
THEORY	  OF	  INTERMOLECULAR	  INTERACTIONS	  
There	  are	  two	  principal	  methods	  of	  calcula4ng	  the	  intermolecular	  interac4ons:	  
the	  supermolecular	  method	  and	  the	  perturba4onal	  method.	  Both	  assume	  
the	  Born–Oppenheimer	  approxima4on.	  

INTERACTION	  ENERGY	  CONCEPT	  

where	  EABC(R)	  is	  the	  electronic	  energy	  of	  the	  total	  system,	  and	  EA(R),	  EB(R),	  EC(R),	  .	  .	  .	  
	  are	  the	  electronic	  energies	  of	  the	  interac4ng	  subsystems,	  calculated	  at	  the	  same	  
posi7ons	  of	  the	  nuclei	  as	  those	  in	  the	  total	  system.	  

BINDING	  	  ENERGY	  

DISSOCIATION	  	  ENERGY	  

Where	  ΔE0tot	  stands	  for	  what	  is	  known	  as	  the	  zero	  vibra4on	  energy	  

(?)Ropt(j)	  



SUPERMOLECULAR	  	  APPROACH	  

Interac4on	  of	  two	  subsystems:	  A	  and	  B.	  

ACCURACY	  SHOULD	  BE	  THE	  SAME	  

This	  problem	  is	  already	  encountered	  at	  the	  stage	  of	  basis	  set	  choice.	  For	  
example,	  suppose	  we	  have	  decided	  to	  carry	  out	  the	  calcula4ons	  within	  the	  
Hartree-‐Fock	  method	  in	  the	  LCAO-‐MO	  approxima4on.	  The	  same	  method	  has	  to	  
be	  used	  for	  AB,	  A	  and	  B.	  However	  what	  does	  this	  really	  mean?	  Should	  we	  use	  the	  
following	  protocol:	  

BASIS	  SET	  SUPERPOSITION	  ERROR	  (BSSE)	  

When	  the	  calcula4ons	  are	  performed	  for	  EAB	  within	  the	  basis	  set	  Ω we	  
calculate	  implicitly	  not	  only	  the	  interac4on	  energy,	  but	  also	  we	  allow	  the	  
individual	  subsystems	  to	  lower	  their	  energy.	  	  Conclusion:	  by	  subtrac4ng	  from	  
EAB	  the	  energies:	  EA	  calculated	  with	  ΩA	  and	  EB	  with	  ΩB,	  we	  are	  leY	  not	  only	  
with	  the	  interac4on	  energy	  (as	  should	  be),	  but	  also	  with	  an	  unwanted	  and	  
nonphysical	  extra	  term	  (an	  error)	  connected	  with	  the	  ar4ficial	  lowering	  of	  
the	  subsystems’	  energies,	  when	  calcula4ng	  EAB.	  This	  error	  is	  called	  the	  BSSE	  
(Basis	  Set	  Superposi4on	  Error).	  



GOOD	  AND	  BAD	  NEWS	  ABOUT	  THE	  SUPERMOLECULAR	  METHOD	  

The	  resul4ng	  Eint	  has	  two	  disadvantages:	  	  
	  
1)	  it	  does	  not	  tell	  us	  anything	  about	  why	  the	  par4cular	  value	  is	  obtained.	  

2)	  Formally	  everything	  is	  perfect,	  but	  there	  is	  a	  cancella4on	  of	  significant	  
digits	  in	  EAB	  and	  (EA+EB),	  that	  may	  lead	  to	  a	  very	  poor	  interac4on	  energy.	  

Important advantage 

A big advantage of the supermolecular method is its applicability at any 
intermolecular distance, i.e. independently of how strong the interaction is. 



PERTURBATIONAL	  APPROACH	  TO	  INTERMOLECULAR	  INTERACTION	  

According to the Rayleigh–Schrödinger perturbation theory the unperturbed 
Hamiltonian  H(0) is a sum of the isolated molecules’ Hamiltonians:  
 
 
Then the perturbation operator is: H(1) ≡ V . 
 
In the polarization approximation, the zeroth-order wave function will be 
taken as a product  
  
 
where ψA0 and ψB0 are the exact ground state wave functions for the isolated 
molecules A and B respectively, i.e.  

POLARIZATION APPROXIMATION 



The	  chosen	  ψ(0)
0	  has	  a	  wonderful	  feature,	  namely	  it	  represents	  an	  eigenfunc4on	  of	  

the	  H(0)	  operator,	  as	  is	  required	  by	  the	  Rayleigh–Schrödinger	  perturba4on	  theory.	  
But	  	  the	  func4on	  ψ(0)

0	  is	  not	  an<symmetric	  with	  respect	  to	  the	  electron	  exchanges	  
between	  molecules,	  while	  the	  exact	  func4on	  has	  to	  be	  an4symmetric	  with	  respect	  
to	  any	  exchange	  of	  electron	  labels.	  

We	  will	  assume	  that,	  because	  of	  the	  large	  separa4on	  of	  the	  two	  molecules,	  the	  
electrons	  of	  molecule	  A	  are	  dis<nguishable	  from	  the	  electrons	  of	  molecule	  B.	  We	  
have	  to	  stress	  the	  classical	  flavour	  of	  this	  approxima4on.	  	  
	  
Secondly,	  we	  assume	  that	  the	  exact	  wave	  func4ons	  of	  both	  isolated	  molecules:	  ψA0	  
and	  ψB0	  are	  at	  our	  disposal.	  Of	  course,	  func4on	  ψ(0)

0	  is	  only	  an	  approxima4on	  to	  the	  
exact	  wave	  func4on	  of	  the	  total	  system.	  Intui4on	  tells	  us	  that	  this	  approxima4on	  is	  
probably	  very	  good,	  because	  we	  assume	  the	  perturba4on	  is	  small	  and	  the	  product	  
func<on	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  an	  exact	  wave	  func4on	  for	  the	  non-‐interac4ng	  
system.	  



First order effect: electrostatic energy 

The electrostatic energy represents the Coulombic interaction of two 
“frozen” charge distributions corresponding to the isolated molecules A 
and B, because it is the mean value of the Coulombic  interaction energy 
operator V calculated with the wave function ψ(0)

0 being the 
product of the wave functions of the isolated molecules ψ(0)

0= ψA0ψB0. 



The second-order energy in the polarization approximation approach can 
be expressed in a slightly different way. The n-th state of the total system at long 
intermolecular distances corresponds to some states nA and nB of the individual 
molecules, i.e.  
 
 
 
and 
 
  
 
Using this assumption, the second-order correction to the ground-state energy 
(we assume n = 0 and ψ(0)

0= ψA0ψB0) can be expressed as 
 
 
 
where “prime” in the summation means excluding n = 0, or (nA,nB) = (0,0). The 
quantity E(2)

0 can be divided in the following way 
 
 

Second-order energy: induction and dispersion energies 



Let us construct a matrix A (of infinite dimension) composed of the element 
A00 = 0 and the other elements calculated from the formula  
 
 
 
and divide it into the following parts: I (nB  ≠0), II (nA  ≠0), III ((na  ≠0 nB  ≠0) ) 

The quantity E(2)
0 is a sum of all the elements of A. This summation will be 

carried out in three steps.  
First, part I, (nA = 0) represents the induction energy associated with forcing 
a change in the charge distribution of the molecule B by the charge 
distribution of the isolated (“frozen”) molecule A.  
Second, part II (nB =0) has a similar meaning, but the roles of the molecules 
are interchanged.  
Finally, part III, (nA and nB not equal to zero) represents the dispersion 
energy.  
 



Therefore 

In these formulas  we sometimes see arguments for the interacting molecules 
undergoing excitations.  
We have to recall however that all the time we are interested in the ground state of 
the total system, and calculating its energy and wave function. The excited state 
wave functions appearing in the formulas are the consequence of the fact that the 
first-order correction to the wave function is expanded in a complete basis set 
chosen deliberately as {ψ(0)

n } If we took another basis set, e.g., the wave functions 
of another isoelectronic molecule, we would obtain the same numerical results 
(although the formulas will not hold), but the argument would be removed.  
 
From the mathematical point of view, the very essence of the perturbation theory 
means a small deformation of the starting ψ(0)

0 function. This tiny deformation is 
the target of the expansion in the basis set {ψ(0)

n }. 



A perturbation of the wave function is a 
small correction. 
Fig. (a) shows in a schematic way, how a 
wave function, spherically symmetric with 
respect to the nucleus, can be transformed 
into a function that is shifted off the 
nucleus.  
The function representing the correction is 
shown schematically in Fig. (b). Please 
note the function has symmetry of a p 
orbital. 



INTERMOLECULAR INTERACTIONS: PHYSICAL INTERPRETATION 

The very essence of the multipole expansion is a replacement of the 
Coulombic interaction of two particles (one from molecule A, the other from the 
molecule B) by an infinite sum of interactions of what are called multipoles, 
where each interaction term has in the denominator an integer power of the 
distance (called the intermolecular distance R) between the origins of the two 
coordinate systems localized in the individual molecules. 

The multipole expansion describes the intermolecular interaction of two non-
spherically symmetric, distant objects by the “interaction” of deviations 
(multipoles) from spherical symmetry. 
Let us introduce two Cartesian coordinate systems with x and y axes in one 
system parallel to the corresponding axes in the other system, and with the z 
axes collinear. One of the systems is connected to molecule A, the other 
one to molecule B, and the distance between the origins is R (“intermolecular 
distance”).  
 
The operator V of the interaction energy of two molecules may be written as 

where the summations over i and a correspond to all electrons and nuclei of 
molecule A, and over j and b of molecule B. 



In V terms with inverse interparticle distance are present. For any such term we 
may write the corresponding multipole expansion where s is smaller of numbers 
k and l): 

with 

and the multipole moment MC
(km)(n) pertains to particle n and is calculated in 

“its” coordinate system C = A, B. For example, 



When all such expansions are inserted into the formula for V, we may perform 
the following chain of transformations: 



In the square brackets we can recognize the multipole moment operators 
for the total molecules calculated in “their” coordinate systems 



The lowest moment is the net charge (monopole) of the molecules 
 
 
 
where ZA is the sum of all the nuclear charges of molecule A, and nA is its 
number of electrons (similarly for B). 
 
The next moment is M (1,0)

A , which is a component of the dipole operator 
equal to 

In this way we can rewrite the initial potential V into the final multipole form: 



After a careful (but a little boring) derivation, we arrive at Table X.1 (up to 
the octupole). Just to make the table simpler, every multipole moment of 
the particle has been divided by q. Thus the operator of the 2k-pole 
moment of a charged particle simply represents a k-th degree polynomial 
of x y z. 





The multipoles depend on the coordinate system chosen 
 
Any multipole moment value (except the monopole) depends on our 
imagination because we are free to choose any coordinate system, e.g., 

the z coordinate of the particle in such a system will also depend on us!  
 
It turns out that if we calculate the multipole moments, then the lowest 
non-vanishing multipole moment does not depend on the coordinate 
system translation, the other moments in general do depend on it. 

This is not peculiar for the multipole moments but represents a property of 
every term of the form xnylzm. Indeed, k = n + l + m tells us that we have to 
do with a 2k-pole. Let us shift the origin of the coordinate system by the 
vector L. Then the xnylzm moment calculated in the new coordinate system, 
i.e. xnylzm is equal to 

If, for some reason, all the lower moments are equal to zero, this would mean 
the invariance of the moment of choice of the coordinate system. 



Let us take, e.g., the system ZnCl+.  
In the first approximation, the system may be approximated by two point-like 
charges Zn2+ and Cl-. Let us locate these charges on the z axis in such a way 
that Zn2+ has the coordinate z = 0, and Cl−: z = 5. Now we would like to calculate 
the z component of the dipole moment:  
 
M(10) = µz = q1z1 +q2z2 = (+2)0+(−1)5=−5.      a co ZnCl2  …?  
 
What if we had chosen another coordinate system? Let us check what would 
happen if the origin of the coordinate system were shifted towards the positive z 
by 10 units. In such a case the ions have the coordinates z1= −10, and z2= −5, 
and, as the z component of the dipole moment we obtain 
 
M(10) ‘= µz’ = q1z’1 +q2z’2 = (+2)(-10)+(−1)(-5)=−15. 

Thus, the dipole moment depends on the choice of the coordinate system. 
However, the monopole of the system is equal to (+2) + (−1)=+1 and this number 
will not change with any shift of the coordinate system. Therefore, 
 
the dipole moment of a molecular ion depends on us, through arbitrary choice of 
the coordinate system. 



Interaction energy of non-point like multipoles 
 
In our chemical understanding of intermolecular interactions, multipole–multipole (mainly 
dipole–dipole, as for interactions in, e.g., water) interactions play an important role. The 
dipolar molecules have non-zero dimensions and therefore they represent something other 
than point-like dipoles. Let us clarify this by taking the simple example of two dipolar systems 
located on the z axis (Fig. X.3): the system  A consists of the two charges +1 at z = 0 and −1 
at z = 1, while system B also has two charges +1 with z = 10 and −1 with z = 11. 

 The first idea is that we have to do with the interaction of two dipoles and that’s 
all there is to it. Let us check whether everything is OK. The checking is very easy, because 
what really interacts are the charges, no dipoles whatsoever. Thus the exact interaction of 
systems A and B is  (+1)(+1)/10+(+1)(−1)/11+(−1)(+1)/9+(−1)(−1)/10 =  2/10−1/11−1/9 =
−0.0020202. What would give such a dipole–dipole interaction? Such a task immediately 
poses the question of how such an interaction is to be calculated. 
 

The first advantage of the multipole expansion is that it produces the formulae 
for the multipole–multipole interactions.  
 

We have the dipole–dipole term in the form R−3(µaxµbx+µayµby−2µazµbz) = 
R−3(−2µazµbz), because the x and y components of our dipole moments are equal zero. Since 
A and B are neutral, it is absolutely irrelevant which coordinate system is to be chosen to 
calculate the dipole moment components. Therefore let us use the global coordinate system, 
in which the positions of the charges have been specified. Thus, µaz = (+1)·0+(−1)·1=−1 and 
µbz = (+1)·10+(−1)·11=−1. 
 
přesněji +1*(-.5)+(-1)*.5=-1 
      quadr. +1*(-.5)2+(-1)*(.5)2=0  



What is R (intermolecular)? 
 
We are forced to choose the two local coordinate systems in A and B. We arbitrarily decide 
here to locate these origins in the middle of each dipolar system, and therefore R = 10. It 
looks like a reasonable choice, and as will be shown later on, it really is. We are all set to 
calculate the dipole–dipole interaction:  
−2 · 10−3(−1)(−1)=−0.0020000. Close!  
The exact calculated interaction energy is −0.0020202. 
Where is the rest?  
Is there any error in our dipole–dipole interaction formula? We simply forgot that our dipolar 
systems represent not only the dipole moments, but also have non-zero octupole moments 
(the quadrupoles are equal zero) and non-zero higher odd-order multipoles. 
How come, however, that such a simple dipolar system also has a non-zero octupole 
moment?  
The answer is simple: it is because the dipole is not point-like. 
The conclusion from this story is that the reader has to pay attention to whether we have to 
deal with point-like or non-point-like multipole moments. 



Properties of the multipole expansion 
 
When performing multipole expansions, at least three simple questions arise: 
 
a) How do we truncate the expansion, i.e. how do we choose the values of nk and nl in the 
multipole expansion? 

b) Since the multipole moments depend, in general, on the coordinate system chosen, 
what sort of miracle makes the multipole expansion of the energy, independent of the 
coordinate system? 
 

c) When does the multipole expansion make sense, i.e. when does it converge? 
 
Truncating the multipole expansion and its coordinate system dependence 
 
It turns out that questions a and b are closely related to each other. When nk and nl  are 
finite and non-zero then the result of the multipole expansion is in general coordinate-
dependent. If, nk and nl  satisfy 

   nk +nl = const, 
 we may shift both coordinate systems (the same translation for both) however we like, 
and the interaction energy calculated remains invariant. 
Such a recipe for nk and nl corresponds to taking all the terms with a given power of R−1. 
 
If we take all the terms with a given R−m dependence, the result does not depend on the 
same translations of both coordinate systems. 



This means that to maintain the invariance of the energy with respect to equal translations 
of both coordinate systems, we have to calculate all terms satisfying nk + nl = nmax in the 
multipole expansion.  
 
If, e.g., nmax = 2, we have to calculate the term proportional to R−1 or the charge–charge 
interaction (it will be invariant), proportional to R−2 or charge–dipole and dipole–charge 
terms (their sum is also invariant), proportional to R−3 or charge–quadrupole, quadrupole–
charge and dipole–dipole (their sum is invariant as well). 
 
Let us take such a complete set of terms with k + l = 2.  
 
Let us begin with the charge–dipole term. The term in the multipole 
expansion corresponds to k = 0 and l = 2: 
 
 
 
The next term (k = 1, l = 1) has three contributions coming from the summation 
over m: 
 
 
 
 
The third term (k = 2, l = 0): 



taking z + T instead of z … 
 
 
 
 
 
 
 
 
The complete set does not depend on T! 
 
 
c) Convergence of the multipole expansion 
 
the multipole expansion convergence depends on how the molecules are located in 
space with respect to one another. The convergence criterion reads 
 
 
where ra1 denotes the vector pointing the particle 1 from its coordinate system 
origin, similarly for vector rb2. 

When the two particles are in their non-overlapping spheres, the multipole 
expansion converges. 



ELECTROSTATIC ENERGY IN THE MULTIPOLE REPRESENTATION AND  
THE PENETRATION ENERGY 
 
Electrostatic energy represents the first-order correction in polarization 
perturbational theory and is the mean value of V with the product wave function 
ψ(0)

0= ψA0ψB0. Because we have the multipole representation of V , we may insert 
it into formula 
 
 
In the polarization approximation we know perfectly well which electrons belong 
to molecule A  and which belong to B, therefore we perform the integration 
separately over the electrons of molecule A and those of molecule B. 
 
Formally  the expression for E(1) 

0 = Eelst  has to be of exactly the same form 
as the multipole representation of V , the only difference being that in V 
we have the molecular multipole operators, whereas in Eelst we have the 
molecular multipoles themselves as the mean values of the corresponding 
molecular multipole operators in the ground state . 
 
However, they are equivalent only when:  
a) the multipole form converges 
b) objects are non-overlapping 



If the electronic charge distributions penetrate, it causes a small difference 
(penetration energy Epenetr) between the Eelst calculated with and without the 
multipole expansion 
 
 
 
Where 
 
 
 
 
 
The molecular multipoles are: 
 

Jak rychle roste Epen? 



INDUCTION ENERGY IN THE MULTIPOLE REPRESENTATION 

The induction energy contribution consists of two parts: Eind(A→B) and 
Eind(B→A) or, respectively, the polarization energy of molecule B in the 
electric field of the unperturbed molecule A and vice versa. 
 
If we insert the multipole representation of V into the induction energy 
Eind(A→B) then 
 

the zeros come from the orthogonality 
of the eigenstates of the isolated molecule B, 



A molecule in the electric field of another molecule 
 
Note that            represents the square of the electric field intensity   Ez(A→B) = 
 

measured on molecule B and created by the net charge of molecule A. Therefore, 
we have 



DISPERSION ENERGY IN THE MULTIPOLE REPRESENTATION 

After inserting V in the multipole representation into the expression for 
the dispersion energy we obtain 

Hence, if we squared the total expression, the most important term would 
be the dipole–dipole contribution with the asymptotic R−6 distance dependence. 

The dispersion interaction is a pure correlation effect and therefore the methods 
used in a supermolecular approach, that do not take into account the electronic 
correlation (as for example the Hartree–Fock method) are unable to produce any 
non-zero dispersion contribution. 



A few simple and useful rules: 
 
1. The dispersion energy always decays as R−6. 

2. The electrostatic energy vanishes as R−(k+l+1) 
 where the 2k-pole and 2l-pole 

represent the lowest non-vanishing multipoles of the interacting subsystems. 
 
3. The induction energy vanishes as R−2(k+2) where the 2k-pole is the lower of 
the two lowest non-zero permanent multipoles of the molecules A and B.  
The formula is easy to understand if we take into account that the lowest 
induced multipole is always a dipole (l = 1), and that the induction effect is of 
the second order PT (hence 2 in the exponent). 



SYMMETRY ADAPTED PERTURBATION THEORIES 

• the polarization approximation, i.e. ignoring the Pauli principle becomes 
a very poor approximation, 
• the multipole expansion becomes invalid. 
 
POLARIZATION APPROXIMATION IS ILLEGAL  …!! 


