Diagrammatic representation of RS perturbation theory

first used in QE by R. Feynman

Diagrammatic Perturbation Theory for Two States

* lowest eigenvalue of two state problem

Perturbation V is presented by dot.

Two zero order states |1> and |2> H
. . e ole
are lines with arrows ll > *

2) — b Pparticle



Simple representation of matrix elements V

|
<1IV|1> = Vi = = *

N /-

<2|V11> = V>

2
2

<2|V|2> =V, = — f

<label of line i | V | label of line our >



N-th order energy, N=1,..4 is product of n matrix elements V, each matrix
elements is dot with line going into it and line coming out of it => algebraic
representation by pictures containing N dot connected in some way.

Rules:
1)  Ndot vertically NOT ALLOWED
. 1 2) Connect all n Q
® p) dots _together_wnh
continuous line !
o 3 : O

L

3) Do it in all possible

distinct ways. Two diagram
are equivalent if each and 2
every dot is connected to an
Identical pair of dots 3

IDENTICAL

@oo



rubber bands” glued to dots Diagrams to 4t order

Only distinct diagrams
- | s = O "
\ , |
<> n=2
 Arrows (1 is label 3
. for down line, 2 !
| for up line)

N=3
l two possibility
of labeling

RN



n=1
n=2
n=3
n=4

Circular lines
are hole lines



Correspondence between pictures and nt order of energy

Rules to translating pictures to algebraic expression:

a) Each dot contributes a factor < label i |V| label 07> to numerator

b) Each pair of adjaced dots contributes to the denominator factor 2 Eiot — 2 E pevicue

where the sums runs over label of all holes and particle lines crossing an imaginary
horizontal line separating two adjacent dots
c) The sign of expression is (-)"! ,where h is number of hole lines and | is number of closed

loops

- Upper two dots contribute by factor ~ (2|V'|1) =V,

remaining by factor  (1}/|2)=V,,  to the numerator.

N

Line A and C contributes by factor E©® — E{”
o line B by (E® -2E)

o
\ V)
c
\/ Since we have two holes (h = 2) and one closed
loop (I =1) => (-1)3

2

]




: ; (Vi2Vay)? _ — MV
‘ : = (_) ( E(10) - E(ZO))2(2 E(IO) ) E(zo)) - 2( E(IO) —_ E(zo))3

Algebraic expression for following pair in diagram

——
-
—-—

2 We can distort given diagram as long as we
don’t change the vertical ordering of dots.

|
2
[
2
2 2
v\, \ . First order :
2 2 O =V



Translation diagram into formulas

(1|“V‘2)(2|"V|1) _ W3V
E(10) _ E(zo) - E(10) _ E(zm

1+1

EP-EPY (B - EDY

Oz (
Qz - )m(1\V\2)(2|V]2)(2|‘V[1)_ ViaVaaVa

| 241 (1|V|2)(2M1)(1[ﬂ1) _ ViaVa Vi
‘ (=) (EQ - &0) B E‘°’ (20)
|

3+1<1’V\2><2Ml><1W1><1Ml> ViV VA
E(O) ESO))S (E(O) E(O))



) (1]1”]2)(2]V{2)(2|“V|1>(1|“V|1) _

( _ )2 +
(E(lo) - E(ZO))3

ViaVaaVaVas

(E(IO) - E(ZO))3

(=)t APy napiy
( E(10) - E(ZO))s =

ViVaaVaVu

( E(lG) — E(20))3

e IR DDAV HaViabi
2 (B — EP)? " (EP - EPY
e AU A ()

(ED — EPEP - 2E7)

2(E(10) _ E(20))3

(1|"V|2>(2|"V|1)(1|“V|2)(2|‘V|1) _
(E(lo) - E(20))2(2E(10) _ 2E(20))

(_)2+1

(Vb))
2(E(10) _ E(ZO))S




Ex. Write down and evaluate all fifth-order diagrams that have property that
Imaginary horizontal line crosses only one hole and one particle line. Show that the
V12V21 (sz — V11)3

(E” - EP)’

sum of such diagrams is

Hint: there are eight such diagrams and they can be generated by adding
three dots to the second-order diagram



Diagrammatic perturbation theory for N states
N-state system, still only one hole state |1> but N-1 particle states [n>, n=2,3, ..,4.

Any particle line can be labeled by index n. So

SO0 00

or generally, m and » is in depended from 2, ..N

Subset of diagrams where m=n is called diagonal



d) Sum the expression over all particle indices
Second order energy (ick on the form)

VinVm VinVni

A AR - Yoy
Third order of energy
. l ’ Vlmenan ' VllVanﬂI
(I n — ; (E(lo) — E(,,?))(E(IO) _ E(n(})) - ; (E(IO) — ELO))Z

What if we want expression for some state I, which is not necessary the lowest?

Label hole line by i and particle line as k, m,n from 1, 2,..,.i-1, i+1, ..,N

_— Diagrammatic RS



Ex. Using diagrammatic technigues to obtain 4t order perturbation theory of a
particular state i of N-state system. That is evaluate the diagrams

000000

Where m, n, k exclude i. Obtain also result from algebraic expression and compare it together




Summation of diagrams

Two state system ,2"d order of energy

- L _
| *  Alldiagram &7\ F|* ) R A U A U t
by adding | ! : ? !

dots |

then A = V12V21 + V12V21(V22_V11) n V12V21(V22_V11)2 + V12V21(V22_V11)3 n
£ -0 | @O0y | @0 -£0y | B0 £

or 2 3
V.V. V., —V. V., —V. V., —V.
A= 12V 21 1+ 22 1|, 22 11 n 22 11 T
El(O) _EéO) { [El(O) _E§O)j (El(O) _E§O)j (El(O) _E2(0)J ]

A—x)"=1+x+x"+x°+...
| | like 2d order of perturbation
Vi Vo 1 B Vi Vo but with shifted energy
EP—EP |1 Va—Vu | (E”+V,)—(EY” +V,)  denominator
El(O) _EZ(O)

A=




Summing to infinite order can be obtained by finite order — different partitioning into
perturbated and unperturbated part:

"o E® 0 - E® +1, 0
Lo EP ’ 0  EQ+V,

(T e | D e
v, ¥ Vo 0
21 22

Then geometric sum of diagrams is simply 2"d order PT in new partitioning.

For N-state system, adding dots to second order diagram

—_ -1 - ‘Td T
A'—“ ! n + On + Ql + oo
L L -

_ I/ln an
A= Z (0) . (0)
n (El + I/11) (En + Vnn)

n=1 term excluded



Orbital perturbation theory: one particle perturbations
Special case where unperturbed Hamiltonian is sum of one-particle Hamiltonians. H, = Zho (7)

i

HF have such form, so we are interested in improving by PT.

First consider case where V = Zv(i) (not really) (eX. Molecule in electric field F =>perturbation

s FY r(i) where r(i) is |Sosition of it electron.
Set of spin orbitals and orbital energies that are eigenfunction and eigenvalues of h,

0) _ ~(0)
hOZl —(C,‘ Zl

‘ (0) (0) (0)>

Ground state wave function (|\¥,>) : AN

%

Occupied (hole) spin orbitals a, b, ¢ and unoccupied (particle) spin orbitals 7, s, ¢
)= 2 | By = (8a H ) = (93 [Hy V)= e+ S ala) =260 + v,
’ 1 e terms a a a a

Inour case:  H =Ho+V =2 (h(D)+v(D) = > h(i) hy,=(hy+V) 1, =€,

Exactwf  |®o)=|x...x,...xy) and Pﬂ‘l’()}:(;ga) @J@CD()}




Perturbation expansion of exact E, can be generally written): E, = E” + E” + E? + ...

and for orbital energy ¢, holds: < M ><M >

avii)mNi a
ga:g§°)+<a\v\a>+zi: ;050 +o

J— 8(0) _I_v +Z (O)Cll la O

Two parts of summation over Vv VY
. . . (V) ar "ra ab ¥ ba

particle orbitals and over holes Eq =&, TV T Z o o T Z © o

(except a) ra TE T braba TE

Total energy

Term X X = Z VabVba :O a - > b
6‘(0) g0
ab b

b#a

2‘9 —2‘9 D) +Z"aa +Z (O)ar m(O)

EéO) Eél) EéZ)

Second order




Matrix element v, Is non-zero is spinorbitals I and j have same spin, than for closed systems:
NI2

E® = 22 &,

N/2

Eo(l) — 22 Vaa

N/2

(2) _ ar ra
E 22 (0) (0)

Ex. Derive
E@ _ Z VarVra Starting with general expression for second-order energy applied
— 9 & 10 N-electron system )
‘<‘P0 Zv(z)‘n>
B =20 E(O)l _£O

n 0 n

where sum runs over all stages of system except ground state

Hint: The states |n> must be single excitations of type ‘LPQV> ‘ O OO0 Z](VO)>



Ex. Calculate the third-order energy E,® using the general expression.

) Show that (Foln) VarVVis
Bég) = _Eél)z (‘EéO)O_E(Ol)Z - _Z (e _;(%))2

n abr b

2

b)Showthat o _ (Tl mnlP [ m)m[V]¥s) < vuval¥e %)
o Z (Eéo) —E(O))(Eéo) _E(O)) - % (5(0) —8(0))(8150) —8(0))

nm

V‘\{f[j>:v ifa=br#s

c) Show that <‘P£
ifa#xb r=s

:Zvcc—v +v Ifazb r=5

and zero otherwise.
d) Finally combine two term to obtain

v vV v.V.,V
Eé3) — A(g?’) +B(§3) — Z arrs_ sa _Z ra ab” br
ars (ECEO) T E;SO)) abr (‘95(10) o g;EO))(g[SO) _ 850))

e) Show that for close-shell system NI2 NI2

v V.V v. Vv,V
E(3) — 2 ar “rs_sa 2 ra_ ab” br
I ) el o)

ars



Cyclic polyene with N carbon atoms (N=2n=4v+2), v=1, 2, 3, ..)

Resonance energy- difference between exact total energy and energy of N/2=n localized
ethylenic units.

Occupied (hole) and unoccupied (particle) orbitals in the it unit are denoted by [i> or |i*>

Hamiltonian is
H=Hy+V=> h@)+> v(i)

©) _ 0 _ 97 - -
g —é&p =2pindependent of iand j

Non zero matrix elements (iME+)*) =+5/2
(ip(i£1)= 812
(i*M@+D))=-p12

Since polyene is cyclic, 0t ethylen unit is same as nt, (n+1)t is first

In this model exact resonance energy of benzene is 23, asymptotically exact energy is
INim E,=@4/r7-1)Np=0.2732 Nj

We need to known only matrix elements of perturbation v
Second-order energy (close-shell) N2 N/2< M >< M a>

E(Z) 22 (ar m(O) Z (0) &0




a runs over all » occupied |i >, r over all n unoccupied |j*

(iMJ ><j*v > ><

(2) _
B =23 5 TG = 25 b
Using fact hat the difference between orbitals is always 23

i)

i=1 j=1 1 J* i=1l j=1

For fixed i summation over j is easy : matrix elements are non-zero onlu when j=i+1

S Eé2):%znl<i‘v‘(i+l)*><(z+l M ‘V‘(l 1) >< 1) v i>

1=

_LS[(grap+(prap|-2L - _go5np
55 2 4

For benzene second-order resonance energy is 1.58, exact value is 2 B3, in larger systems is
agreements even better- for large N energy approach 91.5% exact results.

L : . . (1 +1)%
Summation i over fixed j: orbital ;
can + +

interact only with orbital (i+1)".See ;| Foi o e Yl
j

picture: \ /
- %

(
Plus and minus indicate that the matrix elements between the two orbitals +3/2



Sum over j can be evaluated-start at i on the left and go to i on the right by all possible paths.

Add all contributions. Illustration-value of path i — (i+1)" —i is (+p/2)(+B/2)=p%/4 while
value of path i — (i-1)" —i is (-B/2)(-B/2)=p?/4

So the summation over j is just 3%/4 for each value of i.

Calculation of third order of energy (close shell):

Eé?’) — ZNZ/Z varvrsvsa _ ZNZ/Z vravabvbr
ars (85(10) _ ;EO))(EC(IO) o 550)) abr (‘95(10) o 8750))(820) o gr(O))

Proceeding same way as in E,®, the first term is . ZZ;ZX iV J >< ><k Vi)
i=1 J=
. . ] (ie2)™
Evaluation of expression over j and K _/ .
(ie1) ¥ .
Y N,
i > i“% i +— i i®e e o - - =
Note since I cannot interact with \ / .
- . g
1"or (i+2)" or (i-2)" the value of - .’
this sum must be zero. Similar in '\“ "

second term, so third-order
energy Is zero.



But don’t be hasty. In benzene orbitals (i + 2)"is same as (i  1)”, thus pictorial representation of
the sum over j and kwith i is:

_/ So there are two paths 1) 1 — 2* — 3* —1 with value (B/2)(-B/2)
2* - (- B/2)=p°/8
2N\ \ 2) 1 - 3" = 2* 1 with value (-B/2)(-B/2)
|\ /l"‘- ----1 (B/2)=p38

3* + Than the first term E,® is Z[(,B 18)+ (81 8)] 318
N TR

2!
(3) 3p
Total third energy E,® for benzene is E,” (benzene) = .
Resonance energy up to third order is 2.25f3 (113% of exact value).

In excise the fourth order energy is Ey? = N—f , thus resonance nergy up to fourth order is
2.34 B (117% of exact value). Perturbation expression does not converge. But works better for
larger systems.

The energy up to fourth level is 0.2656 Nf3 i.e. (%+6—14jNﬂ

Compare with asymptotic exact value 0.2732 N (i.e. 97% of exact value).



Ex. Show that the second term in
N2 N2

() _ varvrsvsa _ vravabvbr
Eo B ZZ (5(0) —8(0))(8(0) —8(0)) 22 (5(0) —8(0))(8(0) _5(0))

ars abr b

is equal to gﬁ for benzene.

Ex. Consider a cyclic polyene with N = 4v+2, v=1 ,2, 3, .. Carbons. Instead that all bonds are
Identical suppose that they alternate in length. In context of Hickel theory this means that
resonance integrals alternate between 3,and 3, For example for benzene we have

V A2 Now it can be shown that the exact energy in this case is

T v 2j

gy =Na =2 (B2 + f; + 2,8, cos=L5)
Jj==v

2v+1

Note that when B,= ,= 3, since 2cos® @ = (1+cos26) and

o'... . . Y .72.
ﬁ\ g, B is negative we recover ¢, =Na+4 > cos J

| iy 2v+1
And if ,= B and B,= 0 than E, = Na+Np (total energy in localized ethylenic description)

Purpose of this excise is to obtain the exact energy in power of 3,, 3,



a) Show that for benzene (v = 1) in alternating short and long bond model is

£y =6+ 205, + B,) - B2+ B2 - B, )

Do this first by using general expression and then by setting up the Hiickel matrix,
diagonalizing it and then adding up the occupied orbital energies. Note that for 3,= ,= f3
we obtain old result 6a.+8.

b) Setting B,= B and B,/ 3,= X show that the resonance energy of benzene can be written as
E, = 4,6’(%x—1+ 1+ x* —x)"?)

Note that when x = 0,E; = 0 and when x = 1, E; = 23 which is exact.

c) Using relation @+ yf? =142 y-2y2 43yt <1 expand E. to fourth order in x
9 2° 8" 16~ 128 P R orae
3 : . . .
and thus show that E, = ,B(Ex2 +sz +3—32x4 +...) identifying coefficient of x» with nth-
order perturbation results, we have  E{?) = %,B
3
EgY = 27
3
Eg = —p



Note that £, and E,* agree with previous results. Small insight into poor convergence of
perturbation expansion of the resonance energy of benzene. When x is small, then rapid
convergence. However for our problemis x = 1.

Resonance energy calculated to Mth-order as function of M is below. Converging to exact
value of 2f3. Above method for obtaining E,(" for n= 2, 3, 4 is extremely laborious.
Results below were calculated by first showing that

E" =44C"*(%), where C,"*(x) is GegenBauer polynomial.
And using recursive properties of these polynomials to shown that

(n+1D)ES™ =(n-1)EM —(n—2)ES™

24 ¢
2.3
2.2
Q@ .
E\ 2.1 2 4 6 8 12 14
] 2 : o . i M

—
- -
@®
R

)




Diagrammatic representation of orbital perturbation theory

Holes—a, b, ... 0
Particles - r, s, O n=1
r a )
a r n=3
. b
' " ' ° ’.. Y , v n=4
s b . b
r c b s

Fourth rule: Sum the expression over all particle and hole indices.



Using these rules: a
w-( }-zn

2) —
EQ =

_ Z Varlra
re (0) (0)
r €a — &
r

| :
r a
E(o3) = o+
s b

— VasUselUra _ Z VralabVpr
ars (830) - 8§0))(8510) _‘850)) abr (820) - 8£0))(8£0) - 85-0))

For close shell systems: N NI2

:22



Ex. Find fourth order energy for closed-shell cyclic polyene

a) Showthat ¢ ° ' ’
'=b r=3=: a == c—'Nﬂ
. I 64
and so that o NB
) = [\ - 3 B’ =5
° o » 128

Thus the resonance energy calculated for cyclic polyene with N>6 up to fourth order is

(1/4+1/64) NB = 0.2656 N3, which compares with asymptotically exact value of 0.2732 Nf3
(97% of exact).

b) For benzene, show that the diagrammatic result for the fourth-order energy agrees with the
independently calculated results from previous exercise (with short and long bonds).



Perturbation expansion of the correlation energy

Improving of HF of N-electron system H=H,+V
HF  Ho|¥,)=E Y, Ey) =) e,

1
EY = (9l |%,) =~ 23 (ab]ab)

ab

HF energy is E,=E§" +ES =) &,—1> (ab|ab)
a ab

2
First correlation from 2 O <0\V\n>‘ Summation over but the
o - Zn: E®-EO© ground state of system
0)=|¥,) In> these states cannot be single excitation due to

<\P0\V\\P;> = (¥, \H—Ho\\P;>:<\PO \H\\P;>—fm, -0

P

Brillouin’s theorem Spinorb. are

eigenfunction of
Triply excited states do not mix with |\, > due

) : Fock op.
to two-particle nature of perturbation! P



Double excitation | '¥.;) Ho‘ ‘P;;j> =(E? ~(g,+&,—&, —¢.)) \P;g>
Summing over all possible double excitation
2
SO
Em:z: i< =Z: ab|rs
° a<b 8a+gb_8r_gs a<bga+gb_gr_gs
Sum of contribution from each pair of EP =Y el
electron in occupied orbitals a<b 2
oy Lalr)
C e te g —c “Pair theory”
At level of first-order pairs, pair theory gives same correlation as 2nd PT,
2
1 ab||rs
a=b OF r=s > 0 E =) o)

Ao E,+E —&. —€&,
1 b b) 1 b b
EéZ):EZ <“ "”S><’”S‘“ >__Z <“ "”S><’”S‘ “>

s E, Y E, —E. 8, 24nE,+E —E —E,

close shell E® - ZNZ’f (ab|rs)(rs|ab) _Nf (ab|rs)(rs|ba)
ab”Sga—i_gb_gr_g abrsga_i_gb_gr_gs

N




<ab‘rs><rs‘ab> 1

Ex.Derive @ 1 <ab‘rs><rs‘ba>
E® —— il
° 2;ga+gb—5r—gs 2;ga+gb—5r—gs

and N2 <ab‘rs><rs‘ab> Ni2 <ab‘rs><rs‘ba>

EQ =2 53

s &, FE —E. &, e E,TE —E. —E&,

N

from )
gL latls)
@ —

Ao E,+E —&. —€&,




third order of energy =1y (atjrs)icd| atj(rs| cd)

abcdrs(ga +gb _gr _‘%)(gc +gd - _6;)

r

ny_tallrarduindal

abrstt‘ga +gb _gr _%)(ga +gb _6;‘ _gu)

Illustration - Second and third order of + Z <alﬂ & S><64 tb><r lﬂ ac>
H, in minimal basis aborsk &, +8, 6, )€, +8,—6,—¢)

Exact correlationis £, =A— (AZ + K122)1’2

Where  2A =2(e, — &) +Jy +J, —4J, + 2K,
=2(¢, — &) +(11]11) + (22| 22) - 4(12|12) + 2(11| 22)

Expansion of correlation energy to Taylor series up to third order E_ . =E® +E® +...

where  FO _ Ky pO = KW+ = Ay + 2K )
2(&,— &) A& —¢,)

Single hole orbitalsa=b =1, ¢ _ ZNZ’f (ab|rs)(rs|ab) _Nf (ab|rs)(rs|ba)
similarly r =s = 2 then P Tl te e —e. Se +e,—c —¢

becomes (11)22)(22]11)  (11]22)(22|11) ‘<11\22>2‘ K}

EP =2 -

2(e,—¢,) 2(&,—¢&,) B 2(&,— &) B 2(e,— &)




Ex. Derive 2
(2) _ K

h 12
2(&, —&,)
and
E® — K122 (J11 +Jp — 4J12 + 2K12)
° 4(g, - 52)2
from 2 2 \1/2
Ecorr = A o (A +K12)

The N-dependence of RS perturbation expansion

Proof that PT is proportional to number of particles:
Supermolecule N noninteracting H, (in DCI was proportional to N2 in limit of large N

Label the orbitals: 2, 2, 2, 25

€;

1l 12 13 1N o

All two electron integrals involving orbitals from different units are zero. HF wave function is
W) =L11,% 1,1, )

Zeroth-order First order
N N

E® = (W, [Ho| Wy ) =2 (L] f]1) = 2N¢g, EQ = (¥, [r¥,) == (14,

i=1 i=1

11)=-NJ,




0 1
HF energy of supermolecule E, = <LIJO ‘Ho +V‘ \Po> _ Eé ) +E(§) N(26‘1
is indeed simply N times HF of one subunit. Expression for 2" order energy is

oo
E(Z) Z ‘E'(O) E‘(O)

Clearly |0> = |¥,> and the state |n> must be a double excitation of type ‘\P1212>
For these excitation  E(” — E® =2(g, - &,)
(W | ) = (13]22)-(13[2,2,) = (11]22) = K

Summation over n can be replaced by summation over |

ez

E® - Z‘ __NK; «— N times energy of one unit
a 2e-s,) 2(e,-¢,)
General expression of third order energy is E® =AY +BY
where (O )l | )10

3) _
A Z Z (E(O) (0))(E(0) _E(O))

and (o[ |n)
B<3)_ E(l)z E(O) E}SO))

J11)



B,® doesn’t appear to have N dependence since B, is proportional to N° :

KZ _ N*J, K},

B(g) =—(- NJll)Z

But this term is cancelled by part of term A,®)
In A,® both [n>and |m> must be states of type “PZ . > so that

V K’
AP = Z< 4(‘51‘—52)> 12

i=1

Only diagonal term because integral involving different units are zero.

2,2, 2,2, 2,2,
(B ) = (0 [ - W)
=-NJ,+J, +J,,—4J,+K,
S0 we have A(S) _ N2J11K122 NK122 (J11 + J22 _4J12 + 2K12)

T (2¢ 2‘92) 4(51_‘92)2

= +
° 4(51_52)2 4(‘91_‘92)2
or E® =49 +BY = NK G, (Juy +J 5 =41, +2K3,)
4(51 o 52)2
Ex.Derive and v
2. 2. 2. 2, (1) = =
(R e ) = (o | - a1 i Rl

=—NJ,+J,+J,—-4J,+K,

‘]ll



Diagrammatic representation of the perturbation expansion of the correlation energy

Nth order of energy (zero order is HF), HF is good for start, due to Brillouin theorem.

Hugenholtz diagram

\(abHrg}\z the numerator have four indices — result of two particle
nature of perturbation

In

1
(2) _ E
et —& —&,

Dot with two line in and two line out

In diagram — connect dots in all possible ways:

1) Each dot has four lines

2) Each diagram is linked

3) Each diagram is distinct

4)  Diagram containing more than one dot do not have lines which start and end at
the same point.

Consequence of Brillouin’s









Labeling

Hugenholtz diagram



Translation into algebra:

a) Each dot contributes an antisymmetrized matrix element {label-1 in,
label-2 in||label-1 out, label-2 out) to the numerator. The particular
labeling 1 and 2 is arbitrary.

D) Each pair of adjacent dots contributes the denominator factor

Z Enoles — Z 8particles

where the sums run over the labels of all hole and particle lines crossing
an imaginary horizontal line separating the two adjacent dots.

C) The overall sign of the expression is (—)"*!, where h and | are the number
of hole lines and closed loops, respectively. The number of closed loops
cannot be determined by looking at the diagram alone. We will give a
prescription below as how to find it from the string of matrix elements
written down using rule (H1).

d)Sum the expression over all particle and hole indices.

e)Multiply the expression by a weight factor 2%, where k is the number
of pairs of equivalent lines in the diagram. Two lines are equivalent when
both start and end at the same dot and both go in the same direction.



Second order

Two equivalent line (r,s) and (a,b)

Case A (i)z(_)z”f‘ Z <abH rs><rs H ab>

2 abrs Ea +€b _gr _gs

Case B ( 1 )2(_)2”3 ¥ (ab||rs)(sr|ab)

2 abrs Ea +€b _gr _gs

A and B must be equal — | factor. Number of closed loops can be found only after we
written down a string of matrix elements

3 "
Gjllkly  and |kl



Case A 1 2

(cgbl |#s)(rl's| |éb) . a-ra
1 2
(alLWrg)(rleal;) . b>sSb |,=2
Case B — — =1
(aﬂ]g)(ﬂﬂgb) as>rs3bdsSa B~
3 n
<7'SH ab> = —<SrH ab> > A=B

E® - % 5 {ab]rs)rs]ab)

abrs Ea + gb _gr _gs



Third order

r s == —_
2 abcdrs (sa + Ep — & — Bs)(sc + €g — & — 8,)

|=2 a—>r—>c—a

. o 1)’ (—p* ¥ ab||rs)<rs||tu) {tuf|ab)
’ . - 2 abrstu (80 + & — & — 8s)(‘ga + & — & — au)

. (1)3(_)4+, 5 Cab||rs){cd||ab){rs||cd)

b—>s—>d—>b

| =2 a—>r—>1t—>a
b—>s—>u—>b



a . r — (____)3 +1 Z (abl |TS>(CS| |tb)<rt| Iac)
. - abcrst (Sa + &y — & — 8,.)(8‘, +ée—¢8 — 8:)

a—>r—a
| =3

b—o>s—>b
c—>1t—cC

Total energy E,®

oLy (ab|rs)(cd | ab){rs|cd)
8 dhears (6, +&,—€. —&)e. +&,—¢6,—¢,)
g (als]dar
8 oo (6, &, — €, —&)e, +&,— & -¢,)
<ab H rs><cs ‘ tb><rt H ac>

e, ve,—6 -5 )6, t6. -6, -,

N

+




Ex. Show that the fourth-order diagram

IS equal to

Y (s | ac){at] de)(de]|b)(eb|rs)

abcderst (ga + 8c _gr _gs)(gc +‘9d + 8e _gr _gz _gs)(gb + ge _gr _gs)



Goldstone diagrams

Two particle interaction is not dot but dashed line

SR
sa

This eliminates the antisymmetric elements.

| r Ob OO s Direct exchange

NS

and

) Exchange diagram




Rules: Each interaction line

N
N

contributes a matrix element factor {label-left in, label-right in | label-left
out, label-right out) to the numerator.

Each pair of adjacent interaction lines contributes the denominator factor

Z €hole — Z Eparticle

where the sums run over the labels of all hole and particle lines crossing
an imaginary horizontal line separating the two adjacent interaction lines.

The overall sign of the expression is (— )"+, where h and | are the number
of hole lines and closed loops, respectively.

Sum the expression over all particle and hole indices.

Diagrams which have a mirror plane perpendicular to the plane of the
paper are multiplied by a factor of 1/2.



For closed-shell systems, a summation over spin orbitals is equal to
2! times a summation over spatial orbitals, i.e.,

N N/2

Y=0@'Y.



Table: Second
and third order
of Goldstone , e s b ()2 (1) y (ab|rs){rs|ab)
diagrams 2) grstat By — & — &

b
r o (o (1) 5 (ab|rs){rs|ba)

2 abrs € T & — & — &

i b ts)<ts|ab
a S— b (=)2*? (_) Z (a |ru><r“| )24 Sla )

2 abrsuw (8, +&—¢& — su)(ea + & — & — 8_‘)

¢ b
' l) {ad|rsy{cb|ad){rs|cb)
r eeennasanass s ( — )4 (2 Z

abedrs (sa + & — & — as)(ac + Ep — & — ss)




s b
"} TR — t (-p*? ¥ (ac[rt)(rb|sc)(st|ab)
r c aberst (Ea +e—¢ — 8:)(8a + & — & — 8:)
$ a
, ¢ (Pt Y (be|rty<ralsby{st|ac)
b aberst (Eb t&—&— 8:)(80 +E — & — 8:)

s b
r ) O (_ )3 +3 Z (ac|rt)(bt | sc)(rslab>
t Oc aberst (Sa +E —¢€ — 8,)(8, + & — € — gs)




(—)3*! z <Cb|ft><atlsc>(rs|ab>

aberst (sc +& —& — 8!)(841 + & — & — 83)

1
(_)4+1( ) y Cac|rs){dblac){sr|db)

abedrs (sa +E —¢€ — 8,)(8,, + & — & — 8,)

2

b (_)2+1 (1) Z (ablrt>(tr|us)(us|ab>

2 abrsut (Ea + € — & — 8,.)(8,, + €p — & — 83)

y Cbe|rey<ar|bs)ts|ac)

(_)3+l
aberst (8‘. + & — & — 8,)(8, +& — & — 8:)




(-p*t ¥ (cb|rt){ra|sb){st|ac)

aberst (Ec + € — & — &)(€, + & — & — &)

(=P Y (ab|rsy{sc|at){rt|bec)

aberst (s" +&—& — 83)(8c + €& — & — &)

(-p*? ¥ Cbe|rty{at|sc)(rs|ab)

aberst (sb te & — 8,.)(8, + &, — € — 8:)




Second order of energy

Direct: Reflecting in perpendicular plane — diagram remains invariant to reflection
e Weight factor

DH~0 000"

Two holes + two closed loop

o v b . =_12_(_)4 Z (ab|r8><rs‘ab>

abrs €a + & — & — &

~C0) ——




Close shell — converting from spin orbital to spatial: direct multiplied by 22
exchange by 21

EX. Goldstone diagrams in Table can be obtained by “pulling apart: the second and third-
order Hugenholtz diagrams. For example if we push

v
o
or

Push all third-order diagram in Table in similar way find which Goldstone diagram come to
Hugenholtz. For above Hugenholtz diagram,verify that its mathematical value indeed the
sum of the values of corresponding Goldstone diagrams.



Example: H, 1o (22(1/2) (1122)* K3,
Two second order diagram (2e; — 2¢,) (&1 —&,)
{(11]22)2 K3,

2 —(2)(1/2)

(26, — 265)  2(e; — &2)

Third order diagram (1) <11]22)<22|22)<22|11)  K2,J,,
125 2 = 3

2 4(g, — &) 2(e; — &)

2 o (2 1 (11'22)(11|11)(22|11) _ K%,J,,
2 4(e; — &) 2(ey — €3)°

3o —(2) (11|22>(21l21>(22|11> _ K2,J,,

4(e, — &5)° (81 — &2)

o <11]22)¢21[21)¢22011) _ K3yJys

$e-0 4o, — & @ — o)




5 o (2)° (11|22><12|21)<22|11) _ > K%,K,,

4(e, — 32)2 B &y — 52)2
(11]225<12]219¢22[11y _ K3,Ky5
6046, — e 261 — &)
1211122y _ Ky
"‘2)() 3o, — o) 3er — &)
(11]225¢22]2)<11[22> _  Khadas
—(2)( ) 4(ey — £,)* d(e, — 32)2
(11]22512]125¢11[22) _ Ko,
s A TR 26, — &)
(11]22)21[215¢11|22) _ K3y,
10 = () 4(ey — 52)2 2(g, — 32)2
(1122521 [12)¢11[22) _ K3pKi
~@ 46, — 5 = 0
(11]225¢12)210¢22011) _ KK,
2> =2 4o, — 2 TrAL

Sum over 12 expresions —  Eg”



Summation of diagrams

Transforming to second order diagrams; adding interaction lines, (labels below and above
Interaction line is same)
All have weight factor %2, same number of holes and particles — same sign

2 T 2

_1 |<rs|ab)| {4 (rs|rs) +( (rs|rs) ) ... ]
2e,te—¢& —&| gt e—e —& \&+ & —¢ — &

1 |<rs|ab)|?

C 2¢e,+ 8 —¢ — & — {rs|rs)

A

Shifted energy denominator



2
Sum over all diagrams  —+  E(EN) = -—-% bz (‘P’f,l |§;bUrSE>O||qﬂ% S

Similar as Epstein-Nesbet pair energy

If we sum over all double excitation diagrams (imaginary line cross only two holes and two
particles line ) double excited MBPT (D-MBPT) of Bartlett and co. Tis is
equivalent to linear CCA.

E.o.{D-MBPT(c0)) = —B'(D)"'B

(B)rasp = (¥l #|¥5
(D)rasp,tcut = <‘P21|3f - Eo!‘l’i’f‘;) If D only diagonal —— EN

D-MBPT is exact third order of PT



Linked cluster theorem

Algebraic term proportional to N2 can be represented by diagram with separate pieces (unlinked
diagrams). But such diagrams never appear in final result of the nth-order of energy.
So:

Nth order can be written only with linked diagrams.

Ex.Calculate E,® for supermolecule consist of N noninteracting minimal basis H, molecules
evaluating the Goldstone diagrams in Table. Compare your result with

NK122 (J11 + J22 B 4‘]12 + 2K12)
4(¢, _52)2

which was obtained algebraically explicitly cancelling term proportional to N2

EQ = 49 + B =

Hint: Simply show that value of each Goldstone diagram for the supermolecule is N times the result for
a single molecule.



Calculations

Table 6.3 Correlation energy (a.u.) of H, at R = 1.4

Basis E'  Percentof full CI EY + E}? Percent of full CI  Full CI
STO-3G —0.0132 64 - —=0.0180 87 —0.0206
4-31G —0.0174 70 —0.0226 91 —0.0249
6-31G** —0.0263 78 -0.0319 94 ~0.0339
(10s, 5p, 1d)° —0.0321 81 -0.0376 95 -0.0397
Exact® —0.0409

INC



Table 6.4 Equilibrium bond length
(n.u.) for H,

p—

. Basis set SCF E® Full CI

—

, STO-3G 1.346 1.368 1.389

431G 1.380  1.394 1.410 _

6-31G** 1.385 1.387 1.396 SCF/6-31G** differ 0.011 a.u.
—
+ Exact® 1.401

Equilibrium bond length(a.u) for ten-electron series

STO-3G 4-31G 6-31G* 6-31G** Experiment

CH,

TSCF 2,047 2043 2048 2048 2050 SCF largest diff. to exp. is 0.03
E® 2077 2.065 2.060 2.048 ' MP2 below 0.01 a.u.

NH,

" SCF 1952 1.873 1.897 1.897 1913

- EP 1.997 1.907 1922 1912 '

H:0

) SCF 1871 1.797 1.791 1782 1 809

o5 1916 1.842 1.831 1816 '

P;CF 1812 1.742 1722 1.703

"B 182 179 1765 1740 1.733

h; o . . . .



Table 6.6 Equilibrium bond angles for NH; and H,O

STO-3G 4-31G 6-31G* 6-31G** Experiment
NH,
SCF 104.2 115.8 107.5 107.6 106.7
EQ 100.9 113.9 106.3 106.1 :
H,0
SCF 100.0 111.2 105.5 106.0 104.5
E¥ 97.2 108.8 104.0 103.9 '
Problems with multiple bonds
Table 6.7 Equilibrium bond lengths (a.u.) of N, and CO
N CcO
Basis set SCF E@ E@ + EY SCF EY E@ + EY
STO-3G 2.143 2.322 2.222 2.166 2.264 2.216
4-31G 2050 2171 2.098 2132 2216 2.169
6-31G* 2.039 2.133 2.109 2.105 2.175 2.145
Experiment 2.074 2.132

MP2 reduce SCF error
to half

Error SCF 0.03 a.u.

MP2 overestimates
correction



able 6.8 Correlation energies (a.u.) of
[l,O at the experimental geometry

ulated with the 39-STO basis de- Base is near HF limit
in Chapter 4* MP2 better than SDCI
—
ECOI’I’
"E® —0.2818
"E@ + EP ~0.2850
" E® + EP + E® -0.2960
- $DCI ~0.2756
| [EPA ~0.3274
| L-CCA ~0.2908
. CCA ~0.2862
" Estimated full CI ~0.296 + 0.001
' Exact -0.37

—

able 6.9 Equilibrium geometry and some force
stants of H,O calculated with the 39-STO ba-

ds described in Chapter 4°

Rf
(a.u.) . fhw foo

PT poor convergence, non monotonic 1776  106.1 9.79  0.88

L ER 1.811 1044 855 0.78
[[E® + EO 1.803 1048 8.80 0.81
E® + EQ + E  1.813 1044 842 0.79
' SDCI 1.800 1049 8.88  0.81
BL-CCA 1.810 1046 851  0.80
CCA 1.806 1047 8.67  0.80
EXperiment 1.809 104.5 8.45 0.76



H,r — infinity

SCF dissociation into 2 H

Cl

"E(H,) - 2E(H) (a.u)

0.02

0.00

-002

-0.04

-0.06

-0.08

-0.10

-0.12

-0.14

-0.16

-0.18

-020

0.6

lim Eo(R) = 2EH) + 3(¢¢|09)

R— @

KZ
EQ = . 1'282) > infinity

10 14 18 22 26 30 34 Rlau)
[ L L i ;| 1




