

Hydrogen-charged Ti samples
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XRD phase analysis

annealed Ti
 single phase -Ti

electrochemically charged Ti
 loaded side: -TiHx phase
 opposite side: -Ti phase

XRD phase analysis
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XRD phase analysis

-Ti  -TiHx transformation
leads to plastic deformation and
introduces dislocations into the
sample.

H2 gas loaded Ti
 -TiHx phase dominant

annealed Ti
 single phase -Ti

XRD phase analysis
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-hydride formation

sub-surface region transformed into -TiH2

inner region remains in -Ti

optical micrograph of the cross section of H2 gas loaded Ti

-hydride formation
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Vacancy clusters

H-induced vacancies 
agglomerate into vacancy 
clusters.

electrochemically loaded Ti
t3 = 350(20) ps

H2 gas loaded Ti
t3 = 400(60) ps

We can estimate the 
minimal size of vacancy 
clusters from the 
calculated lifetimes of 
“empty” clusters.

electrochemically charged Ti  n > 7 vacancies
H2 gas loaded Ti  n > 16 vacancies

Vacancy clusters are likely 
decorated with H atoms. 

Vacancy clusters
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Summary

1. DFT ab-initio theoretical modeling of vacancy-hydrogen complexes in 

-Ti was performed.

2. Hydrogen atoms significantly reduce vacancy formation energy. 

3. Vacancies in Ti are capable of trapping up to 7 H atoms occupying 

tetrahedral sites.

4. The lifetime of positrons trapped in v+nH complexes with up to 5 H 

atoms decreases with increasing number of H.

5. For 6 and more H atoms the lifetime increases again due to the 

outward relaxation caused by repulsive H-H interaction.

Summary
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Summary

6. Experimental study revealed that H-loading introduced dislocations 

created by -Ti  -TiHx phase transformation. 

7. -TiHx phase formation is energetically more favorable than formation 

of enhanced concentration of v+nH complexes in -Ti matrix.

8. H-induced vacancies diffuse and agglomerate into vacancy clusters 

capable of trapping H.

Summary


