
Diagrammatic representation of RS perturbation theory

first used in QE by R. Feynman

Diagrammatic Perturbation Theory for Two States

• lowest eigenvalue of two state problem

Perturbation V is presented by dot.

Two zero order states |1> and |2> 
are lines with arrows

Hole

Particle



Simple representation of matrix elements V

<label of line in | V | label of line out >



N-th order energy, N=1,..4 is product of n matrix elements V, each matrix 
elements is dot with line going into it and line coming out of it => algebraic 
representation by pictures containing N dot connected in some way.
Rules:
1) N dot vertically

2) Connect all n 
dots together with 
continuous line

3) Do it in all possible 
distinct ways. Two diagram 
are equivalent if each and 
every dot is connected to an 
identical pair of dots

NOT ALLOWED

IDENTICAL 



“rubber bands” glued to dots Diagrams to 4th order

Only distinct diagrams

Arrows (1 is label 
for down line, 2 
for up line)

N = 3 
two possibility 
of labeling



Circular lines 
are hole lines



Correspondence between pictures and nth order of energy

Rules to translating pictures to algebraic expression:

a) Each dot contributes a factor < label in |V| label out> to numerator

b) Each pair of adjaced dots contributes to the denominator factor  

where the sums runs over label of all holes and particle lines crossing an imaginary

horizontal line separating two adjacent dots

c)  The sign of expression is (-)h+l ,where h is number of hole lines and l is number of closed

loops
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Upper two dots contribute by factor 

remaining by factor to the numerator.

Line A and C contributes by factor 

line B by 
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Since we have two holes (h = 2) and one closed 
loop (l = 1) => (-1)3 

Ex.



Algebraic expression for following pair in diagram

We can distort given diagram as long as we 
don’t change the vertical ordering of dots.

First order



Translation diagram into formulas





Ex. Write down and evaluate all fifth-order diagrams that have property that 

imaginary horizontal line crosses only one hole and one particle line. Show that the 

sum of such diagrams is
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Hint: there are eight such diagrams and they can be generated by adding 
three dots to the second-order diagram



Diagrammatic perturbation theory for N states

N-state system, still only one hole state |1> but N-1 particle states |n>, n=2,3, ..,4. 

Any particle line can be labeled by index n. So

or generally, m and n is in depended from 2, ..N

Subset of diagrams where m=n is called diagonal



d) Sum the expression over all particle indices

Second order energy (klick on the form)

Third order of energy

What if we want expression for some state i, which is not necessary the lowest?
Label hole line by i and particle line as k, m,n from 1, 2,..,.i-1, i+1, ..,N

Diagrammatic RS



Ex. Using diagrammatic techniques to obtain 4th order perturbation theory of a 
particular state i of N-state system. That is evaluate the diagrams

Where m, n, k exclude i. Obtain also result from algebraic expression and compare it together



Summation of diagrams

Two state system ,2nd order of energy

All diagram 
by adding 
dots
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like 2nd order of perturbation 
but with shifted energy 
denominator

V22-V11<E1-E2 !



Summing to infinite order can be obtained by finite order – different partitioning into 
perturbated and unperturbated part:
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Then geometric sum of diagrams is simply 2nd order PT in new partitioning.

For N-state system, adding dots to second order diagram 
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Orbital perturbation theory: one particle perturbations

Special case where unperturbed Hamiltonian is sum of one-particle Hamiltonians.

HF have such form, so we are interested in improving by PT.

First consider case where (not really) (ex. Molecule in electric field F =>perturbation 

is where r(i) is position of ith electron.
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Perturbation expansion of exact E0 can be generally written): …+++= )2(
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particle orbitals and over holes 
(except a).
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Matrix element vij is non-zero is spinorbitals i and j have same spin, than for closed systems:
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Ex. Calculate the third-order energy E0
(3) using the general expression.

a) Show that
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and zero otherwise.

d) Finally combine two term to obtain
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e) Show that for close-shell system
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Cyclic polyene with N carbon atoms (N=2n=4v+2), v=1, 2, 3, ..)

Resonance energy- difference between exact total energy and energy of N/2=n localized 
ethylenic units.
Occupied (hole) and unoccupied (particle) orbitals in the ith unit are denoted by |i> or |i*>
Hamiltonian is
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Since polyene is cyclic, 0th ethylen unit is same as nth, (n+1)th is first

In this model exact resonance energy of benzene is 2β, asymptotically exact energy is
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We need to known only matrix elements of perturbation v

Second-order energy (close-shell)
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a runs over all n occupied |i > , r over all n unoccupied |j* >
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Using fact hat the difference between orbitals is always 2β

For fixed i summation over j is easy : matrix elements are non-zero onlu when 1±= ij
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For benzene second-order resonance energy is 1.5β, exact value is 2 β, in larger systems is 
agreements even better- for large N energy approach 91.5% exact results.

Summation i over fixed j: orbital i 
can 
interact only with orbital (i±1)* .See 
picture:

Plus and minus indicate that the matrix elements between the two orbitals ±β/2 



Sum over j can be evaluated-start at i on the left and go to i on the right by all possible paths. 
Add all contributions. Illustration-value of path i → (i+1)* →i  is (+β/2)(+β/2)=β2/4 while

value of path i → (i-1)* →i  is (-β/2)(-β/2)=β2/4 
So the summation over j is just β2/4 for each value of i.

Calculation of third order of energy (close shell):
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Proceeding same way as in E0
(2), the first term is

( )
ivkkvjjvi

n

i

n

j

n

k

****

1 1 1
22

2 ∑∑∑
= = =β

Evaluation of expression over j and k

Note since i cannot interact with 
i* or (i+2)* or (i-2)* the value of 
this sum must be zero. Similar in 
second term, so third-order 
energy is zero.



But don’t be hasty. In benzene orbitals (i ± 2)* is same as (i 1)*, thus pictorial representation of 
the sum over j and k with i is:

∓

So there are two paths 1) 1 → 2* → 3* →1 with value (β/2)(-β/2)
(- β/2)= β3/8

2) 1 → 3* → 2* →1 with value (-β/2)(-β/2)
( β/2)= β3/8

Than the first term E0
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Total third energy E0
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Resonance energy up to third order is 2.25β (113% of exact value).

In excise the fourth order energy is , thus resonance nergy up to fourth order is 
2.34 β (117% of exact value). Perturbation expression does not converge. But works better for 
larger systems. 
The energy up to fourth level is 0.2656 Nβ i.e.

Compare with asymptotic exact value 0.2732 Nβ (i.e. 97% of exact value).

64
)4(

0
βNE =

βN⎟
⎠
⎞

⎜
⎝
⎛ +

64
1

4
1



Ex. Show that the second term in
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is equal to for benzene.β
8
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Ex. Consider a cyclic polyene with N = 4v+2, v=1 ,2, 3, .. Carbons. Instead that all bonds are 
identical  suppose that they alternate in length. In context of Hückel theory this means that 
resonance integrals alternate between β1and β2. For example for benzene we have

Now it can be shown that the exact energy in this case is
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And if β1= β and β2= 0 than E0 = Nα+Nβ (total energy in localized ethylenic description)

Purpose of this excise is to obtain the exact energy in power of β2/ β1.



a) Show that for benzene (v = 1) in alternating short and long bond model is 
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Do this first by using general expression and then by setting up the Hückel matrix, 
diagonalizing it and then adding up the occupied orbital energies. Note that for β1= β2= β
we obtain old result 6α+8β.

b) Setting β1= β and β2/ β1= x show that the resonance energy of benzene can be written as
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Note that when x = 0,ER = 0 and when x = 1, ER = 2β which is exact.

c) Using relation expand ER to fourth order in x 

and thus show that identifying coefficient of xn with nth-

order perturbation results, we have
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Note that E0
(2) and E0

(3) agree with previous results. Small insight into poor convergence of 
perturbation expansion of the resonance energy of benzene. When x is small, then rapid 
convergence. However for our problem is x  = 1.
Resonance energy calculated to Mth-order as function of M is below. Converging to exact 
value of 2β. Above method for obtaining E0

(n) for n= 2, 3, 4 is extremely laborious.
Results below were calculated by first showing that 
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And using recursive properties of these polynomials to shown that
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Diagrammatic representation of orbital perturbation theory

Holes – a, b, …
Particles - r, s, 

Fourth rule: Sum the expression over all particle and hole indices.



For close shell systems:
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Using these rules:



Ex. Find fourth order energy for closed-shell cyclic polyene

a) Show that

and so that

Thus the resonance energy calculated for cyclic polyene with N>6 up to fourth order is
(1/4+1/64) Nβ = 0.2656 Nβ, which compares with asymptotically exact value of 0.2732 Nβ
(97% of exact).

b) For benzene, show that the diagrammatic result for the fourth-order energy agrees with the 
independently calculated results from previous exercise (with short and long bonds).



Perturbation expansion of the correlation energy
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Double excitation rs
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At level of first-order pairs, pair theory gives same correlation as 2nd PT.



Ex.Derive
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third order of energy
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Illustration - Second and third order of 
H2 in minimal basis
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Exact correlation is

where

where

Single hole orbitals a = b = 1, 
similarly r = s = 2 then 
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The N-dependence of RS perturbation expansion

Ex. Derive

and

from 
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Proof that PT is proportional to number of particles:
Supermolecule N noninteracting H2 (in DCI was proportional to N1/2 in limit of large N
Label the orbitals:

All two electron integrals involving orbitals from different units are zero. HF wave function is
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HF energy of supermolecule

is indeed simply N times HF of one subunit. Expression for 2nd order energy is
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Summation over n can be replaced by summation over i
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B0
(3) doesn’t appear to have N dependence, since B0

(3) is proportional to N2 :
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But this term is cancelled by part of term A0
(3).

In A0
(3) both |n> and |m> must be states of type so that ii
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Ex.Derive
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Diagrammatic representation of the perturbation expansion of the correlation energy

Nth order of energy (zero order is HF), HF is good for start, due to Brillouin theorem.

Hugenholtz diagram

In ∑ −−+
=

abrs srba

rsab
E

εεεε

2

)2(
0 4

1 the numerator have four indices – result of two particle 
nature of perturbation

Dot with two line in and two line out

In diagram – connect dots in all possible ways:
1) Each dot has four lines
2) Each diagram is linked
3) Each diagram is distinct
4) Diagram containing more than one dot do not have lines which start and end at 

the same point.

Consequence of Brillouin’s





Fourth order
(unlabeled)



Labeling

Hugenholtz diagram



Translation into algebra:

a)

b)

c)

d)
e)



Second order

Two equivalent line (r,s) and (a,b)

Case A
( ) ∑ −−+
−⎟

⎠
⎞

⎜
⎝
⎛ +

abrs srba

l abrsrsab
A

εεεε
2

2

2
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Case B ( ) ∑ −−+
−⎟

⎠
⎞

⎜
⎝
⎛ +

abrs srba

l absrrsab
B

εεεε
2

2

2
1

A and B must be equal – l factor. Number of closed loops can be found only after we 
written down a string of matrix elements



Case A

lA = 2

Case B
lB = 1

absrabrs −= A = B
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Third order

l = 2
bdsb
acra

→→→
→→→

l = 2
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atra

→→→
→→→



l = 3
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→→
→→
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Total energy E0
(3)



Ex. Show that the fourth-order diagram

is equal to

∑ −−+−−−++−−+
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Goldstone diagrams

Two particle interaction is not dot but dashed line

Direct exchange

Exchange diagram

This eliminates the antisymmetric elements.



Rules:





Table: Second 
and third order 
of Goldstone 
diagrams









Second order of energy

Direct: Reflecting in perpendicular plane – diagram remains invariant to reflection

1/2

Two holes + two closed loop

Exchange
1/2

Two holes, but only one loop

Weight factor

rasbr →→→→



Ex. Goldstone diagrams in Table can be obtained by “pulling apart: the second and third-
order Hugenholtz diagrams. For example if we push  

Close shell – converting from spin orbital to spatial: direct multiplied by 22

exchange            by 21

Push all third-order diagram in Table in similar way find which Goldstone diagram come to 
Hugenholtz. For above Hugenholtz diagram,verify that its mathematical value indeed the 
sum of the values of corresponding Goldstone diagrams.



Example: H2 
Two second order diagram

Third order diagram



Sum over 12 expresions )3(
0E



Summation of diagrams

Transforming to second order diagrams; adding interaction lines, (labels below and above 
interaction line is same)
All have weight factor ½, same number of holes and particles – same sign

Shifted energy denominator



Sum over all diagrams

Similar as Epstein-Nesbet pair energy

If we sum over all double excitation diagrams (imaginary line cross only two holes and two 
particles line ) double excited MBPT (D-MBPT) of Bartlett and co. Tis is 
equivalent to linear CCA.

If D only diagonal EN

D-MBPT is exact third order of PT



Linked cluster theorem

Algebraic term proportional to N2 can be represented by diagram with separate pieces (unlinked
diagrams). But such diagrams never appear in final result of the nth-order of energy.
So:

Nth order can be written only with linked diagrams.

Ex.Calculate E0
(3) for supermolecule consist of N noninteracting minimal basis H2 molecules 

evaluating the Goldstone diagrams in Table. Compare your result with 
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which was obtained algebraically explicitly cancelling term proportional to N2

Hint: Simply show that value of each Goldstone diagram for the supermolecule is N times the result for 
a single molecule.



Calculations

inc



Equilibrium bond length(a.u) for ten-electron series

SCF/6-31G** differ 0.011 a.u.

SCF largest diff. to exp. is 0.03
MP2 below 0.01 a.u.



MP2 reduce SCF error 
to half

Problems with multiple bonds

Error SCF 0.03 a.u.

MP2 overestimates 
correction



Base is near HF limit
MP2 better than SDCI

PT poor convergence, non monotonic 



H2 r infinity

SCF dissociation into 2 H

CI
infinity


