Renormalized Perturbation Theory for
Quartic Anharmonic Oscillator

J. Zamastil, J. Čížek *, and L. Skála

Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3,
12116 Prague 2, Czech Republic; and
Department of Applied Mathematics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Received December 1, 1998

The analytic structure of the renormalized energy of the quartic anharmonic oscillator described by the Hamiltonian \(H = p^2 + x^2 + \beta x^4 \) is discussed and the dispersion relation for the renormalized energy is found. It follows from the analytic structure that the renormalized strong coupling expansion converges not only for all positive values of the coupling constant \(\beta \) but also for some double-well problems. Further, exact dispersion relations for the weak and strong coupling expansion coefficients of the renormalized energy are derived. The large-order formulas for these coefficients found in previous papers follow simply from the dispersion relations. The renormalized weak coupling expansion is separated into the Stieltjes and non-Stieltjes parts. Numerical tests performed for the ground and first excited states confirm correctness of our conclusions. Finally, properties of different perturbative approaches to the anharmonic oscillator are compared. © 1999 Academic Press

I. INTRODUCTION

In this paper, we investigate the Schrödinger equation for the anharmonic oscillator

\[
H \psi = E \psi, \tag{1}
\]

\[
H = p^2 + x^2 + \beta x^4, \quad \beta > 0, \tag{2}
\]

where \(p = -i d/dx \). As is wellknown, the weak coupling expansion for the energy \(E = E(\beta) \),

\[
E(\beta) = \sum_{n=0}^{\infty} b_n \beta^n, \tag{3}
\]

* Present address: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
diverges for an arbitrary value of the coupling constant \(\beta \in (0, \infty) \) \cite{1-3}. The energy \(E(\beta) \) has also the strong coupling expansion

\[
E(\beta) = \beta^{1/3} \sum_{n=0}^{\infty} K_n \beta^{-2n/3},
\]

which converges for sufficiently large \(\beta \) \cite{3}. The renormalization approach has many advantages \cite{4-8}. It leads to the Schrödinger equation

\[
H_R \psi = E_R(\kappa) \psi,
\]

\[
H_R = \beta^2 + x^2 + \kappa(x^4/3 - x^2),
\]

where

\[
E_R(\kappa) = (1 - \kappa)^{1/2} E(\beta)
\]

and

\[
\beta = \frac{\kappa}{3(1 - \kappa)^{3/2}}.
\]

Similarly to the ordinary energy \(E(\beta) \), the renormalized energy \(E_R(\kappa) \) has a weak coupling expansion

\[
E_R(\kappa) = \sum_{n=0}^{\infty} c_n \kappa^n
\]

divergent for all \(\kappa \in (0, 1] \) \cite{5, 9} and a strong coupling expansion

\[
E_R(\kappa) = \sum_{n=0}^{\infty} \Gamma_n(1 - \kappa)^n,
\]

which has the most favorable properties from all the expansions mentioned above. The results of \cite{7, 8} show that, in contrast to the expansions \cite{3, 4, 9}, the expansion \cite{10} converges for all \(\kappa \in (0, 1] \), i.e., for all \(\beta > 0 \).

The transformation described by Eqs \cite{7, 8} is a special case of a more general transformation discussed in \cite{10}, where the convergence of the delta expansion and order dependent mappings (DE-ODM) for the quartic oscillator was proven. It was shown in \cite{10} that, except for a numerical factor, the transformation \cite{7, 8} is the only transformation between \(E(\beta) \) and \(E_R(\kappa) \) for which the convergence of the DE-ODM can be proven. We note that instead of this rather mathematical approach other, physically motivated arguments were used in \cite{4} to introduce the renormalization \cite{7, 8}.

We note also that the renormalization introduced in \cite{4} is closely related to the Wick ordering of the Hamiltonian \(H \) \cite{2, 11},

\[
: H : = \beta^2 + x^2 + \beta x^4 - 3\beta x^2 + 3\beta/4 - 1.
\]
The large-order behavior of the weak coupling expansion coefficients of the energy corresponding to the Hamiltonian (11) was investigated in [2, 11]. However, the dispersion relation for these coefficients given in [11] is valid for large \(n \) only. The exact dispersion relation for the weak coupling coefficients \(c_n \) is discussed in this paper.

The main purpose of this paper is to prove that the renormalized strong coupling expansion (10) is the convergent Taylor series in the circle \(|1 - \kappa| < 1\), i.e., the expansion (10) converges for all \(\kappa \in (0, 2) \). To achieve this aim we first clarify the analytic structure of the renormalized energy \(E_R(\kappa) \). From this analytic structure, exact dispersion relations for the energy \(E_R(\kappa) \) and \(c_n \) and \(\Gamma_n \) coefficients are found. It is shown that the large-order formulas for the \(c_n \) and \(\Gamma_n \) coefficients found in previous papers [2, 5, 7, 8, 11] follow simply from these dispersion relations. The summation rules for the \(\Gamma_n \) coefficients are also discussed.

Formulation of the convergent perturbation theory is important not only from the point of view of the one-dimensional quartic oscillator but also from the point of view of more complex multidimensional problems in which the standard weak coupling perturbation approaches lead to divergent asymptotic series (for example, the Stark and Zeemann effect for the hydrogen atom or the vibrational problem of molecules [12]). Discussion of the convergent perturbation theory for the quartic oscillator is only a first step in this program.

The paper is organized as follows. Following [2], we first summarize in Section II the derivation of the dispersion relation for the ordinary energy \(E(\beta) \) and exact and large-order formulas for the \(b_n \) coefficients. In Section IIIA, the analytic structure of the renormalized energy \(E_R(\kappa) \) is investigated. Our discussion of the analytic structure of the energy \(E_R(\kappa) \) is similar to that given in [10] in the context of the DE-ODM method. However, instead of investigating the remainder of the weak coupling series with order dependent transformation (8), we keep the transformation fixed and find the dispersion relation for the renormalized energy \(E_R(\kappa) \) (Section IIIIB). It appears that the energy \(E_R(\kappa) \) can be written as a sum of the Stieltjes and non-Stieltjes parts. Using the dispersion relation, we find in Sections IV and V dispersion relations for the \(c_n \) and \(\Gamma_n \) coefficients. The large-order formulas for these coefficients follow simply from the dispersion relations. It is shown in Section V that, in contrast to the divergent weak coupling expansion (9), the strong coupling expansion (10) converges for all \(\kappa \in (0, 2) \). In Section VI, summation rules for the \(\Gamma_n \) coefficients are discussed. Numerical results supporting our theoretical discussion are presented in Section VII. In Appendices A and B, calculation of integrals needed in Sections IV, V, and VII is described.

II. ORDINARY ENERGY \(E(\beta) \) AND \(b_n \) COEFFICIENTS

In this section, we summarize analytic properties of the ordinary energy \(E(\beta) \), derivation of the dispersion relation for the expansion coefficients \(b_n \), and the large-order formula for the \(b_n \) coefficients.
The dispersion relation for the ordinary energy \(E(\beta) \) follows from the rigorous results for \(E(\beta) \) as a function of a complex variable \(\beta \) [1, 3, 13].

The energy \(E(\beta) \) given by Eq. (1) has the following structure on a three-sheeted Riemann surface \(\arg \beta \in (-3\pi, 3\pi) \). On the principal branch \(\arg \beta \in (-\pi, \pi) \), the energy \(E(\beta) \) is analytic and has a cut at \(\arg \beta = \pi \). On the remaining sheets, the energy \(E(\beta) \) has sequences of square-root branch points with the asymptotic phase \(\arg \beta = 3\pi/2 \) and the limit point of the branch points at the origin. Therefore, the singular point \(\beta = 0 \) is not an isolated singularity. Other sequences of the branch points are given by the property

\[
E(\beta) = -E(e^{3\pi i} \beta).
\] (12)

For the ground state energy, sequences of the branch points begin at the radius \(\beta_{\text{min}} = 0.09746483 \) [14] corresponding to the radius of convergence of the series (4). In the case of the first excited state energy, sequences of the branch points begin at \(\beta_{\text{min}} = 0.06165 \) [15]. For the second and third excited states, sequences of the branch points begin at the same radius \(\beta_{\text{min}} \) as that for the ground and first excited states, respectively. For higher excited states, values of \(\beta_{\text{min}} \) go down [14, 15]. For \(|\beta| > \beta_{\text{min}} \), the energy \(E(\beta) \) is analytic on the three-sheeted Riemann surface for all \(\arg \beta \in (-3\pi, 3\pi) \).

Thus, the expansion (4) converges for all complex \(\beta \) for which \(|\beta| > \beta_{\text{min}} \), \(\arg \beta \in (-3\pi, 3\pi) \).

At the singular point \(\beta = 0 \), Eq. (1) becomes the Schrödinger equation of the harmonic oscillator with the energy

\[
E(0) = 2K + 1,
\] (13)

where \(K = 0, 1, 2, \ldots \) is the index of the excitation.

It is seen from Eq. (4) that for \(\beta \to \infty \) the energy \(E(\beta) \) behaves as

\[
E(\beta \to \infty) \to \beta^{1/2} K_0.
\] (14)

To derive the dispersion relation for the energy \(E(\beta) \) we can use the Cauchy theorem. Our approach is only slightly different from that used in [2]. Because of the analyticity of the energy \(E(\beta) \) on the principal branch \(\arg \beta \in (-\pi, \pi) \) we can write

\[
E(\beta) = E(0) + \frac{1}{2\pi i} \oint_C d\tilde{\beta} \frac{E(\tilde{\beta}) - E(0)}{\tilde{\beta} - \beta}, \quad \beta > 0,
\] (15)

where the integration path \(C \) is shown in Fig. 1. For the reason which is clarified below, the constant term \(E(0) \) is written separately. For \(\beta = 0 \) the quartic oscillator becomes the harmonic oscillator. For this reason, Eq. (15) can be used also in the limit \(\beta \to 0^+ \).
The last equation can be written in the form

\[
E(\beta) = E(0) + \frac{1}{2\pi i} \int_{-\beta}^{\beta} d\beta \frac{AE(\beta)}{\beta - \beta} \\
+ \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi \left[E(R_1 e^{i\varphi}) - E(0) \right] \frac{R_1 e^{i\varphi}}{R_1 e^{i\varphi} - \beta} \\
+ \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi \left[E(R_2 e^{i\varphi}) - E(0) \right] \frac{R_2 e^{i\varphi}}{R_2 e^{i\varphi} - \beta},
\]

(16)

where

\[
AE(\beta) = E(\beta + i\varepsilon) - E(\beta - i\varepsilon), \quad \varepsilon \to 0 +
\]

(17)
is the discontinuity of \(E(\beta) \) along the negative real axis. It is obvious that the integral along the circle with the radius \(R_1 \) vanishes for \(R_1 \to 0 \). Expanding the fractions in the remaining two integrals in Eq. (16) into the geometric series in \(\beta/\tilde{\beta} \) and \(\beta/[R_2 e^{i\varphi}] \) we get

\[
E(\beta) = E(0) + \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \int_{-\beta}^{\beta} d\beta \frac{AE(\beta)}{\beta^{n+1}} + \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi \frac{E(R_2 e^{i\varphi}) - E(0)}{(R_2 e^{i\varphi})^n} \right] \beta^n.
\]

(18)

Here, we took into account the fact that because of the equation

\[
\lim_{\beta \to 0+} \oint_C d\beta \frac{E(\beta) - E(0)}{\beta - \beta} = \int_{-\beta}^{\beta} d\beta \frac{AE(\beta)}{\beta} \\
+ i \int_{-\pi}^{\pi} d\varphi \left[E(R_2 e^{i\varphi}) - E(0) \right] = 0
\]

(19)
following from Eq. (15) these expansions do not contain \(n - 0 \) terms. Since \(|E(\beta)| \sim |\beta|^{1/3}\) for \(\beta \to \infty \), the integrals in Eq. (18) along the circle with the radius \(R_2 \) vanish for \(R_2 \to \infty \).

It follows from Eqs. (3), (13), (18), and (19) that

\[b_0 = 2K + 1. \]

(20)

The remaining \(b_n \) coefficients can be calculated from the exact dispersion relation [2, 3] following from Eqs. (3) and (18) for \(R_2 \to \infty \),

\[b_n = \int_{-\infty}^{0} d\tilde{\beta} \frac{\Delta E(\tilde{\beta})}{\tilde{\beta}^{n+1}}, \quad n \geqslant 1. \]

(21)

It is seen from Eq. (4) that the discontinuity of the ordinary energy \(\Delta E(\beta) \) along the negative real axis

\[\Delta E(\beta) = \sum_{n=0}^{\infty} K_n \left(|\beta| e^{i\pi} \right) \frac{1}{(1 - 2n/3)} \right) \left(|\beta| e^{-i\pi} \right) \frac{1}{(1 + 2n/3)} \]

is given by the discontinuity of the function \(\beta^{(1 - 2n)/3} \). Here, we take \(\arg \beta \in (0, \pi) \) in the upper half plane and \(\arg \beta \in (-\pi, 0) \) in the lower half plane. Equation (22) can be used in the region of convergence of the series (4).

To find the large-order behavior of the \(b_n \) coefficients it is sufficient to calculate the discontinuity of the energy \(\Delta E(\beta) \) for small \(\beta < 0 \). For this aim, we cannot use the expansion (22), which diverges for small \(\beta \). Since \(E(\beta) \) is the eigenvalue of the hermitian operator, the discontinuity of the energy \(\Delta E(\beta) \) is purely imaginary. For \(\beta < 0 \), the Hamiltonian \(H \) given by Eq. (2) has no bound states and the reciprocal value of \(|\Delta E(\beta)| \) represents the lifetime of the quasistationary states. For small \(\beta < 0 \) it is possible to calculate this lifetime by means of the JWKB method. The discontinuity of the energy \(\Delta E(\beta) \) in the lowest order of JWKB equals [2, 3, 16]

\[\Delta E(\beta) = i \frac{2^{K+2}}{\pi^{1/2} K!} \left(-\frac{4}{\beta} \right)^{K+1/2} \exp \left(\frac{2}{3\beta} \right). \]

(23)

The large-order formula for the \(b_n \) coefficients can be obtained directly from Eqs. (21) and (23) [2]

\[b_n = (-1)^{n+1} \frac{2 \sqrt{6}}{\pi^{3/2}} \frac{12^K}{K!} \left(\frac{3}{2} \right)^n \Gamma(n + K + 1/2), \quad n \gg 1. \]

(24)

It is seen from this equation that the series (3) diverges for any \(\beta > 0 \).
III. RENORMALIZED ENERGY E_R

To clarify properties of the weak coupling and strong coupling expansions (9) and (10) of the renormalized energy $E_R(\kappa)$ we proceed analogously to the previous section. To calculate the perturbation coefficients c_n and I_n, we use the Cauchy theorem and derive the corresponding dispersion relations. For this aim, we have to know the analytic structure of the renormalized energy $E_R(\kappa)$ given by Eq. (7). We investigate its properties on the sheet arg $\kappa \in (-\pi, \pi)$.

A. Analytic Structure of the Renormalized Energy

For $0 < |\kappa| < 1$, Eq. (8) transforms the sheet arg $\kappa \in (-\pi, \pi)$ into the sheet arg $\beta \in (-\pi, \pi)$. Since the energy $E(\beta = \kappa/[3(1-\kappa)^{3/2}])$ and the function $(1-\kappa)^{1/2}$ are in this region analytic, the renormalized energy $E_R(\kappa)$ is for $0 < |\kappa| < 1$, arg $\kappa \in (-\pi, \pi)$ also analytic.

For $|\kappa| \geq 1$, Eq. (8) transforms the region arg $\kappa \in (-\pi, \pi)$ into the region arg $\beta \in (-3\pi/2, 3\pi/2)$. As mentioned in Section II, the energy $E(\beta)$ is for $|\beta| > \beta_{\min}$ analytic on the three-sheeted Riemann surface. However, the factor $(1-\kappa)^{1/2}$ in Eq. (7) and the transformation (8) have discontinuity along the real axis for $\kappa \geq 1$. Taking $1 - \kappa = |1 - \kappa| \exp(i\pi)$ if we approach the real axis from the upper half plane and $1 - \kappa = |1 - \kappa| \exp(-i\pi)$ if we approach the real axis from the lower half plane we get

$$E_R(|1 - \kappa| e^{\pm i\pi}) = |(1 - \kappa)^{1/2}| e^{\pm i\pi/2} E(|\beta| e^{\mp i\pi/2}),$$

where

$$|\beta| = \frac{|\kappa|}{3|1 - \kappa|^{3/2}}. \tag{26}$$

However, it follows from Eq. (12) that the discontinuity of the energy $E_R(\kappa)$ for real $\kappa \geq 1$ equals zero

$$E_R(|1 - \kappa| e^{i\pi}) - E_R(|1 - \kappa| e^{-i\pi})
= |(1 - \kappa)^{1/2}| e^{i\pi/2} [E(|\beta| e^{-\mp i\pi/2}) + E(|\beta| e^{\mp i\pi/2})] = 0. \tag{27}$$

Therefore, the energy $E_R(\kappa)$ is on the sheet arg $\kappa \in (-\pi, \pi)$ analytic at least for $\kappa_{\min} \leq |\kappa| < \kappa_{\max}$, where κ_{\min} and κ_{\max} correspond to β_{\min} via Eq. (8). The values of κ_{\min} and κ_{\max} can be determined as follows. The function $\beta = \beta(\kappa)$ given by Eq. (8) has a minimum for arg $\kappa = \arg \beta = \pi$. The resulting equation

$$|\beta| - |\kappa|/[3(1 + |\kappa|)^{3/2}]$$

has for given β_{\min} two positive real roots κ_{\min} and κ_{\max}. For the ground state, we get $\kappa_{\min} = 0.5815$ and $\kappa_{\max} = 8.321$. For the first excited state, we have $\kappa_{\min} = 0.262$ and $\kappa_{\max} = 26.1$. As mentioned in Section II, the values of β_{\min} for higher excited states go down. It means that the corresponding κ_{\min} go down and κ_{\max} go up.
Thus, the renormalized energy E_R can be on the sheet $\arg \kappa \in (-\pi, \pi)$ and $\kappa_{\min} < |\kappa| < \kappa_{\max}$ expressed by the convergent series

$$E_R(\kappa) = \left(\frac{\kappa}{3} \right)^{1/3} \sum_{n=0}^{\infty} K_n \left(\frac{\kappa}{3} \right)^{-2/3} (1 - \kappa)^n,$$

(29)

following from Eqs. (4), (7), and (8).

For $|\kappa| > \kappa_{\max}$ and $|\arg (1 - \kappa)| > 2\pi/3$ the branch points of $E(\beta)$ are transformed by Eq. (7) from the sheets $\arg \beta \in (-3\pi/2, 3\pi/2)$ to the sheet $\arg \kappa \in (-\pi, \pi)$. Therefore, $E_R(\kappa)$ is not analytic in this region.

Now we discuss the point $\kappa = 0$ corresponding to $\beta = 0$. It follows from Eqs. (7) and (8) that, similarly to the ordinary energy $E(\beta)$, the renormalized energy $E_R(\kappa)$ is singular at $\kappa = 0$. For $\kappa = 0$, the Hamiltonian (6) becomes the Hamiltonian of the harmonic oscillator. Therefore, we get

$$E_R(\kappa = 0) = E(\beta = 0) = 2K + 1.$$

(30)

The point $\kappa = 1$ corresponds to $\beta \to \infty$. It follows from Eqs. (4) and (7) that for $\beta \to \infty$

$$E_R(\kappa) = (1 - \kappa)^{1/2} \beta^{1/3} K_0.$$

(31)

It is seen from this equation and Eqs. (8) and (10) that

$$E_R(\kappa = 1) = \Gamma_0 = K_0/3^{1/3}.$$

(32)

It means that, in contrast to the ordinary energy, the renormalized energy remains finite at the point $\kappa = 1$.

Our discussion can be summarized as follows. The renormalized energy $E_R(\kappa)$ given by Eq. (7) is analytic in the sheet $\arg \kappa \in (-\pi, \pi)$ at least for $0 < |\kappa| < \kappa_{\max}$. Outside of this region non-analytic behavior related to the branch points of the energy $E(\beta)$ can be expected. Since $\kappa_{\max} > 2$, we get as a special case that the renormalized energy $E_R(\kappa)$ is in the sheet $\arg \kappa \in (-\pi, \pi)$ analytic everywhere in the circle $|\kappa - 1| < 1$. These results are used in the following sections.

We note that these conclusions about the analytic structure of the renormalized energy agree with those obtained within the DE-ODM method [10].

B. Dispersion Relation for the Renormalized Energy

Now it is obvious that we can use the Cauchy theorem for the energy $E_R(\kappa)$ with the integration path shown in Fig. 1, where $R_2 < \kappa_{\max}$. In contrast to the ordinary energy $E(\beta)$, we cannot perform the limit $R_2 \to \infty$ here. We get

$$E_R(\kappa) = \frac{1}{2\pi i} \int_{-R_2}^{R_2} d\kappa \frac{\Delta E_R(\kappa)}{\kappa - \kappa} + \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi E_R(R_1 e^{i\varphi}) \frac{R_1 e^{i\varphi}}{R_1 e^{i\varphi} - \kappa},$$

$$+ \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi E_R(R_2 e^{i\varphi}) \frac{R_2 e^{i\varphi}}{R_2 e^{i\varphi} - \kappa},$$

(33)
where $R_2<\kappa_{\text{max}}$. For $\kappa=0$ the quartic oscillator becomes the harmonic oscillator. For this reason, Eq. (33) can be used also in the limit $\kappa \to 0^+$. Assuming $R_1 \to 0$, the energy $E_R(\kappa)$ behaves as $E_R(\kappa) \to 2K + 1$ and the second integral vanishes. To calculate $E_R(\kappa)$ from Eq. (33) it is sufficient to know the discontinuity $\Delta E_R(\kappa)$ along the negative real axis and to calculate the integral along the circle with the radius R_2. The final formula for $E_R(\kappa)$ reads

$$E_R(\kappa) = E_R^{(1)}(\kappa) + E_R^{(2)}(\kappa),$$

(34)

where

$$E_R^{(1)}(\kappa) = \frac{1}{2\pi i} \int_{-R_2}^{0} d\tilde{\kappa} \frac{\Delta E_R(\tilde{\kappa})}{\tilde{\kappa} - \kappa},$$

(35)

is the contribution from the negative real axis and

$$E_R^{(2)}(\kappa) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \ E_R(R_2 e^{i\phi}) \frac{R_2 e^{i\phi}}{R_2 e^{i\phi} - \kappa},$$

(36)

is the contribution from the circle with the radius R_2.

It follows from Eq. (7) that the discontinuity of the renormalized energy along the negative real axis equals

$$\Delta E_R(\kappa) = (1 - \kappa)^{1/2} \Delta E(\beta).$$

(37)

In the lowest order of κ we get from Eqs. (23) and (37)

$$\Delta E_R(\kappa) = i \frac{2^{K+2}}{\pi^{1/2} e^{1/2}} K! \left(-\frac{12}{K} \right)^{K+1/2} \exp \left(\frac{2}{K} \right).$$

(38)

This equation represents the lowest order of the JWKB approximation valid for small $\kappa < 0$. Using the method suggested in [16] we derived Eq. (38) also directly by means of the JWKB method applied to Eq. (5) for small $\kappa < 0$. Equation (38) will be used for the derivation of the large-order formulas for the coefficients c_n and I_n in Sections IV and V.

At the end of this section, we show that $-E_R^{(1)}(\kappa)$ is the Stieltjes function.

It can be proven directly from the definition of the Stieltjes function (see, for example, [3, 17, 18]). Substituting $\tilde{\kappa} = -1/x$ into Eq. (35) we get

$$-E_R^{(1)}(\kappa) = \int_{0}^{\infty} \frac{d\psi_R(x)}{1 + \kappa x},$$

(39)

where

$$d\psi_R(x) = 1/(2\pi i) \Delta E_R(-1/x)(1/x) \, dx, \quad x \geq 1/R_2$$

(40)
and
\[d\psi_R(x) = 0, \quad x < 1/R_2. \] (41)

Now we use the fact that the function
\[E(0) - E(\beta) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\tilde{\beta} \frac{\Delta E(\tilde{\beta})}{\tilde{\beta} - \tilde{\beta}} = \int_0^{\infty} \frac{d\psi(z)}{1 + \beta z}, \] (42)

where \(\tilde{\beta} = -1/z \) and
\[d\psi(z) = 1/(2\pi i) \Delta E(-1/z)(1/z) \, dz \] (43)
is the Stieltjes function in the extended sense [3]. Therefore, the measure \(d\psi(z) \) is nonnegative. Using Eq. (37) it is seen that also the measure \(d\psi_R(x) = 0 \) for \(x \in (0, 1/R_2) \) and \(d\psi_R(x) = (1 + 1/x)^{1/2} (z/x)(d\psi(z)/dz) \, dx \) for \(x \in (1/R_2, \infty) \) is nonnegative for all \(x \in (0, \infty) \). Therefore, \(E_R^{(1)}(\kappa) \) is the Stieltjes function. This result is used for a numerical test of the correctness of the dispersion relation (34)–(36) in Section VII.

We note that the approximate measures \(d\psi(z) \) and \(d\psi_R(x) \) given by Eqs. (23), (43) and (38), (40)–(41) obey the conditions \(d\psi(z) \geq 0 \) and \(d\psi_R(x) \geq 0 \).

IV. COEFFICIENTS \(c_n \)

In this section, we discuss the exact dispersion relation for the weak coupling expansion coefficients \(c_n \) and derive the large-order formula for these coefficients. The reason for the divergence of the weak coupling series (9) is clarified.

The dispersion relation for the \(c_n \) coefficients can be derived analogously to Eq. (21) for the \(b_n \) coefficients. Equations (35) and (36) can be written in the form
\[E_R^{(1)}(\kappa) = \frac{1}{2\pi i} \int_{-\kappa}^{\kappa} d\kappa \frac{\Delta E_R(\kappa)}{\kappa} \frac{1}{1 - \kappa/\kappa} \] (44)

and
\[E_R^{(2)}(\kappa) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \frac{E_R(R_2e^{i\phi})}{1 - \kappa} \] (45)

Expanding the last fractions in these equations into the geometric series we get the exact dispersion relation for the \(c_n \) coefficients
\[c_n = c_n^{(1)} + c_n^{(2)}, \quad n \geq 0, \] (46)
where the \(c_n^{(1)} \) coefficient is the contribution from the negative real axis

\[
c_n^{(1)} = \frac{1}{2\pi i} \int_{-\infty}^{0} d\tilde{k} \frac{\Delta E_R(\tilde{k})}{\tilde{k}^{n+1}}
\] \hspace{1cm} (47)

and \(\Delta E_R(\tilde{k}) \) is given by Eq. (37). The second term, \(c_n^{(2)} \), is the contribution from the circle with the radius \(R_2 \)

\[
c_n^{(2)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi \frac{E_R(R_2 e^{i\varphi})}{(R_2 e^{i\varphi})^n},
\] \hspace{1cm} (48)

where \(E_R(\kappa) \) is given by Eq. (29). The integral in the last equation can be calculated analytically (see Appendix A).

Now we show that the contribution of the \(c_n^{(2)} \) coefficients to \(c_n \) can be neglected for large \(n \).

First we find the large-order formula for the \(c_n^{(1)} \) coefficients. For large \(n \), the dominant contribution to the integral (47) is given by \(\tilde{k} \to 0^- \). Therefore, we can replace \(R_2 \) in Eq. (47) by infinity and get

\[
c_n^{(1)} = \frac{1}{2\pi i} \int_{-\infty}^{0} d\tilde{k} \frac{\Delta E_R(\tilde{k})}{\tilde{k}^{n+1}}, \quad n \gg 1.
\] \hspace{1cm} (49)

Substituting Eq. (38) into Eq. (49) we obtain the leading term of the large-order formula for the coefficients \(c_n^{(1)} \)

\[
c_n^{(1)} = (-1)^n + \frac{1}{2\pi} \sqrt{\frac{6}{\pi^3 e^2}} \frac{12\kappa}{K!} \frac{1}{2\pi} \Gamma(n + K + 1/2), \quad n \gg 1.
\] \hspace{1cm} (50)

Now we discuss the \(c_n^{(2)} \) contribution to \(c_n \). Taking the absolute value of \(c_n^{(2)} \) and denoting

\[
\max_{\varphi \in (-\pi, \pi)} |E_R(R_2 e^{i\varphi})| = C
\] \hspace{1cm} (51)

we get the estimate

\[
|c_n^{(2)}| = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi \frac{E_R(R_2 e^{i\varphi})}{(R_2 e^{i\varphi})^n} \right] \leqslant \frac{C}{R_2^n},
\] \hspace{1cm} (52)

It is obvious that for \(1 < R_2 < \kappa_{\text{max}} \) the \(c_n^{(2)} \) contribution to the \(c_n \) coefficients can be neglected for large \(n \). Thus, the large-order behavior of the \(c_n \) coefficients is given by the formula

\[
c_n = (-1)^n + \frac{1}{2\pi} \sqrt{\frac{6}{\pi^3 e^2}} \frac{12\kappa}{K!} \frac{1}{2\pi} \Gamma(n + K + 1/2), \quad n \gg 1.
\] \hspace{1cm} (53)
in agreement with [2, 5, 11]. It follows from Eqs. (24) and (53) that the ratio of the b_n and c_n coefficients equals

$$\frac{b_n}{c_n} = \alpha^{3n}, \quad n \gg 1. \quad (54)$$

We see that the weak coupling expansion of the renormalized ground state energy $E_R(\kappa)$ diverges for any $\kappa > 0$ similarly to the weak coupling expansion of the ordinary energy $E(\beta)$. In both cases, the divergent parts of the coefficients c_n and b_n are given by the integration of the discontinuity of the energies $AE_R(\kappa)$ and $AE(\beta)$ in the vicinity of the expansion points $\kappa = 0$ and $\beta = 0$. We see in agreement with [9, 11] that the divergence of the weak coupling expansions is a general feature of the anharmonic oscillators.

We note that the dispersion relation for the c_n coefficients in the form of Eq. (49) was given already in [11]. We have shown here that it is the approximate relation which can be used for large n only. The exact dispersion relation is given by Eqs. (46)–(48).

V. COEFFICIENTS I_n

In this section we show that the strong coupling expansion (10) is a convergent series. We find the exact dispersion relation for the I_n coefficients and derive the large-order formula for these coefficients. This large-order formula provides more information on the convergence of the expansion.

The renormalized strong coupling expansion (10) is the expansion of $E_R(\kappa)$ at the point $\kappa = 1$. It follows from Section III that the energy $E_R(\kappa)$ is analytic in the circle $|\kappa - 1| < 1$ with the center at the point $\kappa = 1$ corresponding to $\beta = \infty$. Thus, the series (10) is the convergent Taylor expansion in this circle and converges for all $\kappa \in (0, 2)$. This result extends the proof of [6], which was given for the neighborhood of $\kappa = 1$ only.

The exact dispersion formula for the I_n coefficients can be obtained analogously to that for the c_n coefficients. If we use the integration path along the circle with the center at $\kappa = 1$ and radius R_2 (see Fig. 2), we can write equations for $E_R^{(1)}(\kappa)$ and $E_R^{(2)}(\kappa)$ analogous to Eqs. (35) and (36)

$$E_R^{(1)}(\kappa) = \frac{1}{2\pi i} \oint_{-R_2+1} \frac{\Delta E_R(\hat{\kappa})}{\hat{\kappa} - 1} \left(\frac{1}{1 - \frac{\kappa - 1}{\hat{\kappa} - 1}} \right) d\hat{\kappa} = \frac{1}{2\pi i} \oint_{-R_2+1} \frac{E_R(R_2 e^{i\varphi} + 1)}{1 - \frac{\kappa - 1}{R_2 e^{i\varphi}}}, \quad (55)$$

and

$$E_R^{(2)}(\kappa) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{E_R(R_2 e^{i\varphi} + 1)}{1 - \frac{\kappa - 1}{R_2 e^{i\varphi}}}. \quad (56)$$
Expanding the last fractions in these equations into the geometric series we get the exact dispersion relation for the Γ_n coefficients

$$\Gamma_n = \Gamma_n^{(1)} + \Gamma_n^{(2)}, \quad n \geq 0,$$

where

$$\Gamma_n^{(1)} = \frac{(-1)^n}{2\pi i} \int_{-\infty}^{0} d\tilde{\kappa} \frac{AE_R(\tilde{\kappa})}{(\tilde{\kappa} - 1)^{n+1}},$$

and $AE_R(\tilde{\kappa})$ is given by Eq. (37). The second term equals

$$\Gamma_n^{(2)} = \frac{(-1)^n}{2\pi i} \int_{-\pi}^{\pi} d\varphi \frac{E_R(R_2 e^{i\varphi} + 1)}{(R_2 e^{i\varphi})^n},$$

where $E_R(\kappa)$ is given by Eq. (29). The integral in the last equation can be calculated analytically (see Appendix B).

Now we show that, analogously to the $c_n^{(2)}$ coefficients, the contribution of the $\Gamma_n^{(2)}$ coefficients to Γ_n can be neglected for large n.

For large n, the dominant contribution to the integral (58) is given by $\tilde{\kappa} \to 0^-$. Therefore, we can replace R_2 in Eq. (58) by infinity and get

$$\Gamma_n^{(1)} = \frac{(-1)^n}{2\pi i} \int_{-\infty}^{0} d\tilde{\kappa} \frac{AE_R(\tilde{\kappa})}{(\tilde{\kappa} - 1)^{n+1}}, \quad n \gg 1.$$

Inserting Eq. (38) into Eq. (60) we obtain after some manipulation the leading term of the large-order behavior of the coefficients $\Gamma_n^{(1)}$

$$\Gamma_n^{(1)} = -\frac{4\sqrt{6}}{2\pi^3} \frac{12\kappa}{\sqrt{K}} \int_{0}^{\infty} dt \frac{t^{\kappa - \frac{3}{2}} e^{-t}}{(1 + 2/t)^{n+1}}.$$

Equation (61) is equivalent to Eq. (23) in [8] for $m = 2$.
To find the analytic large-order formula for the $I_n^{(1)}$ coefficients we rewrite Eq. (61) as

$$I_n^{(1)} = -\frac{4\sqrt{6}}{\pi^{3/2}e^{3}} \frac{12K}{K!} \int_0^\infty dt \, t^{K-3/2} \, e^{-(t+(n+1)\ln(1+2/n))},$$ \hspace{1cm} (62)

and use the Laplace method [17] to calculate the integral of the form

$$\int_a^b \, dx \, \varphi(x) \, e^{-f(x)} \approx \varphi(x_0) \left(\frac{2\pi}{f''(x)|_{x=x_0}} \right)^{1/2} \, e^{-f(x_0)}.$$ \hspace{1cm} (63)

Here, x_0 is the point where $f'(x)|_{x-x_0}=0$. The large-order formula for the $I_n^{(1)}$ coefficients then reads

$$I_n^{(1)} = -\frac{4\sqrt{6}}{\pi^{3/2}e^{3}} \frac{12K}{K!} (2n)^{(K-1)/2} \, e^{-2\sqrt{2n}}.$$ \hspace{1cm} (64)

Now we discuss the $I_n^{(2)}$ contribution to I_n. Taking the absolute value of $I_n^{(2)}$ and denoting

$$\max_{\varphi \in (-\pi, \pi)} |E_R(R_2e^{\rho} + 1)| = D$$ \hspace{1cm} (65)

we get the estimate

$$|I_n^{(2)}| = \left| \frac{(-1)^n}{2\pi} \int_{-\pi}^{\pi} d\rho \, \frac{E_R(R_2e^{\rho} + 1)}{(R_2e^{\rho})^n} \right| \leq \frac{D}{R_2^n}.$$ \hspace{1cm} (66)

It is obvious that taking sufficiently large R_2 obeying the condition $1 < R_2 < \kappa_{\max} - 1$ we can neglect the $I_n^{(2)}$ contribution to the I_n coefficients for large n. Thus, the final large-order formula for the I_n coefficients is given by the $I_n^{(1)}$ part

$$I_n = -\frac{4\sqrt{6}}{\pi^{3/2}e^{3}} \frac{12K}{K!} (2n)^{(K-1)/2} \, e^{-2\sqrt{2n}}.$$ \hspace{1cm} (67)

This result was first obtained from the analysis of the numerically computed coefficients I_n [7]. Later, it was derived from the large-order formula for the c_n coefficients (53) [8]. Our approach represents direct and more rigorous derivation without using the large-order formula for the c_n coefficients.

Using, for example, the d'Alembert convergence criterion it follows from Eq. (67) that, in agreement with our conclusion made at the beginning of this section, the strong coupling expansion (10) converges for all $\kappa \in (0, 1]$ corresponding to $\beta \in (0, \infty)$. It is seen, however, that it converges also for $\kappa \in [1, 2)$ corresponding to the double-well problem with the Hamiltonian (6) written in the form

$$H_R = p^2 + \kappa x^4/3 + (1-\kappa)x^2.$$ \hspace{1cm} (68)
We note also that in the region of analyticity of the energy $E_K(\kappa)$ the series (10) can be analytically continued to $\kappa > 2$ [19].

VI. SUMMATION RULES

In this section, we derive summation rules describing the mutual relation of the $\Gamma^{(1)}_n$ and $c^{(1)}_n$ coefficients.

Using the weak and strong coupling expansions of the renormalized energy we get

$$E^{(1)}_\kappa = \sum_{n=0}^{\infty} c^{(1)}_n \kappa^n = \sum_{n=0}^{\infty} \Gamma^{(1)}_n (1 - \kappa)^n, \quad i = 1, 2. \quad (69)$$

Putting $\kappa = 0$ we have the summation rule

$$c^{(1)}_0 = \sum_{n=0}^{\infty} \Gamma^{(1)}_n, \quad i = 1, 2. \quad (70)$$

Calculating the derivatives of the series in Eq. (69) at the point $\kappa = 0$ we get the general summation rule

$$(-1)^{j!} c^{(j)}_j = \sum_{n=j}^{\infty} n(n-1) \cdots (n-j+1) \Gamma^{(j)}_n, \quad i = 1, 2. \quad (71)$$

From Eqs. (70) and (71), we get also the summation rule for the c_n and Γ_n coefficients

$$(-1)^{j!} c_j = \sum_{n=j}^{\infty} n(n-1) \cdots (n-j+1) \Gamma_n, \quad j \geq 0, \quad (72)$$

which was derived in [7]. For $j = 0$ we get as a special case [6]

$$c_0 = 2K + 1 = \sum_{n=0}^{\infty} \Gamma_n. \quad (73)$$

These rules can be used for numerical tests of the computed coefficients.

It follows from Eq. (69) for $i = 1$ and Sections IV and V that the large-order formula for the Γ_n coefficients (67) can be obtained from the large-order formula for the c_n coefficients (53) as was done in [8].

VII. NUMERICAL RESULTS

To clarify the structure of the coefficients c_n and Γ_n, we first compute the numerical values of the $c^{(1)}_n$, $c^{(2)}_n$ and $\Gamma^{(1)}_n$, $\Gamma^{(2)}_n$ coefficients. Then, we verify the summation
rules given in Section VI and check the correctness of the dispersion relation (34)-(36).

To perform numerical tests, we used numerical values of 200 hundred \(\Gamma_n \) coefficients \([7]\) for the ground and first excited states of the quartic oscillator calculated by the method described in \([20]\).

From these coefficients, we calculated the \(K_n \) coefficients via the equations \([21]\)

\[
K_0 = 3^{1/3} \Gamma_0
\]

and

\[
K_n 3^{(2n-1)/3} = \Gamma_n - \sum_{i=0}^{n-1} K_i 3^{(2i-1)/3} \frac{\Gamma_i}{(n-i)!} \frac{\Gamma_i^{(2i-1)/3} + n-i}{\Gamma_i^{(2i-1)/3}}
\]

(75)

following from a comparison of the series (4) and (10).

The exact \(c_n \) coefficients in the form of rational numbers were calculated by the method described in \([1, 2, 5]\).

Then, using Eqs. (48), (59), (29) and the integrals given in Appendices A and B we calculated the \(c_n^{(2)} \) and \(\Gamma_n^{(2)} \) coefficients. To calculate these coefficients by the method described in Appendices A and B we used 200 coefficients \(K_n \) for the ground state and 100 coefficients \(K_n \) for the first excited state. For the ground state, the summation of 200 terms of the series (4) gives good results for \(|\beta| > 0.12\). To achieve high accuracy of the renormalized energy \(E_p(\kappa) \) we must take \(|\beta|\) as large as possible. It is obvious that the function (26), where \(\kappa = |\kappa| \exp(i\phi) \) and \(|\kappa|\) is fixed, has a minimum at \(\phi = \pi \). Equation (8) transforms \(\kappa \in (-\infty, 0) \) into \(\beta \in (-\frac{2\pi}{3}, 0) \). This transformation yields the maximum absolute value of \(\beta \) for \(\kappa = -2 \). For this reason, we used \(R_2 = 2 \) in our calculations.

The remaining coefficients, \(c_n^{(1)} \) and \(\Gamma_n^{(1)} \), were found by means of Eqs. (46) and (57),

\[
\begin{align*}
c_n^{(1)} &= c_n - c_n^{(2)}, \\
\Gamma_n^{(1)} &= \Gamma_n - \Gamma_n^{(2)},
\end{align*}
\]

(76)

where \(c_n \) and \(\Gamma_n \) are the exact values of the coefficients. We note that the \(c_n^{(1)} \) and \(\Gamma_n^{(1)} \) coefficients could be derived also directly from the discontinuity of the energy \(E_p(\kappa) \) (see Eqs. (47) and (58)). However, bearing in mind the magnitude of the coefficients \(c_n^{(2)} \) and \(\Gamma_n^{(2)} \), this would require extremely precise knowledge of the discontinuity \(\Delta E_p(\kappa) \). We shall discuss this point in a future paper.

The values of the \(c_n^{(1)}, c_n^{(2)}, \Gamma_n^{(1)}, \) and \(\Gamma_n^{(2)} \), coefficients, \(n = 0, ..., 20 \), for the ground and first excited states are shown in Tables I and II. In contrast to the \(c_n^{(1)} \) coefficients, the \(\Gamma_n^{(1)} \) coefficients for \(n > 3 \) do not change sign. It is seen that while the absolute value of the \(c_n^{(1)} \) coefficients increases rapidly with \(n \), the absolute value of
The Stieltjes $c_n^{(1)}$ and Complementary Non-Stieltjes $c_n^{(2)}$ Parts of the Weak Coupling Coefficients
$c_n = c_n^{(1)} + c_n^{(2)}$ for the Ground and First Excited States of the Quartic Anharmonic Oscillator

<table>
<thead>
<tr>
<th>n</th>
<th>$c_n^{(1)}$</th>
<th>$c_n^{(2)}$</th>
<th>$c_n^{(3)}$</th>
<th>$c_n^{(4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.100069×10^{-1}</td>
<td>0.100069×10^{-1}</td>
<td>-0.1165×10^{3}</td>
<td>3.165×10^{3}</td>
</tr>
<tr>
<td>1</td>
<td>0.928246×10^{-1}</td>
<td>0.259282×10^{-1}</td>
<td>0.176×10^{3}</td>
<td>0.426×10^{3}</td>
</tr>
<tr>
<td>2</td>
<td>-0.105189×10^{-1}</td>
<td>-0.105225×10^{-1}</td>
<td>-0.245×10^{4}</td>
<td>-0.220×10^{4}</td>
</tr>
<tr>
<td>3</td>
<td>0.153462×10^{-1}</td>
<td>0.227779×10^{-1}</td>
<td>0.456×10^{5}</td>
<td>0.740×10^{5}</td>
</tr>
<tr>
<td>4</td>
<td>-0.264199×10^{-1}</td>
<td>-0.191664×10^{-1}</td>
<td>-0.277×10^{6}</td>
<td>-0.210×10^{6}</td>
</tr>
<tr>
<td>5</td>
<td>0.666485×10^{-1}</td>
<td>0.797523×10^{-1}</td>
<td>0.3194×10^{7}</td>
<td>0.1105×10^{7}</td>
</tr>
<tr>
<td>6</td>
<td>-0.183664×10^{3}</td>
<td>-0.329865×10^{3}</td>
<td>-0.1107×10^{8}</td>
<td>-0.458×10^{8}</td>
</tr>
<tr>
<td>7</td>
<td>0.604018×10^{3}</td>
<td>0.141577×10^{3}</td>
<td>0.4358×10^{9}</td>
<td>0.1964×10^{9}</td>
</tr>
<tr>
<td>8</td>
<td>-0.228519×10^{3}</td>
<td>-0.619169×10^{3}</td>
<td>-0.1915×10^{10}</td>
<td>-0.856×10^{10}</td>
</tr>
<tr>
<td>9</td>
<td>0.977773×10^{3}</td>
<td>0.274991×10^{3}</td>
<td>0.9525×10^{11}</td>
<td>0.3797×10^{11}</td>
</tr>
<tr>
<td>10</td>
<td>-0.466877×10^{3}</td>
<td>-0.639076×10^{3}</td>
<td>-0.1701×10^{12}</td>
<td>-0.7705×10^{12}</td>
</tr>
<tr>
<td>11</td>
<td>0.246122×10^{3}</td>
<td>0.561476×10^{3}</td>
<td>0.3025×10^{13}</td>
<td>0.1735×10^{13}</td>
</tr>
<tr>
<td>12</td>
<td>-0.141989×10^{4}</td>
<td>-0.297108×10^{4}</td>
<td>-0.1925×10^{14}</td>
<td>-0.1253×10^{14}</td>
</tr>
<tr>
<td>13</td>
<td>0.898353×10^{4}</td>
<td>0.118559×10^{4}</td>
<td>0.1317×10^{15}</td>
<td>0.1029×10^{15}</td>
</tr>
<tr>
<td>14</td>
<td>-0.601960×10^{4}</td>
<td>-0.549994×10^{4}</td>
<td>-0.2762×10^{16}</td>
<td>-0.2732×10^{16}</td>
</tr>
<tr>
<td>15</td>
<td>0.437271×10^{5}</td>
<td>0.264662×10^{5}</td>
<td>0.1776×10^{17}</td>
<td>0.1771×10^{17}</td>
</tr>
<tr>
<td>16</td>
<td>-0.339436×10^{5}</td>
<td>-0.120128×10^{5}</td>
<td>-0.1052×10^{18}</td>
<td>-0.1048×10^{18}</td>
</tr>
<tr>
<td>17</td>
<td>0.280429×10^{5}</td>
<td>0.564926×10^{5}</td>
<td>0.5545×10^{19}</td>
<td>0.5540×10^{19}</td>
</tr>
<tr>
<td>18</td>
<td>-0.254678×10^{5}</td>
<td>-0.266001×10^{5}</td>
<td>-0.5153×10^{20}</td>
<td>-0.5150×10^{20}</td>
</tr>
<tr>
<td>19</td>
<td>0.227499×10^{6}</td>
<td>0.126210×10^{6}</td>
<td>0.5049×10^{21}</td>
<td>0.5046×10^{21}</td>
</tr>
<tr>
<td>20</td>
<td>-0.220268×10^{6}</td>
<td>-0.599127×10^{6}</td>
<td>-0.5198×10^{22}</td>
<td>-0.5196×10^{22}</td>
</tr>
</tbody>
</table>

the $c_n^{(2)}$ coefficients goes rapidly to zero. As seen from Table I, the $c_n^{(2)}$ contribution to c_n can be neglected for large n. A similar situation can be observed in the case of the $\Gamma_n^{(2)}$ coefficients (see Table II).

In Table III we test the validity of the summation rules (70) for $i = 1, 2$ and (71) for $j = 1, 2$ for the ground and first excited states. The coefficients $c_n^{(i)}$ and $\Gamma_n^{(i)}$ were obtained by the method described above. The results confirm correctness of the computed coefficients. Since the coefficients $\Gamma_n^{(2)}$ go down with increasing n more rapidly than the $\Gamma_n^{(1)}$ coefficients, the accuracy of the summation rules for $i = 2$ is better than that for $i = 1$.

We showed in Section IIIIB that if the dispersion relation (34)–(36) is correct then the series

$$-E_n^{(1)}(\kappa) = - \sum_{n=0}^{\infty} c_n^{(1)} \kappa^n,$$

(77)

where $c_n^{(1)}$ is given by Eq. (76), has to be the Stieltjes series. Therefore, this series must be summable by means of the Padé approximants P_N^N and P_N^{N+1}, which must form monotonically increasing lower bounds and monotonically decreasing upper
TABLE II
The $F_n^{(1)}$ and $F_n^{(2)}$ Parts of the Strong Coupling Coefficients $F_n = F_n^{(1)} + F_n^{(2)}$ for the Ground and First Excited States of the Quartic Oscillator

<table>
<thead>
<tr>
<th>n</th>
<th>$F_n^{(1)}$</th>
<th>$F_n^{(2)}$</th>
<th>$F_n^{(1)}$</th>
<th>$F_n^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.54019949634710^{-2}</td>
<td>0.740661600531410^{0}</td>
<td>-0.05250823750610^{-3}</td>
<td>0.27197969578010^{3}</td>
</tr>
<tr>
<td>1</td>
<td>-0.22949239630410^{-2}</td>
<td>0.27941059586210^{0}</td>
<td>-0.03955275856010^{-4}</td>
<td>0.46431142971510^{3}</td>
</tr>
<tr>
<td>2</td>
<td>0.11023757933710^{-2}</td>
<td>-0.1007651416210^{-2}</td>
<td>0.190012741753710^{-2}</td>
<td>-0.12716970413910^{-2}</td>
</tr>
<tr>
<td>3</td>
<td>-0.32807641865110^{-3}</td>
<td>0.61927103709610^{-4}</td>
<td>-0.09005029244010^{-2}</td>
<td>0.229043105710^{-2}</td>
</tr>
<tr>
<td>4</td>
<td>0.26934978784210^{-3}</td>
<td>-0.2889444776210^{-5}</td>
<td>0.511252074210^{-2}</td>
<td>-0.35748536764010^{-3}</td>
</tr>
<tr>
<td>5</td>
<td>-0.1369871990010^{-3}</td>
<td>0.11077531692310^{-4}</td>
<td>-0.28380302909810^{-2}</td>
<td>0.146431120210^{-3}</td>
</tr>
<tr>
<td>6</td>
<td>-0.7403619576810^{-4}</td>
<td>0.28792472410^{-6}</td>
<td>0.16413135757410^{-5}</td>
<td>-0.40628803584010^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>0.4149679556110^{-4}</td>
<td>-0.82332308743210^{-6}</td>
<td>-0.098458000296610^{-3}</td>
<td>0.1158229581210^{-4}</td>
</tr>
<tr>
<td>8</td>
<td>-0.3404402659810^{-4}</td>
<td>0.2417282026210^{-6}</td>
<td>-0.66091378521910^{-5}</td>
<td>0.369718552910^{-5}</td>
</tr>
<tr>
<td>9</td>
<td>-0.1435340326710^{-4}</td>
<td>-0.7165471397410^{-7}</td>
<td>-0.28330302509710^{-3}</td>
<td>-0.995874543410^{-6}</td>
</tr>
<tr>
<td>10</td>
<td>0.879816480210^{-5}</td>
<td>-0.2144611243410^{-7}</td>
<td>-0.2532381470610^{-5}</td>
<td>-0.2981103917810^{-6}</td>
</tr>
<tr>
<td>11</td>
<td>-0.5222165367410^{-5}</td>
<td>-0.6162629056710^{-8}</td>
<td>-0.16859430484610^{-6}</td>
<td>-0.90146629828910^{-7}</td>
</tr>
<tr>
<td>12</td>
<td>-0.3538669970410^{-5}</td>
<td>0.19905499710^{-8}</td>
<td>-0.11427708971310^{-3}</td>
<td>-0.27492208343610^{-7}</td>
</tr>
<tr>
<td>13</td>
<td>-0.209998829610^{-5}</td>
<td>-0.6161597070210^{-9}</td>
<td>-0.78686132506810^{-4}</td>
<td>-0.84485041905410^{-6}</td>
</tr>
<tr>
<td>14</td>
<td>-0.15330466092310^{-5}</td>
<td>-0.10920197591410^{-9}</td>
<td>-0.05493597421210^{-6}</td>
<td>-0.20096770092910^{-8}</td>
</tr>
<tr>
<td>15</td>
<td>-0.10326041676910^{-5}</td>
<td>-0.58823723211610^{-10}</td>
<td>-0.3832027489610^{-8}</td>
<td>-0.16047421232910^{-9}</td>
</tr>
<tr>
<td>16</td>
<td>-0.70491534610210^{-6}</td>
<td>-0.18370163100810^{-11}</td>
<td>-0.2775111650710^{-10}</td>
<td>-0.25362951157510^{-9}</td>
</tr>
<tr>
<td>17</td>
<td>-0.60708898336710^{-7}</td>
<td>0.5759413221410^{-11}</td>
<td>-0.25931936366110^{-10}</td>
<td>-0.7926041518610^{-10}</td>
</tr>
<tr>
<td>18</td>
<td>-0.3401326356710^{-6}</td>
<td>0.18319956633210^{-11}</td>
<td>-0.14095312922910^{-10}</td>
<td>-0.24934027239110^{-10}</td>
</tr>
<tr>
<td>19</td>
<td>-0.2402096951210^{-6}</td>
<td>-0.57185876441810^{-12}</td>
<td>-0.10717055524110^{-4}</td>
<td>-0.78661079639110^{-11}</td>
</tr>
<tr>
<td>20</td>
<td>-0.17113989288810^{-6}</td>
<td>0.18298238690610^{-12}</td>
<td>-0.07914844772410^{-5}</td>
<td>-0.24886606567310^{-11}</td>
</tr>
</tbody>
</table>

Bounds to the value of $F^{(1)}(\kappa)$ (see, for example, [3, 17, 18]). The sum $\sum_{n=0}^{\infty} c_n^{(2)} \kappa^n$ is a rapidly convergent series (see Table I) with the radius of convergence $R_2 = 2$ (see the estimate (52)). Thus, the quantities $L_N = P_N^{(2)} + \sum_{n=0}^{\infty} c_n^{(2)} \kappa^n$ and $U_N = P_{N+1}^{(2)} + \sum_{n=0}^{\infty} c_n^{(2)} \kappa^n$ have to be monotonically increasing lower bounds and monotonically decreasing upper bounds to the exact value of the energy $E_R(\kappa)$. In Tables IV and V, these lower and upper bounds are compared with the exact values.

TABLE III
Test of Validity of the Summation Rules for the Ground and First Excited States of the Quartic Oscillator

<table>
<thead>
<tr>
<th>i</th>
<th>$\sum_{n=0}^{9} F_n^{(1)} - c_0^{(1)}$</th>
<th>$\sum_{n=0}^{9} n F_n^{(1)} - c_0^{(1)}$</th>
<th>$\sum_{n=0}^{9} F_n^{(1)} - c_0^{(1)}$</th>
<th>$\sum_{n=0}^{9} n F_n^{(1)} - c_0^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.34710^{-9}</td>
<td>0.19410^{-7}</td>
<td>-0.34310^{-7}</td>
<td>0.19210^{-5}</td>
</tr>
<tr>
<td>2</td>
<td>-0.16910^{-27}</td>
<td>0.87010^{-26}</td>
<td>-0.10310^{-24}</td>
<td>0.72210^{-25}</td>
</tr>
</tbody>
</table>

Note. The first and third columns correspond to Eq. (70) and the second and fourth columns correspond to Eq. (71) for $j=1$. Here, the contributions from the axis ($i=1$) and the circle ($i=2$) to the F_n coefficients are considered separately.
TABLE IV
The Increasing Lower Bounds and Decreasing Upper Bounds $L_N = P_N^N + \sum_{n=0}^{\text{int}} c_n^{(1)}$ and $U_N = P_{N+1}^N + \sum_{n=0}^{\text{int}} c_n^{(1)}$ to the Exact Value of the Renormalized Ground State Energy $E_R(\kappa = 1) = \Gamma_1 = 0.735 \ 214 \ 010 \ 331 \ 216 \ ...$ of the Quartic Oscillator

<table>
<thead>
<tr>
<th>N</th>
<th>L_N</th>
<th>U_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.734946792144</td>
<td>0.735233563644</td>
</tr>
<tr>
<td>2</td>
<td>0.735184272374</td>
<td>0.735216752944</td>
</tr>
<tr>
<td>3</td>
<td>0.735209350358</td>
<td>0.735214505988</td>
</tr>
<tr>
<td>4</td>
<td>0.7352121000750</td>
<td>0.735214117117</td>
</tr>
<tr>
<td>5</td>
<td>0.735213802749</td>
<td>0.735214036556</td>
</tr>
<tr>
<td>6</td>
<td>0.735213956993</td>
<td>0.735214017466</td>
</tr>
<tr>
<td>7</td>
<td>0.735213995276</td>
<td>0.735214012440</td>
</tr>
<tr>
<td>8</td>
<td>0.735214005742</td>
<td>0.735214010999</td>
</tr>
<tr>
<td>9</td>
<td>0.735214008839</td>
<td>0.735214010555</td>
</tr>
<tr>
<td>10</td>
<td>0.735214009819</td>
<td>0.735214010410</td>
</tr>
<tr>
<td>11</td>
<td>0.735214010146</td>
<td>0.735214010360</td>
</tr>
<tr>
<td>12</td>
<td>0.735214010261</td>
<td>0.735214010342</td>
</tr>
<tr>
<td>13</td>
<td>0.735214010304</td>
<td>0.735214010335</td>
</tr>
<tr>
<td>14</td>
<td>0.735214010320</td>
<td>0.735214010333</td>
</tr>
<tr>
<td>15</td>
<td>0.735214010326</td>
<td>0.735214010331</td>
</tr>
<tr>
<td>16</td>
<td>0.735214010329</td>
<td>0.735214010331</td>
</tr>
<tr>
<td>17</td>
<td>0.735214010330</td>
<td>0.735214010331</td>
</tr>
<tr>
<td>18</td>
<td>0.735214010330</td>
<td>0.735214010331</td>
</tr>
<tr>
<td>19</td>
<td>0.735214010331</td>
<td>0.735214010331</td>
</tr>
<tr>
<td>20</td>
<td>0.735214010331</td>
<td>0.735214010331</td>
</tr>
</tbody>
</table>

Note: P_N^N and P_{N+1}^N are the Padé approximants to the series $\sum_{n} c_n^{(1)}$.

of $E_R(\kappa)$ for $\kappa = 1$. Since the lower and upper bounds L_N and U_N converge rapidly to the exact value of the energy $E_R(\kappa = 1)$, it is obvious that even better convergence of L_N and U_N to the exact value of the energy $E_R(\kappa)$ is obtained for $0 < \kappa < 1$. These results confirm our conclusion made in Section IIIB that the energy $-E_R^{(1)}(\kappa)$ is the Stieltjes function. This, together with the method of computing the $c_n^{(1)}$ coefficients from Eq. (76), confirms the analyticity of $E_R(\kappa)$ in the domain $0 < |\kappa| < R_2$, $\arg \kappa \in (-\pi, \pi)$.

VIII. CONCLUSIONS

In this paper, a detailed investigation of the weak coupling and strong coupling perturbative expansions of the renormalized energy of the quartic oscillator was performed and the most important questions of this perturbation theory were clarified.

First, known results for the ordinary energy $E(\beta)$ and the weak coupling expansion coefficients b_n were briefly summarized.
TABLE V

The Increasing Lower Bounds and Decreasing Upper Bounds $L_N = P_N^N + \sum_{n=0}^{\infty} c_n^{(N)}$ and $U_N = P_{N+1}^N + \sum_{n=0}^{\infty} c_n^{(N+1)}$ to the Exact Value of the Renormalized First Excited State Energy $E_R(\kappa - 1) - \Gamma_0 = 2.634546134058831$ of the Quartic Oscillator.

<table>
<thead>
<tr>
<th>N</th>
<th>L_N</th>
<th>U_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.267724053339</td>
<td>2.635115596244</td>
</tr>
<tr>
<td>2</td>
<td>2.633639111165</td>
<td>2.634636440943</td>
</tr>
<tr>
<td>3</td>
<td>2.634387618437</td>
<td>2.634636889426</td>
</tr>
<tr>
<td>4</td>
<td>2.634512742628</td>
<td>2.634550205184</td>
</tr>
<tr>
<td>5</td>
<td>2.634538064187</td>
<td>2.634547183933</td>
</tr>
<tr>
<td>6</td>
<td>2.634543664726</td>
<td>2.634546431169</td>
</tr>
<tr>
<td>7</td>
<td>2.634545087866</td>
<td>2.634546224799</td>
</tr>
<tr>
<td>8</td>
<td>2.634545934382</td>
<td>2.634546163601</td>
</tr>
<tr>
<td>9</td>
<td>2.634546067430</td>
<td>2.634546144216</td>
</tr>
<tr>
<td>10</td>
<td>2.634546110654</td>
<td>2.634546137720</td>
</tr>
<tr>
<td>11</td>
<td>2.634546125461</td>
<td>2.634546135434</td>
</tr>
<tr>
<td>12</td>
<td>2.634546130773</td>
<td>2.634546134595</td>
</tr>
<tr>
<td>13</td>
<td>2.634546132758</td>
<td>2.634546134275</td>
</tr>
<tr>
<td>14</td>
<td>2.634546133527</td>
<td>2.634546134448</td>
</tr>
<tr>
<td>15</td>
<td>2.634546133835</td>
<td>2.634546134097</td>
</tr>
<tr>
<td>16</td>
<td>2.634546133962</td>
<td>2.634546134075</td>
</tr>
<tr>
<td>17</td>
<td>2.634546134016</td>
<td>2.634546134066</td>
</tr>
<tr>
<td>18</td>
<td>2.634546134039</td>
<td>2.634546134062</td>
</tr>
<tr>
<td>19</td>
<td>2.634546134049</td>
<td>2.634546134060</td>
</tr>
<tr>
<td>20</td>
<td>2.634546134054</td>
<td>2.634546134059</td>
</tr>
</tbody>
</table>

Note. P_N^N and P_{N+1}^N are the Padé approximants to the series $\sum_{n=0}^{\infty} c_n^{(N)}$.

Further, the analytic structure of the renormalized energy $E_R(\kappa)$ was investigated. In contrast to $E(\beta)$, the renormalized energy $E_R(\kappa)$ is not analytic in the whole sheet $\arg \kappa \in (-\pi, \pi)$. However, we showed that the renormalized energy $E_R(\kappa)$ is analytic in the sheet $\arg \kappa \in (-\pi, \pi)$ at least in the region $0 < |\kappa| < \kappa_{\text{max}}$, where $\kappa_{\text{max}} \geq 8.321$ for all the states of the quartic oscillator. Outside this region non-analytic behavior of $E_R(\kappa)$ related to the branch points of $E(\beta)$ can be expected. From this analytic structure, we showed that the strong coupling expansion (10) converges for all $\kappa \in (0, 1]$ corresponding to the anharmonic oscillator with $\beta \in (0, \infty)$ and for all $\kappa \in [1, 2]$ corresponding to the double-well problem. Further, we found the exact dispersion relation for the energy $E_R(\kappa) - E_R^{(1)}(\kappa) + E_R^{(2)}(\kappa)$ consisting of two parts. The first part, taken with the negative sign, is the Stieltjes function. Dispersion relations with a similar structure were found also for the weak and strong coupling expansion coefficients c_n and Γ_n. These exact equations for the c_n and Γ_n coefficients lead to the analytic large-order formulas known from previous papers [2, 5, 7, 8, 11]. In contrast to these approaches, our derivation of the large-order formulas is a new, more rigorous approach following from the analytic structure of the renormalized energy $E_R(\kappa)$. We derived also the summation rules giving the mutual relation of the Stieltjes and non-Stieltjes parts of the c_n and Γ_n.
coefficients. Detailed numerical tests performed for the ground and first excited states confirm the correctness of our conclusions.

Now we compare the weak and strong coupling expansions of $E(\beta)$ and $E_R(\kappa) = (1 - \kappa)^{1/2} E(\beta)$. The weak coupling expansions $E(\beta) = \sum_n b_n \beta^n$ and $E_R(\kappa) = \sum_n c_n \kappa^n$ are expanded at the singular points $\beta = 0$ and $\kappa = 0$, respectively. From the physical point of view, these points are singular since the Hamiltonians $H = p^2 + x^2 + \beta x^4$ and $H_R = p^2 + x^2 + \kappa(x^4/3 - x^2)$ do not have bound states for $\beta < 0$ and $\kappa < 0$ and the energies $E(\beta)$ and $E_R(\kappa)$ are not analytic at the points $\beta = 0$ and $\kappa = 0$. Therefore, these expansions are not convergent Taylor series and diverge for arbitrary $\beta \in (0, \infty)$ and corresponding $\kappa \in (0, 1)$ (compare with the well-known Dyson argument in quantum electrodynamics [22]). In contrast to these divergent expansions, the renormalized strong coupling expansion $E_R(\kappa) = \sum_n \Gamma_n (1 - \kappa)^n$ has different properties.

It follows from the analytic structure of $E_R(\kappa)$ that $E_R(\kappa)$ is analytic in the circle $|1 - \kappa| < 1$ in the complex κ-plane. Therefore, the series $E_R(\kappa) = \sum_n \Gamma_n (1 - \kappa)^n$ is the convergent Taylor series for all $|1 - \kappa| < 1$. From a physical point of view, the Hamiltonian $H_R = p^2 + x^4/3 + (1 - \kappa)(x^2 - x^4/3)$ becomes for $1 - \kappa < 0$ the Hamiltonian of the double-well problem which has bound states and the energy $E_R(\kappa)$ can be analytic at the point $\kappa = 1$.

The strong coupling expansion of the ordinary energy $E(\beta) = \beta^{1/3} \sum_n K_n \beta^{-2n/3}$ is the expansion at the point $\beta = \infty$ corresponding to $\kappa = 1$. Therefore, it is analogous to the strong coupling expansion of the renormalized energy $E_R(\kappa) = \sum_n \Gamma_n (1 - \kappa)^n$. However, because of the prefactor $\beta^{1/3}$, which goes to zero for $\beta \to 0$, the expansion $\sum_n K_n \beta^{-2n/3}$ must diverge for $\beta \to 0$ when $E(0) = 2K + 1$. From the point of view of the analytic structure of the energy $E(\beta)$, this expansion diverges because of the existence of the square-root branch points on the three-sheeted Riemann surface near the origin $\beta = 0$. Therefore, this expansion has properties less favorable than those of the expansion $E_R(\kappa) = \sum_n \Gamma_n (1 - \kappa)^n$, which converges for all $\kappa \in (0, 2)$.

We can conclude that the renormalized strong coupling expansion $E_R(\kappa) = \sum_n \Gamma_n (1 - \kappa)^n$ is the most advantageous perturbative approach to the anharmonic oscillators. We believe that the results of this paper contribute not only to deeper understanding of the perturbation theories for the anharmonic oscillators and double-well problems but to better understanding of behavior of the perturbation theories at large orders in general.

APPENDIX A

Equations (48) and (29) lead to

$$c_n^{(2)} = \frac{1}{2\pi} \left[\int_{-\pi}^{\pi} d\phi \left(\frac{R_2 e^{i\phi}}{3} \right)^{1/3} \sum_{j=0}^{\infty} K_j \left(\frac{2^{2/3}(1 - R_2^2 e^{i\phi})}{(R_2 e^{i\phi})^{2/3}} \right)^j (R_2 e^{i\phi})^{-n} \right]$$

$$= \frac{R_2^{1/3 - n}}{2\pi} \sum_{j=0}^{\infty} K_j \left(\frac{3}{R_2} \right)^j I(n, j), \quad (78)$$
where

\[I(n, j) = \int_{-\pi}^{\pi} d\phi \, e^{i\phi((1 - 2j/3 - n)(1 - R_2e^{i\phi})^j}. \quad (79) \]

Using the binomial formula we get

\[I(n, j) = \sum_{l=0}^{j} \frac{j!}{l!(j-l)!} (-R_2)^l \int_{-\pi}^{\pi} d\phi \, e^{i\phi((1 - 2j/3 - n + l)}. \quad (80) \]

For \(j \neq 3q + 2 \), integration of this equation yields

\[I(n, j) = (-1)^n \frac{2\sin\left(\frac{1 - 2j}{3}\pi\right)}{1 - 2j/3 - n + l} \sum_{l=0}^{j} \frac{j!}{l!(j-l)!} R_2^l \] \quad (81)

For \(j = 3q + 2 \) the integral in Eq. (81) equals zero except for the case \(l - n + 2q + 1 \) and \(q \geq n - 1 \) when

\[I(n, 3q + 2) = \frac{2\pi(3q + 2)! (-R_2)^{n+2q+1}}{(n + 2q + 1)! (q - n + 1)!}. \quad (82) \]

APPENDIX B

Equations (59) and (29) lead to

\[I_n^{(2)} = \frac{(-1)^n + j}{2\pi} \sum_{j=0}^{\infty} 3^{(2j/3 - 1)3} K_j I(n, j), \quad (83) \]

where

\[I(n, j) = \int_{-\pi}^{\pi} d\phi \, (R_2e^{i\phi} + 1)^{1/3 - 2j/3} (R_2e^{i\phi})^{j-n}. \quad (84) \]

To calculate the last integral we use the Gauss theorem

\[\oint_C \phi \, dz = 0 \quad (85) \]

for the function

\[f(z) = (z + 1)^{(1 - 2j/3) z/3 - n}. \quad (86) \]

We consider two cases:
1. \(n \geq 3n - 1 \). Using the integration path \(C \) shown in Fig. 3, Eq. (85) can be written in the form

\[
I(n, j) = (-1)^{j-n} 2 \sin \left(\frac{1-2j}{3} \pi \right) \int_{1-\epsilon}^{1+\epsilon} dz (z-1)^{1/3} z^{j-n-1} + \int_{-\pi}^{\pi} d\phi (z\epsilon)^{1/3} \left(1 + (z\epsilon)^{j-n-1} \right) + \int_{\epsilon}^{2\epsilon} d\phi (z\epsilon)^{j-n},
\]

where \(\epsilon \to 0^+ \). Now we consider three cases:

(a) \(j > n \) and \(j \neq 3q + 2 \). In this case, the last integral in Eq. (87) equals zero. The substitution

\[
u = (z-1)^{1/3}
\]

and the use of the binomial formula in the first integral in Eq. (87) yields

\[
I(n, j) = (-1)^{j-n} 2 \sin \left(\frac{1-2j}{3} \pi \right) \sum_{l=0}^{j-n-1} \frac{(j-n-1)!}{l!(j-n-1-l)!} \frac{(R_2-1)^{l+1} - (2/3)^{l+1}}{(1-2j)^{l+1}}.
\]

Here, the contribution of the lower bound of the first integral in Eq. (87) cancels with the second integral in Eq. (87).

(b) \(j = 3q + 2 \). In this case, the first and third integrals in Eq. (87) equal zero. Using the binomial formula in the remaining integral we get

\[
I(n, j) = \sum_{l=0}^{3q+1-n} (-1)^{3q+1-n-l} e^{-2q+l} \frac{(j-n-1)!}{l!(j-n-1-l)!} \int_{-\pi}^{\pi} d\phi e^{i\phi(-2q)}.
\]
The last integral equals zero except for the case \(l = 2q \) and \(q \geq n - 1 \) when

\[
I(n, 3q + 2) = \frac{2\pi (-1)^{5q + 1 - n} (j - n - 1)!}{2q!(j - n - 1 - 2q)!}. \tag{91}
\]

(c) \(j < n + 1 \). In this case we get \(j = 0 \) and \(n = 0 \). Then, the second integral in Eq. (87) equals zero. Substituting Eq. (88) into the first integral in Eq. (87) we get

\[
I(0, 0) = 2\pi + 3^{1/2}(R_2 - 1)^{1/3} - 3^{1/2} \int_0^{(R_2 - 1)^{1/3}} \frac{du}{u^{3} + 1}. \tag{92}
\]

The last integral can be calculated easily.

2. \(j < 3n - 1 \). Using the Gauss theorem (85) for the function (86) with the integration path \(C \) shown in Fig. 4 we get

\[
I(n, j) = (-1)^{j-n-1} 2 \sin \left(\frac{1 - 2j}{3} \pi \right) \int_{R_2}^{\infty} dz(z - 1)^{(1 - 2j)/3} z^{j-n-1} + \lim_{R_1 \to \infty} \int_{-\pi}^{\pi} d\phi (R_3 e^{i\phi} + 1)^{1 - 2j/3} (R_3 e^{i\phi})^{j-n}.
\]

The last integral equals zero. The substitution (88) yields

\[
I(n, j) = (-1)^{j-n-1} 6 \sin \left(\frac{1 - 2j}{3} \pi \right) + \int_{(R_2 - 1)^{1/3}}^{\infty} dt \ u^3 - \frac{2}{3} (u^3 + 1)^{j-n-1}. \tag{94}
\]

Again, the last integral can be easily calculated.

FIG. 4. Integration path in the complex \(z \)-plane.
ACKNOWLEDGMENTS

This work was supported by the GACR (Grant 202/97/1016) and GAUK (Grant 155/96) of the Czech Republic and the NSERC and CFCSU of Canada.

REFERENCES