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In a conservative dynamical system of & degrees of freedom let
G1s Q2> ---» Q@ De the generalized Lagrangian coordinates and let L
be the kinetic potential: we shall suppose that the constraints are
independent of the time, so that L is a given function of the co-
ordinates ¢y, ¢, ..., ¢ and of the velocities ¢;, ¢, ..., ¢, only, not
involving the time ¢ explicitly. If we further introduce momenta,
defined in the usual manner as

oL

Pr= 3,
the total energy of the system, W, is given ast
k
h p,,q.,,- —L=W= COHSt.; L= Ekin - Epot; W= Ekin + Epot,
r=1

where Eyin and Epo denote the kinetic energy and the potential
energy respectively.

Multiply each side of this equation by dt and integrate from the
time 0 to 1" and divide the equation by 7. Letting now 7' increase
beyond all limits, we have

; .1 (T
Jm {2 pfpdai—g [[rif = g T

In the case of a condl’monally penodjc motion, it follows that

5 1 a =W,
— _rlv _p'r% t T*" L t

where 7', and 7* denote the period of the function p,¢, and of the
kinetic potential L, respectively. Denoting further the time mean
of the kinetic potential

= 1
L= T Ldt
and writing frequencies v, instead of periods (vr = %-) , We obtain
z vrfp,,dq, LW, ),

191; Cf. 612 T. Whittaker, 4 treatise on Analytical Dynamics, 2nd ed., Cambridge,
P
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Ty
where J. prdq, = f Prq,dt denotes the phase integral. Denote
0

f Podge =TIy v, ),
the-equation (1) then becomes
X I, —L=W ccovieeivininneennn, (3)
r=1

Imagine now I,, v,, L, W expressed as functions of ‘structural’
constants (e.g. of matter, charges, field) and ‘kinematical’ con-
stants. These latter usually specify the shape of the path of the
motion considered (e.g. the semi-axis and the numerical excen-
tricity of an elliptical orbit of an electron rotating round a positive
nucleus), in other cases they may specify for example the velocity
of rotation of a spinning sphere; in the classical theory these
‘kinematical” constants can generally acquire any value.

Obviously I,, v, as well as L and W are functions of the ‘kine-
matical’ quantities (a, ¢, ...); W, however, can be regarded as a
function of Iy, I,, ..., I}, these latter again being functions of

(a, €, ...).

Thus we can write
ow kE owol, k oI, oW 2. owol, k oI,

e BT e Pe 20T 3e — 27 » OO
W 4),
since * al, = (1 =15 2 w05 J) wnuiinvunsmesemnes (5).

Now let us quantise the motion of this dynamical system; then
we must use Sommerfeld’s condition

L=pdg=nh, (r=1,2 .0 B) e (6),
where n, is a positive integer and % Planck’s constant. Then
I, I,, ..., I, are constants independent of (a, e, ...), so that
formula (3) becomes

E by — L=W i (7.
r=1
Further, the formula (4) is transformed into
ow ow
Ezo, 75—:0’ aivs OBCE 5595 54m sminnasion (8),
i.e. W =0, .iiiiiiniiieinennnn, (9),

I, being constant and equal to n,h.

* Cf. J. M. Burgers, Het atoommodel van Rutherford-Bohr. (Proefschrift.)
Haarlem, 1918, p. 43, § 10, equation (5). N. Bohr, ¢ On the Quantum Theory of Line.
Spectra. Part I.” (D Kyl. Danske Vidensk. Selsk. Skrifter, Naturvidensk. og Mathem.
Afd., 8 Raekke, 1v. 1). Kobenhavn, 1918. Separate copy, p. 29, equation (5%).
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Substituting into (9) the value W from equation (7), we obtain
for the total quantised energy the following condition

k .
5{ % ooy — L}= 0 oo (10),
r=1

in which the variation extends to the ‘kinematical’ constants only.
Of course, before variating, we must express the term within the
brackets as a function of these ‘kinematical’ constants.

We notice, that the stationary states of conditionally periodic
systems are determined by the condition that the difference be-

k _
tween X n,hv, and the mean kinetic potential L should be an

r=1
extremum (as we shall see from examples, a minimum).
In special relativity-mechanics all the above suppositions re-
main valid; only the kinetic potential L must be substituted by the
modified Lagran«nan function

L=F—Eyp; F=—my2(V1—-B2—1), B=-, ..(11),

and for the kinetic energy the expression

Frgn = myc? <\/———62 - 1) ............... (12),

where v denotes the actual velocity, ¢ the velocity of light and m,
the mass when at rest.
According to special relativity-mechanics

L=F— Epot = Ekm + F — W, since Ekln + Epot == W(13)
Multiplying each side by dt and integrating from 0 to 7', we obtain

T 'y
f Lit = [ (Bya+ F)dt— WT oo (14).
0 To
Introducing the principal function (‘ Wirkungsfunktion’)
T
=J Baga + FY B vervrvneinsionnas (15),
we have . / fTLdt> =W (16);
d T \ i 4 A R R I )

if the motion is periodic, we see that the following relation must
hold

T (s- [ Lar)= §—L=Wn (17),

T—->w 1‘

where S and I denote the time means of the functions S and L
respectively. Comparison with the relations (3) and (7) gives
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by the classical theory, and
.k

B = 2 B s s v e o wmaenn (19),
r=1
by the quantum theory, where
2
5= [ Baindl cveovereeioressenreeses (20),

_ 1 "T'
8= 7% | k (Bran + Y ocornnsainnson (21),

in special relativity mechanies, 7* being the period of the functions
behind the integral sign.

Hence we can summarize the chief results as follows:
(1) The total (classical) energy can be expressed as

& _ Kk =
W— % vr”prdqr—L= I S
r=1 . r=1
(2) Its quantisation results from the following variation principle :

k x
a{z n,/w,_L}z 0.
r=1

EXAMPLES.

ExampLeE 1. An oscillator vibrating linearly about a fixed
equilibrium position.
The motion of this (Planck’s) oscillator is given by the following
known equation .
mE=—ké k>0,

or ’g’ + 4722 = 0,
where the constant v denotes the frequency of this harmonic
motion; integrating we obtain
&= acos (2mv + V).
The kinetic energy is
Bt = ’% £2 = m2my2a? sin? (2mvt + ),

and the potential energy

Eyot = 27°mv*? = 2m%mv2a® cos? (2mvt + V).
Hence the kinetic potential

L = Exin — Epot = 2m*mv2e® cos 2 (2mvt + %)
and its time-mean

; - f " 9mPmna? cos 2 (2mvt + ) di = 0.
0
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Thus we obtain W = [ pdg=L=v f pdg,

and the quantisation gives W = njw.

The only kinematical parameter is v; the variation of the last ex-
pression would have here of course no meaning. Thus the last
expression is the definite form for the quantised energy and agrees
with the Planck expression*.

ExampLE 2. A rotator spinning round its fixed axis.

The kinetic energy of such a rotator is Eyi, = $Jw? = 3J (2mv)?,
where J, w and v have their usual significance; this is also the total
energy W of the rotator as well as the kinetic potential

L=L=W= Egp.
Our general condition takes the form
8 {nhv — L} = 8 {nhv — }J (2m)%} = 0.
The only kinematic variable is of course ». Hence
_ nh 4 o NEH?

=gy W W @Y =gy

as it is well known from other communications *.
ExXAMPLE 3. An electron rotates round a nucleus in a circular

orbit.

If we denote by m, the mass of the electron, vits velocity, a the
radius of its circular orbit, 7' the period, v the frequency, — e its
charge and E the nuclear charge, we have

1 eE _s el ek el
v=g5_ Z@;a L W:—%, Ekin=%y Epot=*;-
The kinetic potential L=L= ?%f;

applying our general condition

= 1 el _3 3el)
5 pulin L}_S{nh.% a0,
‘ i s n2h?
we obtain, varying in e, a= inteEmy
hence the total energy
W )
a4 n2hz

which coincides with the Bohr valuet.

* M. Planck, Vorlesungen iiber die Theorie der Wirmestrahlung, 4 Aufl. Leipzig
(J. A. Barth), 1921, p. 139, form. (223 a), p. 140, form. (231).

1 A. Sommerfeld, Atombau und Spekirallinien, 2 Aufl. Braunschweig (Fr.
Vieweg & Sohn), 1921, p. 243, form. (13).
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bEXAMPLE 4. An electron rotates round a nucleus in an elliptical

orbit.
The system involves two degrees of freedom and two equal

periods (azimuthal and radial)

’ 1 el -3

V=V = 2; %0@
. el
The total energy is W=— %’
and the time mean of kinetic potential
= 3ek
L= ot

In this case the general condition
S {nhv + n'hv'— L} =8{(n+n') w— L}

, 1\/E_ 3¢E|

e

) L. ()22
gives the semi-axis = Em, ’
and the total energy
el 2mw2e2E*m,

=% T W
coincident with Sommerfeld’s calculations*.

ExaMPLE 5. An electron rotates round a nucleus in a ‘relativ-
istic circle.’

In this case the Coulomb’s attraction balances the centrifugal
force, hence

el mv? el g c2
=, — =My
o a a

Further, the total energy

' E
Exin + Epot = W = myc? <_._L_— — 1> -
v? @

v\ [ eE \? v

-l (C—2> - \amocz> <1 _E)’
1,»_2__1< eE )2+«/1( ek >4+< eB >2
o @ 2\amyc® 4 \amgc? amyc?)’

* A. Sommerfeld, l.c., p. 267, form. (20).
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and Z = U —\/l—v—— +\/
moc® & Zam A c> Zam 02
But v = 2mav, v= ——\/1— 72,
2ma
and 1-22= ob 5
amyc
_ 72
Hence = e & - (1——Z—)

moczl—Z”Vzi;r eE 7
The kinetic potential

—
L=F——Ep0t=—moc2(\/l—i—2——1)+e§

= — myc® (Z — 1) + myc?

and L=L=myc? (1 + 5 — 2Z> ............... (22).

Our general condition gives

3 72
3{nh»~L}=8{nh.2’fT<’e‘E.QTZl - (1+%—2Z)}:

Evidently we can vary this expression in Z instead of in a.
Finally we have

2mel w / 2mel
\/ -— 72 = = —— = =
L nhe ’ L+ My C? 4 4 == ( nhe >

which again is the Bohr expression*.

ExaMPLE 6. An electron rotates round a nucleus in a ‘re-
lativistic ellipse.’

(1) Sommerfeld calculated the total energy in such a case as

W=—my(Z—-1), Z= \/10—100

p*— €
when the equation of the ‘relativistic ellipse’ is
o BHLE]
T 1+ ecosyd’
el : . : Po?
and p, = —> ¢ denoting the velocity of light, p* = [ =2 the
-y

semi-axis being

VP — p VP — ép
mepy (1 — €2) '
Hence we obtain a quadratic equation for p?
Pt — po (1 + %) P + e2pet — a?mgcpy? (1 — )2 =0,

2
* A. Sommerfeld, l.c., p. 330, form. (22), where a = 2—;:27.

a =
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then
P2 =32 (1+ &) + p Vo (1= &) + daPmge? =P
further we obtam

7 = \/p —P B +\/1+(—7’—°—>2.
P% — e2py? 2amyc 2amyc
According to the binomial theorem we have
w eE 1 €2E?
myc? T T Jamgt ' 2 4aPmgict

1+

o which is the energy in the

Putting ¢ = o, we obtain W = — %’

non-relativistic case.

(2) The calculation of the two frequencies (radial and azimuthal).
The areal constant

o m, . 1)2
== m72¢ . \/1~——_0 ﬁz /’.2¢’ /32 = 0_2’
according to Sommerfeld* is
w
D i_l, o
Vi— B Mmyc? 7 My C

= 7’01)2 23
Hence p—mO(Z—{—mc;) 2, - ¢ p(z+m0w o (23).

But o=y ¥ y= /125, 5 =% o)

1 + € cos P2’ c

Tf 7" denotes the time of revolution counted from a perihelion to
the next one, we obtain from the relation

dt:@ ........................... (25),
: ¢
: . [(rdp  [Tdp [Pmmy ﬁ(’_}_) i
the period T :Jo E —.’.0 $—_‘.0 ﬁ<z+mocr rdi.

Substituting the above values we have

- d¢ porﬂ d(/; }a,(].—ez)
r — 2 PE TN P
T = ‘{“(1 f)mozfz T Tecospt ¢ Jo Trecosd) vV pgt

__po_ s o pOZ\/l — €%
But a—m 42, \/ '\/——-1 5 Z2 )
fz" dip e O [2" dip 2
(1—|—ecos¢)2*(1ﬁ€2)%’ o l+ecosy +1_—e

* Ann. d. Phys. 51 (1916), p. 48, form. (B).
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Thus T = *271%—

myc? (1 — Z2)%F
Replacing the period 7" by the frequency v, we obtain -

v 1— 72
7%( ),

z
Do
where 7Z = \/ 1+ 2am0 =~ S
Hence v is a function of the single variable a. But we can also

regard v’ as a function of the only variable Z. The second frequency
is the reciprocal of the second (azimuthal) period. In increasing the

angle y = y¢ from 0 to 27 in the time 7", the angle ¢ = %mcreases

from 0 to 2= in the time 7' = 7"y; putting 7' = 1 T'= l we obtain

the relation v
y=—.
. Y
But from the expression

2 PP— Do Y

Poepd el

2

it follows
72(1— &) 1- 2 1- ez
ez VY a0 T
' _ 72)}
hence e P (L= 2 il =1 — 72

y 2meEzyi—e

We have thus expressed v as a function of variables Z and e
(or of @ and ¢).

(3) Calculation of the kinetic potential. We have

s 08 = oy AT L B s e myc? (1 — ) Z
F — myc? = my2V1 — B2 = (1 — Z2) + (1 — Z?) ecosy’

ek myc* 1 — Z?
Epot=——~r—=—1_062 7 (14 € cos ),
L=F—Epy
- myc® (1 — €2 Z mocl Z2

2
T A2 (1 —Zhecosy T T Z (LT ecosd)Hmct
Putting € = 0, we obtain the klne’mc po‘centlal of a circle, which
agrees with the result in (22).

We have found in (23), (25) the expression for df. Substituting
into (25), (24) the expressions
_ P Z e ZV1—é

mcl Z27 p po povl_zz’
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we obtain
=ﬂ\/1__€i{(1_€2) z dip T dif
myc® /1 — 72 1—Z2(1 +ecosgp)® " 1+ ecosyf’
and
V1—e[(1—e)223
det ~ o e [ =
A i W
Jo (1+ecoseh)?{(1 — €222 + (1 — Z?) € cos i} 0o 1+ ecosy
1 2 Z (2m d‘/,
Til=e) .'0 (I + ecos i) {(1 — €2Z?) + (1 — Z?) € cos 4}
1 (21— 22
N 1-—62 0 Z d‘/‘]
Let us calculate some integrals.
2
@ e i , le] < 1.

0 1+ecos¢=\/1 T
Putting e=B:a,|a|>|B], we have
B dis 2
m |
(h 0 a+Bcos¢ Ve — B
Differentiating this integral in the parameter «, we obtain
r2m dl/l

(III) jo (CZTB——COSL/I)Z:Zﬂa(az—BZ)_%’ |a|>|Bl.
Further
2m d‘/,
W) [ e e 557
__|B f” dp 3 F"
“By—adly a+Bcosp  By—adly y+3cosy

i B 5 7.
=/8’}’_055 [’\/a2._/82—o\/,y2_82:]’ lal>|18|3|'y|>|8!,

Differentiating this integral in the parameter ¢ we obtain

i df 2w B
O [} arpeiig s = Fre = =
B 8 2maf 51,
Toms] gy el > 18 71> 13

o, N AN (1—~Z2)2J
Hence L~T,f:Ldt~+moC [1 Z +\/1T€2 Z '
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Our general condition gives
S (nhv + n'hv'— L) = 0.
Instead of varying in @ and € we may also vary in Z and e. It will
be more convenient to use new variables z and ¢ and vary with
respect to these. Putting

1-z2 , 1 2me? el
-1t (T men=%)
we obtain
moc® [ )3 BT mee® o ol
8{ o <x—i—1 V1 + ¢z +—n]+(x+1)¥(l q2x) — myc? =0.
The variation in ¢ and in ¢ gives these conditions
- %Of@é (1 —qa®) + %x% (V14 g% + n)
ahg ok
+ x—i—l%n[——_—‘__—‘_Q‘“"iI:O ...26,
g+ Do | oo 20 (26)
qzw B (a—_*E’>2
T mol - oo (27).

Substituting (27) into (26), we find
aB\?
TR
2 —_—,
g [n’ + \/ n? — (%)2]2
(|7
T

which also is identical with the Sommerfeld* equation.

w

or Z=1+——
Mg C

s
{

In conclusion, I desire to express my thanks to Professors
P. Ehrenfest, F. Zaviska and J. Heyrovsky for their kind interest
and advice.

* A. Sommerfeld, ’.c., p. 330, form. (23); p. 521, form. (5).
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