
THEORY	
  OF	
  INTERMOLECULAR	
  INTERACTIONS	
  
There	
  are	
  two	
  principal	
  methods	
  of	
  calcula4ng	
  the	
  intermolecular	
  interac4ons:	
  
the	
  supermolecular	
  method	
  and	
  the	
  perturba4onal	
  method.	
  Both	
  assume	
  
the	
  Born–Oppenheimer	
  approxima4on.	
  

INTERACTION	
  ENERGY	
  CONCEPT	
  

where	
  EABC(R)	
  is	
  the	
  electronic	
  energy	
  of	
  the	
  total	
  system,	
  and	
  EA(R),	
  EB(R),	
  EC(R),	
  .	
  .	
  .	
  
	
  are	
  the	
  electronic	
  energies	
  of	
  the	
  interac4ng	
  subsystems,	
  calculated	
  at	
  the	
  same	
  
posi7ons	
  of	
  the	
  nuclei	
  as	
  those	
  in	
  the	
  total	
  system.	
  

BINDING	
  	
  ENERGY	
  

DISSOCIATION	
  	
  ENERGY	
  

Where	
  ΔE0tot	
  stands	
  for	
  what	
  is	
  known	
  as	
  the	
  zero	
  vibra4on	
  energy	
  

(?)Ropt(j)	
  



SUPERMOLECULAR	
  	
  APPROACH	
  

Interac4on	
  of	
  two	
  subsystems:	
  A	
  and	
  B.	
  

ACCURACY	
  SHOULD	
  BE	
  THE	
  SAME	
  

This	
  problem	
  is	
  already	
  encountered	
  at	
  the	
  stage	
  of	
  basis	
  set	
  choice.	
  For	
  
example,	
  suppose	
  we	
  have	
  decided	
  to	
  carry	
  out	
  the	
  calcula4ons	
  within	
  the	
  
Hartree-­‐Fock	
  method	
  in	
  the	
  LCAO-­‐MO	
  approxima4on.	
  The	
  same	
  method	
  has	
  to	
  
be	
  used	
  for	
  AB,	
  A	
  and	
  B.	
  However	
  what	
  does	
  this	
  really	
  mean?	
  Should	
  we	
  use	
  the	
  
following	
  protocol:	
  

BASIS	
  SET	
  SUPERPOSITION	
  ERROR	
  (BSSE)	
  

When	
  the	
  calcula4ons	
  are	
  performed	
  for	
  EAB	
  within	
  the	
  basis	
  set	
  Ω we	
  
calculate	
  implicitly	
  not	
  only	
  the	
  interac4on	
  energy,	
  but	
  also	
  we	
  allow	
  the	
  
individual	
  subsystems	
  to	
  lower	
  their	
  energy.	
  	
  Conclusion:	
  by	
  subtrac4ng	
  from	
  
EAB	
  the	
  energies:	
  EA	
  calculated	
  with	
  ΩA	
  and	
  EB	
  with	
  ΩB,	
  we	
  are	
  leY	
  not	
  only	
  
with	
  the	
  interac4on	
  energy	
  (as	
  should	
  be),	
  but	
  also	
  with	
  an	
  unwanted	
  and	
  
nonphysical	
  extra	
  term	
  (an	
  error)	
  connected	
  with	
  the	
  ar4ficial	
  lowering	
  of	
  
the	
  subsystems’	
  energies,	
  when	
  calcula4ng	
  EAB.	
  This	
  error	
  is	
  called	
  the	
  BSSE	
  
(Basis	
  Set	
  Superposi4on	
  Error).	
  



GOOD	
  AND	
  BAD	
  NEWS	
  ABOUT	
  THE	
  SUPERMOLECULAR	
  METHOD	
  

The	
  resul4ng	
  Eint	
  has	
  two	
  disadvantages:	
  	
  
	
  
1)	
  it	
  does	
  not	
  tell	
  us	
  anything	
  about	
  why	
  the	
  par4cular	
  value	
  is	
  obtained.	
  

2)	
  Formally	
  everything	
  is	
  perfect,	
  but	
  there	
  is	
  a	
  cancella4on	
  of	
  significant	
  
digits	
  in	
  EAB	
  and	
  (EA+EB),	
  that	
  may	
  lead	
  to	
  a	
  very	
  poor	
  interac4on	
  energy.	
  

Important advantage 

A big advantage of the supermolecular method is its applicability at any 
intermolecular distance, i.e. independently of how strong the interaction is. 



PERTURBATIONAL	
  APPROACH	
  TO	
  INTERMOLECULAR	
  INTERACTION	
  

According to the Rayleigh–Schrödinger perturbation theory the unperturbed 
Hamiltonian  H(0) is a sum of the isolated molecules’ Hamiltonians:  
 
 
Then the perturbation operator is: H(1) ≡ V . 
 
In the polarization approximation, the zeroth-order wave function will be 
taken as a product  
  
 
where ψA0 and ψB0 are the exact ground state wave functions for the isolated 
molecules A and B respectively, i.e.  

POLARIZATION APPROXIMATION 



The	
  chosen	
  ψ(0)
0	
  has	
  a	
  wonderful	
  feature,	
  namely	
  it	
  represents	
  an	
  eigenfunc4on	
  of	
  

the	
  H(0)	
  operator,	
  as	
  is	
  required	
  by	
  the	
  Rayleigh–Schrödinger	
  perturba4on	
  theory.	
  
But	
  	
  the	
  func4on	
  ψ(0)

0	
  is	
  not	
  an<symmetric	
  with	
  respect	
  to	
  the	
  electron	
  exchanges	
  
between	
  molecules,	
  while	
  the	
  exact	
  func4on	
  has	
  to	
  be	
  an4symmetric	
  with	
  respect	
  
to	
  any	
  exchange	
  of	
  electron	
  labels.	
  

We	
  will	
  assume	
  that,	
  because	
  of	
  the	
  large	
  separa4on	
  of	
  the	
  two	
  molecules,	
  the	
  
electrons	
  of	
  molecule	
  A	
  are	
  dis<nguishable	
  from	
  the	
  electrons	
  of	
  molecule	
  B.	
  We	
  
have	
  to	
  stress	
  the	
  classical	
  flavour	
  of	
  this	
  approxima4on.	
  	
  
	
  
Secondly,	
  we	
  assume	
  that	
  the	
  exact	
  wave	
  func4ons	
  of	
  both	
  isolated	
  molecules:	
  ψA0	
  
and	
  ψB0	
  are	
  at	
  our	
  disposal.	
  Of	
  course,	
  func4on	
  ψ(0)

0	
  is	
  only	
  an	
  approxima4on	
  to	
  the	
  
exact	
  wave	
  func4on	
  of	
  the	
  total	
  system.	
  Intui4on	
  tells	
  us	
  that	
  this	
  approxima4on	
  is	
  
probably	
  very	
  good,	
  because	
  we	
  assume	
  the	
  perturba4on	
  is	
  small	
  and	
  the	
  product	
  
func<on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  an	
  exact	
  wave	
  func4on	
  for	
  the	
  non-­‐interac4ng	
  
system.	
  



First order effect: electrostatic energy 

The electrostatic energy represents the Coulombic interaction of two 
“frozen” charge distributions corresponding to the isolated molecules A 
and B, because it is the mean value of the Coulombic  interaction energy 
operator V calculated with the wave function ψ(0)

0 being the 
product of the wave functions of the isolated molecules ψ(0)

0= ψA0ψB0. 



The second-order energy in the polarization approximation approach can 
be expressed in a slightly different way. The n-th state of the total system at long 
intermolecular distances corresponds to some states nA and nB of the individual 
molecules, i.e.  
 
 
 
and 
 
  
 
Using this assumption, the second-order correction to the ground-state energy 
(we assume n = 0 and ψ(0)

0= ψA0ψB0) can be expressed as 
 
 
 
where “prime” in the summation means excluding n = 0, or (nA,nB) = (0,0). The 
quantity E(2)

0 can be divided in the following way 
 
 

Second-order energy: induction and dispersion energies 



Let us construct a matrix A (of infinite dimension) composed of the element 
A00 = 0 and the other elements calculated from the formula  
 
 
 
and divide it into the following parts: I (nB  ≠0), II (nA  ≠0), III ((na  ≠0 nB  ≠0) ) 

The quantity E(2)
0 is a sum of all the elements of A. This summation will be 

carried out in three steps.  
First, part I, (nA = 0) represents the induction energy associated with forcing 
a change in the charge distribution of the molecule B by the charge 
distribution of the isolated (“frozen”) molecule A.  
Second, part II (nB =0) has a similar meaning, but the roles of the molecules 
are interchanged.  
Finally, part III, (nA and nB not equal to zero) represents the dispersion 
energy.  
 



Therefore 

In these formulas  we sometimes see arguments for the interacting molecules 
undergoing excitations.  
We have to recall however that all the time we are interested in the ground state of 
the total system, and calculating its energy and wave function. The excited state 
wave functions appearing in the formulas are the consequence of the fact that the 
first-order correction to the wave function is expanded in a complete basis set 
chosen deliberately as {ψ(0)

n } If we took another basis set, e.g., the wave functions 
of another isoelectronic molecule, we would obtain the same numerical results 
(although the formulas will not hold), but the argument would be removed.  
 
From the mathematical point of view, the very essence of the perturbation theory 
means a small deformation of the starting ψ(0)

0 function. This tiny deformation is 
the target of the expansion in the basis set {ψ(0)

n }. 



A perturbation of the wave function is a 
small correction. 
Fig. (a) shows in a schematic way, how a 
wave function, spherically symmetric with 
respect to the nucleus, can be transformed 
into a function that is shifted off the 
nucleus.  
The function representing the correction is 
shown schematically in Fig. (b). Please 
note the function has symmetry of a p 
orbital. 



INTERMOLECULAR INTERACTIONS: PHYSICAL INTERPRETATION 

The very essence of the multipole expansion is a replacement of the 
Coulombic interaction of two particles (one from molecule A, the other from the 
molecule B) by an infinite sum of interactions of what are called multipoles, 
where each interaction term has in the denominator an integer power of the 
distance (called the intermolecular distance R) between the origins of the two 
coordinate systems localized in the individual molecules. 

The multipole expansion describes the intermolecular interaction of two non-
spherically symmetric, distant objects by the “interaction” of deviations 
(multipoles) from spherical symmetry. 
Let us introduce two Cartesian coordinate systems with x and y axes in one 
system parallel to the corresponding axes in the other system, and with the z 
axes collinear. One of the systems is connected to molecule A, the other 
one to molecule B, and the distance between the origins is R (“intermolecular 
distance”).  
 
The operator V of the interaction energy of two molecules may be written as 

where the summations over i and a correspond to all electrons and nuclei of 
molecule A, and over j and b of molecule B. 



In V terms with inverse interparticle distance are present. For any such term we 
may write the corresponding multipole expansion where s is smaller of numbers 
k and l): 

with 

and the multipole moment MC
(km)(n) pertains to particle n and is calculated in 

“its” coordinate system C = A, B. For example, 



When all such expansions are inserted into the formula for V, we may perform 
the following chain of transformations: 



In the square brackets we can recognize the multipole moment operators 
for the total molecules calculated in “their” coordinate systems 



The lowest moment is the net charge (monopole) of the molecules 
 
 
 
where ZA is the sum of all the nuclear charges of molecule A, and nA is its 
number of electrons (similarly for B). 
 
The next moment is M (1,0)

A , which is a component of the dipole operator 
equal to 

In this way we can rewrite the initial potential V into the final multipole form: 



After a careful (but a little boring) derivation, we arrive at Table X.1 (up to 
the octupole). Just to make the table simpler, every multipole moment of 
the particle has been divided by q. Thus the operator of the 2k-pole 
moment of a charged particle simply represents a k-th degree polynomial 
of x y z. 





The multipoles depend on the coordinate system chosen 
 
Any multipole moment value (except the monopole) depends on our 
imagination because we are free to choose any coordinate system, e.g., 

the z coordinate of the particle in such a system will also depend on us!  
 
It turns out that if we calculate the multipole moments, then the lowest 
non-vanishing multipole moment does not depend on the coordinate 
system translation, the other moments in general do depend on it. 

This is not peculiar for the multipole moments but represents a property of 
every term of the form xnylzm. Indeed, k = n + l + m tells us that we have to 
do with a 2k-pole. Let us shift the origin of the coordinate system by the 
vector L. Then the xnylzm moment calculated in the new coordinate system, 
i.e. xnylzm is equal to 

If, for some reason, all the lower moments are equal to zero, this would mean 
the invariance of the moment of choice of the coordinate system. 



Let us take, e.g., the system ZnCl+.  
In the first approximation, the system may be approximated by two point-like 
charges Zn2+ and Cl-. Let us locate these charges on the z axis in such a way 
that Zn2+ has the coordinate z = 0, and Cl−: z = 5. Now we would like to calculate 
the z component of the dipole moment:  
 
M(10) = µz = q1z1 +q2z2 = (+2)0+(−1)5=−5.      a co ZnCl2  …?  
 
What if we had chosen another coordinate system? Let us check what would 
happen if the origin of the coordinate system were shifted towards the positive z 
by 10 units. In such a case the ions have the coordinates z1= −10, and z2= −5, 
and, as the z component of the dipole moment we obtain 
 
M(10) ‘= µz’ = q1z’1 +q2z’2 = (+2)(-10)+(−1)(-5)=−15. 

Thus, the dipole moment depends on the choice of the coordinate system. 
However, the monopole of the system is equal to (+2) + (−1)=+1 and this number 
will not change with any shift of the coordinate system. Therefore, 
 
the dipole moment of a molecular ion depends on us, through arbitrary choice of 
the coordinate system. 



Interaction energy of non-point like multipoles 
 
In our chemical understanding of intermolecular interactions, multipole–multipole (mainly 
dipole–dipole, as for interactions in, e.g., water) interactions play an important role. The 
dipolar molecules have non-zero dimensions and therefore they represent something other 
than point-like dipoles. Let us clarify this by taking the simple example of two dipolar systems 
located on the z axis (Fig. X.3): the system  A consists of the two charges +1 at z = 0 and −1 
at z = 1, while system B also has two charges +1 with z = 10 and −1 with z = 11. 

 The first idea is that we have to do with the interaction of two dipoles and that’s 
all there is to it. Let us check whether everything is OK. The checking is very easy, because 
what really interacts are the charges, no dipoles whatsoever. Thus the exact interaction of 
systems A and B is  (+1)(+1)/10+(+1)(−1)/11+(−1)(+1)/9+(−1)(−1)/10 =  2/10−1/11−1/9 =
−0.0020202. What would give such a dipole–dipole interaction? Such a task immediately 
poses the question of how such an interaction is to be calculated. 
 

The first advantage of the multipole expansion is that it produces the formulae 
for the multipole–multipole interactions.  
 

We have the dipole–dipole term in the form R−3(µaxµbx+µayµby−2µazµbz) = 
R−3(−2µazµbz), because the x and y components of our dipole moments are equal zero. Since 
A and B are neutral, it is absolutely irrelevant which coordinate system is to be chosen to 
calculate the dipole moment components. Therefore let us use the global coordinate system, 
in which the positions of the charges have been specified. Thus, µaz = (+1)·0+(−1)·1=−1 and 
µbz = (+1)·10+(−1)·11=−1. 
 
přesněji +1*(-.5)+(-1)*.5=-1 
      quadr. +1*(-.5)2+(-1)*(.5)2=0  



What is R (intermolecular)? 
 
We are forced to choose the two local coordinate systems in A and B. We arbitrarily decide 
here to locate these origins in the middle of each dipolar system, and therefore R = 10. It 
looks like a reasonable choice, and as will be shown later on, it really is. We are all set to 
calculate the dipole–dipole interaction:  
−2 · 10−3(−1)(−1)=−0.0020000. Close!  
The exact calculated interaction energy is −0.0020202. 
Where is the rest?  
Is there any error in our dipole–dipole interaction formula? We simply forgot that our dipolar 
systems represent not only the dipole moments, but also have non-zero octupole moments 
(the quadrupoles are equal zero) and non-zero higher odd-order multipoles. 
How come, however, that such a simple dipolar system also has a non-zero octupole 
moment?  
The answer is simple: it is because the dipole is not point-like. 
The conclusion from this story is that the reader has to pay attention to whether we have to 
deal with point-like or non-point-like multipole moments. 



Properties of the multipole expansion 
 
When performing multipole expansions, at least three simple questions arise: 
 
a) How do we truncate the expansion, i.e. how do we choose the values of nk and nl in the 
multipole expansion? 

b) Since the multipole moments depend, in general, on the coordinate system chosen, 
what sort of miracle makes the multipole expansion of the energy, independent of the 
coordinate system? 
 

c) When does the multipole expansion make sense, i.e. when does it converge? 
 
Truncating the multipole expansion and its coordinate system dependence 
 
It turns out that questions a and b are closely related to each other. When nk and nl  are 
finite and non-zero then the result of the multipole expansion is in general coordinate-
dependent. If, nk and nl  satisfy 

   nk +nl = const, 
 we may shift both coordinate systems (the same translation for both) however we like, 
and the interaction energy calculated remains invariant. 
Such a recipe for nk and nl corresponds to taking all the terms with a given power of R−1. 
 
If we take all the terms with a given R−m dependence, the result does not depend on the 
same translations of both coordinate systems. 



This means that to maintain the invariance of the energy with respect to equal translations 
of both coordinate systems, we have to calculate all terms satisfying nk + nl = nmax in the 
multipole expansion.  
 
If, e.g., nmax = 2, we have to calculate the term proportional to R−1 or the charge–charge 
interaction (it will be invariant), proportional to R−2 or charge–dipole and dipole–charge 
terms (their sum is also invariant), proportional to R−3 or charge–quadrupole, quadrupole–
charge and dipole–dipole (their sum is invariant as well). 
 
Let us take such a complete set of terms with k + l = 2.  
 
Let us begin with the charge–dipole term. The term in the multipole 
expansion corresponds to k = 0 and l = 2: 
 
 
 
The next term (k = 1, l = 1) has three contributions coming from the summation 
over m: 
 
 
 
 
The third term (k = 2, l = 0): 



taking z + T instead of z … 
 
 
 
 
 
 
 
 
The complete set does not depend on T! 
 
 
c) Convergence of the multipole expansion 
 
the multipole expansion convergence depends on how the molecules are located in 
space with respect to one another. The convergence criterion reads 
 
 
where ra1 denotes the vector pointing the particle 1 from its coordinate system 
origin, similarly for vector rb2. 

When the two particles are in their non-overlapping spheres, the multipole 
expansion converges. 



ELECTROSTATIC ENERGY IN THE MULTIPOLE REPRESENTATION AND  
THE PENETRATION ENERGY 
 
Electrostatic energy represents the first-order correction in polarization 
perturbational theory and is the mean value of V with the product wave function 
ψ(0)

0= ψA0ψB0. Because we have the multipole representation of V , we may insert 
it into formula 
 
 
In the polarization approximation we know perfectly well which electrons belong 
to molecule A  and which belong to B, therefore we perform the integration 
separately over the electrons of molecule A and those of molecule B. 
 
Formally  the expression for E(1) 

0 = Eelst  has to be of exactly the same form 
as the multipole representation of V , the only difference being that in V 
we have the molecular multipole operators, whereas in Eelst we have the 
molecular multipoles themselves as the mean values of the corresponding 
molecular multipole operators in the ground state . 
 
However, they are equivalent only when:  
a) the multipole form converges 
b) objects are non-overlapping 



If the electronic charge distributions penetrate, it causes a small difference 
(penetration energy Epenetr) between the Eelst calculated with and without the 
multipole expansion 
 
 
 
Where 
 
 
 
 
 
The molecular multipoles are: 
 

Jak rychle roste Epen? 



INDUCTION ENERGY IN THE MULTIPOLE REPRESENTATION 

The induction energy contribution consists of two parts: Eind(A→B) and 
Eind(B→A) or, respectively, the polarization energy of molecule B in the 
electric field of the unperturbed molecule A and vice versa. 
 
If we insert the multipole representation of V into the induction energy 
Eind(A→B) then 
 

the zeros come from the orthogonality 
of the eigenstates of the isolated molecule B, 



A molecule in the electric field of another molecule 
 
Note that            represents the square of the electric field intensity   Ez(A→B) = 
 

measured on molecule B and created by the net charge of molecule A. Therefore, 
we have 



DISPERSION ENERGY IN THE MULTIPOLE REPRESENTATION 

After inserting V in the multipole representation into the expression for 
the dispersion energy we obtain 

Hence, if we squared the total expression, the most important term would 
be the dipole–dipole contribution with the asymptotic R−6 distance dependence. 

The dispersion interaction is a pure correlation effect and therefore the methods 
used in a supermolecular approach, that do not take into account the electronic 
correlation (as for example the Hartree–Fock method) are unable to produce any 
non-zero dispersion contribution. 



A few simple and useful rules: 
 
1. The dispersion energy always decays as R−6. 

2. The electrostatic energy vanishes as R−(k+l+1) 
 where the 2k-pole and 2l-pole 

represent the lowest non-vanishing multipoles of the interacting subsystems. 
 
3. The induction energy vanishes as R−2(k+2) where the 2k-pole is the lower of 
the two lowest non-zero permanent multipoles of the molecules A and B.  
The formula is easy to understand if we take into account that the lowest 
induced multipole is always a dipole (l = 1), and that the induction effect is of 
the second order PT (hence 2 in the exponent). 



SYMMETRY ADAPTED PERTURBATION THEORIES 

• the polarization approximation, i.e. ignoring the Pauli principle becomes 
a very poor approximation, 
• the multipole expansion becomes invalid. 
 
POLARIZATION APPROXIMATION IS ILLEGAL  …!! 


