Document reference:

Terms of use:

© Institute of Mathematics, Academy of Sciences of the Czech Republic, 2008
Institute of Mathematics, Academy of Sciences of the Czech Republic, provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

Czech Digital Mathematics Library

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
40. NEGEIG

DISTRIBUTION OF THE EIGENVALUES OF EIGENPROBLEM $Ax = \lambda Bx$

LUBOMÍR SKÁLA, Matematicko-fyzikální fakulta KU, Katedra teoretické fysiky, Ke Karlovu 3, 121 16 Praha 2

An individual eigenvalue is of little significance for very large matrices. Frequently only the distribution of eigenvalues is needed. A procedure (based on the negative eigenvalue theorem) which determines the distribution of eigenvalues of the generalized eigenproblem $Ax = \lambda Bx$ is described here. It makes it possible to find the number of eigenvalues less than any given real number. This procedure is efficient especially for band matrices of high order.

Given the generalized eigenproblem

$$Ax = \lambda Bx,$$

A, B are hermitian matrices of order n, B positive definite, then the number of eigenvalues $I(\mu)$ less than a given real number μ equals to

$$I(\mu) = \sum_{i=1}^{n} \Theta(-X_i),$$

$\Theta(x) = 1$ for $x > 0$, otherwise $\Theta(x) = 0$. Numbers X_i are the $(1, 1)$ elements of the partitioned matrices U_i, where

(1) $U_1 = A - \mu B$,

(2) $U_i = Z_{i-1} - Y_{i-1}X_{i-1}^{-1}Y_{i-1}^*$, $i = 2, \ldots, n$,

(3) $U_i = \begin{bmatrix} X_i & Y_i^* \\ Y_i & Z_i \end{bmatrix}$.

(The asterisk designates hermitian conjugation). For the proof see [1]–[3].
The procedure \texttt{NEGEIG} may be used to calculate the number of eigenvalues of any real symmetric eigenproblem $Ax = \lambda Bx$ (B pos. def.) which are less than a given real number. However, it is most efficient if A, B are band matrices of very high order.

The matrices A, B are assumed to be band matrices ($a_{ij} = b_{ij} = 0$ for $|i - j| \geq m$). For the sake of efficiency, just the (i, j) elements ($0 \leq i - j < m$) of the matrix $A - \mu B$ are stored, column by column, in one-dimensional array a. E.g. for $m = 2, n = 3$ the matrix

\[
\begin{bmatrix}
0 & a_{11} & a_{12} & 0 \\
 a_{21} & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{bmatrix}
\]

is re-stored as $a = (a_{11}, a_{21}, a_{22}, a_{32}, a_{33})$.

The theorem fails if some $X_i = 0$. In such a case X_i is replaced by $-rel \times \max |(Y_j)|, i = 1, \ldots, n - 1$ where $k = \min (m - 1, n - i)$, like in [4]. It means that the zero X_i is treated as negative. If Y_i is the zero vector then Eq. (2) is replaced by $U_i = Z_{i-1}$. If $A = 0$, A is treated as a negative definite matrix.

The number of non-zero elements of the matrix $Y_{i-1}X_{i-1}^{*}Y_{i-1}^{*}$ is less or equal to $(m - 1)^2$. Hence only $(m - 1)^2$ elements in the left upper corner of Z_{i-1} are changed in the course of calculation of U_i. This property may be extremely useful since it is possible to work part by part with matrices of such a large order that $A - \mu B$ cannot be localized in the array a.

The procedure \texttt{NEGEIG} involves approximately (for large n, m) nm^2 additions and $1/2 nm^2$ multiplications.

\begin{verbatim}
integer procedure NEGEIG (a, m, n, const, eps);
value m, n, const, eps; real const, eps; integer m, n; array a;
comment Input to procedure NEGEIG
a array a gives the (i, j) elements (0 \leq i - j < m) of a band real
symmetric matrix A - \mu B stored column by column. This elements
are lost during the calculation.
m bandwidth of A, B is 2m - 1.
n order of A, B.
const 1/rel, where rel is the smallest number for which 1 + rel > 1
on the computer.
eps the smallest positive real number representable on the computer.
Output of procedure NEGEIG
NEGEIG the number of eigenvalues of the eigenproblem $Ax = \lambda Bx,$
A, B real. sym., B pos. def., which are less then \mu;
begin real c, x, ymax; integer i, i1, i2, j, k, l1, l2, n2, neg; array y[2 : m];
neg := 0;
comment X_i = x;
x := a[1];
\end{verbatim}
if $x < \varepsilon$ then $\text{neg} := \text{neg} + 1$

$i1 := 1$

for $i := 2$ step 1 until n

begin comment U_i (array a) and $X_i = x$ will be computed;

$n2 := n - i + 2$

$l1 := n2 - m$

if $l1 < 0$ then $l1 := 0$

comment $l1$ is the number of the last rows of the matrix $Y_{i-1} X_{i-1}^{-1} Y_{i-1}^*$ having zero elements;

if $m < n2$ then $n2 := m$

comment The first $n2 - 1$ non-zero elements of Y_{i-1} are stored as y

$y_{\text{max}} := 0$

for $j := 2$ step 1 until $n2$

begin $i1 := i1 + 1$

$c := a[i1]$

if $\text{abs}(c) > y_{\text{max}}$ then $y_{\text{max}} := \text{abs}(c)$

$y[j] := c$

end j

comment if $y_{\text{max}} < \varepsilon$ then $U_i = Z_{i-1}$

if $y_{\text{max}} \geq \varepsilon$ then

begin $i2 := i1$

for $j := 2$ step 1 until $n2$

begin if $\text{abs}(x) < \varepsilon$ then $c := y[j] / y_{\text{max}} \times \text{const}$

else $c := -y[j] / x$

comment Calculate the $(j - 1)$-st column of U_i

for $k := j$ step 1 until $n2$

begin $i2 := i2 + 1$

$a[i2] := a[i2] + c \times y[k]$

end k

comment From the stored elements in the $(j - 1)$-st column of U_i the last min $(l1, l2)$ unchanged elements will be jumped over;

$l2 := j - 1$

if $l2 < l1$ then $i2 := i2 + l2$ else $i2 := i2 + l1$

end j

end;

$i1 := i1 + 1$

$x := a[i1]$

if $x < \varepsilon$ then $\text{neg} := \text{neg} + 1$

end i

$\text{NEGEIG} := \text{neg}$

end NEGEIG;
The procedure *NEGEIG* has been tested on MINSK 22 (ALGOL 60) and IBM 360/40 (FORTRAN) computers.

The accuracy of the result is not influenced by close or coincident eigenvalues. The procedure has been tested extensively. To give a formal test of the procedure the matrices [5]

\[
A = \begin{bmatrix}
10 & 2 & 3 & 1 & 1 \\
2 & 12 & 1 & 2 & 1 \\
3 & 1 & 11 & 1 & -1 \\
1 & 2 & 1 & 9 & 1 \\
1 & 1 & -1 & 1 & 15
\end{bmatrix}, \quad B = \begin{bmatrix}
12 & 1 & -1 & 2 & 1 \\
1 & 14 & 1 & -1 & 1 \\
-1 & 1 & 16 & -1 & 1 \\
2 & -1 & -1 & 12 & -1 \\
1 & 1 & 1 & -1 & 11
\end{bmatrix}
\]

were used. The eigenvalues of the corresponding eigenproblem are [5]

\[
+4 \cdot 3278 \ 7211 \ 020_{10} \ - \ 1 \\
+6 \cdot 6366 \ 2748 \ 402_{10} \ - \ 1 \\
+9 \cdot 4385 \ 9004 \ 670_{10} \ - \ 1 \\
+1 \cdot 1092 \ 8454 \ 002_{10} \ + \ 0 \\
+1 \cdot 4923 \ 5323 \ 254_{10} \ + \ 0
\]

The quantities \(I(\mu)\) in dependence on \(\mu\) are given in the following table (we have put \(rel = 2^{-28}\) and \(eps = 10^{-18}\) on MINSK 22).

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(I(\mu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4·3278 7210(_{10}) - 1</td>
<td>0</td>
</tr>
<tr>
<td>+4·3278 7220(_{10}) - 1</td>
<td>1</td>
</tr>
<tr>
<td>+6·6366 2752(_{10}) - 1</td>
<td>2</td>
</tr>
<tr>
<td>+6·6366 2764(_{10}) - 1</td>
<td>2</td>
</tr>
<tr>
<td>+9·4385 8992(_{10}) - 1</td>
<td>2</td>
</tr>
<tr>
<td>+9·4385 9004(_{10}) - 1</td>
<td>3</td>
</tr>
<tr>
<td>+1·1092 8452(_{10}) + 0</td>
<td>3</td>
</tr>
<tr>
<td>+1·1092 8455(_{10}) + 0</td>
<td>4</td>
</tr>
<tr>
<td>+1·4923 5321(_{10}) + 0</td>
<td>4</td>
</tr>
<tr>
<td>+1·4923 5325(_{10}) + 0</td>
<td>5</td>
</tr>
</tbody>
</table>

The procedure has been used already to calculate the distribution of eigenvalues (calculating \(I(\mu)\) at about one hundred equidistant points in the eigenvalue spectrum) for a lot of different matrices \(n = 100 - 10\ 000, m = 2 - 80\).

230
References

