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Size-Extensivity and Size-Consistency

Two important concepts in electronic structure theory are size-consistency and size-extensivity.
Though these terms are sometimes used interchangeably in the literature, there are very
important distinctions to be made between them.

There are two primary definitions of size-consistency in use. The first was employed by
Pople as one criterion for a well-constructed quantum chemical method. If we imagine two
molecules, separated by a large distance (large enough that we may consider them to be non-
interacting) then the energy calculated for both molecules simultaneously should be exactly
twice that calculated for only one, isolated molecule of , just like the exact energy. This ~"non-
interacting limit" description is the original concept of size-consistency. From this perspective,
size-consistency describes what has been referred to as the additive separability" of the
wavefunction.

However, a more recently imposed (Barlett) definition requires that the method not only correctly
describe the fragmentation limit, but the entire process (in a qualitative sense). That is, the entire
potential energy curve mapped out when we bring our two non-interacting molecules close
together must be correctly described as well.

For example, both spin-unrestricted Hartree-Fock (UHF) and spin-restricted Hartree-
Fock (RHF) wavefunctions are size-consistent for the separated dimer system described
above. However, for a closed-shell molecule dissociating into open-shell fragments, a RHF
wavefunction does not conform to the second definition of size-consistency, as we will discuss
further below.




Size-extensivity, on the other hand, is a more mathematically formal characteristic which refers to
the correct (linear) scaling of a method with the number of electrons.

All Hartree-Fock methods qualify as size-extensive, as well as many-body perturbation
theory and coupled-cluster theories .

Truncated configuration interaction methods, however, are not size-extensive.

An important advantage of a size-extensive method is that it allows straightforward comparisons
between calculations involving variable numbers of electrons, e.g. ionization processes or
calculations using different numbers of active electrons.

Lack of size-extensivity implies that errors from the exact energy increase as more
electrons enter the calculation.

Size-extensivity and size-consistency are not mutually exclusive properties, by any means. At the
non-interacting limit, size-extensivity of a method is a necessary and sufficient condition to ensure
size-consistency, implying that the former is more general than the latter. However, size-
extensivity does not ensure correct fragmentation.

For example, we may consider two different fragmentation processes for :
N(TEH) - 2N(*S)

Nftzh) —» 2N(*9)
The first process is correctly described by both RHF and UHF wavefunctions, and hence, both
methods are size-consistent. However, the second process is not correctly described by a RHF
wavefunction (and, therefore, perturbation theory and coupled-cluster theory methods which use
this as a reference will not be size-consistent.)

and




Both RHF and UHF are always size-extensive, though.
This implies, then, that size-consistency is more general than size-extensivity, but
this is also incorrect.

At non-interacting limits, size-extensivity is a more general property, and its
existence implies that of size-consistency.

However, size-consistency has the additional requirement of correct
fragmentation that is not necessarily dependent on the mathematical scaling
of the energy.

M Size-extensive

M The energy of a non-interacting system computed with this model
scales correctly with the size of the system, which satisfy

E(NHe) = NE(He)

M Size-consistency

M The energies of two systems A and B and of the combined system AB
with A and B very far apart, computed in equivalent ways, satisfy

E(AB) = E(A) + E(B)




