Characterization of point defects in ZnO crystals

J. Čížek, M. Vlček, P. Hruška, F. Lukáč, O. Melikhova, J. Valenta Faculty of Mathematics and Physics, Charles University Prague, Czech Republic

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

der Bundeswehr

Nünchen

Universität

W. Anwand

Helmholtz Zentrum Dresden-Rossendorf, Germany

F. Selim Center for Photochemical Sciences, Bowling Green State University, USA

Ch. Hugenschmidt

Technical University München, Garching, Germany

W. Egger

Bundeswehr München, Neubiberg, Germany

Introduction

ZnO

- wide band gap semiconductor $E_q = 3.4 \text{ eV} (\lambda = 365 \text{ nm})$ at room temperature
- promising material with many applications mainly in optoelectronics (transparent electronics, UV light emitting diodes, lasers, gas sensors)
- transparent conductive electrode for solar cells
- better resistance against radiation than GaAs or Si
- high quality ZnO single crystals are commercially available
- main problem: doping asymmetry
 - "natural" n-type doping
 - p-type doping is very difficult

Positron annihilation spectroscopy

Bulk positron lifetime investigations

- digital positron lifetime spectrometer
- photomultipliers Hamamatsu H3378
- BaF₂ scintillators
- timing resolution 145 ps (FWHM ²²Na)
- effective coincidence count rate 100 s⁻¹
- >10⁷ positron annihilation events in each spectrum

Positron annihilation spectroscopy

Bulk positron lifetime investigations

- digital positron lifetime spectrometer
- photomultipliers Hamamatsu H3378
- BaF₂ scintillators
- timing resolution 145 ps (FWHM ²²Na)
- effective coincidence count rate 100 s⁻¹
- >10⁷ positron annihilation events in each spectrum

Positron back-diffusion measurement

- magnetically guided slow positron beam
- positron energy 0.030 36 keV
- HPGe detector with energy resolution 1.09±0.01 keV at 511 keV
- Doppler broadening of annihilation evaluated using S, W line shape parameters
- > 7×10^5 counts in annihilation peak

Positron annihilation spectroscopy

Bulk positron lifetime investigations

- digital positron lifetime spectrometer
- photomultipliers Hamamatsu H3378
- BaF₂ scintillators
- timing resolution 145 ps (FWHM ²²Na)
- effective coincidence count rate 100 s⁻¹
- >10⁷ positron annihilation events in each spectrum

Positron back-diffusion measurement

- magnetically guided slow positron beam
- positron energy 0.030 36 keV
- HPGe detector with energy resolution 1.09±0.01 keV at 511 keV
- Doppler broadening of annihilation evaluated using S, W line shape parameters
- > 7×10^5 counts in annihilation peak
- pulsed low energy positron system (PLEPS)
- at high intensity positron source NEPOMUC (Munich)
- positron energy 0.5 -18 keV
- positron lifetime measurement (time resolution ≈300 ps)
- > 5×10^6 positron annihilation events in each spectrum

• ZnO melting temperature $T_m \approx 1975^{\circ}$ C, vapor pressure 1.06 bar

1. Chemically assisted vapor phase growth technique (CVT) *Eagle-Picher Inc., USA*

- small crystals
- gas contamination (N₂, H₂)

K.Grasza et al., J. Cryst. Growth 310, 1823 (2008)

• ZnO melting temperature $T_m \approx 1975^{\circ}$ C, vapor pressure 1.06 bar

2. pressurized melt growth (PMG) "skull growth" Cermet Inc., USA

- very pure environment growing crystal is in contact with ZnO only
- temperature gradients

• ZnO melting temperature $T_m \approx 1975^{\circ}$ C, vapor pressure 1.06 bar

3. Bridgman growth (BG) Institut für Kristalzüchtung (IKZ) Berlin

problem with suitable crucible material

D. Schulz et al., J. Cryst. Growth 296, 27 (2006)

• ZnO melting temperature $T_m \approx 1975^{\circ}$ C, vapor pressure 1.06 bar

4. hydrothermal growth (HTG)

MaTecK (Germany), CrysTec (Germany), Altramet(USA), MTI (USA), ...

- from aqueous alkaline solutions
- concentrated KOH / LiOH solution
- nutrient (Zn salt + hydroxide) is heated in Ti or Ag lined autoclave (T \approx 370°C, p \approx 220 bar)
- small temperature gradient transports zincates from solution to the growing zone
- enable to growth large crystals (diam. ≈100 mm, length ≈1 m)

- most common method for production of commercial ZnO crystals

ZnO single crystals studied

Hydrothermal growth (HTG)

- MaTecK GmbH, Jülich, Germany
- CrysTec GmbH, Berlin, Germany
- MTI Corp., Richmond, CA, USA
- Atomergic Chemetals Corp. (Altra), Farmingdale, NY, USA
- University Wafers, South Boston, MA, USA

Pressurized melt growth (PMG)

• Cerment Inc., Atlanta, GA, USA

Bridgman growth (BG)

• Institut für Kristalzüchtung (IKZ), Berlin, Germany

Chemically assisted vapor phase growth technique (CVT)

• Oak Ridge National Laboratory (ORNL), TN, USA

Bulk Positron Lifetime Spectrum

single component

 $\tau_1 = 180.7(3) \text{ ps}, I_1 = 100 \%$

source contribution

²²Na source deposited on 2 μm mylar foil $\tau_{s1} = 368$ ps, $I_{s1} = 9$ % $\tau_{s2} = 1.26$ ns, $I_{s2} = 1$ %

As-grown ZnO single crystals - reproducidibility

- comparison of sample batches from various periods
- no significant differences among samples prepared in various periods

comparison of ZnO crystals prepared by various techniques

→ HTG ZnO crystals: lifetime \approx 181 ps

• two groups

 \cong PMG, BG, CVT ZnO crystals: lifetime \approx 165 ps

[1] F. Tuomisto, D.C. Look, Proc. SPIE 6474, 647413 (2007)
[2] Z.Q. Chen et al., Phys. Rev. B 71, 115213 (2005)
[3] Z.Q. Chen et al., JAP 94, 4807 (2003)

[4] F. Tuomisto et al., PRL 91, 205502 (2003).
[5] S. Brunner et al., Mater. Sci. Forum 363-365, 141 (2001).

- positron back-diffusion measurement on slow positron beam
- comparison of ZnO crystals prepared by various techniques

- positron back-diffusion measurement on slow positron beam
- comparison of ZnO crystals prepared by various techniques
- concentration of defects: $CVT \rightarrow PMG \rightarrow HTG$

Chemical Analysis of ZnO crystals

- Inductively Coupled Plasma Source – Mass Spectrometry (ICP-MS)

atomic concentration (ppm = 10^{-4} at.%), sensitivity 0.01 ppm

Sample	Li	Mg	AI	Cr	Mn	Со	Ni	Cu	Ga	Ag	Cd
HTG MaTecK 2006	0.37	3.74		0.08	0.08	0.03	7.80	3.48	0.07	0.16	2.31
HTG MaTeck 2008			4.7		0.30	0.14	1.25	1.07			0.04
HTG	6.04				0.34	0.05	4.13	0.49	0.61	0.48	0.19
Uni-Wafers											
HTG	7.03				0.73	0.12	0.45	0.42	0.42	0.18	0.12
Altramet											
PMG							0.25	0.38	0.49	0.18	0.19
Cermet											
BG	0.16					0.01	0.14	0.73	0.68	0.19	
IKZ Berlin											

nuclear reaction analysis (NRA)

 $^{15}N + ^{1}H \rightarrow ^{12}C + ^{4}He + \gamma$ rays — reaction γ rays energy: 4.43 MeV

depth NRA scan

- gradually increasing energy of ^{15}N ions: E = 6.4 7.1 MeV
- detection depth in ZnO increasing from surface up to 300 nm
- detection limit: 0.005 at.%

Chemical Analysis of ZnO crystals

- Inductively Coupled Plasma Source – Mass Spectrometry (ICP-MS) + NRA

Sample	Li	Mg	AI	Cr	Mn	Со	Ni	Cu	Ga	Ag	Cd	Н
HTG MaTecK 2006	0.37	3.74		0.08	0.08	0.03	7.80	3.48	0.07	0.16	2.31	700
HTG MaTeck 2008			4.7		0.30	0.14	1.25	1.07			0.04	300
HTG	6.04				0.34	0.05	4.13	0.49	0.61	0.48	0.19	800
Hydrogen	Hydrogen is the most important impurity in ZnO crystals											
Altramet												
PMG							0.25	0.38	0.49	0.18	0.19	300
Cermet												
BG	0.16					0.01	0.14	0.73	0.68	0.19		400
IKZ Berlin												

Hydrogen in ZnO

- Hydrogen is a shallow donor in ZnO
- Van de Walle et al., PRL 85, 1012 (2000)
- Janotti et al., Nature Mater. 6, 44 (2007)

ZnO

- Wurtzite structure
- *a* = 3.25 Å, *c* = 5.12 Å
- Zn atoms in tetrahedral co-ordination
- Zn *d*-electrons hybridize with O *p*-electrons

bulk ZnO lifetime

- τ_B = 154 ps, G. Brauer et al., PRB 79, 115212 (2009)
 - LDA (Boroński-Nieminen) approach for electron-positron correlation
 - with correction for incomplete positron screening, ϵ_{∞} = 4
 - self consistent electron density and potential from VASP
- τ_B = 157 ps, J. Kuriplach, B. Barbiellini, PRB 89, 155111 (2014)
 - GGA (α = 0.05) approach for electron-positron correlation
 - self consistent electron density and potential from WIEN2K
 - note that GGA approach with α = 0.22 leads to τ_B = 177 ps
- $\tau_B = 155 \text{ ps}$, J. Kuriplach, private communication
 - GGA (parameter-free model) B. Barbiellini, J. Kuriplach PRL 114, 147401 (2015)
 - self consistent electron density and potential from WIEN2K

Vacancies in ZnO

- LDA (Boroński-Nieminen) approach for electron-positron correlation
- with correction for incomplete positron screening, ϵ_{∞} = 4
- self consistent electron density and potential from VASP
- relaxed geometry of vacancies determined by VASP
- positron-induced forces were taken into account

	τ (ps)	E _B (ev)	τ / τ _Β		
e-e+ correlation	LDA (BN,	$\varepsilon_{\infty} = 4)$			
ZnO bulk	154	-	-		
O-vacancy	154	~ 0.0	1.00	>	V _o is unable of positron trapping
Zn-vacancy	207	1.11	1.34	>	V _{Zn} is deep positron trap
Zn+O di-vacancy	253	1.87	1.64		

Vacancies in ZnO

- LDA (Boroński-Nieminen) approach for electron-positron correlation
- with correction for incomplete positron screening, ϵ_{∞} = 4
- self consistent electron density and potential from VASP
- relaxed geometry of vacancies determined by VASP
- positron-induced forces were taken into account

F.	Tuomisto et al.,	PRL	91,	205502	(2003)
----	------------------	-----	-----	--------	--------

	τ (ps)	E _B (ev)	τ / τ _Β	τ (ps)	τ / τ _Β	
e ⁻ e ⁺ correlation	LDA (BN,	$\varepsilon_{\infty} = 4)$		GGA (α = 0.22)		
ZnO bulk	154	-	-	177	-	
O-vacancy	154	~ 0.0	1.00	180	1.02	
Zn-vacancy	207	1.11	1.34	237	1.34	
Zn+O di-vacancy	253	1.87	1.64			

V_O is unable of positron trapping

 V_{Zn} is deep positron trap

comparison of ZnO crystals prepared by various techniques

• two groups < HTG ZnO crystals: $\tau \approx 181 \text{ ps} \rightarrow \tau_B < \tau < \tau_{Zn-vacancy}$

 \rightarrow PMG, BG, CVT ZnO crystals: $\tau \approx 165 \text{ ps} \rightarrow \text{ approaches } \tau_{B}$

Complexes V_{Zn} + H

Calculated lowest energy configuration: V_{Zn} + 1H, BC₁ site, τ = 179 ps

relaxation of O atoms and H

- comparison of ZnO crystals prepared by various techniques
- two groups \rightarrow HTG ZnO crystals: $\tau \approx 181 \text{ ps} \rightarrow \tau_{\text{B}} < \tau < \tau_{\text{Zn-vacancy}}$
 - → PMG, BG, CVT ZnO crystals: $\tau \approx 165 \text{ ps} \rightarrow \text{ approaches } \tau_B$
- HTG ZnO crystals: saturated positron trapping in V_{Zn}+H complexes

Estimation of V_{Zn+H} concentration

HTG ZnO, MaTecK

estimation of V_{Zn}+H concentration

$$c_{V} = \frac{1}{v_{v}} \frac{1}{\tau_{B}} \left(\frac{L_{+,B}^{2}}{L_{+}^{2}} - 1 \right)$$

$$L_{+,B} \approx 100 \text{ nm (CVT ZnO)}$$

$$v_{v} \approx 10^{15} \text{ at.s}^{-1}$$

$$\tau_{B} = 155 \text{ ps}$$

$$HTG ZnO$$

$$[V_{Zn}+H]$$

$$\Rightarrow c_{v} \approx 0.002 \text{ at.\%}$$

$$(10^{18} \text{ cm}^{-3})$$

simple trapping model positron trapping rate $K_v \approx 3 \times 10^{10} \text{ s}^{-1}$ $\downarrow \downarrow$ free positron component $I_1 \approx 3 \%, \tau_1 \approx 20 \text{ ps}$ $\downarrow \downarrow$ too weak & short

to be resolved in PL spectrum

hydrogen concentration (NRA)

 $c_H = 0.03 - 0.07 \text{ at.}\% \rightarrow [\text{H}] ≈ 20 [V_{Zn} + \text{H}]$ (3-6) × 10¹⁹ cm⁻³

Li_{Zn} defect

HTG ZnO, MaTecK

• positron trapping in negatively charged substitutional Li (Li_{Zn})

HTG ZnO	HT-grown MaTecK 200	0.37	181.2(4) ps	
[V _{zn} +H]	HT-grown MaTeck 200	8	180.6(3) ps	
$\rangle \Longrightarrow c_v \approx 0.002 \text{ at.}\%$	HT-grown Uni-Wafers	6.04	180.5(3) ps	
$(10^{18} \text{ cm}^{-3})$	HT-grown Altramet	7.03	180.7(3) ps	
	PM-grown Cermet			
	BG-grown IKZ Berlin	0.16		
	HTG ZnO $[V_{Zn}+H]$ $\Rightarrow c_v \approx 0.002 \text{ at.}\%$ $(10^{18} \text{ cm}^{-3})$	$HTG ZnO$ $[V_{Zn}+H]$ $\Rightarrow c_{v} \approx 0.002 \text{ at.}\%$ $(10^{18} \text{ cm}^{-3})$ $Sample$ $HT-grown$ $MaTecK 200$ $HT-grown$ $MaTeck 200$ $HT-grown$ $Uni-Wafers$ $HT-grown$ $Altramet$ $PM-grown$ $Cermet$ $BG-grown$ $IKZ Berlin$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

 $c_H = 0.00001 - 0.0007 \text{ at.\%}$ (0.01-6) × 10¹⁷ cm⁻³ \rightarrow [Li] is

 \rightarrow [Li] is lower than concentration of positron traps

 \rightarrow strong variations of [Li] but no variations of positron lifetime

- e^- irradiation: mixture of V_{Zn} and V_{Zn+O}
- fraction of $V_{\text{Zn+O}}$ increases with increasing energy and fluence
- H⁺ irradiation: for E > 1 MeV dominating defects V_{Zn+O}
- positron lifetimes: $V_{Zn} \approx 210 \text{ ps}, V_{Zn+O} \approx 255 \text{ ps}$

[1] F. Tuomisto et al., PRL 91, 205502 (2003)
[2] S. Brunner et al., Mater. Sci. Forum 363-365, 141 (2001)
[3] Z.Q. Chen et al., PRB 77, 115213 (2005)

[4] Z.Q. Chen et al., PRB 75, 245206 (2007) [5] S. Brunner et al., MRS proc. 540, 207 (1999)

HTG ZnO, MaTecK

• electron irradiated E = 10 MeV, $T < 100^{\circ}$ C

Fluence (cm ⁻²)	τ ₁ (ps)	I ₁ (%)	τ ₂ (ps)	l ₂ (%)				
Electron irradiated $E = 10 \text{ MeV}, T < 100^{\circ}\text{C}$								
1 × 10 ¹⁸	182 ± 2	67 ± 2	256 ± 3	33 ± 2				
2×10^{18}	181 ± 1	50 ± 2	254 ± 3	50 ± 2				
Proton irradiated $E = 2.5 \text{ MeV}, T < 100^{\circ}\text{C}$								
6×10^{15}	180 ± 1	75 ± 1	258 ± 5	25 ± 1				
1 × 10 ¹⁶	181 ± 1	71 ± 2	260 ± 2	29 ± 2				

• simple trapping model:

$$\tau_1 = \frac{1}{\tau_B^{-1} + K}$$

• no shortening of τ_1 testifies that it comes from trapped positrons

HTG ZnO, MaTecK

- H⁺ irradiated E = 2.5 MeV, $F = 6 \times 10^{15}$ cm⁻², $T < 100^{\circ}$ C
- shortening of L₊ and increase of S parameter due to radiation-induced V_{Zn+O}

HTG ZnO, MaTecK – pulsed positron beam PLEPS (NEPOMUC, München)

- H⁺ irradiated E = 2.5 MeV, $F = 6 \times 10^{15}$ cm⁻², $T < 100^{\circ}$ C
- increase of the mean positron lifetime in bulk due to radiation-induced V_{Zn+O}

Annealing of ZnO crystals in air

- ZnO easily decomposes to its components ZnO \leftrightarrow Zn + $\frac{1}{2}$ O₂, ΔH = 350.5 kJ/mol
- upon heating ZnO dissociates
- high vapour pressure of Zn and $O_2 \Rightarrow$ ZnO evaporation
- $p_{Zn} > p_{O2} \Rightarrow Zn$ evaporation is more intensive \Rightarrow formation of V_{Zn}

Annealing of ZnO crystals in air

- decomposition of positron lifetime spectra
- HTG ZnO (MaTecK), PMG ZnO (Cermet)
- free positron component appeared at T > 1200°C

Annealing of ZnO crystals in air

- VEPAS results
- in both crystals annealing up to 1100°C led to shortening of L_+ and increase of S
- due to introduction of V_{Zn} and vacancy clusters

Annealing of ZnO crystals – air versus Zn atmosphere

- HTG ZnO, MaTecK
- annealing in air \rightarrow Zn evaporation \rightarrow formation of V_{Zn}
- annealing in Zn overpressure \rightarrow filling of V_{Zn}

 \rightarrow creation of V_O \rightarrow sample turns red

Annealing of ZnO crystals - photoluminescence

- HTG ZnO, MaTecK
- UV light excitation 325 nm (3.81 eV)
- UV exciton peak 3.29 eV (band-to-band transition)
- green emission 2.31 eV (defect-related inter-band transition)

J. Čížek et al., APL 106, 251902 (2015)

Annealing of ZnO crystals - photoluminescence

- HTG ZnO, MaTecK
- UV light excitation 325 nm (3.81 eV)
- UV exciton peak 3.29 eV (band-to-band transition)
- green emission:

J. Čížek et al., APL 106, 251902 (2015)

• annealing at 1000°C in Zn atmosphere \rightarrow red shift of green emission 2.31 \rightarrow 2.47 eV

Conclusions

- Hydrogen is the most important impurity in all ZnO crystals
- PMG, BG, and CVT ZnO crystals exhibit low concentration of defects and majority of positrons is annihilated in the free state
- bulk ZnO lifetime falls into the range 155 165 ps
- HTG ZnO samples contain V_{Zn} + H complexes characterized by lifetime of 181 ps
- Electron and proton irradiation introduces V_{Zn} characterized by lifetime $\approx 210 \text{ ps}$ V_{Zn+O} characterized by lifetime $\approx 255 \text{ ps}$
- Annealing in air introduced V_{Zn}
- Annealing in Zn atmosphere removed V_{Zn} but introduced V_{O}
- $\, \bullet \, V_{O} \, turn \, the \, ZnO$ sample red