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During his stay at the Institute for Advanced Studies in Dublin Dr
Broiskal) has shown in which way the four components y;, s, 3 94 of the
Diracs wave function g are transformed when we pass from the original
coordinates @, X, a5, ¥, = ict to the new ones a, s, x3, x; by means of
. the proper general LorenTz transformation a;, = a;x;. He has given an
explicit expression for the transformation matrix A, which brings the trans-
formed function g’ into relation with the original function y as expressed
by ' = Ay, provided that Dirac's matrices !, p% ¥%, %, which fulfil the
relations y** + p¥y' = 26%, have an entirely special form?).

This problem has been considered very complicated?®); in the literature,
as far as I know, we do not find an explicit expression of A withthe help
of the coefficients a,;, of the general LorenTz transformation?).

1) M. Brpidra, A Remark on Proper Lorentz Transformation of Dirac’s Equa-
tions. Bulletin international de 1’ Académie tchéque des sciences et des arts, LI (1950).

2) See p. 19 of this paper.

3) W. Pavrr, Contributions mathématiques & la théorie Dirac, Annales de I'Insti-
tut Henri Poincaré, VI, p. 124, 14th line from above.

4) P. A. M. Dirac, Applications of Quaternions to Lorentz Transformations,
Proceedings of the Royal Irish Academy, Dublin, L, sect. A, No 16, p. 261 (1945).



The endeavour to furnish a systematic solution of this problem irrespec-
tive of the choice of the matrices y%, 2%, 932, y* led me to the discovery of a
relatively simple procedure how to find explicitely the wanted matrix A.
It has come to light that there exists an infinite number of mutually equi-
valent solutions, some of which are conspicuous by their relative simplicity;
one of them is the very solution given by Brpiexa.

1. The problem. A linear orthogonal transformation
Xy = aikx;, x; = Qs 'iy k = 13 2: 3, 45 (1)
is called general Lorextz transformation in case that z;, ,, 5 are Cartesian

coordinates for space and x, =| —1 ¢t is an imaginary coordinate for time,
so that the coefficients a;, with only one index which equals 4 are purely
imaginary whilst all others are real.

This transformation does not change the form of Dirac's equation

{V*pe + poly = 0, Po = F iy, (2)
where y* (k= 1, 2, 3, 4) fulfil the relation %’ + oyt = 268, It merely
changes into the equation

yp; + poly’ = 0, (3)
where p,, and p,’ transform inexactly the same manner as x, and ;" accord-
ing to the relations (1) and 9" (1 = 1, 2, 3, 4) or y* (k= 1, 2, 3, 4) do not
transform; Dirac's wave function ¢ or ¢ transforms as follows:

Y = Ay, p =AY, (4)
where A4 = 1.

The problem is to find A as a function of the coefficients a,;, of LoreNTz’S
transformation and of Diracs matrices *.

2. The equation for determining A. Since p;, traanorms in Lhe same way
as xk, the equation (2) changes at first into the form :

{y*aup; + po} v = 0. (5)
Substituting for ¢’ from the equation (4) into the equation (3) we obtain
{v'pi + po} Ay = 0. | (8)

Carrying out the operation A~ on this equation we arrive, in view of the
relation 474 = 1, at

, {A_lyi/lpz" + Doty = 0. (7)
The comparison of this equation with the equation (2) gives
Y, = A7y Ap;. (8)

The same relation also applies to the coordinates x, «;’, so that the general
Lorentz transformation can also be written in the form?®)

%) Compare e. g. A. SOMMERFELD, Atombau u. Spektrallinien, II. Bd., p. 811,
equation (29), (1939).

v, = A_]}’ix;/l, }'ix; = /ly"xkA—l. (9)

4 4
From an iteration of this it follows that >;* = >}, which means that (1)
=1

i=1
is an orthogonal transformation. If we substitute for x; and z; respectively

in the left-hand sides of the equations (9) from equations (1), then a compa-
rison of the coefficients of x; and x, respectively yields®)

,ky"z/l -1 yid ="y, agyt —/lyk/l_1 "yt (10)

which are two mutually equivalent relations, every one of which may be
used for the determination of A. From equations (10) we arrive at the follow-
ing, with due regard to interchangeability relations:

'}/‘ lyj + '7/’ Iyi — A—l(yiyi + yjyi)/l — 2§ — gkzaikajk,

which are the well-known conditions for the orthogonal transformation.
If A fulfils the relation
a“.‘yk = A—lyi/l,

then the same relation is fulfilled by L, = + 4, L' = 4+ A7 and L, =
+ 44, L;' = F i471, but only one of these four possibilities contains an
identical transformation of the function v.

3. Hypercomplex number A. In order to avoid adopting a special choice
of the matrices for 9%, 2, y*, y* we shall consider them as (Crirrorv's) hyper-
complex numbers. From these four basic hypercomplex numbers we obtain
16 elements of the group of hypercomplex numbers

1
v s y v :
G A S T e R (11)
,}/23 314 7/124 13
)/123)

where y7* represents the product y%’y*)!. Each hypercomplex number of
this group may be expressed as a linear combination of these 16 elements
with complex coefficients. Consequently even A can be expressed in this
way, if we consider it as a hypercomplex number of this group. However

we get the following important relation from (10):
171234 — A——1y1234/1 — {det. [aikl} ,},1234. (12)

Since the determinant of the orthogonal transformation is equal to -1, we
have, for hypercomplex number 4, the very important relation?)

AV1284 — :[: ,y1234A; (13)

) Compare e. g. W. Pavwr, 1. c., p. 124, equation (24) or A. SOMMERFELD, L. c.,
p. 258, equation (15).

) Compare W. Pavwr, 1. c., p. 126, equation (28).



the 4 sign holds good for the positive determinant (LorENTZ's group proper),
the — sign for the negative determinant. In view of the anticommutability
of hypercomplex numbers 9, y2, 93, y4, A can comprise only the elements
written in the 1%, 3" and 5™ row of the tabulation (11) if {det. |a,| } = 1,
while in the opposite case, i. e. if {det. |a;|} = — 1, 4 can only comprise
the elements written in the 2" and 4*" row.

Therefore, for {det. |a;;|} = +1 we obtain
AP = Oy + Oy + Oagy® + O™ + Oy + Cigp™ + Cay™ + Cyp™,

y o= — 12 (14)
while for {det. |a;|} = —1 we have ’
AT = Cpp* + Ogy? + Ogy? + Cpp* + Oy + Cargy™ + Craay™ +
+ Cppgyt®. (15)

Thereby the 16 elements of the group of hypercomplex numbers divide into
two parts, each of which comprises 8 elements. The first part, which belongs
to the determinant 1, is composed of the elements

1, Vs y23’ ,y31, ylz’ y14, y24’ ,}}34

and forms a sub-group of the original group. The second part, which belongs
to the determinant —1, comprises the elements

yl’ ,}}2’ 73’ y4’ y2347 ,}/314, y124, y123’
which, however, do not form a group.

If we multiply the elements of the first part with any element of the
same part, the elements of this first part reproduce themselves, except for
the sign and the order of the elements. If, on the other hand, we multiply the
elements of the first part by any element of the second part, we obtain all
elements of the second part except for the sign and the order of the elements.
Therefore, if y# represents any element of the second part, we can write

either '
A9 = £ ADpA, {AO)T = A
or
A = iAWy, AT = F i AN
so that

A = (AT (A4,

Since, however,
a§;)yk — {A(+)}——1yi_/1(+),
we obtain the relation ,
agyt = afd Ay iy,
from which follow simple relations between the coefficients af’ and af).
We could, however, with the same justification write

either

AT = £y AP, (AT = 4 (A A
or '
AT = 4 A, {AD) = F Ay
so that
afpy* = {AYTH ATyl A,

from which again follow simple relations between the coefficients af;” and

(+)
Qg - :
From all this it is obvious that it will be sufficient to investigate the
case in which the determinant of Lormntz's transformation is +1. And to
this case we shall now turn our attention.

4. The set of biquaternions A in the case of {det. |a,|} = 1. The for-
mula (14) can be written more symmetrically if we introduce the symbol

u® = (1 4 y), where y = — 9'*3 Then
ut —uT =7y, wtuT =0

and A, A7 respectively can be written as a sum of two sets of quaternions®)
with units «* and three quaternions 2 u*, cyel.,
A = (ep® + op™ + ey + ca) ut 4 (ep® 4 ey 4 eyt 4 e
A7 = (e + o™ + ogp™ + cuT 4 (o + eppt® ey A+ cyu
For it is possible to write the set of biquaternions /4, in case that {det. |a;,|}=
= 1, in the form
A = (Cg + Cay® + Opp™ + Copy™) (w* + w7) +
+ (O + Cay®® + Cpgy®® + Opp®) (u™ — u7™), (18)

because Cyy, = — O,

(17)

,},21u:l: — ui’yzl, cycl.; p88 = )/21(u+ —u7) = (u+ — u~)y21, cycl.
u:tyi — ,yiu:F, 7 = 1,2, 3,4, yiy1234 —_ ym%},i. (19)

The relation between the coefficients C;, Cy, €' and the coefficients ¢, is the
following:

Cas = §(cy + Ci) 3
el 1., 2 F ,
O = 3(c; — ¢y), e C = $(cg — ¢y). (20)

It follows further from the equations (17), that
A7 = (4 g+ s+ ) ut + (€ + ¢ + ¢ + cD)u" =1,

i+ttt ot =1=c2+c+ e+ ck (21)

We can rewrite the two relations (21), with help of the relations (20), in
the following form:

8)-Compare W. Franz, Zur Methodik der Dirac-Gleichung, Sitzungsberichte der
Akademie Miinchen, 1935, p. 390.
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Cg+02+~0§3+0§1+0%2+0%4+O§4+O§4= 1
000 + 023014 + 031024 + 012034 =0. (22)
If, in addition, we introduce 8 further parameters by the relations
s;=¢;+cj, s =1ilc; —¢j), j =1,2,3,4, (23)
both relations (21) pass into the form

4 4
%Z(lsﬁ —sH =1, zls,.s,'. = 0. (24)
J= 1=

Finally, if we introduce 8 further parameters », 4, u, v, %', ', u’, »" by the
following relations

x = Files + c5) + s + C%): n' = fifcs — Cz,x) + 3(es — ¢d'),
P it o) — Mo b, ¥ = il —c) — o — o) g
p= e+ c}) + (s + C%); o= i, — C}) + %(ca — ¢3),
v = —3}i(cs + ¢5) + $log + ¢y), v = —di(cs — ¢5) + Hea — ¢d),
the two relations (21) will acquire the following form:
wy — A+ 'y — A =1, (26)

wv' 4w’y — Ap' — Au = 0.

The substitutions (20), (23), (25) are, however, only special cases of the
general linear substitution

5= BipCp Cp = Cyppy k=1,2,3,4, (27)

where , o pass through the values from 1 to 8 and the summation is carried

out for those indices that appear twice; we assume the determinant D of
this substitution to be different from zero, i. e.

D = {det. |;,|} = 0.

Then the calculation of ¢, from the equations (27) gives

Cv - .ijrj, (28)
where
1 0D
By =3 T (29)

I refrain from writing out the relations which will result from (21) by the
substitution in it from (28).

If we put :
;= Bj,Cp (30)
and if we substitute (28) in this equation, we arrive at

’ ’
7':,' = 'ijka'rk.

The relations (21) are, of course, the most symmetrical and the simplest. .

For this reason we shall first deal with the equations (17), (21) and (10).
Since the following relations apply (compare with (16), (19)):

wtyut = uFuTyl = 0, utyuT = ututy' = uty =y’ (31)
we can simplify the determining equation (10) as follows:
Ay =
= (% 4 eyt + cgy™t + o) (o™ + cap™ + oy + cJut + 32)
A+ (™ 4 e 4 ey + ey + o™ + et + e uT =
== aikyk.
5. The preparation of the solution of the determining equation for A.

By comparison of the coefficients of y* on both sides of this equation we
obtain, putting ¢, = c;¢;’, the following equations:

@y = €y — Cgp — C3 1 Cagy {3}
Q= Cyy + Cop + Ca3 + Cagy {1}
= 0y — Cyy — C3p + Ca3, {3}
Ayy == —Cgy + C1q — C3a + Cosy {3}
== —Cg — Cis + Cgp + Co3, {3}

Ug3 = €41 + Cq + Cyo + Cog. {3}
It is a system of 16 equations — the numbers in brackets indicate how many
equations we get by cyclic variation of the indices 1, 2, 3 — for 16 unknowns
¢ix, Which may easily be determined. A development of this system (33) is
the following system of 16 equations

(33)

4Cyy = gy — Ggp — Qg3 + Ay, {3}
deyy =  Qyy + Qg + Qg3 + gy, {1}
4043 = Gy — Qyq — Qg + ags, {3} (34)
4¢yy = —Qyy + Qg — A3y + Ay, {3}
4Cgy = —Qy1 — Ay + G35 + s, {3}
dCgs = Qg + Ayg + gp + gy, {3}
which is very similar to the system (33).
Using the relations (20) the system of 16 equations (33) takes the form
A1 = Og — 0% + 053 - O%l - 0%2 - 0%4 + 034 + 0%4, {3}
Qg = 0(2) — 0+ O + 03%1 + 0%2 - 0%4 - 0%4 — 03%4» {1}
g = 2[ (Coly — OCy) + (5,01, — CyC4y)], {3} (35)
g3 = 2[—(CoCy — OCy) + (C5,01, — CyyC4y)], {3}
a1y = 2[ (Ol — OCy) + (Cs015 — C5,04))], {3}
ay = 2[— (00 — OCy) “[“ (C34C12 — C3,03))] {3}

Similarly, by using the relations (25), we obtain from the equations (33)
the following relations:

Q= o2 — A2 — p® + 92 — Prag By [ W't —v'?),
Qgp = $0(2e2 + A2 — p2 — 92 — x'2 — )2 o't ),
gy = — A + uv + 'A — p'v',

Ay = 12 + pu'v — %'A — wy'),



Bi(—n% A2 — pu? 92 w2 - V2 — 92,
T 4 22 2 02— 2 — 2 '),
Ggo = t(xd + pv — »'A — u'v),

Qgp = 2 4wy’ — %'A — y'y,

8

R

>
I

8
®
I

Oyg = — nph + v + '’ — Ay, (36)
Qg = 1(— npp — Av + %'u’ + AV,
Qg3 = xv + Au — x'v' — Ny,

Ggg = 1(x'v — A — v’ + '),
(—sep’ + W'+ 2'u— V),
wu' 4 W — 'y — Ay,

Agy = i(xv + 2’ — #'v — V),
Qg = 2v — Au — ='v' + Ay’

2 2
E S
1

I refrain from writing out the formulae for a,;, as functions of the parame-
ters sy, 8;-.

The equations (33) have a much clearer form than the equations (35)
and (36) and they allow to derive easily the equations (34) which form the
base for the determination of the coefficients cy, c;; O, Co, Oy, 85,84 5%, ..., ¥'.

Before starting with their determination let us bring to our mind the
expression of the coefficients ¢y, ..., ¢; with the help of generalized Evier
angles. For we may write:

¢, = sin 6 cos (v — @), ¢y = sin $@ sin o — @),
¢y = cos 30 sin Yo + @), ¢y = c0s 0 cos F(w + ®), (37)
¢; = sin 0’ cos (@' — ¢'), ¢y = sin 0’ sin Lo’ — ¢’)

¢y = cos 30’ sin H(' + ¢'), ¢, = cos 30’ cos (o’ —[— @ )

The equations (21) are then identically fulfilled. With the help of these ex-
pressions for ¢, ..., ¢, we can find, by using the equations (33), the following
formulae which express the transformation (1) by means of generalized
Evrgr angles 0, o, ¢, 0', o', ¢":

@y, = €08 3(p + ¢') cos Fw + @) cos $(O — O') —
— sin §(p + ¢') sin 3 (w + ') cos (O + 6),

@y, = — sin g + ¢') cos H(w + w’) cos (O — O') —
— cos (g +¢) sin (o + w’) cos {O + O),
gy = — sin §(p — ¢') cos §(o + @) sin (@ — O') +
+ cos H(p — ¢’) sin }(w + ') sin H(O + O'),
@y = — €08 ¥ (¢ — ¢') cos (o + o) sin (O — O') — (38)

— sin 4 (p — ¢’) sin (o + ') sin H(O + O').

a1y = 008 }(p + @) sin Ho + ') cos (O — 0') +
+ sin §(p + ¢') cos (o + ') cos (@ + O,

gy = — sin b(p + ¢') sin b(o + ) cos HO — ) +
4 cos (@ + ¢') cos o + ') cos 1O 4 O'),

9
Gy = — sin (o — ') sin (o + o') sin (O — O) —
— ¢os #(p — @) cos Hw + ') sin HO + €),
@y = — €08 (¢ — ¢') sin J(w + ') sin (O — O') 4
+ sin 3 (p — @) cos LH(w + ') sin {(O + ©').
@13 = — €08 $(@ + @) sin §(w — w') sin (@ — O') +

+ sin g + @) cos Hw — ') sin HO + O'),
@y = 8in (g + @) sin $(w — ') sin H(O — 6') +
+ cos e + ¢') cos Hw — w’) sin HO 4 6'),

(33 = — 8in (g — @) sin $(w — ') cos $(O — O') +
+ cos (@ — ¢’) cos L(w — ') cos (O + €'), (38)
Gy = — €08 3o — ¢') sin {(w — ) cos H(O — O') —

— sin 3(¢p — ') cos H(w — ') cos 1(O + O).

a4 = €08 $(p + @) cos Hw — ') sin (O — O') +
+ sin $(¢ + ¢’) sin Hw — ') sin (O + '),
Gy = — 8in (e + @) cos }(w — ') sin (O — O') +
+ cos (e + ¢') sin Hw — ') sin 1(O + ),
Ggq = 8in L(p — ¢’) cos Hw — w’) cos (@ — O') +
+ cos e — ¢') sin w — ') cos 1(O + 6'),
@y = €08 e — ¢') cos 1(w — ') cos (O — O') —
— sin (¢ — ¢’) sin ${w — w’) cos $(O + 6').

However, let us return to the equations (34); they express 16 quantities
e = ¢i¢, (1, k= 1,2, 3, 4) with the help of 16 coefficients a;;. We have to
determine from them & numbers c,, ..., ¢, which fulfil 2 relations (21), so
that we have 18 equations available for 8 unknowns. But, out of the 16
coefficients a;; only 6 are mutually independent, the remaining 10 are de-
termined by 10 relations between the coefficients a,; (the relations of ortho-
gonality). Consequently, between 18 equations for 8 quantities cy, ..., ¢,
10 relations exist, so that we have 8independent equations which are necessa-
ry and sufficient for the determination of 8 unknowns. It would not be difficult

4
to express ¢y,¢y,¢ 5, ¢, With the help of ¢, and then from the relation Y¢;* =1
F=1
to determine c,, so that c;, ¢y, cs, ¢, will be wholly determined by the coeffi-
cients a;;. Thereby the square root of a certain expression will be introduced
into the denominators of the fractions expressing c;, ¢,, cs, ¢;. By carrying
through the same similarly with c;, ¢,, ¢4, ¢, by means of ¢; and then finding
4
the number ¢, from the equation > c; = 1 we shall determine ¢y, ¢,, ¢;, ¢, Whol-
F=1

ly by the coefficients a,;, but there will be a different square root in the
denominators of the fractions expressing ¢,, ¢,, ¢s, ¢, than before. For this
reason this calculation of coefficients ¢y, ..., ¢, is not convenient. Therefore
we choose another method which yields more suitable results. We shall,
therefore, in addition, calculate the products
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4 4
j= j=1

We shall easily recognise the validity of these relations, if we remember
the relations (21).

However, before we turn to calculations, we shall deal with a special
case from which will be, at least partly, apparent the subsequent procedure
which we shall use later in the case of general Lorentz transformation with
a determinant = 1.

6. A special case a;, = a,; =0, ¢ = 1, 2, 3. Let us choose the case of
Lorentzs transformation with determinant = -+ 1 which is characterized
by six conditions, two of which read

0=ay = — ¢y + C1a — C32 + Cas,

40
0=ay,y = Cqp — C1a4 — C3p 1 Cass (40)

and the remaining four we obtain therefrom by cyclic variation of indices
1, 2, 3; the index 4 does not change.
The addition and the subtraction of these equations give
C3a = Ca3, Cag = Cyq, OYcCL

or
’ r’ ! ’
C3Co = Calgy C4Cq = C1C4, cCYCL; (41)

these equations can only be fulfilled with (1 == 0)
Gk’ =. ch, k - 1, 2, 3, 4.

4 s
Then will Y¢;* = 22> ¢}, or with regard to (21)
k=1 k=1

2= 1; (42)
consequently
, 4 4
c;c = 4 ¢, Gy :kzckcllc =i ZCI% = 41 (43)
=1 E=1
The equations (34) will then be reduced; in case a, = 1 it is necessary
to choose the upper sign everywhere, in the case a,, = — 1 the lower one:
40% = (G — gy — Ggy) + 1, 4eocy = 4= (1 @y + 1),
4c16y = 4 ( Ay + ay), 4y = (—au + @gp — ag3) + 1,
4c165 = 4 (1 g + ays), 40003 = £ ( Qg3 + a39),
4c104 = + ( Qg3 — a39), deyCy = £ ( ag — y3),
dog0) = £ (a5 + ay3), 4ey0; = £ ( Gz — ga), _ (44)
4030y = £ ( A3 + ga), 400y = £ (a5 — ),
4ef = 4 (—ay — G5 + ag) + 1, deyey = £ (a1 — @), '
degey = £ ( @ys — Agy), 4cf = 4+ ( @y + a9+ agg) + 1.

Now from the first column it follows that

0

11

0y = ky [£(@1y — Qo — @g3) + 1], €3 = £ k(s + a13), (1)
¢3 = = Ky (@51 + Qyg), ¢y = = ky(@a — a55),
where
(kl)~2 = 4[ £ (@11 — gz — Og3) + 1]
Similarly we get from the second column:
¢y = = kr(@s + ag,), ¢y = ky[(—ay + as — as;) + 1], (I)
C3. = + kri(@as + as), ¢y = kiy (a5 — aus),
where '
(foy) ™2 = 4[4 (—ay; + Qo — @gg) + 1]
The third column gives: ’
61 = = kii(@s; + @1s), ¢y = =+ kri(@es + a5s), (I11)
¢y = k[ (—ay — @ge + ag3) + 11, ¢4 = & krpi(@as — )
where
(byp) 2 = 4[d=(—ay — agp + agy) + 1]
And finally from the fourth column we obtain
0y = & krv(@as — as),
¢y = = kry(@1s — an),

where

ey = 4 kyy(as, — aq3), (IV)
¢y = kyy[= (@11 + @g + @g3) + 1],

(lry) % = 4[£ (11 F Qo + a55) + 1]

Since (k,)™t, j = I, I, 111, IV, has two values which differ in sign, we
obtain from there a total of 2 X 4 possibilities of suitably expressing
C1, G, C3,¢4 With the help of the elements of the determinant |a;l, ¢, k = 1,2, 3,
the value of which is +1 for a,, = -1 and the same number of possibilities
for a4, = —1, when the value of that determinant 1s —1. We obtain, of
course, an identical transformation of the wave function for identical trans-
formation of coordinates in one case only, i. e. in case (IV), if we choose the
upper sign and choose (kyy)™* positive; the other formulae for this case
fail to give results, because (k;)™2, (ky) ™% (kpp) 2 for @y = agy = ag5 = 1
are equal to zero. Since, however, (k;)~2 can never vanish at the same time
for all four j = I, II, ITT, IV, we always have the possibility of expressing
€1, Cg, C3, €4 With the help of the given coefficients of transformation a;, (1,k =
=1, 2, 3). In the case that (k;)™2 = 0, § = I, II, II1, IV, the formulae (I),
(IT), (III), (IV) are mutually equivalent except for the sign. The possibility
(IV) which, with a positive sign of the expression (kpy) ™" and with the upper
sign gives an identical transformation of the wave function for identical
transformation of coordinates, fails in the case of rotation through an angle

n round the axis z, ¥, z respectively (in the first case a,; = 1, @y = —1,
tgs = —1, @, = 0, % == k; in the second case a,; = —1, @y, = 1, a3 = —1,
e = 0, © == k; in the third case a; = —1, @y = —1, a33 =1, a;;, =0,

t & k), in which cases, however, the possibility (I), (II) or (III) is applicable
respectively.
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So far we have started from the set of quaternions

A = cy® + cp® + ey'* + 04
We could have started equally well from the set of quaternions
L, = 934 or L, = y34 or Ly = y24.
Then the following will apply:
L' =A"%% or Ly' = A48 or Lyt = A7y,
so that ,
Li7'L; =1, j=1,2,3 (no summation)

under the condition that

4
S =1
F=1
Using the transformation

Ty = Mkmg» x,: = Kk,

we get
oy’ = Lj—lyiL,,

so that
+ sign fors =1,
— sign fori = 2,3
-+ sign for i = 2,
— sign for+ = 3,1
+ sign for s = 3,
— sign for¢ = 1,2,

O‘z‘k)’k — A—lysm'ns/l = 4+ a’;wk’
or
oy = A—d?/l:ml/l = 4 auy®, (45)
or :

xy* = A-—l,},'zmzA = 4 a;¥,

Therefore, from the formula

A = ey + cqp® + ' - ¢y, A7 = ey + ey + cp™ +- ¢4
it follows that
L1 — ,},23/1 — (34)/23 -+ 63)/31 — Czym — ¢y, L?lz c4y32—{— c?’yls_ 02,},21__ ¢
or
L, = 34 = —cgy®® + o™ + ey — ¢y, Li'= —cgy®+ oyt cry®— ¢y
or
Ly =y = ¢y — erp™ + cgp'* — ¢, Lg'l: oy — Cp - cpp - 5.
With regard to (45) we thus have to carry out the following changes in the
formulae for ¢y, ¢y, Cg, C4i

r— 4 €1 Cy Cs Cy | Qup | Gop | Qs | Cup | D an | am | av |
- Iy Cq Cy | —Ca| —Ci| Gnp | Oor| sk Yak (IV) | dIn | —1n | —@) |«
> Ly |—cs| €4 | €1 |—Cy|—Quy| Qo | gy} Qg || —AV) | (D VN
1 Ly Cy | —Cy| Cy | —Cy|—Cyp|—Qop| Gap | Garp | (D | —(D) | AV) | —(I11) <
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Here (1), (IL), (III), (IV) represent four possibilities for the group of four
€y, Coy €5 €4 — (I) ete. means (I) with the opposite sign; k =1, 2, 3. It is
obvious, that the possibilities Tun practically into one another; we do not
obtain essentially new possibilities (if we do not consider as a possibility
the multiplication of the expression for 4 by the factor 4- ).

But, as we know from the paragraph 4, what we have just mentioned,
is not the only choice for wanted numbers ¢y, ¢,, €3, C4-

For if we introduce for the case that a, = 1 the four parameters
%, A W, v, i. e. from the equation (25), by specialization of these equations
(further four %', ', u’, »" vanish), we get

%= 1iCy + Cq A= 1C; — Cy, (46)
Y= iCy + Cq ¥ = —iCs + Cg;
the relations (26) then pass into a single relation
wy — Au =1, (47)

from which we conclude #x, 1, u, v to be well-known Cavriey-Kreivs para-
meters, because, by specialization (43) carried out in the equations (25) and
(36) we arrive at the well known formulae

Ay = % (2 — A2 — pP 4 9?), agy = hi(— #* + A — u? A ),

O3 = — np + Av,
(,l21 = %7’(%2 + 2'2 - 1“’2 - vz)) a22 = %(%2 + 22 + lu’2 + ,‘,2)’ (4:8)
Qgg = — t(xp + Av), .
Qg = — #A + uv, Uy = C(xA + pv), (g3 = xv + Au.

From these 9 equations and from the equation (47) 10 expressions »?, 4%,
w2, vE, %A, ,iw, %, Av, %y, A can easily be calculated. But the same expressions
can also be calculated from the equations (46) and (44). Therefore, if we
calculate those 10 expressions from the equations (46) and (44) we can
arrange them as follows:

2 = Gy; + Qg 1 U(Ags — Qg1), 24 = —Qgy — g9,
D 2m) = —ag — i, 202 = —ay; + Gy — (A1 + @a1),
2up = —0yg + g, 20 = agzy— 1, .
2y = Q3 + %’ 20y = a5 + iy, (49)
2ux = —Qy5 + Wy, 2v% = Qg3 + 1,
2ul = agg — 1, 20 = Qg3 + iy,
2u? = —ay + Qgy + 1(ayg + Gg1), 2vp = Qg — g,
2uy = gy — gy, 202 = ay; + Gy — HAp — Az)-

From there we again have four equivalent possibilities of which I shall
only write out the first one: :
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p — _du + @gp + U@ — @)
V2 Vay + @ + (a1, — an) ,

gy — 13y

i:

V2 Van + Gy + 601 — an) (50)
g = —5 + 105

]/2 V“n + @ge + (a5 — “21)’
v as3 + 1

B ]/§ V“u + Ggp + 1(@15 —“21).

The square root in the denominator has a double sign; if we choose in the
denominator the positive sign, we obtain also from there an identical trans-
formation of the wave function for an identical transformation of coordina-
tes.

However, by using (44) and (46) we get further four possibilities, which
are equivalent mutually and also with (50); again, I shall only write the
first of them: o

_ (@51 + G13) + (a3 — A39)
2]/0‘11 — Qg — Qg3 + 1
@y = Bag — Qg3 + 1) — (@1 + @4y)
2]/“11 — llgy — (g3 +- 1 (51)
1@y — Ggp — Gg3 + 1) + (Ag; + @4)
2@y, — gy — @35 + 1

_ —(tg; + G1g) + (a3 — A3)
2]/“11 — Qgy — g3 + 1

l_—._

”:

Similarly as there are 2 x 4 = 8 equivalent possibilities for , A, u, v,
we can derive, by using (46), for the existing 4 results for ¢, ¢,, s, ¢4, further
4 equivalent possibilities for ¢y, ¢,, ¢3, ¢4; I refrain from writing them out.

The proof, that the eight possibilities for x, 4, u, v and ¢, ¢, ¢3, ¢4 Tespect-
ively mentioned here are indeed eight equivalent possibilities, can be fur-
nished e. g. on a spatial rotation by expressing a;, with the help of Eulerian
angles, i. e. by specializing the equations (38) by putting @'= 0, ¢’ =
= @, w’ = w. So, we obtain the known expressions: '

@y =  COSE cosw — sing sinw cos6,

@y, = — Sing cosw — CosY sinw coso,

Gy = sine sind,

@y, = COSQ sinw -+ sing cosw cos®,

gy = — sing sinw -+ cosg cosw cos6, (52)

Qg = — COSW SiNG,
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@3 =  sing sin®,
Ggg =  cOSP sin®,
Qg3 = €080
In case that a, = — 1 we get from (43) the other four parameters

%', A, w', v by specializing equations (25) (the first four », 4, u, » vanish)
as follows:
® =1icy + ¢, A = ic; — Cy,
Y o=icy 4 g, ¥ = —iCg + €4
the relations (26) then pass into a single one:
%'y — Ay =L
This gives a specialization of equations (36)

G = — L (2 — A2 — W' v'?), ay, = —Fi(—n2 + A2 — p't '),
Uy = —(— o'y’ + '), 7

Ga = — B+ AT — = v, ag = =} (Xt Y,
gy = i(x'p" + A'v'),

Uy = — (— #'A + p'v), @y = —i(xX + p'v), ayp= — (" + Au),
which is the same form as (48) except that a,, have here signs opposite to
those in (48) and the parameters are dashed. The subsequent procedure is
exactly the same as in the case of equations (48); we shall therefore not
repeat it here.

Further possibilities of expressing the wanted numbers ¢y, ¢y, ¢35, ¢4 are
available by specialization of the procedure which starts from the equations
(27) to (30); I shall refrain from writing out the corresponding formulae.

7. Qeneral LoreNtz transformation with a determinant of +1. By using
(39) and (34) for ¢;;, = ¢ic,’ We obtain after an easy arrangement

sl = AR AR AR L AR AN A

, 3
— Al Al a1y agan—ay
4o = Ay -+ AR+ AR+ 1+ AT+ A%+ Al =
. A14 A24 A34 1 A14 A24 . A34 {1}
T 414 + 24 + 34 + + 23 + 31 _I> 12 (53)
deoCy = | A% + A3t + A3 + A3 = (3}
= A5y + A% + A + A5,
= Azl — Aj Al — AR
In this arrangement
AZL: = Qs = Cmspns . (54)

because {det. |a;|} = + 1, the determinant Ajy is equal to its algebraic
complement, taken out of the matrix of elements a;;.

We find analogous expressions for 4c?, 4c,%, 4eyeq, 4cie, from (53) by
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changing the sign of every determinant A7, which comprises only one
index 4.

From there we get, if we take into consideration the equations (34),
8 equivalent possibilities for 8 quantities ¢, ¢;', k = 1, 2, 3, 4.

More generally we carry on similarly as in equations (27)

r; = ﬁipcp’ (01 = Cs;, cé = Cs;, Cé = Cq, C; = Cg), (55)
under the assumption that D = {det. |,,|} & 0, so that
77 = ¥(BjoBroe + BicPrp)Cotos (56)
from there we obtain for
#y = (BjePro + BioBre)CeCo (57)
2V/3iaﬁiacocv

8 completely equivalent possibilities which lead to an infinite number of
further equivalent possibilities, if we change the coefficients 8;,. By further
putting

s (58)
and substituting into this relation from the equations (28) and (29)
1 oD
D 3,

Cp = qurk, Bke = (59)

we arrive, with regard to (57), at

(BieBrs + ﬂiaﬂke)%cv (.Baelgka -+ ﬁadﬂke)caca (60)
2]//370/3]'00@60' 2]//3759,81500900

the possibility of expressing r,/, when the coefficients f;, B;,» are variable,
grows again infinitely, but all these expressions are mutually equivalent.

’ !’
75 = BjeBre

8. Some simple equivalent possibilities for determination of coefficients
¢y .- ¢, etc. Using the formulae of paragraph 7 we obtain in the first place
the relations

C1—%‘1{( +1+A:212“‘A A34;
¢y = 3K (43 + A + 430,
€y = %K1<Aé§ + A 12 4 4%,
¢y = $K1(43; — Aéi + A — A3,

c1 = $K (@ — Qg — Uz + @44),
Cy = %Kl(am + a9y + gy + ays),
C:; = $K (a3 + Q13 — Gog — us),
¢y = $K (a5 — @35 + a1y — 1),

(KI>-~2:A23_ 51_A12+ 1 +A23__A31__Ali

By cyclic variation of the indices 1, 2 3 and I, IT, IIT we obtain 2 further
possibilities.
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The fourth possibility is:

o1 = 3Ky(A3 — A3T + A% — 439),
¢y = }Kyy (Aéi A?g + A}‘.Z - A%i),
¢; = $K; ( A + 4 A )
62— JKm(AR 1 AT A 1 AR A% 4 A

01 = $K1y(@5 — @35 + Gy — “14)>
cg = $K1y(asy — @13 + Qg2 — Gsy),
0y = $K1y(a1p — @a1 + Qus — G34),
C; = $ Ky (A1y + Gay + U353 + (yy),
(Ky) ™% = AR + A3 + A5 + 1+ A% + A5 + 458

From these four possibilities we obtain further four when we substitute
on the left-hand side of the equations given in this paragraph the dashed
symbols for the undashed ones and undashed symbols for the dashed ones
and when, at the same time, we change on the right-hand sides the sign of
the determinants A, which contain the index 4 only once. We have thus
gained 8 equivalent possibilities for the coefficients ¢, ..., ¢;.

In a similar way we can arrive at the formulae for the coefficients
Cy, O, Cyy, Cyq,Chy, 01y, Cpyy, Cyq and for o, A, p, v, %', A, p', " as well as for
81, 83, 83, Say 1 Sg, S5, §4. For the definitions (20), (23) and (25) apply. If we
calculate, with the help of these definitions, 8 squares of the (eight) quanti-
ties Co, €, Cyp OF %, Ay vy ¢’y Ay .. OF Sy, Sp, .nvy 81, Sgy ... and 28 products
of two and two of these quantities, we have the possibility of conveniently ex-
pressing these wanted quantities by means of the coefficients of a given
transformation a;y.

I shall first mention the results for the squares and products of the
numbers s:

2*921) = AR — A — A12 1+ @y — @gp — g3 + Gy,
2518y = Ag? + Ags + @15 + Gy,

28,83 = Agg + A3 + a5 + 0y,

2818, = AE{’; A%l + Qg3 — Ag,.

25,8, = (AT — A5y — 43)),

2513; = @.(Agi + A% — a5 — ay),

28185 = 1(A1F + AR} 4 a9 + ayy),

2815; = i(Agi - A;i + @y — ay),

283 — AR+ AT — A5+ 1 — gy + Ay — g5 + Ay,
25483 A% + Azla% + Gag + s,

2858, = Aég - A??z’ + ag — 3.

2328; i (A%i + Aﬂ + gy + Qgs),

2= i+t )

25485 =1 (A3; + A — Gy1),

232&,1 =i (A} — Agi + a42 Ag4).

I

fl

I

I
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2 23 31 12
2s3 = — Aoy — A3 + App -+ 1 — gy — Ggp + Qg3 4 Gy,
23 31
2838, = A5 — Ais + a0 — gy

’ . 12 23

28381 = 1 (A1y + A5 — gy — Gy,),
7 . 31 12

28389 =1 (Ag4 + Az + ai; + G),
7 . 3 31

28383 = 1(— A7y — AZ% + Ag),
’ . 23 3

2838, = 1 (A3 — Ajy + Gug — 3y).

23 31 12

2s; = A% 4+ A+ A1+ 1+ ayy + @ + a5 + G
’ . 481 12

28481 = @(Aid‘ — Ayi + ayy — ay),
’ . 412 23

2548, = (A - Ag% + Qg — Uya),
’ . 23

28483 = 1(Agy — Ajy + Q34 — Ay3),
’ . 123 31 12

28484 = t(A7y + A5 +437).

28,7 = — (A5 — A% — Aiﬁ + 1) 4+ a1 — @9z — @35 + W4,
2813; = - (Ag?l) + Agé) + Qs + gy,

25185 = — (435 + AB) + ag + a5,

23131 = — (A% - A%%) + Gag — g,

28g% = — (— AR 4 A3 — A2+ 1) — ayy + By — Agg + Gy,
23;8; = - . (Aﬂ + Ag) + Gy + O3,

23é3; = - (Al}zg - A%g) + ag — Gyg.

28;,2 = — (— A%g — Ag% + Aiﬁ 4 1) — Gyy — Gag + Agy + Ay,
28:;3; = — (Agi - Ag:ls) + @1y — Qg

26‘;2 = — (A§§ —+ Ag} -+ A%% 1) 4 ay; + Qag + @33 + a4y

. v ey eqe, v ’ 4 7 !
From there easily follow 8 equivalent possibilities for s;, s,, 8, 84, 81, 85, 3, 84
similarly as in the special case in paragraph 6.

- . Il ’
In a similar way we obtain the wanted parameters », 4, u, v, x', ', p', »

from the following table of results:

di? = {(ay + A3) + (ag + A3} + 1 {(a1s + 45) — (2 + A},

dxl = ""(a:u -+ Aég) - i(a32 + A;‘%)’
4;5/,4, = ~—((l13 + A%g) + 1:(023 + A?é)’
dny = (ag3 + A%%) + (ay + 1).

b’ = (A3} + A3 — (4% — A5,
(@4 — Aﬁ) — i@y + A%i),

O —

4:%/,(,, = ( Uog — Agi) + i(am + Agi)’

duy’ = A3 — i(ag — au).

432 = {—(ay + AB) + (as + A} — (a1 + A3) + (201 + 4%)},
4du = (ag + A‘ig) — (@44 + 1),

4hy = (ay5 + AL3) + i(ay + A3).

42%' = ——( a42 + A%E) + i(aéll - Aég)’

4AN = —(A3] — 45D — (A% + 4B,

dAu = A%i — i(agy + Qgg),

4" = (ay + Agi) — (@ — Agb-

19

4t = {—(agy + AB) + (5 + AL} + i{(01s + 4AB) + (ag + 4%},
4[:“’ - (a/31 + A;g) - 7:(“32 + A%%)

dur’ = —( g + AZ) — i(ay, — A3)),

dul = A + t(asy + ay),

duu’ = —(A%i’ - Agi) + i(Aﬂ + Agi):

duv’ =  (ay + Aﬁ) + 1@y — A%i)-

o2 = {(ay + A5 + (a + A3} — (a1 + A5 — (@ + 43)}
4y’ = Agh -+ i(agy — ag),

4y}’ = —( Wy — Agi) + "( gy + Agb’

dop’ = —(ay — A7) — i(ay + 43D,

v’ = (A3} 4 A% + 45 — 43).

4 = — {(ay — AB) + (@gs — AP} — i{(a1s — AB) — (a— AR},
4y’ ) = (a31 - Aég) + i(a32 - Ag)’

4%’;&' = (a13 - A%g - i(a23 - A%):

4’V = — (g — A13) — (@4 — 1).

42 = {(ay — AB) — (agy — A} + i{(ag, — AZ) + (ag — A},
42’/&’ = _‘((133 - Aig) + (a44 - 1)’

4 = —(ag — A%) — i(ay,s — 43).

't = {(a — A3) — (@a — A3} — ({1 — AB) + (an — 43)},
4y’ = —(ag — A33) + (2 — A3).

492 = —{(a;; — Agg) + (age — Aii)} + t{(ayp — A?zj) — (ag — Ag%)}

The first 8 relations of this table are the result found by Dr M. Brpioxa

with the use of the following representation of matrices 1, y2, 93, y4:

i o R 1. .
I R L A T U DR SO S
yl—.q:..)’V— 1 .)’7"@'...’7_..——1

i —1.. = . oo —1

I refrain from writing out a similar table for 02, C,C, €Oy, etc.
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