

Sintering of zirconia-based nanomaterials studied by variable- energy slow-positron beam

I. Prochazka¹, J. Cizek¹, O. Melikhova¹, W. Anwand², G. Brauer², T. E. Konstantinova³, I. A. Danilenko³

 ¹ Charles University in Prague, Faculty of Mathematics and Physics, Department of Low Temperature Physics, Prague, Czech Republic
 ² Institut f
ür Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

³ Donetsk Institute for Physics and Engineering named after O. O. Galkin, Nat. Acad. Sci. of Ukraine, Donetsk, Ukraine

13th Internat. Workshop on Slow Positron Beam Techniques and Applications, 15–20 September 2013, TU München

Talk schedule

- Introduction
- **D** Experiments
- Results & discussion
- Concluding remarks

Zirconia (ZrO_2) – advantageous thermal, electronic, mechanical and chemical properties:

- □ a high melting point (2750 °C),
- □ a low thermal conductivity,
- \Box a good high- κ dielectricity,
- □ a low electronic conductivity,
- □ a good oxygen ionic conductivity at increased temperatures,
- □ a high hardness combined with a reasonable fracture toughness,
- □ a good resistance to corrosion and wear.

Zirconia – a substance widely used in practice, e.g. in ceramic industry,

Zirconia polymorphism

Pure zirconia:

Repeated passage of the *pure* zirconia through the $t \leftrightarrow m$ phasetransition temperature may lead to a deterioration of mechanical properties of the material.

Û

A stabilisation of the high-temperature zirconia cubic and tetragonal phases is required if zirconia is to be used at temperatures above ≈ 1000 °C.

Yttria-stabilised zirconia (YSZ)

Yttria (Y_2O_3) dispersed in the zirconia lattice as a solid solution is known to be a good phase stabiliser:

- □ ≈ 8 mol. % of Y_2O_3 is sufficient to keep the *c*-phase of zirconia down the room temperature (*c*-YSZ),
- □ ≈ 2÷3 mol. % of Y_2O_3 may stabilise the zirconia *t*-phase below ≈ 1000 °C (*t*-YSZ).

Zirconia ceramics

Sintering of fine powders – an efficient method of manufacturing ceramics:

- □ activation of mass transfer resulting in
 - grain growth and
 - disappearance of pores;
- key driving parameters are
 - sintering temperature, T_{s} ,
 - grain size, d,
 - diffusivity of constituents;
- potentially depth-dependent phenomena.

Zirconia nanomaterials

Use of nanopowders as the starting materials for manufacturing ceramics by sintering:

- □ a more efficient sintering,
- □ a positive influence on resulting porosity,
- a better mixing on the atomic scale even for substances which are immiscible under normal conditions,
- enhanced role of grain boundaries (GBs) compared to more ordinary coarse-grained materials.

Zirconia nanomaterials

Various open-volume structures appear in zirconia-based nanomaterials:

- open-volume defects associated to GBs (vacancy-like misfit defects, triple points),
- □ pores of a few-nanometer size between nanocrystallites (typically ≈ 10÷30 nm particle size),
- □ vacancy-like defects resulting from the stoichiometry violation by dopant oxygen vacancies (V_0) and V_0 -related complexes,
- potential migration of impurity atoms toward GBs.

U

Zirconia-based nanomaterials – a challenge for positron annihilation spectroscopy (PAS).

The aims of the present study:

The potentially depth-dependent sintering-induced diffusion processes in zirconia-based nanomaterials

were studied for different T_s using slow-positron implantation spectroscopy (SPIS).

Samples

Nanopowders

- $\Box \quad ZrO_{2} + 3 \text{ mol.} \% Y_{2}O_{3} (Z3Y),$ $ZrO_{2} + 3 \text{ mol.} \% Y_{2}O_{3} + 1 \text{ mol.} \% Cr_{2}O_{3} (Z3Y1C),$
- method of co-precipitation from water solutions of respective salts taken in stoichiometric proportions,
- □ calcination at 500 °C/2 h in air,
- uniaxial pressure compaction (500 Mpa) disks of ≈10 mm diameter, ≈3 mm thickness,
- □ XRD characterisation of nanopowders:
 - t-phase,
 - $d = 17.0 \pm 0.9 \text{ nm} (Z3Y)$, $13 \pm 1 \text{ nm} (Z3Y1C)$.

Samples

Sintering

- Step-by-step sintering at 600, 700, 800, 900, 1100, 1300 and 1500 °C/1 h in air with subsequent controlled cooling down to room temperature,
- □ SPIS measurement after each step.

SPIS

Magnetically guided positron beam SPONSOR at HZDR (Anwand et al., 1995):

positron energy range $E_{+} = (0.03 - 35 \text{ keV})$,

single HPGe detector measurements (1.05 keV FWHM, 5×10⁵ counts),

shape parameters $S(E_+)$ and $W(E_+)$,

relative positronium (Ps) 3γ fractions $F(E_+)$ - Wu Y.C., 2011.

$$F(E_{+}) = R(E_{+}) - R_{\text{noPs}} , R(E_{+}) \equiv \frac{V(E_{+})}{A_{2\gamma}(E_{+})} , R_{\text{noPs}} \equiv \frac{V_{\text{noPs}}}{A_{2\gamma,\text{noPs}}} ,$$

where

$$A_{2\gamma}$$
 – 511 keV peak area,
V – counts in 480 – 500 keV region,
'noPs' state – *t*-YSZC at E_+ > 20 keV.

SPIS

Magnetically guided positron beam SPONSOR at HZDR (Anwand et al., 1995):

positron energy range E_+ = (0.03 – 35 keV),

single HPGe detector measurements (1.05 keV FWHM, 5×10⁶ counts),

shape parameters $S(E_+)$ and $W(E_+)$,

relative positronium (Ps) 3γ fractions $F(E_+)$ - Wu et al., 2011.

$$F(E_{+}) = R(E_{+}) - R_{noPs}$$
, $R(E_{+}) \equiv \frac{V(E_{+})}{A_{2\gamma}(E_{+})}$, $R_{noPs} \equiv \frac{V_{noPs}}{A_{2\gamma,noPs}}$,

where

'noPs' state – Z3Y1C (a complete suppression of Ps formation due to Cr cations segregated close to GBs (Melikhova et al., 2012).

$S_{\rm bulk}$ vs $T_{\rm s}$

Two kinds of sintering-induced changes leading to a decrease of S_{bulk} with T_{s} :

- (1) disappearance of pores (diminishing of Ps contribution),
- (2) grain growth (a decrease in the concentration of GB-associated defects)

```
In Z3Y, both (1) and (2) were observed.
```

In Z3Y1C, only (2) can be seen.

 S_{bulk} vs T_{s}

An excess in S_{bulk} -values in Z3Y compared to Z3Y1C can be regarded as a measure of porosity.

Fvs E₊

Fvs E₊

Concluding remarks

Present experimental data shows that pronounced effects could be revealed by the depth profiling of sintering-induced microstructure changes by means of SPIS:

A subsurface layer of enhanced porosity was identified which is likely a manifest of sintering-activated diffusion driven from sample interior toward its surface.

Structure inhomogeneities in the nanograined materials on a 100 nm scale, on the other hand, give positron behaviour a rather complicated nature. To reach a more detailed understanding of experimental data, different models of diffusion mechanisms should be taken into account.

Acknowledgements

Financial support:

- The Czech Science Foundation P108/11/1396,
- Charles University in Prague programme UNCE (OM),
- National Academy of Science of Ukraine 89/12-H.

SLOPOS Organizers – for providing time and space for this presentation

Thanks the auditory for patient listening