A NOTE ON THE HYDRODYNAMICS OF VISCOUS FLUIDS *)
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The cross-product of the velocity and the vorticity in a viscous incompressible fluid
is formulated and its properties investigated. When the cross-product is identically null,
either the flow is vortex-free, or the velocity and the vorticity are parallel to each other.
The second case yields the following important result for three-dimensional flows: if the
velocity and the vorticity are related by a position-independent scalar function, that func-
tion must be time-independent as well. (English translation of the seventy-five-years old
Czech text — Trkal V.: Casopis pro péstovani mathematiky a fysiky 48 (1919) 302-311.)

L

The Navier-Poisson!) hydrodynamics equations in the case of a viscous com-
pressible fluid take on the form [1]
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The quantities occurring in these equations have the following physical meaning:
u, v, w are the components of the velocity ¢ of the point (z,y, 2) at time ¢, in the
directions of the three rectangular axes of the English co-ordinate system, X,Y, Z
are the components of external forces; p is the constant density of the fluid, p is
the hydrodynamic pressure, and v is the ratio of the internal friction coefficient of
the fluid to its density.

*) The paper has been translated (by I. Gregora) from Czech original which appeared in Casopis
pro péstovani mathematiky a fysiky, Vol. 48 (1919), pp. 302-311; see a contextualizing account in
the preceding paper in this issue, p. 89. The reprints are available on request from the Editorial
Office.

1) Nowadays known as Navier-Stokes equations.
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If the forces X, Y, Z are conservative, i.e., if they can be derived from a potential
12, the equations (1) given above can be written in the form
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where 1
X’=B+‘92+-Q, ¢® = u? + v? + wl.

p 2
Here,
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are the components of the instantaneous angular velocity & of an element d7 of our
fluid. :

Differentiating the second equation of the system (2) with respect to z, the third
equation of the same system with respect to y, and then subtracting the results

(thus eliminating x’), we obtain the first equation of the following system (and
quite analogously the other two equations):

D
B =€ (GE-6)+nge+C5r +uAE,

Dt dy
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If we put here © = 0, we obtain the system of equations for a viscous incom-
pressible fluid. In the case of v{ = wn, wé = u(, un = v(, considering that

0§  ong  0C _
g Tyt
these equations (4) take on a very simple form:
o€ _ on _ o¢ Ou Ov  Ow _
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For brevity, let us further set
P |
v=x"-— EVQ. (6)

Then our equations (2) can be written in vectorial form (to simplify notation)
as follows: :
0 -

6_3 + 2[@, q] = vAq — grad ¢, (7)

divg=06 = %(x'—lb), (8)

where the rotational velocity &, of components §,7,(, is connected with the flux
velocity ¢, of components u, v, w, by relations (3), i.e.,

&:%rotq. 9)

If we further introduce a new designation for the vectorial product [@, ¢], namely
. «
=2, (10)

we can write more concisely

%+a=VAq—grad1/). (11)
Using the relations (9) and (10), we convince ourselves readily that the scalar
products

(aq)t= 0, (12)
(a@) =0, (13)

which means that the vector « is perpendicular to the plane defined by the vectors
q,&. If the vector & vanishes, or if the directions of the vectors ¢,& coincide, the
vector a vanishes, too.

We derive easily some other relations. Thus, e.g., from equation (9) follows the
known relation

1
divw = 3 divrotg =0 (14)
and further
rotd = -;— rotrotq = % [grad div g — Ag], (15)
whence we obtain
Aq = graddivg — 2rot®. (16)
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II.

If the vector a vanishes identically and if the potential 2 of the conservative
forces X,Y, Z is known, we can find the pressure p; conversely, if the pressure p is
known, we can find the potential 2 under the given assumption on the vector a.

The vector o vanishes identically if & = cq, as shown by eqn. (10). At that, cis
a scalar or zero, as the case may be.

If ¢ = 0, the vortex velocity & vanishes identically; then eqn. (9) yields rot ¢ = 0,
whence follows that ¢ = — grad ¢, i.e., in this case there exists a potential ¢ of the
velocity . This is in full accordance with the assumption that here we deal with a
vortex-free flow.

If ¢ is a scalar and ¢ # 0, then the vortex lines coincide with the flow lines.?)

In the first case, where the velocity has a potential ¢, i.e.,

qg=—grady,

2) The following simple example can convince us that a motion in which the vortex lines
coincide with the flow lines is possible, both in a fluid bounded by a convex surface and
in a fluid stretching to infinity:

The differential equations of our problem in a viscous incompressible fluid are:

9 = ay _ _z' = 2cu, 29 = -a—z - E— = 2cv, 2C = oz s % = 2cw, (See(s))
du v  dw % _yat, B ovan, L=
3z ay 9z ) ot ! ot m ot =

If the fluid fills a sphere centred at (0, 0,0) with the radius of /22 + y2 + 22, and if the
velocity component in the direction of the normal n to the surface of the sphere takes on
the value

—4yc2: T8In 2¢z + ycos2cz
\/12 +y2 + 22

ucos(nz) + vcos(ny) + wcos(nz) = ge

where ¢ =const., then the solution to the given problem reads:

—4ve?t . —4vc?t
u=gqe " 'sin2cz, v=gqge " "cos2cz, w=0.

This will be also the solution in the case where the fluid stretches to infinity, unless we
specify boundary conditions. For » = 0 we obtain the case of a perfect fluid. In every
plane parallel to the plane zy the flow velocity then equals g; but in different planes || to
zy there is a different direction of the flow (disregarding the fact that it is periodically
repeated). At the same time, however, this direction is the axis of the vortex. Since in
every point the flow direction coincides with the vortex axis, we deal with a helical motion
of the fluid at every point.

As far as I know, this problem was treated for the first time by T. Craig in [2]; an
exact proof of the existence of its solution under very general conditions was given by W.
Stekloff [3]. A special case of this problem is also solved by G. M. Minchin [4] in his book.
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we obtain from the equation (11), which takes on the form

O0q .
= vAq—gradv, (11%)

the relation

—grad %—f = —v grad Aq — grad ¢

and further

% —vap+v-100),

where T'(t) is an arbitrary function of time. Hence we find

v=x"+ g divgradp = Ef —vAp+T(t),

ot
and, since
divgradp = Ay
we get
X = & +T(t)— —VA<p
ot
and the potential
=x -2t = 22T - L - J(gradp - Jrav,

whence we easily obtain the pressure p.

In the case of a perfect fluid, » = 0 and the last term vanishes.

Nevertheless, we obtain the same result also for a viscous incompressible fluid.
In that case we have

divg = —divgradp = —Ap = 0,
so that a simpler equation holds for pressure p:

¢

2= %

+T(0) - B~ Jgrad )"

In the latter case, where the vortex lines coincide with the flow lines, we obtain,

as stated above, the relation
W =cq, (17)

where c is a scalar. Hence, with respect to equation (14)
div = diveg = ¢ divg + (g, gradc) =0; (18)
and, comparing equations (9) and (17), we obtain in our special case the relation

rot ¢ = 2¢q. (19)
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Recalling that
rot& = rotcg = c rot ¢ + [gradc, q] = 2¢®q — [g, grad ¢, (20)

where (...) stands for the scalar and [...] for vectorial product, then from equation
(16) we obtain

Aq = —4c?q + grad div ¢ + 2[q, grad c]. (21)
Substituting this Aq into equation (11°), we obtain
Z_Z = —4yc?q — grad ¥ + v grad div ¢ + 2v[q, grad c]. (22)

Equation (4) for the case [@, ¢] = ¢, i.e., v{ = wn, w§ = u(, un = v€, takes on the
form (5), viz.

‘Zt—a — pAT, (23)
and, inserting (17), we find
q% - c% = vA(cq) = veAq+ vqAc+ 2v(grade, grad)q.
Hence it follows that
%tq— =vAq+ % (vAc — %) + ?—cz(grad c, grad)q

or, with respect to (21)

2]

10c
5t - (11«6 f c 5£> gtvegr di q+ 2 [q’ gra C]

+ V—Cch + ?cz(grad c, grad)q. (24)

Now, it would be necessary to find from equation (18), e.g. using the equations
for flow lines, at least a particular solution for c and substitute this result into (24),
integrate this equation and insert the obtained ¢ into eqns. (21) and (22). This will
serve us to determine the function ¢ in more detail; in this way we determine more
precisely the function ¢, which must obey equation (23), namely

%rotq =vArotgq. (23")

Substituting ¢ thus obtained into (22), we find the function ¢; then we determine
the function x’, obtaining in turn the potential £2 and hence the pressure p.

In practice, of course, these integrations can be performed only in some very
special cases.
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Thus, for example, for an incompressible fluid, i.e., if divg = 0, we obtain from
equation (18)
(¢, gradc) =0
a e dc 8
c c c
g e bl = 18"
u6x+v3y+w6z (1850
However, in view of the meaning of the symbol Dc/Dt, equation (18") can be

written in the form
Dc  Oc _

Dt 8t
whence it is evident that c is a function of a single variable ¢, provided that none

of the components u, v, w equals identically zero. It follows from equations (20),
(21), (22), (24) that

rot& = 2¢%q, (20"

Ag = —4c?q, (219
Oa 2 ’ /
5 = —4vcq — grad x/, (22)
O0q _ , ldc ;

From these equations we find that

q= lf(:c, v, Z) e—f4l/cadt
c
and, substituting into (21’)
Af = —4c*f,

whence it is evident that ¢ as a function of a single variable ¢ must reduce to a
constant, so that
4vc?t

g =gz, y, z) €™

The function ¢ must obey equation (23’), i.e., ¢ must fulfil the equation
Arotg = —4c’rotyg

or
rot (Ag) = rot (—4c%g). (23")

IfU(z,y,2), V(z,y,2), W(z,y, 2) are all bounded functions that have derivatives
of the first, second and third order with respect to all the three variables everywhere
in the region (D) (the space occupied by the fluid), and satisfy the relations

ow oV ou oW v oU
T wm T E Y e gy W
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then they satisfy also the relations
AU = —4¢%U, AV = —4c%V, AW = —4c*W.

Hence, we can consider them as components of the vector g(z, y, ), because they
obey equation (23"). The existence of these functions for the case of a fluid bounded
by a closed convex surface (S) on which the velocity component in the direction of
the inner normal takes on a given value F(z,y, z) was proved by W. Stekloff ([3],
pp. 320, 332). He found that they can be expressed in the following way:

U = up+ 2cu; + (2¢)? (S + —665)
V = vy + 2¢v; + (2¢)? (S + Z—P>
W = wgo+ 2cw; + (20)2 (Sz + _aaﬁ)
where ug, vg, wo, U1, v1, w1, are known functions, defined by equations
by _ 0% iy _ Sty _ Guo _ Ouo _
oy 0z ' 0z 0z ' or Oy
Juy _ 0% _ g w00 Bl o e
gy 0z 9z o0z O B8z oy %
an Bvo 8’11)0 _ 6u1 Bul 611)1 N
Tt " =ty te

the normal component

ug cos(nz) + vo cos(ny) + wo cos(nz) = F(z,y,z)  on the surface (5),
uy cos(nz) + v cos(ny) + wi cos(nz) =0 on the surface (.5).

Further,

I—/Ul dT——/W1

_ §- / n—y
53_5 Vit dr—a Ui =5=dr,

where (&,7,¢) runs over all points in the region (D), d7 = dédnd(, the integrals
being taken over the whole region (D) and

=(z—&’+(y-n)’- (-0

The series Uy, Vi, Wi converge absolutely and uniformly in the region (D) for all
values of the parameter 2c smaller than a certain finite number 1/K, which will be
the larger, the smaller are the dimensions of the region (D). It holds then
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U= i (2e)klug, W= §(2c)"‘lvk, Wi = f(?c)"‘lwk,
k=1 k=1 k=1
8wk a’vk c‘)uk a‘wk 6vk Buk
a—y—g=uk—1, 'a—z'—w=vk—1, —%—w:wk_l’
ug, cos(nz) + vg cos(ny) + w cos(nz) =0 on the surface (S),
k=2,3,...00.

Finally, P is a harmonic function satisfying the conditions
AP =0 inside (D)

and the component with respect to the inner normal is defined as

aﬂ—égco( )+§£cos(n )+6—P os(nz) =
o = 5a s(nz By y 6zc =

= —[S1 cos(nz) + Sz cos(ny) + Sz cos(nz)]  on the surface (S).

Hence the components of the velocity ¢ will be
u= Ue—4uc2t, = Ve—4vc2t, §ij = We—4vc’t (25)

in a fluid bounded by a closed surface (S), on which the velocity component in
the direction of the inner normal takes on the given value e=*” ‘2’F(:c, Y, z), if, of
course, |2¢| < 1/K, where K is a constant positive quantity depending only on the
properties of the surface ().

Substituting into (22') we find that

X' =o(t)
depends only on time; whence the potential

1 1 2
2=x- % —5a =9(t) - ’;’ - U+ V2 W)™,

which allows us to calculate the pressure p.

Thus we arrived at the result that in a viscous incompressible fluid, unless at least
one of the velocity components is identically equal to zero, ¢ must be a constant
and u, v, w are given by formulae (25).

But, also conversely: if ¢ = const., we obtain from equation (23) (taking v = 0)
that 8&/8t = 0, i.e., the vortex velocity cannot depend on time, hence also ¢ and
q are independent of time. If one of the components u, v, w equals zero identically,
e.g., w = 0, then, in general, ¢ will be a function of the variable z. If two of the
components u, v, w are identically equal to zero, the third one is zero, too.

I express my warm gratitude to Prof. Dr. F. Ziviska for his valuable comments.
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