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An attempt has been made, to deal with the helium atom problem in analogy
to the hydrogen atom in a ,,singular’ case (Q, = Constant) the meaning of which
in the case of He is, that the sum of the squares of distances of the electrons from the nu-
cleus is constant (and in the case of H, that the orbit of the electron is circular).

The Hamiltonian function of the Problem of Three Bodies of the helium type
is made , hydrogen-like’. [Equations (1), (2), (3), (V' ).] The derivative of the Hamil-
tonian function with respect to the time gives zero, because the total energy is con-
stant. Using 7 (of 8) equations of motion, it is easily understood that the assump-
tion Q, = Constant can be made. It is shown that for this ,,singular’’ case, the
energy of the helium atom W = — 2 @? me* ?2/]2, where Z denotes a function of
the quantum numbers defined in article IV.

The general form of the energy of helium atom as a function of the action
variables is derived from the Jacobi’s theorem of the mean values of the potential
and kinetic energy in the case of the Coulombian field. (Eq. (42)). It is pointed out
that for the action variables J; holds a relation analogous to the formula for fre-

quencies ¥, = 0 W (] )/d], namely [ = L (v)/ovy

Rutherford’s atom consists of a positively charged nucleus, very
small compared to the size of the atom, surrounded by a distribution of
electrons, whose number Z equals the nuclear charge. It is often compared
to the planetary system with a central ,,sun. The essential mass of the
atom is concentrated in the nucleus.

The hydrogen atom (Z = 1) presents no difficulties. With helium
(Z = 2) various possible ways have been suggested in which the two
electrons may be arranged. A most elegant and comprehensive investi-
gation on this subject has been published by M. Born and W. Heisenberg
and was anticipated by J. H. van Vleck.') This paper gives theoretical

1) M. Born u. W. Heisenberg, Ztschr. f. Phys. 16, 229, (1923). —
M. Born (F. Hund), Vorlesungen iiber Atommechanik. Berlin (J. Springer), 1925,
pp. 327, 334¢. — J. H. van Vleck, Phil. Mag. (6), 44, 842869, 1922.
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treatment of the case, where the distance between the nucleus and the
No. 1 electron is permanently smaller than the distance between the nucleus
and the No. 2 electron, and shows that the model gives a disagreement
~ with spectroscopic results.

This difficulty strengthened the doubts about this assumption.

Quite recently Heisenberg?) has taken a step probably of funda-
mental importance by formulating the problems of the quantum theory
in a novel way by which the difficulties attached to the use of mechanical
pictures may, it is hoped, be avoided. Owing to the great difficulties of
the mathematical problem involved, it has, however, not yet been pos-
sible to apply Heisenberg’s theory to questions of atomic structure.?)

The present paper deals with the same problem as Born and Heisen-
berg, but quite different theoretical methods have been employed.

We may solve the problem on the classical theory in the following way.

Taking the equations of motion of the Problem of Three Bodies in
the case of the neutral helium atom in the form (I), it is easily seen that
these equations can be reduced by the contact-transformation (4) to the
form (II). Apply to the variables the contact-transformation defined by
the equations (D). The equations of motion in terms of the new variables
are (1), (2), (8) [compare (IV)], where H differs from the value of H in
the case of the hydrogen atom by the term Z* [for the hydrogen atom
Z* =7 = 1], from these equations follows the condition (8).

Let us first enquire whether these equations admit of a ,,singular
solution (9) in which the sum of the squarves of the distances of the two
electrons from the nucleus is permanently constant.

I.

The equations of the Problem of Three Bodies in the case of the
neutral helium atom are

. oH . 8 H
o T ; A ) == , 2, 3, s
W=gpr H=—g (=1234
) W. Heisenberg, Ztschr. f. Phys. 33, 879, (1925). — P. A. M. Dirac,
Proceedings of the Royal Society 109, 642 (1925). — M. Born u. P. Jordam,
Ztschr. f. Phys. 34, 858, (1925). — M. Born, W. Heisenberg u. P. Jordan,
Ztschr. f. Phys. 3§, 557 (1926). — N. Bo hr, Die Naturwissenschaften, 14, 1, (1926).
Nature, 116, 845 (1925).
) Wote added in proof July 1926). — The hydrogen atom has
been treated on the new mechanics by P. A. M, Dir ac, Proc. Rov Soc., A, 110,
561 —3579, 1926, and independentny by W. Pauii jr., ZS.{ Phys. 36, 336—363,
1926. — The new quantum mechanics introduced by Heisenberg was developed from
different points of view by various authors. — C f. Notices respecting new papers of
the new quantum mechanics by V. Trkal, Casopis pro pétovani matematiky
a fysiky, Praha, §§, 207, 208, 423, 424, (1926). — See also the work of E. Schr &-
dinger, Ann. d. Phys. 79, 361376, 490—257, 734—1756, (1926).

where?)
H—2m(p1,2+ ’2>+ (?2

e? ,
+ ! 19 ’ ’ 7 7 4 . ’ . ’ = W’ (I)
V@ + ¢+ 2 g/ ¢, (cos g5’ cos g + 1’ sin g5 sin g,)
(¢ - Bt i)
295 b4 '
is the Hamiltonian function of the problem. Interpreting these equations,
it is easily seen that ¢,’, ¢, are the distances of the two electrons from
the nucleus [thus essentially positive quantities], and & = const. is the
total angular momentum of the system. The Hamiltonian function H

—62

- represents the total emergy W < 0 of thc system. Z = 2 is the so-called

,,atomic number‘‘.
Apply to the varlables the contact-transformation defined by the

equations

LoV, v eV, AV,
Tap YT a0 P T e P T e
, oV, .
ﬁimaq,,” ¢ =1, 2, 3, 4),
where?®)
. Vi=1sq cos g + py @' sin g5' + ps g’ c0s @4’ + Pu ¢, s1m gy,
i e. ‘
X=g00s gy, y=gising,  z=gycosq, u=gqsing

Py = prcos g5 + pysin gy, Py =aq' (—px Sum g5 + pycos q3), (4)
Py = pscos g + pusin gy, by =gy (— pisin gy + pu cos gy).

It follows that
W =VETE> 0, pE 4 p,z =Bt B = — by by

=Pz2+i>u2, by = — Pyt + puz

qz' = Vm> 0, %+ q 3

Effecting in H the transformations which have been indicated, we
have the new Hamiltonian function

1
H= (02 + 2+ 22+ 03— Z ( + )+
= (b2 + B + b = + AR
62
+ =W, (11)
Vi 2+ u+-2x2+Ayu

9 M. Born u. W. Heisenberg. Ztschr. f. Phys. 16, 229, (1923). —
E. T. Whittaker, Analytical Dynamics, 2" ed., Cambridge (University Press)
1917, §§ 155, 157, 158. — In the book of Whittaker, I. c., p. 351, 7 and 8 line from

ke p? —— pH2 . k2 — p,2 — b2 )
the top, for — MA?% Ps sin ¢, sin ¢, read -+ 27;;3 b 2z sin ¢, sin g,.

% M. Born (SF.‘LHund), Vorlesungen iiber Atommechanik., Berlin 1925,
p. 37. Form. (12).
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The equations of motion now become

. oH, . o H,
X = 35, Py = — 3x etc.
Let this system be transformed by the contact-transformation
3V, . 3V,
= , (1=1,28,4), x= etc.,
P 3q; ( ) 9 Ps

where®)

Vo = (by sin qs + $:005 1) 1 + V' p2 + (P, cos g, — P S11 ¢)2 . G5 + Pu - G
i. e. ' _
by €05 44 — i 510 G4

X = q, €0S q; — .y STy,
DB b hycos gy — Pasingr 0 E
. Py COS gy — Py s10 g4
= q, S . @y COS G4,
ST i et — g B
_ b
VBE + (by cos g, — pssin g2 T
U = 93’

D1 = Py S0 gy + Py cOS gy,
by = \/?zz + (py cos gy — P, s11 )%,

Ps = Pu,
pa = (By 605 gy — P 51t 4,) (% — % iy_sgy Zf):rqf”_cz Z‘fm ; 4)2),
or
e = Py cOS ¢y — ‘qlﬁ_p_%m - Do S Gy, ]
by = 1)1 UM gy + —M?_"‘—%—Zb - Py €08 gy,
2
b= \1 - (41 s = % P1)°
bu = b3 )
Y = gy S0 g, % ql % fb_ q2 751 - g5 C0S gy,
‘T g2V1 b — qml)
" = @,

% As far I know this contact-transformation has not yet been introduced
in the litterature; we can get it by the composition of the transformation (C) and
(A) of this paper.

§

We now have

vl e A Al Thl o Pl o 2

and
24y 2wt =gt gt g
2
2 2 .2 2 _ —
X +y ql + 92 (ql ?2 o q2 pl)g xﬁy ypx p4)
25
2 2 g2 — ,
“u 9’2( (01 P2 — 2 P0)? )—}—%
the— b= gty — dop) Y1 — ———2F

(@ Py — 2 91)?

The differential equations, when expressed in terms of the new varia-
bles, become

oH, . o H.
q,—apf,yb,- ;?% 0=12734)
where
1
1 2 3L
H, =9wm (pr® + p* + psf) — € Z{(%z + ¢5° (41 s ?f 7 ?1)?> o
1
-7
ot et (- & 0 b )
+ e {qﬁ + 4"+ @+ 24, Vl @ s i"c};?b' (q1 cos gy +
D LI
G — 21 % sim l]4) t
+ g (91 s gy + 'W gs €0 94)-
1
A2 _ 2 _ M_._,__Zbi_m_ﬁ___q 2
P4 (95 D3 — 45 P2) (1 (@ Ps — 0o P1)° )l
| % ]
Pa (92 P — 45 P2) V (@1 Do — o P1)E

Perform on the system the contact-transformation defined by the
equations

g = gza P = aaza_ﬂ (i:1’2)3’4):
where®) '
Vg = (pg sin Qg + Py c0s Q) . Oy cos Qp +
+ \/1532 + (P c0s Q3 — Py sim Qo). Qysin Qy + Py O,
1. e.

) E.T. Whittaker,1.c, §160, p. 349. — J. M. Bur gers, Het atoom-
model van Rutherford-Bohr (Proefschrift Leiden), Haarlem 1918, § 17, p. 80.



— _ g €0S Qg — Py 510 Qg
B e O a0 O — Faoin O
Ps €08 Qg — P1 5im Qg
Vpa® + (py cos Qs — py sim Qy)*

Ql Si% Q2)

Oy stn Qg sim Qg,

@y = Q1 €08 Qp 511 Q3 +

- by
% Vi 4 (py cos Qg — Py sin Qy)?
9 = Qo

Py = (py sin Qg + p; cos Qy) cos Qy +

+ Vg + (P 005 Q3 — by 57 Qy)* . sim Qy,
— (po s11 Qg + Py cos Qg) Qy 519 Qy +
+Vps? A (pp €05 Q5 — Py sim Qg)* . Q1 005 @y,
Py = (p, cos Q3 — Py 11 Qy) Q1 cos Qp +
(Pp c0s Qg — 1y 511 Q3) (5 51% Qg + P, COS ) Q, sin Q
V P2 + (P 605 Qy — Py sin Q)2 ' :

0O, sin Q, cos Q,

Py = p,,
or finally

(P €0s Qy — Ql SN Qz) cos Qy +

-+ % c0s Qz) stn Qy,

P, . .
p2 = (Pl coS Q2 - —Q?;— N2 Q2) S Q3 +
P .
- P+ G oo
ﬁs B (Pl Si% QZ

p I
—i—Q—j ¢os Qz) \/1 - —ﬁ:?
pa =P

P, . .
¢ = 0O (cos Q, cos Qg — Tz i1 Qq S100 Qs) ).
. P, .
= Q, | cos Q, sin Q5 + B Sin Q, cos Q3) ,
2

g =0y vl 55 S Qy,

4y = Q4
We have therefore

2
b+ b+ P =PF + IQ)%, ,

Qb — Qo =Py G Ps — @3 o = PV] P2 S‘"Qa

7* + qf + 932 = Q%

The equations of motion in terms of the new variables are

9 H, 9 H,

Qiz a_P_—.)Ph_*“—"—a’_—Q:‘; (1::1’2’3’4)’

7

where, on substitution in H, of the new variables for the old, we have

1 P,
Hy= oo (P + sz)-_@uz*——w

7% =7 [{(cos Q‘2 cos Q3 — % $i7 Qy Si% Qa) -+

o =

—+

2 ' 2)~
IP;:z (cos Q, sin Qg + % sin Q, cos Q3) }

1

+ {( 1 32 sin? Qy -+ ( cos Q, sim Q3 +5 & sin Qy cos Q3)2( 1— 11—24;)}“ 7]
[1 —-2 {1}; (cos Q2 st Qy + =2 sim (22 cos Q3) sin Qy +
— (cos Qy cos Q3 — —5> st Qy stn Qs) (cos Qs sin Qg +

P, / P2
+ =2 sim O, cos cos } 1 — =4
P2 Qu QS) Q4 \/ Psz

2, 2
k- —Pp (1 —~7P;§—2~)(1 ~%) sin? Q,
2 3 N :
+ — 5 st Qy {( cos Q, cos Qg —+
P, P, \/1 — —15:—5 sin Qy

P, . A . P, .
- ?Z sin Oy s Qg) sin Q, + ( cos Qg sim Qg -+ —P‘;— sin Qy cos Q3) :

D]

) o =

The two contact-transformations (B), (C) may be replaced by the

contact-transformation of the type
by = (P c0s Qy — f_z_ s1m Q, ) (cds Q3 cos Q, — & stn Qg stn Q4) +
(P stm Qy + —= €0 Qz) ( sin Q2 cos Q, —|~ P c0s Qg sin Q4)

=% stn Qg cos Q4) -+
== 08 Q3 cos Q4)

by = (P cos Qy — ~Q— st Qy )(cos Qy sim Q, +

— % (P 11 Qg -+ —== coS Qz) (sm Qy 511 Qy —
15,, = [P1 ( cos Q, stn Qg + ~P~:— sin Qq cos Qs) +
— _1.)1 (sm Qy st Qg — %— cos Q, cos Qg)] V:?% ,

by = [Plsin 0, + Q cos Q2JV1 P 5




v = 0u{(cos Queos 04 — 2 5im Qy sim Q) s 0+
— 3 (sim 0y cos 0y + - cos Qusin @) s @,
v = 0, {(cos Qs 0, -+ 1 st @y cos Q) 005 0, +
| >ﬁam%m@—%m%m@ﬁw4
2=, {cos @, sim Qg + =2 sim Q, cos Qs}\/l — -
w=o 122 B sino.

I1.

In brief [suppressing the index 3], the equations of motion of the
Problem of Three Bodies in the case of the neutral helium atom are reduced
to the system of 8th order

_0H s H

01 **a‘—-p‘:“ y Pi _ - a—Q:, ('L = 1, 2, 3, 4), (1)
where
1 P2 e2 7%
H— 1 (P _C 9
om I T 07) Ty, 2
and
7% = 7% 1};3 i ﬁ » 0w On Qu), (Py =k = Constant). (3)

Z* is homogeneous of degree 0 in P,, P;, P,, Py = k.

Thus, the problem of the helium atom can be veduced to the same form
as the problem of the hydvogen atom; the problem of He differs from the
corvesponding problem of H only by certain modifications in the potential
energy [Z* is in the case of hydrogen = 1.

The equations of motion in their new form are

. aH P ,  8H P2 oz* ,
(4a) Q= 3P, = Pl__an“lea”“ 0.2 (4 a')
. oH P2 VA . oH e? 8% .
4b 9 =2 e P [ —_ , 4b/
4o @ =3p,=wor qap, DT 7ag g eg UV
. oH e2 o7%* . oH I A
4c —— = o= Bpm e =" 22 ¢
e G=3p, =70 95, e T A T
. aH LA . oH e? 9%
4d LA P——2t =% g
(4d) Q=3p, =70 3P, =750, 0 00, Y
The derivative of Z* with regard to the time ¢ is
A dL* A A oL*

dtzapp2+ P3+3PP+«PP+'\QQ2

+a%@+a&9*

With the help of the equations (4 b—d, 4 0’'—d’) and by means of
the equation P = k = Constant, the simple relation results:

iz« P, 0z* Pb )
dt ~ mQ2 8Q, meQ

Differentiating the equation (2) we have

iH 1 Py Ql)
i T m (PP* +
VAN e adz* dW

‘_QITQl“@' i = ar - (6)

where W is the constant of energy. With respect to (5) we have from (6) the

following equation:

1 ; Py? e L*
PP - (e - 5) di=o0. (7

kBy means of the substitution P, = m Ql [compare ‘th.e equation (4a)]
we obtain

. p.2 2 7%\ . '
P. — 2 4‘_ . ) = 0. (8)
(7= g+ g )@
We arrive at the alternative, that either
. 2 2 Z*
P, =—2_ S
toom Q@ Q.
only, this is the equation (4 @') of the set (4a—d’), or also
Ql = 0’
so that
Q, = Constant. (9)

We shall mow proceed to consider this ,,singular'* solution (9) of the
considered problem.

'The equations (4 a), (9) shew that

P =0 (10)
Thus (44") becomes
; p,? e Z*
P=—2_——— =0
Yoom QP Q0
and we obtain [compare (9)]
2
0, = mf;Z_*- = Constant. (11)

Substituting from (9), (10), (11) in the Hamiltonian system we may
write
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(12a) ¢, =0, P =0, (12 @')
(128 0, =1”;—4222f %_% . B, :f%%, (12 )
(12¢) @y = “‘m—;}z—*%?, P'sz%%%:, (12 ¢)
(12 d) Q'4= —ﬂ?f—*%%, P4=—m—1%§*—%%’:-. (12 )

The system (4 a—d’) may therefore be replaced in this ,,singular”
case by the system (12 a—d’). Let H' denote the function derived from H
by making the substitution for P, and @, [from (10) and (11)], and let s
denote any one of the quantities P,, P,, P,, Q,, Qg, Q4; then we have

8H' _ 8H oH 2Q, _ 9H 5 30, _ 3H

ds  3s 2Q, as ~ ds '3as 3

and it is therefore allowable to substitute for P, and Q, in H before the
derivates of H have been formed. The equations of motion (12 a—d") may
be written in the form

oH' . oH
Qi—“ﬁ, Piz—a—Qi,

where, effecting in H the transformations which have been indicated,
we have

(1 =2,3,4), (12%)

m et Z*2

H == 2Pz

= W = Constant. (13)

If in (5) we substitute the value of @, from (11) we find

az* VAT
T
and therefore

Z*

7, = Constant.

From (11) and this last equation [or from (11) and (13)] we have

Z* = Constant (14)
and
P, = Constant. (15)
Refering to the equation (12 0'), we obtain

. mer 7% 0%
Pym—— —— =0
: P2 30,

VA

o =0 (16)

11

From the latter equation we find

P, P, P, )
=0, (=2, 25, 5, 0, (16*
Qz QZ PZ P2 P2 Q3 Q4 )

Now let H” be the function obtained when this value of @, is sub-

stituted in H'; then if s denotes any one of the variables Py, Py, P, Qs, O,

we have -
sH' 9H'  8H 93Q, OH 090, 2H
s os 30, ?os s ®9s s '

in other words, we can make the substitution for Q, in H' before forming
the derivates of H'; and thus the equations of motion (12*) are reduced
to the system

VH"  merZF (Zl* _azl*)

(17 a) k=5 ~="p: \p ~ 3P
g=_%%;=a (174)
. AH'  meZ* aZx¥
(17 b) Qs = 3D, P2 ap,’
. o H" m et Z,* 9 Z*
P.— — ! 1 170
= Tag, T B a0 )
. o H m et Z* 0L*
17 = =— — 57
(17 ¢) Qa ap, 2 ap,’
. e H" m e* Z,* 0 Z*
P _ ¢ _ 1 1 17 ¢
S TN 1 Hre)
where
4 %2
H = _% =W = Constant (18)
2
and
P P, P
Z¥ =7 (=2 4 5 0, ) 19
1 1 (P2 132 P2 QS Qt ( )

is the function obtained when the value of Q, from (16*) is substituted
in Z%,
II1.

Before proceeding to discuss these equations, it is convenient to
calculate the following illustrative example.
The Hamiltonian function H of the problem of two bodies in a plane
in the case of the hydrogen atom is
_ _L( 2 2> Az

vty @0)
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and the equations of motion of this problem are

&HaH . 3H
Y P s = dx

y._aH by — oH
8153,’ i’ oy

- It is easily seen that (x, y) are the coordinates of the electron relative
to the nucleus.

Apply to the variables the contact-transformation defined by the
equations

_ 2V, A
Pl__an ’ Y= aﬁx
oV, oV

P = 4) - 4)
2T 50,0 YT ap

where
V4 = P \/Q?_ ng + Py Ql'

The equations of motion in their new form are

c 9 H _ 1 0N 5, 9H P P,
0= p = (B P oz) A== 50 " ma
. dH 1
O =S5 = (B2 T), (21
2
; _“Eﬁ’_m 1 PPQ1
BT T T o —#7),
where
’ 1 Z 3

It is well known that @, = Constant [the circular orbit of the elec-
tron] is a particular solution of the problem considered.

~ If @, = Constant then

oy g) o

hence

1%
P,=—P 23
1 Q2 ( )
Let H'' denote the function derived from H’ by making the substi-
tution for P, [from (23)], and let s denote any one of the quantities Q,,
Q,, P,; then we have
2 H" oH oH" 2P, oH - 0P, oOH

ds  os &P, os  9s +anszas

13

The equations of motion may be written in the form

. aHII P . aHII P2
6= -RG-g). A EE |
1 2
6= B _0H'_ Pl sz (@
: 31?2 ' ? 9@2 m Qp® sz’[
where ‘
etz
T ppe — =
_Pa(1- 2) o = (25)

Differentiating the equation (23) with regard to the time ¢ we have
P1Q1+P1Q1+P2@2:0-

Substituting in this equation for Q,, P, P, their values as given by
the equations of motion, we have the relation

P2 2
~L( ) _ _“_Z — 0. (26)
From the equation (26) we obtam
1 1
@;:m@?(— me*Z + Vm2et Z2 - 4 P2 Q) (27)

since @, > 0. Now let H'"" be the function obtained when this value of Q,
is substituted in H'’; then if s denotes any one of the variables P;, Q,,
we have
a H/ll o aH/I 8H/, aQQ aHII
s  ds 20, 3s - ds

Hence
H// ’ — 62 ‘Z

T aprog (mmeZ A+ Vm? et Z2 + 4 P Q?)

is no longer the Hamiltonian function of the considered problem.
The total energy of the system is given by

szm‘§(~—me22 + Vm2et 72 4 P4 Q)
1 1
so that

Thus
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and the total energy of the syéfem

2
W:..gfi;b;‘l_z__ (28)

This is the well-known value of the total energy of the hydrogen
atom [Z =1, J =n k")

Iv.

We shall now proceed to consider the equations (16%), (17 a—c').
Differentiating the equation (16*) we have

sz 302

;20 30y 5, 20
P, Py + aPzP + an Os + 20, Ca

where the quantities §,, P;, P,, Q5 O, are to be replaced by their values
as given by the equations of motion (17 a—c’), i. e

0B B 0vo) <o

From this equation we obtain

citner 0, = 04 (3 B0 200 0 )or®u = 0 (32 55 5 @) @Y

Let H'” denote the function derived from H” by making this substi-
tution for Q,, Q5 respectively, and let s denote any one of the quantities
P,, P, P, Qy; P,, Pg, P, Q, respectively, we have

aHIII . 3 HII a HI/ a Q4

a HII
3s ~ as T 20, 9os == 75
aHl// ) H// ) H// P Q3 L ) H,, '
ds  ds 2Q, as == 3s respectively.
Hence
m m et Z,%2
H" = — =555 (30)
[where

. P, P, P,
12*_22*(?,?2,———'2—,93)1

P, P, P
— 7% 4 5
Zs* ‘”(PZ’P2

) , respectively, (31)

is the function obtained when the value of Q,, (), respectively is substi-

tuted in Z;*] is no longer the Hamiltonian function of the considered
problem

) M. Born, L c. p. 189, form. (3).
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The total energy of the system is given by

B m et Z,%2
W=——5p5— P (32)
where Z,* is given by the equations (31).

Let us assume that this equat1on can be solved with regard to P, P,
respectively ; ve get

P, P, P
3 . 2 4 15
P, f( 2W P’P2’03)’
P, P, Py ) .
o =g (— 2 W Py? ?. 7 Q4) respectively.  (33)
If we put
P, — EIN)

-, (1 =2,3,4,5),
20; "’ )

we see that, if S =35, (Q,) + S;(Qs) + S, (Q)) + S5 (Q5), then [keeping
P,, P; respectively constant]

oS a S.
= Pag=[15a0,= Jigee
O 78

‘ S dS
J, = S PdQ, = 30, a0, = dQ4 d Q, respectively, (34)
O 4

where the quantities Py, P, respectively are to be replaced by their values
as given by the equations (33). From the equations (34) we have the
relation

me4/Z\2
W=——3p5 (35)
where
> wfdJd; P, P o /P J
7 — _‘:”__4__5_)=/3 5)
A B, P, P, L =7 p,’ D, P, respectively.
Writing

Jo=2nP, Jy, J,=2nP, Jy =2xP,,

Jy =2nP, J3 =2= P, J, J; = 2= P; respectively,
the relation (35) may be written

(36)
where
s ofds I,
Z J2 3 J2 ] J2 E]
PPN § J
7 (_3 4 Is ) respectively. (37)
2 2 J2

The constants J; are the action variables of the considered system.
The quantum equations of restriction are Jy = &, (k =2, 8, 4, b).
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V.

The equations of motion remain Hamiltonian after this transfor-
mation is made and are :
ow ow

57, T T e, T

Wy =

Since W is constant, and is a function of the constants Jy only,

ow
od;

Wy = v = = Const.?)

and
wy = vt + O,

where v, and d; are constants. Thus the new coordinates w,, so introduced,
are variables which increase indefinitely with the time, and are therefore
called angle variables.

It is well known that the total energy W may be written?)

¢

5
W=9 Jyw, —L, (38)
kg2

where L is the mean value of the kinetic potential L =17 — V, T the
kinetic energy and V the potential energy. :

According to Jacobi’s theorem is in the case of the Coulombian
field10) B B
T=—14V l

where L, W, T, V etc. are the mean values of L, W, T, V etc.
With the help of these equations, we find the equation!!)

b aW
Z‘]" o J

k=2

= —2W. (40)

% J.M. Burgers,L c. §10, p. 43, equat. (5. — N. Bohr (P. Hertz) Uber
die Quantentheorie der Linienspektren, Braunschweig, 1923, p. 40, equat. (5).

9) E. T. Whittaker, L. c., §41, 109. — A, Sommerfeld, Atombau,
u. Spektrallinien, 4. Aufl.,, 1924., Zusatz 4, p. 766, form. (13a). — V. Trkal,
Proceedings of the Cambridge Philosophical Society, 21, 1923 p. 81, form. (3). —
J. H. van Vleck, Phys. Review, 22, 547 (1923).

©) A, Sommerfeld, L c. Zusatz 5., p. 771, 772. — M. Born,lc,p. 159
form. (3).

— 5
11) Cf, the relation 2T = ¥ Jrwr compare J. M. Burgers, 1. c. 16, p. 72,
. r=2 .
form. (I)..— M. Born, L. c, p. 94, form. (18).

T 1™
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The integral of this partial differential equation is, as it is well known,
1 Js I, J
W= + F (_3 Ja As)
Jy2 Jy ' d, ", (41)

(where Fis the symbol of an arbitrary function), agreeing with formula (36).

Let us write — } L instead of the energy W, so that we have

5 9 __
kak:'—L, 42
£ 2

The differential of W is

5

oW 2:
d W ES kzz_.aJl;_ d Jk = Vi d Jk, (4-'3)
= k=2
1. e.
1 . 5
— AS d L =k:J;2 Vi d Jk. (44")

From the formula (42) it follows that we can write d L in the form

5

Ty d v+ 2 vy d Jy. (45)

2 k=2

| DD

24l =

bl

w

k

Thus, on comparing the equations (44) and (45), we have

5
/ZL: ZJkd’Vk (4'6)
k=2
It follows, that'?) |
_ 3L oW (v)
e (47)

where L, W are functions of the constants w; only.

VI

In prief, it is found that the ,singular’ solution @, = Constant of
the equations of motion of the neutral helium atom (1), (2), (8), (I¥) leads
to the result (36), (37).

) (Note added in proof. July 1926). — Recently the author has been
able to make an extension of the formula Jy = 2L (») |9 v, for each field. In the
presen.t paper is this formula deduced for a purely Coulomb field. Cf. V. Trkal
Casopis pro péstovani matematiky a fysiky, 55, 343—351, 1926. . '

Bulletin international. 2



18

Since the expression Z* [cf. the formula (I7)] is very complicated
it has not yet been possible to calculate the expression W [cf. (36)] in
a more complete form; therefore g confirmation of the theory cannot be
given in the present paper. The problem cannot be solved without a know-
ledge of any convenient approximations.

January 1926,

Institute for Theoretical Physics of the Czech (Charles-) University,



