

Characterisation of Irradiation-Induced Defects in ZnO Single Crystals

Ivan Procházka¹, Jakub Čížek¹, František Lukáč¹, Oksana Melikhova¹, Jan Valenta¹, Vladimír Havránek², Wolfgang Anwand³, Vladimir A. Skuratov⁴, Tatiana S. Strukova⁴

¹ Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

² Nuclear Physics Institute, Academy of Science of the Czech Republic, Řež, Czech Republic

³ Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossedorf, Dresden, Germany

⁴ Flerov Laboratory of Nuclear Reactions, JINR Dubna, Russian Federation

PSD-14, September 14 – 19, 2014, Kyoto, Japan

Talk structure

- Introduction & motivation.
- Experimental part.
- Results & discussion.
- Summary.
- Acknowledgements.

Introduction & motivation

Zinc oxide (ZnO):

- a direct wide band gap semiconductor ($E_g \approx 3.37$ eV at ambient conditions),
- a large exciton binding energy (E_{ex} ≈ 60 meV),
- high-quality ZnO bulk single crystals (pressurized melt gown MG, hydrothermally grown – HTG crystals),
- a simple and relatively cheap ZnO crystal-growth technology.

ZnO is interesting for applications:

- optoelectronic devices,
- UV light emitting diodes and lasers,
- gas sensors,
- transparent electrodes for solar cells,

Introduction & motivation

Zinc oxide (ZnO):

- point defects may control functional properties of ZnO,
- grown-in defects and native impurities (especially the hydrogen in HTG ZnO),
- irradiation-induced structure modifications of ZnO materials become of interest: tailoring of desired properties, degradation of functional properties during operation.
- hydrogen can be easily incorporated into ZnO lattice (shallow donor state).

It is important to characterise irradiation-induced structure modifications of zinc oxide.

Introduction & motivation

The aim of the present Contribution:

- implantation of energetic (≈ 100 MeV) Xe ions into bulk HTG ZnO single crystals,
- characterisation of defects introduced in ZnO by Xe implantation,
- comparison of results with those observed after irradiations of ZnO by energetic electrons and protons.

Three experimental techniques were combined:

- positron annihilation spectroscopy,
- optical transmittance,
- photoluminescence.

Samples

Virgin ZnO single crystals (MaTecK GmbH):

- HTG ZnO (0001), O-terminated,
- 10×10×0.5 mm³,
- optically polished surfaces.

Xe ion irradiation (IC-100 cyclotron @ FLNR, JINR Dubna):

- Xe²⁶⁺, 167 MeV kinetic energy,
- fluencies up to 10^{14} cm⁻²,
- irrad. temperature 50 °C.

Proton irradiation (Tandetron facility @ NPI Rez):

- proton kinetic energy 2.5 MeV,
- fluency 10^{16} cm⁻²,
- irrad. temperature
 < 100 °C.

Samples

SRIM simulations:

depth profiles of ion and defect concentrations.

Approx. 57% of 22 Na β^+ particles is stopped below 40 µm depth and 20% below 13 µm depth.

Positron lifetime spectrometry (LT)

LT spectrometer – Becvar et al., NIMA (2005):

- ²²Na positron source (1 MBq) sealed between Mylar ® foils,
- BaF₂ fast scintillator detectors,
- digital processing of the timing signals,
- time resolution of 0.145 ns (fwhm for ²²Na), ≈120 coincidence events per second.

sample-source sandwich

BaF₂ scintillator detectors

At least 10^7 coincidence events collected in each spectrum. Well-annealed α -Fe reference measured for subtracting the contribution from annihilation in the source – sample assembly.

Coincidence Doppler broadening measurements (CDB)

CDB spectrometer – Cizek et al., NIMA (2011):

- HPGe–HPGe with digital signal processing,
- energy resolution 0.9 keV at γ-511 keV (FWHM),
- count rate \approx 550 cc s⁻¹.

sample-source sandwich

At least 10⁸ coincidence events collected in each two-dimensional (2D) spectrum.

DB profiles (DBP) obtained as proper cuts in the 2D spectra.

Slow-positron implantation spectroscopy (SPIS)

SPIS apparatus – Brauer et al. (1995), Anwand et al. (2013)

- Magnetically guided positron beam "SPONSOR" @ HZDR ,
- single-HPGe DB measurements,
- energy resolution 1.03 keV (FWHM) @ γ-511 keV.

Positron source & moderator Accelerating unit

Target chamber & HPGe detectors

At least 5×10^5 counts collected in each annihilation peak. Ordinary sharpness (S) and wing (W) parameters evaluated.

Optical transmission (OT)

- Spekol instrument (a white light source with a grating monochromator; wavelength λ ranged from 340 to 880 nm.
- The reflectivity of each crystal was assumed to be independent of λ .

Photoluminescence (PL)

- An Olympus IX-71 inverted microscope with an Ealing 25×/0.4 mirror objective lens.
- An ARC SP2300i imagging spectrometer.
- An UV LED lamp light source (325 or 310 nm).
- A LN2-cooled back-illuminated CCD detector.
- The lateral resolution of ≈ 0.5 μ m.

LT measurements – positron lifetimes τ_i and relative intensities I_i										
Sample	<i>f</i> [cm ⁻²]	<i>т</i> ₂ [ps]	<i>I</i> ₂ [%]	<i>т</i> ₃ [ps]	<i>I</i> ₃ [%]	<i>τ</i> ₄ [ps]	<i>I</i> 4 [%]			
virgin		183.2(1)	100							
Xe ²⁶⁺ irrad.	3×10 ¹²	184(1)	83.6(8)			369.6(6)	13.7(7)			
	3×10 ¹³	185.4(5)	78.9(4)			365(2)	21.1(5)			
	1×10 ¹⁴	184.1(7)	74.5(8)			351(1)	25.5(7)			
	opposite	183(2)	100							
H⁺ irrad.	1×10 ¹⁶	175(5)	71(2)	260(2)	29(2)					
	opposite	180(1)	100							

- Saturated positron trapping ($\tau_i > \tau_{bulk} \approx 154 \text{ ps}$).
- Virgin crystal and unirradiated side of implanted samples single component only (τ_2) .
- Xe²⁶⁺-irradiated side τ_2 and τ_4 -components.
- H⁺-irradiated side two components (τ_2 and τ_3).

LT measurements – positron lifetimes τ_i and relative intensities I_i										
Sample	<i>f</i> [cm ⁻²]	<i>т</i> ₂ [ps]	<i>I</i> ₂ [%]	<i>т</i> ₃ [ps]	<i>I</i> ₃ [%]	<i>τ</i> ₄ [ps]	<i>I</i> ₄ [%]			
virgin		183.2(1)	100							
Xe ²⁶⁺ irrad.	3×10 ¹²	184(1)	83.6(8)			369.6(6)	13.7(7)			
	3×10 ¹³	185.4(5)	78.9(4)			365(2)	21.1(5)			
	1×10 ¹⁴	184.1(7)	74.5(8)			351(1)	25.5(7)			
	opposite	183(2)	100							
H⁺ irrad.	1×10 ¹⁶	175(5)	71(2)	260(2)	29(2)					
	opposite	180(1)	100							

• Origin of the τ_2 - and τ_3 -components, Brauer et al., PR B (2009):

 τ_2 – zinc vacancy decorated with H atom (V_{Zn} – 1H),

 τ_3 – zinc and oxygen vacancy complex (V_{Zn} – V_O divacancy).

• Origin of the τ_4 -component – larger clusters of V_{Zn} and/or V_O (approx. 10 vacancies).

ATSUP calculations:

- Boroński-Nieminen (BN) approximation to e⁺ - e⁻ correlation,
- atomic relaxations,
- shortened r(V_{Zn}) due to hydrogen attachment.

• Origin of the τ_2 - and τ_3 -components, Brauer et al., PR B (2009):

 τ_2 – zinc vacancy decorated with H atom (V_{Zn} – 1H),

 τ_3 – zinc and oxygen vacancy complex (V_{Zn} – V_o divacancy).

• Origin of the τ_4 -component – larger clusters of V_{Zn} and/or V_O (approx. 10 vacancies).

CDB results

In both virgin and Xeirradiated samples, the contribution of oxygen 2p electrons dominates at the positron annihilation sites.

SPIS results:

VEPFIT analysis (model #5, single layer):

- virgin *L*₊=58(2) nm,
- H⁺ implanted $(1 \times 10^{16} \text{ cm}^{-2}) L_{+} = 19(2) \text{ nm}$,
- Xe²⁶⁺ implanted $(1 \times 10^{14} \text{ cm}^{-2}) L_{+} = 47(2) \text{ nm}.$

Combination of LT and SPIS results

Estimates of concentrations of clusters induced by Xe²⁶⁺ irradiation:

OT measurements

- Suppressed transmittance for implanted samples in 400 to 550 nm wavelength (2.1 to 3.1 eV) region – probably due to irradiation induced $V_{Zn} - V_0$ (H⁺) and clusters (Xe²⁶⁺),
- trend toward saturation with increasing Xe fluency.

OT measurements

- Suppressed transmittance for implanted samples in 400 to 550 nm wavelength (2.1 to 3.1 eV) region – probably due to irradiation induced $V_{Zn} - V_0$ (H⁺) and clusters (Xe²⁶⁺),
- red shift of ΔT_{max} for Xe.

OT measurements – Tauc plot

squared absorption coefficient a^2 vs photon energy E_{λ}

Optical band gap energies E_{g}^{opt}

- *E*^{opt}-values are lower than the electronic band gap energy (3.37 eV) – optically active defects are present in both samples.
- Xe⁺-irradiation lowering of E^{opt}_g is even larger

PL measurements

 A well-known green emission (GE) band with a broad maximum at ≈ 550 nm, seen in the virgin sample, is strongly suppressed in the implanted samples.

PL measurements

 The GE is quenched by implantations due to irradiation induced defects (V_{Zn}–V₀, vacancy clusters) providing channels for nonradiative recombination of charge carriers.

Summary

- HTG ZnO single crystals were implanted with 2.5 MeV protons to a fluency of 10¹⁶ cm⁻² and 167 MeV Xe²⁶⁺ ions to fluencies of 3×10¹², 3×10¹³ and 1×10¹⁴ cm⁻².
- The as-grown as well as irradiated crystals were studied by means of positron annihilation techniques (LT, CDB and SPIS) combined with optical methods (OT and PL).
- The grown in V_{Zn} 1H defects were observed in both the nonirradiated as well as irradiated samples.
- Irradiation induced V_{zn} V_o divacancies were identified in proton implanted samples.
- Clusters of ≈10 vacancies were identified in samples irradiated by Xe²⁶⁺ ions and cluster concentrations were estimated.

Summary

- A significant suppression of transmittance in the 400 to 550nm region was found in the H⁺- and Xe²⁶⁺-irradiated ZnO.
- Optical band gaps were deduced from OT measurements. They appear to be lower than the electronic band gaps, indicating thus presence of optically active defects in both implanted samples.
- The GE band is well seen in the virgin sample, but is strongly quenched after proton and Xe implantation, what is likely a result of implantation induced defects which provide a channel for non-radiative recombination of charge carriers.
- A combination of positron annihilation techniques with optical methods can correlate irradiation-induced changes of optical properties with irradiation-created defects.

Acknowledgements

- The Czech Science Foundation for financial support from the project P108/11/0958.
- The PSD-14 organisers for providing possibility to participate in the Conference and present here our results.
- The PSD-14 auditory for patient listening.

Thank you for your attention !

The End