SBORNÍK

JEDNOTY ČESKÝCH MATHEMATIKÚ
V PRAZE.

T H E R M I K A.

THERMIKA.

Dr. ČENĚK STROUHAL,
professor exp. fysiky na české université K. F.

Vydảno podporou české Akademie císaře Františka Josefa pro vẽdy, slovesnost a umění.

Předmluva.

$$
\text { Ve } 232
$$

$$
74 / 54
$$

Vydáni Thermiky, kterouž tuto naši vědecké veřejnosti předkládám, opozdilo se více, než bych sám byl kdy očekával. Přičiny toho byly mimořádné. Rok 1903/4, kdy jsem byl rektorem našeho vysokého učení Karlo-Ferdinandova, byl rokem neklidným a přinesl mi mnohé nemilé práce a starosti. Řizení zkušebních kommissí pro učitelství na gymnasích a školách reálných, na dívčich lyceích, jakož i na školách obchodních, kteréž jest mi svěřeno, stává se při stále a neobyčejně vzrůstajicím počtu kandidátủ rok od roku obtižnějšim a namáhavějšim. A konečně stavba nového ústavu fysikálního přinesla mi rovněž četné práce, kteréž vyžadovaly mnoho pile a času. Jest mi velikou radostí a velikým zadostačiněnim, že v době, kdy tuto. předmluvu piši, mají se v novém ústavu pravidelné přednášky a práce v laboratořích právě zahájiti, tř̌ebas že není dosud úprava vnitřní úplně dokončena. Oč jsem dlouhá léta usiloval, stalo se nyní skutkem. Universitě naší dostane se ústavu fysikálního, který i svou velikostí, jež jest frekvenci na naši universitě přimě̌̌ena, i svým vnitřním zařízením se bude moci po bok postaviti nejlepším ústavům u nás i v cizině. To vše podotýkám, aby čtenář uvěřil, že to byly přicciny závažné, kteréž mne v sepisováni Thermiky zdržely.

Zásady, jež jsem sobě vytkl při sepsáni Mechaniky a Akustiky, zůstaly v platnosti též při sepsání Thermiky. Nechtěl jsem napsati dilo rozměrú velikých, jako jest na př. Thermika O. D. Chwolsona (62 tiskových archů) nebo Dra. A. Winkelmanna
(74 tiskové archy velikého formátu) a j., k nimž jsem jakožto k výborným rukovětem mnohdy přihližel. Kniha má obsahuje jen výběr látky, při čemž hleděl jsem hlavně k části experimentální a praktické, méně k části mathematické a theoretické, kde jsem přestal na pouhém skizzováni věcí hlavních. Jednalo se mi o to, aby knihu četli především kandidáti professury jakožto odborníci, ale také mnozi jiní čtenáři, přátelé fysiky, alespoň v jakémsi výběru látky. Různým pismem (garmondem a borgisem) oddělil jsem dûležité věci od méně dủležitých, od poznámek, jež lze při prvém čtení přejiti. Také výklady mathematické, pokud zasahuji do počtu differenciálniho a integrálniho, jsou sázeny pismém menším. Výklady tyto jsou připojeny pro odborniky a jsou jim přípravou a úvodem pro hlubši studium theoretické fysiky

Individualita spisovatelova může se při učebnici, jež obsahuje věci známé, jeviti jen ve formě, jak látka byla pojata a zpracována. Č̌tenář nalezne tu mnoho od jiných učebnic odchylného. Četné diagrammy a skizzy schematické jsou nové. V obrazcich apparátů vypomohlo mi ochotně nakladatelství Vieweg \& Sohn v Brunšviku. Jinak kresleny obrazee dle originálủ chovaných ve sbírkách fysikálního ústavu.

Milou vykonávám povinnost, vzdávaje upřimné diky všem, kteři ke zdaru dila přispěli. Na prvém mistě Jednotě českých mathematikư v Praze, kteráž na vydáni Thermiky přejala náklad, jakož i všem členủm Výboru Jednoty, kteři o pěknou úpravu knihy měli péči a zájem. Dále p. prof. Aug. Pánkovi, jenž mi při korrektuře radou i skutkem byl vždy laskavě nápomocen, jakož i assistentu mému doc. Dru. B. Kučerovi. S opravdovým uznáním vzpomínám též knihtiskárny B. Stýbla a zejména faktora knihtiskárny p. V. Seidla, jenž o formální úpravu tiskovou projevoval vždy velikou péči a ochotně vyhovoval každému přání, jež jsem v té přičině projevil. Obrazce geometrické, skizzy apparátů a diagrammy prováděl dle mých údajů p. lng. Stud. Vojtěch Pařizek velmi pečlivě. Reprodukci obrazủ obstaral osvědčený závod Unie-Vilím.

Na konec budiž mi ještě dovoleno připojiti několik slov o Akustice, kterou jsem sepsal před Thermikou. Akustika, o niž kritiky české (Koláček a j.), polské (Smoluchowski) i německé (Lampa) vyslovily se k mému velikému potěšení s největším uznáním, byla poctěna (1904) cenou (400 K) Filipa Čermáka Tuchoměřického. Za vyznamenání, jehož se také tímto rozhodnutím práci mé dostalo, děkuji Svatoboru a všem zúčastněným činitelům srdečně. Rovněž i české Akademii cís. Františka Josefa pro vẽdy, slovesnost a umění, která k vydání Thermiky summou 600 K přispěla, budiž vzdán dik upřímný.

V PRAZE dne 12. ledna 1908.

Dr. Čeněk Strouhal.

Obsah.

Strana
§ 1. Ûvod 1
I. Thermometrie.
2. Rozvoj historický 3
3. Teploměry rtutové 4
4. Základni body teplomérné. Bod mrazu a varu. Graduace 7
5. Účinek tlaku vzduchového na základní body teploměrné 9
6. Jak se určuje bod mrazu a varu 10
7. Význam kalibru 15
8. Trvalé zmẻny základních bodú teploměru rtutového 19
9. Přechodní změny základních bodũ teplomẽru rtutového 20
10. Učinek tlaku vnitr̃ního a vnéjšího 22
11. Korrekce způsobená vyẽníváním sloupečku rtufového z prostředí, jehoz̃ teplota se méríi, do vzduchu 23
§ 12. Teplomẽr plynový. Védeckả definice teploty 24
13. Teplota absolutní 27
14. Redukce teploměrů rtufových na normální teplomér plynový 28
15. Teploměry rtutové pro teploty vysoké 30
§ 16. Teplomèry lihové, toluolové, pentanové a petrolaetherové pro teploty nízké 31
17. Teplomẽry hypsometrické 32
18. Teploměry maximálni a minimålni 33
19. Thermografy 35
20. Citlivost teplomérú 36
21. Jak se měrí teplota na základẽ thermoelektrickém 36
22. Jak se mêrí teplota změnou galvanického odporu 40
23. Jak se měři teplota na zảkladẽ kalorimetrickém 43
§ 24. Optické pyrometry 43

II. Změna obj̣emu.

§ 25. Úvahy všeobecné47§ 26. Koefficient roztažnosti 48
§ 27. Roztrídēní úkolû 53

III. 0 teple specifickém.

Roztažnost tëles pevných.

Strana
50
§ 28. Roztaz̃nost délková 55
56
§ 30. Polver o roztožnosti objemové § 30. Pokusy o roztažnosti objemové 57
S 31. Pokusy o roztaźností dent lineární z mérení délkovỷch 60
33. Jak se stanoví koefficient lineárnf methodou interferenčni 64
§ 33. Jak se stanoví 69
35. Pokracování. Tepelná anisotropie 73
35. Pokračování. Tepelna anisotropie 78
36. Jak se užívá koefficientu roztažnosti
89
§ 37. Priehled method pozorovacich 91
§ 38. Methoda dilatometrická 93
§ 39. Methoda densimetrická 94
§ 40. Methoda hydrostatická 96
§ 41. Roztažnost rtuti 105
§ 42. Anomalie vody
110
110
§ 43. Pokračování; roztažnost vody 118
§ 44. Roztažnost ostatních kapalin 120
§ 45 . Úcinek tlaku na roztažnost kapalin
Roztažnost a rozpínavost plynů.124
§ 46. Přehled úkolủ 125
§ 47. Zảkon Gay-Lussac-ův 127
§ 48. Důsledky ze zákona Boyle-Mariotte-ova 128
§ 49. Spojený zákon Boyle-Mariotte-Gay-Lussac-ủ 198
§ 50. Absolutní teplota 129
§ 51. Konstanta rovnice stavojevné 135
§ 52. Grafické znázornění rovnice stavojevné 137
§ 53. Pokusy 139
§ 54. Výpočet koefficientu rozpínavosti 141
§ 55. Teplomér plynovy § 56. Jak se prop plynov. . . 145čitou teplotu a určitý tlak145
57. Odchylky od spojeného zákona Boyle-Mariotte-Gay-Lussac-ova 147 150
§ 58. Stavojevná rovnice van der Waalsova
§ 58. Stavojevná rovnice van der Waalsova 59. Koefficienty rozpínavosti a roztažnosti plynủ dle stavojevné rovnicevan der Waalsovy152
§ 60. Výklady úvodni trana§ 61. Jednotka tepelného množstvi158
62. Tepelná kapacita a teplo specifické 160
§ 63. Specifické teplo vody 163
§ 64. Všeobecné poznámky o methodảch kalorimetrických 167
Tělesa pevná.
© 6.). Kalorimetr na směžování 167
§ 66. Kalorimetr ledový 173
§ 67. Kalorimetr parní 179
8. K8. Kalorimetr na chladnutf 181
§ 69. Výsledky ; úvahy všeobecné; vlivy vedlejjsí 183
§ 70. Závislost na teplotẻ 186
§ 71. Zákon Dulong-Petitúy 192
§ 72. Zákon Neumannūv 196
§ 73. Zákon Joule-Koppův 203
§ 74. Zákon o slitinách 205
§ 75. Jak se užívá výsledkú kalorimetrických k úcelủm thermome- trickým a chemickým 207
Kapaliny .
§ 76. Úprava method kalorimetrických pro kapaliny 209
§ 77. Kalorimetry elektrické 211
§ 78. Výsledky 213
§ 79. Specifické teplo kapalných smẽsí a roztokủ 217
Plyny.
§ 80. Základní definice; C_{p} a C_{v} 222
§ 81. Hodnota rozdilu $C_{p}-C_{v}$ 293
§ 82. Jak se stanoví teplo specifické C_{p} 225
§ 83. Jak se stanoví teplo specifické C_{v} 228
§ 84. Význam specifických tepel C_{p} a C_{v} při adiabatických změnách objemových 229
§ 85. Hodnota poměru $\frac{C_{p}}{C_{v}}=k$ 231
§ 86. Výsledky 236

IV. Změna skupenství.

Tavení a tuhnutí.
Strana
88. Bod tavení ; skupenské teplo tavení 242
8 89. Bod tavení u slitin a směsí 247
90. Přechlazeni kapalin 253
91. Zmẽna objemu při tavení 257
92. Úcinek tlaku 263
93. Bod mrazu u roztokù 268
Vypařování a kapalnéní.
§ 94. Úkazy základní 270
§ 95. 0 parách nasycených 970
96. O parách přehřátých 270
97. Páry přehr̛até v nejširším slova smyslu 277
98. 0 smẽsi par různých kapalin 282
99. Zákon Daltonǔv 287
100. O varu kapalin 290
101. Přehr̛até kapaliny 295
102. Stav sféroidální 297
103. Bod varu roztoků a smésí kapalných 299
104. O methodách, jimiž se určuje napětí par nasycených 301
105. Napětí nasycených par vodních 303
106. Vzorce mathematické pro napětí nasycených par, zejména vodnich, v závislosti na teplotẽ 306
107. O hutnotẽ par; definice základn 312
108. Preehled method, jimiž se stanovi hutnota par 314
109. Methoda Dumasova 316
110. Methoda Gay-Lussac-Hofmannova 318
111. Methoda Meyerova 321
§ 112 Jak se stanoví hutnota plynú 323
113. O vztahu mezi hutnotou plynú a par a vahou molekulovou 323
VIhkamérství (hygrometrie).
§ 114. Jak se měří množství vody spadlé 328
115. Jak se měři mnoz̃stvi vody vypařené 335
116. Vlhkost absolutní a relativni, rosný bod 337
§ 117. Úlohy vlhkoměrné 339
§ 118. Vlhkoměry kondensační $34-2$ 345
§ 119. Psychrometr
§ 119. Psychrometr
§ 120. Hygrometr vlasový 350
§ 121. Všeobecné poznámky o vlhkosti vzduchu 352
Zkapalñování plynü.
§ 122. O základech, na nichž spočivají methody zkapalñovaci trana§ 123. Skizza historická. První pokusy353
354
§ 124. Pokračování. Kritické pomèry plynù cke pomery plynu 357
§ 125. Doba nová. Zkapalnění plynú permanentních 362
§ 126. Dokončení. Princip regenerativní 369
§ 127. Kritická data 373
§ 128. Rovnice stavojevná a poměry kritické 375
§ 129. Stavy plynủ souhlasné 377
§ 130. Kritické pomẽry směsí a roztokủ 379
v. 0 teple skupenském.
§ 131. Roztřídění úkolư 380
§ 132. O teple tavení 380
§ 133. Jak se urěuje skupenské teplo tavení 382
§ 134. Výsledky 385
§ 135. Pravidlo Personovo 386
§ 136. O teple vypar̃ovacím 389
§ 137. Teplo vypařovací u vody 392
§ 138. Teplo vypařovací u jiných kapalin 397
\S 139. Teplo vypar̃ovací u zkapalněných plynủ 399
§ 140. Jak se stanoví teplo specifické kalorimetrem na kapalný vzduch 401
§ 141. Úkazy a pokusy zakládající se na teple skupenském 403
VI. Základy thermochemie.
§ 142. Výklad úvodní 409
§ 143. Základní pojmy a definice 411
§ 144. Zákon Hessủv 415
§ 145. Methody pozorovací 417
§ 146. Pr̂klady 422
§ 147. Tepelné zabarvení při míchání kyseliny sírové s vodou nebo sněhem 426
§ 148. Směsi mrazivé 431
VII. Vedení tepla.
§ 149. Přehled úkazủ 435
Vedení tepla v télesech pevných.
§ 150. Skizza historická 437
§ 151. Zákony o vnitřní vodivosti tepelné 438
§ 152. Zákony o vnějşi vodivosti tepelné 443
§ 153. Vedeni tepla v tyčich 446
§ 154 . Vodivost relativní 453 453
\& 155 . Vodivost absolutní464
§ 156. Vodivost látek tepelně anisotropnich 466
§ 157. Výsledky.
Vedení a proudẻní tepla v kapalinách.469
§ 158. Pokusy úvodní
471
471
§ 159. Způsoby pozorovaci. Methody sloupcové
475
475
§ 160. Pokračování. Methody lamellové 477
161. Výsledky
Vedení a proudéní tepla v plynech.482
§ 162. Význam úkolu 485
§ 163. Methody pozorovací 490
§ 164. Výsledky 493
165. O temperaturním skoku na stykové ploše různých têles
VIII. Záření tepla.
495
§ 166. Skizza historická 500
§ 167. O prístrojich a methodach 500
§ 168. Methoda thermoelektricka 503
§ 169. Methoda bolometrická 511
§ 170. Methoda radiometrická 512
§ 171. Zdroje tepelné 514
§ 179. Zákon Lambertűv 516
§ 173. Odraz zárení tepelného 519
§ 174. Lom a rozklad zárení tepelného
§ 175. Diatherman 525tepelných)
531
§ 176. Absorpce integrální u texles pevných
532
532
§ 177. Absorpce integrálni u kapalin 533
§ 178. Absorpce integrální u plynủ a par 539
§ 179. Absorpce spektrální; methody pozorovací 540
§ 180. Absorpce spektrální u těles pevných
543
543
§ 181. Absorpce spektrální u kapalin 546

Emisse tepla.
 Emisse tepla.

§ 183. Emisse spektrální; zákon Kirchhoffûv Strana
548§ 184. Emisse integrální ; modifikace zákona Kirchhoffova
553
§ 185. Zảkony emisse integrální; skizza historická 558
§ 186. Zákon Stefanúv pro integrální emissi tělesa černého 559
§ 187. Zákon Wienúv pro spektrální emissi têlesa černého 561
§ 188. Zákony pro spektrální emissi têlesa černého 564
§ 189. Jak se pokusem zkoumá zárení tęlesa absolutnẽ černého 570
§ 190. Ciselné hodnoty konstant 580
§ 191. Méření teploty na základẹ zářeni 585
§ 192. Záření těles obyčejných 587
§ 193. Záření têles pevných 588
§ 194. Zár̃ení plynú a par 594
§ 195. Záření sluneční 596
IX. Základové thermodynamiky.
§ 196. Úvod historický 603
§ 197. Teplo jako energie, rozvoj principu o zachování energie 606
§ 198. Mechanický aequivalent tepla 610
§ 199. O methodách, jimiž se stanoví mechanický aequivalent tepla 612
§ 200. Prvni hlavni věta thermodynamiky 624
§ 201. Isothermické a adiabatické změny objemové u plynủ 627
§ 202. Práce plynu pr̃i expansi isothermické a adiabatické 632
§ 203. Princip Carnotűv 634
§ 204. Processy zvratné a nezvratné 640
8 205. Rozšírený princip Carnotův 643
§ 206. Druhá hlavní vêta thermodynamiky 645
§ 207. Pokračování. Formulace W. Thomsonova 650
§ 208. Význam entropie 652

§ 1. Úvod.

Denni život přivádí nás do rozmanitých poměrů, kteréž způsobuji v nás pocity, jež všeobecně tepelnými zoveme. Tyto nevznikají prostřednictvím zvláštniho orgánu, jako pocity zvukové a světelné, nýbrž cítíme teplo celým tělem svým, každou jeho části. Stýkáme-li se s jinými tělesy, míváme dojem, jako by nám, - jak se vyjadřujeme, - tepla ujimala anebo zase přidávala, a to různou měrou. Naznačujíce tuto různost řikáme, že jsou chladná, studená, mrazivá, anebo zase vlažná, teplá, horká a pod. Tak pủsobí vzduch, v němž žijeme a jejž dýcháme, tak i tĕlesa pevná a kapalná, kterých požíváme, na která saháme, neb s kterými se jakkoli stýkáme. Mnohdy, i když takového přímého styku s nimi nemáme, mohon v nás buditi dojmy tepelné. Cítime blízkost ohně, cítíme teplo slunce, i když vzduch, který nás obklopuje, jest sebe chladněǰ̌í.

Přečetné zkušenosti takové a podobné vedly záhy k poznáni, že pocity tepelné se daji stupnovati, že lze mluviti o vyššim neb nižšim stupni tepla. Tělo naše jest pak při posuzování toho přirozeným thermoskopem.

Avšak přirozený tento orgán tepelný ukazuje četné zvláštnosti. Tepelný účinek týchž těles - na pǐ. vzduchu, vody anebo slunce - posuzují lidé velmi rủzně dle své individuální povahy, dle svého věku, zdravi, dle své nálady, otužilosti a pod. Rozhoduje té̌̌ doba, po jakou účinky tepelné trvají anebo v jaké se střidaji; nebot uvykáme teplu i zimě. Rozhoduje též, jaký dojem tepelný právě předcházel, zdali kontrast je ve smyslu jednom neb druhém. Známý jest pokus, že tatáž voda jeví se býti pravé ruce teplou a současně levé chladnou, když před tím pravá ruka byla ve vodě studené a levá ve vodě horké. Má tudiz̃ přirozený náš orgán tepelný všechny známky subjektivismu; rozhodujícim jest též jeho vlastní stav. Proto jest pří posuzování tepelného stavu těles, pokud tento jest způsoben podmínkami fysikálními, thermoskopem nespolehlivým, ač subjektivně ovšem
autoritativním. Rozsahem svým pak thermoskop tento nikterak nestači; nebof teplotami jak velmi nizkými, tak velmi vysokými byl by ohrožen neb dokonce zničen*).

A přece, jak dlouho to trvalo, než lidstvo dospělo k tomu, aby jiným než subjektivním zpủsobem posuzovalo zimu i teplo! Úprava thermoskopu, který by dle své povahy byl objektionim, připadá až do 17 . století po Kr . Dle veškeré pravděpodobnosti byl to Galileo Galilei (15564-1642), jemuž přisluší zásluha o vynález thermoskopu, ačkoli základ tohoto dủležitého přístroje tepelného, totiž roztažnost vzduchu teplem, znal již a použival Heron Alexandrijský v 2. století před Kr. Postupným zdokonalenim stal se pak přístroj ten základnim přistrojem méricím; thermoskop přeměněn v thermometr, teplojev přešel v teploměr. Při všech pracích v oboru tepla jest teploměr pozorovateli stálým průvodcem. Tím jest odủvodněno, že soustavným výkladům thermickým se předesilá staf jednající ve všech podrobnostech o teploměru. Veliký a stále ještě se zvětšujíci rozsah měřeni teploměrných, jakož i snaha o vědeckou přesnost a jemnost těchto měřeni způsobily, že v základních definicích teploměrných a ještě vice v úpravě a zařizení teploměrủ nastaly během dob změny důležité. Tyto změny sahaji ještě do let nejnovějších a odůvodňují tím více, aby se o thermometrii jednalo v oddílu zuláštním, ktery̌ž se jeví býti dosti obšínyým, ale při tom přece přehledným a celkově uzavřeným.
*) Pr̃es to nelze pochybovati, že teplota vzduchu >citénás má téz̃ i ve védeckė meteorologii svůj význam, kde ovšem jest vẏsledkem nejen teploty nýbrž téz vlhkosti vzduchu. Proto navrhl Hann, aby se záznamy o této teplotẽ též prijjaly mezi pozorováni pravidelná. Viz zajimavý o predmétu tom článek: Dr. St. Hanzlík, O citêných teplotách, Živa 16, pag. 292, 1906.

I.

Thermometrie.

§ 2. Rozvoj historický.

Nejen tělo naše, tělo zviřat a organická přiroda vůbec, nýbrž též hmota anorganická pocituje teplo, t.j. reaguje na zahřivání neb ochlazování a to způsoby velmi rozmanitými. Neni téměř žádné vlastnosti fysikální, jež by se neměnila teplem. Kterou z nich volime ku posuzování stavu tepelného, tudiž za fundamentální, pokládajíce ostatní za derivativné, jest věcí úmluvy. Postupem rozvoje historického zvolena k účelům thermometrie změna objemu těles teplem jakožto zjev, který lze přímo a snadno pozorovati. Tělesa, jež hmatu jeví se býti teplejšími, ukazuji větší objem*). Můžeme tudiž naopak z přibývání neb ubývání objemu souditi na stoupání neb klesání teploty té látky, kterou pozorujeme. Zkušenost ukazuje dále, že tělesa různě teplá, jsou-li v doteku, po uplynutí jakési doby jeví se býti stejně teplými. Z obou těchto zkušeností plyne již možnost thermometrie. Volime určitou látku za thermometrickou a upravíme vhodný přístroj jakožto teploměr. Dle objemu látky té posuzujeme nebo měříme teplotu nejen teploměru samého, nýbř̌ jakékoli látky jiné, jakéhokoli prostředí, se kterým teploměr udržujeme ve styku po dobu dostatečně dlouhou.

Dle toho udává - pŕesnẽ vzato - každý teploměr teplotu daného prostredí nikoli jak byla, když se teplomẽr s ním uvedl ve styk, nỳbrž jak jest, když se teploty vyrovnaly. Obyčejně se však predpokládá, že tato teplota jest s onou identická. K otázce, kdy úsudek tento jest správným anebo jak dalece nenf pochybenỷm, vrátíme se později.

U prvních teploměrů, jak je sestrojil G. Galilei koncem století 16., bylo užito vzduchu za látku teploměrnou. Jich

[^0]úpravu*) znázorňuje obr. 1. a). Vzduch byl uzavřen v baňkovité nádobce s úzkou svisle postavenou trubičkou, do niž zasahal sloupeček vodní; tento tvořil pohyblivý index, kterým se dle změny objemu vzduchu naznačovalo stoupáni nebo klesání teploty. Úsudek byl však správným jenom při

Obr. 1. Teplomẽry ze stoleti 17., a) vzduchový, b) lihový. pozorováních krátce po sobě následujicich; nebot jinak mohly býti změny v objemu vzduchu způsobeny též změnou tlaku vzduchu vnějšího. Přistroj byl thermo-baroskopem. Tato okolnost nebyla ovšem v dobách Galileových známou; nebof objev tlaku vzduchu připadá do posledního roku života Galileova. Ačkoliv nebylo nesnadno změnou úpravy tlak vzduchu vnějšiho odstraniti, přece záhy již nahrazen vzduch jinou látkou thermometrickou, která nepodléhala tlaku vzduchu, totiž kapalinou. Již žáci Galileovi, členové „akademie pokusu" („Accademia del Cimento") ve Florencii, nžívali ve století 17. teploměrủ lihových formy podobné, jako v obr. 1. b), ovšem graduace nahodilé, a v témže stoleti již navrhována také rtut (Halley, 1693) za látku teploměrnou. Přes nepopiratelné výhody, jež poskytují kapaliny jakožto látky teploměrné, jest zajímavo, že první volba vzduchu za látku teploměrnou byla vlastně nejlepší. Za dnủ našich, kdy ke kapalinám již uvedeným přistoupily také ještě toluol, pentan a j., vracime se přece opět ke vzduchu, anebo všeobecněji ku plynủm, pokládajice z určitých dủvodủ vnitřních teploměr plynový za vlastní teploměr normální. Tím však ony teploměry s kapalinou jakožto látkou teploměrnon nepozbývají nikterak své důležitosti; nebot jsouce jednoduché ve své úpravě a pohodlné ve svém užíváni, mají pro praxi i pro vědu tím větši význam jakožto teploměry manipulačni.

§ 3. Teploměry rtufové.

Z kapalin, jež mohou za látky teploměrné býti voleny, vyniká nad jiné rtut. Již proto, že jest prvek. že se dá poměrně velmi snadno čistiti. že nelne ke sklu a že má značnou vodivost

[^1]tepelnou. Vedle toho však hodí se k měřeni právě takových teplot, jaké v obecném životě i při pracích vědeckých jsou nejobvyklejší; jich meze - dané mrznutím a varem rtuti dají se od sebe velmi značně oddáliti opatřením zvláštním, o němž později bude jednáno. Ačkoli tedy, jak řečeno, teploměry plynové jsou teploměry normálními v praegnantním slova smyslu, lze oproti tomu teploměry rtufové v témže smyslu zváti manipulačními prvého řádu. Teploměry s jinými kapalinami, jako lihové, toluolové, pentanové a j. jsou jakoby akcessorni, přidružené, ježto je doplňají ve směru k teplotám nižším. Vzhledem k tomu jest odủvodněno jednati především o teploměrech rtufových, kteréž jsou ostatně typem všech teploměrủ s kapalinami vůbec.

Ke zhotoveni rtutových teploměrů dlužno především vybrati vhodnou trubičku kapillární. Bývá bư silnostěnná nebo tenkostěnná. Dle toho hotoví se teploměry rtufové - a rovněž tak i teploměry o jiných kapalinách - ve dvoji dosti různé úpravě.

Je-li kapillára siluostěnná, vyfoukne se z ní nádobka teploměrná, a děleni se nanese přímo na kapilláře (obr. 2. na pravo, teploměr Baudinův). Tak jednoduše nelze však postupovati, je-li kapillára tenkostěnná; dlužno ji skleněným obalem chrániti před poškozením a zároveň doplniti stupnicí na proužku skleněném zvlášt provedenou. Takový teploměr jest tedy složen ze tří částí; nádobka je z kapilláry vyfouknuta, k této nádobce jest dole přitavena trubička obalová, do ní jest vložena stupnice těsně za kapillárou a upevněna vhodně ve skle, celek pak jest nahoře uzavřen (obr. 2. na levo, teploměr Fuessův). Nelze upříti, že teploměry prvého způsobu svou jednolitostí se vice doporučují, zejména pro účely vědecké; ale odčitání pouhým okem bývá obtižné, tak že nutno užívati oděitaciho dalekohledu. Oproti tomu jsou teploměry druhého zpủsobu výhodnější pro účely praktické; dělení na zvláštní dosti široké stupnici lze provésti velmi zřetelně tak, že odčitání již pouhým okem jest zcela pohodlné. Proto jsou tyto (obalové) teploměry oblibenějši a rozšiřenější; avšak pro účely nejpřesnějsí způsobilé nejsou. Ústavy metronomické k vědeckému prozkoumání jich nepřipouštějí, přijímaji jenom teploměry způsobu prvého (tyčovité).

Plnění teploměru rtutí děje se nejlépe v poloze vertikálni pomocí druhé otevřené nádobky, jež se na druhém konci kapilláry bud přímo z kapilláry vyfoukne anebo korkem ke ka-
pilláře připoji (obr. 3.) a naplní rtuti. Na to se nádobka dolejší zahřívá plaménkem lihovým; vzduch uniká v bublinkách skrze rtuf v nádobce hořejši; při ochlazení stéká rtut shora dolủ a naplní nádobku až na malý zbytek vzduchovẏ. Zahřivání se pak opakuje, až se rtut uvede ve var; páry rtutové vypudi vzduch

Obr. 2.
Teploměry rtufovè ve dvoji úpravê, s kapillárou tenkostěnnou a silnostēnnou.
úplně, načež při ochlazeni se již naplní celý teploměr rtutí. Hořejši nádobka se potom odstraní a trubička vytáhne v jemnou kapilláru a připraví tak k zatavení. Jest však výhodno nahoře opatřiti teploměr malou rozšíreninou (ampullou), aby byl pojištěn před roztržením následkem eventuálniho přehřáti. Zatavení teploměru provede se, když byl teploměr regulován, což znamená, když dle nejvyšší teploty, kterou teploměr ještě má
udávati, se přebytečná rtut přiměřeným zahřátím odstraní. Po zataveni a ochlazení jest nade rtutí v trubičce vakuum. Zbývá pak provésti graduaci teploměru.

§ 4. Zäkladni body teploměrné. Bod mrazu a varu. Graduace.

Teploměry stoleti 17. měly graduaci nahodilou; byl proto každý teploměr přistrojem individuálním; uvésti jich údaje v souhlas zdálo se býti nemožným. Dủležitým pokrokem bylo tudiž zavedení nzáhladnich bodiu teploměrných, totiž určitých základních teplot, dle nichž byla pak provedena graduace. Tímto způsobem docíleno souhlasu mezi teploměry různé formy i velikosti, ba i o rủzných látkách teploměrných, aspon̆ v mezich přesnosti obyčejné. Zásluhu o tento dủležitý pokrok má $D . G$. Fahrenheit*). Při volbě svých základních bodủ řídil se požadavky meteorologickými; obyčejné teploty volného vzduchu měly býti obsaženy v jejich intervallu. Za první základní bod volil teplotu, při níž taje směs ledu a salmiaku, v tom konkretním složení, jak si ji připravil, za druhý základní bod pak teplotu lidského těla. Intervall obou těchto bodủ rozdělil na $2.12=24$ dily a později připojil dělení na polovice a čtvrtiny, v duchu soustavy dnodecimální, čimž vznikla stupnice $4.24=96$. Fahrenheit stanovil též teplotu, při niž taje led a snih, kterouž určil na 32°; znal asi též teplotu, při níž se vaři voda, a kteráž připadá na stupeň 212°. Jest velmi pravděpodobno. že sám se přesvědčil o výhodách, jakéž vznikaji, když se pozoraje bod tání ledu neb sněhu a bod varu vody, a že sám těchto teplot užival za základní, což se později všeobecně ujalo. Avšak číslování své původni podržel. Tak vznikla stupnice Fahrenheitova, kteréž dosud uživá více než polovice vzdělaného světa (Anglie a Amerika), stupnice, při níž mezi bodem mrazu a varu vody jest 180 stupňĭ ${ }^{* *}$).

[^2]Číslování decimální navrhl A. Celsius*), jenž však bod varu vody označil číslem 0 a bod tání ledu čislem 100; měřila se tedy touto škálou „zima". Obrácené číslování zavedl M. Strömer **), a tak vznikla stupnice tak zvaného teploméru Celsiova čili centimálniho, jehož uživá druhá polovice vzdělaného světa. Tento dualismus není vědě na prospěch; bude snad odstraněn všeobecným zavedenim soustavy metrické, ač při známém konservatismu oněch národủ, kteří teploměru Fahrenheitova uživaji, nelze říci, že se tak stane v době blizké.

Dlužno ještě zminiti se o stupnici, kterou zavedl R. Réaumur (1683-1757), rozděliv odlehlost bodu mrazu a varu na 80 dilů. Číslo toto volil pro svủj teploměr lihový, poněvadž shledal vlastním pozorováním (ne zcela přesným), 卆e při zvýšení teploty od bodu mrazu k bodu varu stoupne objem lihu o 80 tisícin objemu původniho. Domnival se tedy, že čislo 80 jest přírodou samou naznačeno, čili že jeho stupeň jest přirozeným. Teploměru Réaumurova se ještě u nás tu i tam užívá, ač jeho nevhodnost a zastaralost jest zřejmou.

Pro přepočitávání údajů teploměrných užívá se relací

$$
\begin{array}{r}
180 \mathrm{~F}=100 \mathrm{C}=80 \mathrm{R} \\
18 \mathrm{~F}=10 \mathrm{C}=8 R,
\end{array}
$$

při čemž dlužno pamatovati, že nullový bod teploměru Fahrenheitova jest o 32 stupňů Fahrenheitových niže položen než nullový bod teploměru Celsiova nebo Réaumurova. Proto, když se přepočitávají stupně Fahrenheitovy, nutno především 32 odečisti, aby se vyšlo od nullového bodu drahých teploměrủ, a co zbude, násobiti koefficientem bud $\frac{10}{18}$ nebo $\frac{8}{18}=\frac{4}{9}$ dle toho, zdali se přepočítává na Celsia či na Réaumura. Při převodu zpátečním násobí se dané stupně Celsiovy koefficientem $\frac{18}{10}$, Réaumurovy koefficientem $\frac{18}{8}=\frac{9}{6}$, a co vyjde, zvětší se o 32 , aby se přešlo k niže položenému nullovému bodu Fahrenheitově.

Označíme-li tedy teplotu nějakého prostředí pismenou t, připojíce index F, C, R k naznačení, že se teplota tato měří ve
\#) Anders Celsius (1701-1744), narodil se v Upsale, kdez̄ byl od roku 1730 professorem astronomie.
**) Märtcn Strömer ($1707-1770$), vrstevnik Celsiúv. Kdyžtento v mladém vêku zemřel, prejal po nẻm professuru astronomie na université v Upsale.

Mnozi autorové (E. Mach nikoliv) udávaji, že to byl vrstevník Strömerűv Kiurel Linné (1707-1778), jenz̃ cislování od 0° do 100° zavedl.
stupních dle Fahrenheita, Celsia, Réaumura, obdržime přehlednou relaci

$$
\frac{t_{F}-32}{180}=\frac{t_{c}}{100}=\frac{t_{l i}}{80}
$$

čili

$$
\frac{t_{F}-32}{18}=\frac{t_{c}}{10}=\frac{t_{R}}{8}
$$

Se stanoviska historického jest zajímavo poznamenati, že to byl geniảlní Ch. Huygens, jenz̃ pryní pojal myşlenku zavésti bod mrazu a varu vody za základni teploty teplomẻrné. Vysvitá to z listu, d. d. a./1. 1665 (Huygens, Oeuvres completes V, obsahujici jeho korrespondenci z roku 1664 a 1665), kterýž psal Rob. Moray-ovi, prynimu praesidentovi Royal Society v Londýné, a ve kterémž se nalézá místo: „de vous remercie du thermometre Il seroit bon de songer a une mesure universelle et determinee du froid et du chaud . . . en prenant pour commencement le degrè de froid par le quel l'ean commence a geler, ou bien le degrè de chaud de l'eau bouillante, a fin que sans envoier de thermometres l'on peut se communiquer les degrez du chaud et du froid, qu'on auroit trouué dans les experiences, et les consigner a la posterité." Z poslednich slov jest patrno, że chtêl návrhem svŷ̀m dociliti, aby údaje rủzných teplomẻrũ bylo Ize mezi sebou srovnávati, a aby nebylo třeba určité teploměry za účelem opakovảní méreń tepelných z jednoho místa na druhé posilati (jako se zde stalo z Londýna do Haagu). Co zde Huygens navrhoval, provedl 50 let pozdêji Fahrenheit.

§ 5. Účinek tlaku vzduchovėho na základni body teploměrné.

Základní body teploměrné byly dosud - provisorně stanoveny teploton, při niž led taje a voda vře, tudiž teplotou, při níž se mění skupenství vody. Avšak změna skupenství, jak později bude vyloženo, jest vždy podmíněna tlakem. V našem případu rozhoduje tlak atmosférický, který jest v jakýchsi mezích měnlivým. Proto dlužno při defiuování základnich bodů teploměrných též udati, jaký tlak atmosférický se předpokládá. Stanoví se tlak jedné atmosféry jakožto normálni *). Poněvadž pak var vody vůbec nastává, když nasycené páry vodni mají napětí rovnajicí se tlaku atmostérickému, mủže se bod varu definovati jakožto teplota nasycených par vodnich o napẽtí jedné atmosféry.

V zákonê ze dne 12. ledna 1893 , publik. v Z. R. IV. 31. ledna 1893 Nro. 10, kterým se pro Rakousko zavedla soustaya metrická, praví

[^3]se o základnich bodech teplomérných : „Za body zaikladni plati $0^{\circ} \mathrm{C}, \mathrm{t}, \mathrm{j}$. teplota tajicího ledu, a 100° C, t. j. teplota nasycenych par vodnich pod tlakem jedné atmosféry. Atmosférou označuje se tlak sloupce rtufového, 760 mm vysokého, hustoty 13.59598 za pűsobeni normální intensity tiže. Za tuto normální intensitu plati intensita tize v „Bureau international des poids et mesures* (Niveau du Pavillon de Bréteuil) dêlena koefficientem 1.0003322." Zákon, jenz̃ musí býti konkretnim, udává hustotu rtuti çiselnẻ, ua místẽ jak se obyčejně poukazuje na hustotu prii teplotẽ $0^{\circ} C$; v príčinẻ pak intensity tiže poukazuje na určité místo a udảva zároveñ, kterẏm koefficientem se intensita tiže na tomto určitém mistẻ púsobící přepočitá na obvykle udávané normálni poměry, totiž geogratickou siřku 45° a vy̌kku 0 m nad hladinou mořskou. Schematicky oznacuje se atmosféra:
$76 \mathrm{~cm} \mathrm{Hg} 0^{\circ}, 45^{\circ}, 0 \mathrm{~m}$.
Příslušná intensita tiže jest
$$
g^{*}=980 \cdot 606 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}
$$

V absolutni soustavé měr jest vミ̇ak normálnim thakem

$$
1 \frac{\text { megadyna }}{c^{2}}
$$

Tlak jedné atmosféry, vyjadrený v tẻto jednicice tlakové, ceimi *)

$$
1.01321 \frac{\text { megadyna }}{\mathrm{cm}^{2}}
$$

Jest tedy o 1.3 procenta vêtši. Kdyby se byla v duchu nynéjši absolutni soustavy měr pro definici bodu varu zavedla ona absolutni jednotka tlaková, - k čemuz̃ byla vhodná přlez̃itost pr̛i zákonitém stanoveni teplonéru vodikového jakožto normálniho, - byl by se tím bod varu protı nynêjsímu snízil o $0.37^{\circ} \mathrm{C}$, jakož plyne z číselnẏch dat nîze uvedenỵch.

§ 6. Jak se určuje bod mrazu a varu.

Po předchozich definicich přejděme již k výkladu, jaká jest praxis určováni základnich bodủ teploměrných, jednostejně, zdali se jedná o teploměry nové, při nichž se body ty ponejprv určuji, anebo o teploměry již hotové, při nichž se prvotní určení má kontrolovati.
a) Při určováni bodu mrazu má se teploměr (rtufový, lihový, toluolový a pod.) vložiti do čistého tajíciho sněhu nebo ledu. Nejlépe vyhovuje sníh právě napadlý; jinak čistý, škrabaný led. Je-li obava, že by led (zejména umělý) nebyl čistým,

[^4]že by měl přimišeny soli, použije se ledu takového k utvoŕení směsi mrazivé s kuchyňskou solí, a touto směsí přechladi se ve zvláštní kádince destillovaná voda, jež pak mícháním mrzne v ledovou třišt k vlastnímu pokusu velmi dobře se hodicí. Jak lze pokus jednoduchými prostředky improvisovati, objasňuje obr. 4.

Teplota sině má býti při pokusu několik stupňủ nad nullou; tím jest dána záruka, že led - po jisté době - taje. Teploměr se do ledu vloži až po bod nullový a těsně se ledem obloži, aby v okoli teploměrné nádobky nezủstal teplejší vzduch. Teploměr postaví se dle olovničky vertikálně a odečítá dalekohledem zařízeným horizontálně*).

Tlak vzduchu má býti normální. Zde však není závadou, je-li od normálního odchylný v mezích obyčejných; nebof změna bodu mrazu tlakem jest velice malá. Vzroste-li tlak o celou atmosféru, sniží se bod mrazu jen o 0.0075 ${ }^{\circ}$.

Obyčejné změny tlaku barometrického mivají amplitudu 50 mm , nejvêtši změny vúbec na zemi pozorované $100 \mathrm{~mm}{ }^{* *}$);

Obr. 4.
Jak se u teploměrû určuje bod mrazu. vzhledem k tlaku 760 mm ëní i tato nejvêtši amplituda jenom 13 procent, tudiz̃ dává v bodu mrazu zmẽnu 0.001°. Vêtší změny tlakové vznikají polohou místa nad morem. Tak na pr̂. na vrcholu Sonnblicku, 3106 m , kde jest nejvyšsí meteorologická stanice rakouská, byl v roce 1902 průmęrný tlak barometrický 518.9 mm ; zde tedy taje čistý snih neb led pri teplotě $+0.003^{\circ}$.
b) Při určování bodu varu má se teploměr (rtutový) vložiti do nasycené páry vodní, mající napětí jedné atmosféry. Podmince této bylo by nesnadno vyhověti, poněvadž tlak barometrický zřídka bývá právě $760 \mathrm{~mm} \operatorname{Hg} 0^{\circ}$ (ani nehledic k intensitě tiže). Lze však pokus prováděti i při tlaku barometrickém od normálního více méně odchylném, je-li předběžnými pokusy

[^5]na jisto postaveno, jak se napětí nasycených par vodních mění teplotou pobliže normálniho bodu varu, čili jinak řečeno, je-li známo, při jaké teplotě se čistá voda vaří, je-li tlak barometrický jiný než normálni. Ukazuje se, že účinek tlaku na bod varu čisté vody jest dosti značný; v mezích 715 mm ǎ̆ $770 \mathrm{~mm} \mathrm{Hg} 0^{\circ}$ činí průměrně 0.0375 na 1 mm . Dle toho lze bod varu t při tlaku $b \mathrm{~mm}$ počitati velmi přibližně ze vzorce
$$
t=100^{\circ}+0.0375^{\circ}(b-760)
$$

Jaká jest skutečná změna bodu varu tlakem, lze lépe vyčísti z tabulek k cíli tomu na základě pozorování počitaných*). Zde budiž tabulka taková, jak ji vypočital Wiebe 1894, uvedena ve zkráceném výtahu.

Závislost bodu varu t na tlaku barometrickém.

b	t	diff.	b	t	diff.
680	96.92		740	99:25	
690	$97 \cdot 32$	$0 \cdot 40$	750	99.63	$0 \cdot 38$
700	97.71	$0 \cdot 39$	760	$100 \cdot 00$	$0 \cdot 37$
710	98.11	$0 \cdot 40$	770	100:37	$0 \cdot 37$
720	98.49	$0 \cdot 38$	780	100.73	$0 \cdot 36$
730	$98 \cdot 88$	0.39	790	101.99	$0 \cdot 36$
740	99-25	$0 \cdot 37$	800	101.44	$0 \cdot 35$

V přikladu dŕive uvedeném, na vrcholu Sonnblicku, za prủměrného tlaku 518.9 mm , jest přislušný prủmẽrný bod varu $89 \cdot 64^{\circ}$, nehledic k odchylné intensitẽ tiz̃e.

Jak se tlak barometrický a tím i bod varu mění s výškou, přehlédneme jediným pohledem z diagramu hypsometrického (obr. 5.). Srovnej Mechaniku, pag. 543, 1901.

Obr. 6. znázorňuje jednoduchý, ze zinkového plechu zhotovený přístroj, jehož se uživá v laboratořích fysikálních k provedení pokusu. Nádoba, v níž se destillovaná voda uvede ve var, nese dvojí válcový plášf, užší a širší, který se uzavře príiklopem ve výšce pošinovatelným, ale tak, aby pára vystupující do užŠího válce mohla prouditi zpět do prostoru mezi užším

[^6]a širšim válcem, odkud otvorem vycházi na venek. Teploměr se vkládá do páry v celé délce až nad bod $100^{\circ}, \mathrm{k}$ odčítání se poněkud vytáhne. Topiti dlužno dostatečně prudce, aby proudĕní páry bylo živé a ochlazování okolním vzduchem aby nevnikalo i do prostoru vnitřniho, kde je teploměr. Malý manometr kontroluje, zdali nenastane přetlak proti tlaku vnějšímu.

Obr. 5.
Teplota a tlak vzduchu jakoz̃ i bod varu v rûznẏch vy̆ミ̊kách.
Teploměr se vkládá do páry a nikoli do vaříci vody. Užívá-li se totiž vody obyčejné, tvrdé, může se bod varu vody účinkem rozpuštěných solí poněkud zvýšiti, kdežto pára jeví teplotu nezměněnou. Ostatně i při destillované vodě mohl by nastati úkaz tak zvaného přehřáti vody, kdyby se var dál na př. v nádobách skleněných. Když by se stanovil bod varu a unikajici do sínè páry by byly na obtǐ̌, anebo, když by se měla celá serie teploměrů zkoušeti, tak že by bylo žádoueno, aby se voda tak brzo nevyvařila, připojí se k přistroji v obr. 6. znázorněnému chladič (na proudicí chladnou vodu), kterým se páry kondensují a kondensované stékaji do zásoby vodní zpět. Jak se věc dá jednoduše upraviti, objasňuje obr. 7., v němǐ̌ jest též naznačen pozorovací (slabý) mikroskop (model Guillaume).

V ústavech metronomických, kde se provádi kontrola bodu varu s presností co největší, uživá se prístrojû dokonalejsích, při nichž lze jednak
zvláštním okénkem odečisti stav teplomẽru prímo v páre a při nichž lze stejnost tlaku vnějšỉho a napêtí páry spolehlivěji zaručiti.

Jedná-li se při určování bodu varu o to, aby ještě setiny stupně byly zabezpečeny, dlužno při stanoveni tlaku přihližeti též k intensitě tiže a provésti redukci na intensitu normální.

Obr. 6.
Jak se u teploměrú určuje bod varu.

Obr. 7.
Prístroj Guillaumeův ke stanoveni bodu varu.

V Praze $50^{\circ} 5^{\prime}$ geogr. síriky, 200 metrů nad hladinou more (Klementinum), jest intensita gravitační

$$
g=981 \cdot 0 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}
$$

Intensita normálni pro 45° geogr. Şrriky, při hladinẽ mořské, jest

$$
g^{*}=980 \cdot 6 \frac{\mathrm{~cm}}{\mathrm{sec}^{\underline{2}}}
$$

Ciní tedy redukce

$$
\frac{g}{g^{*}}=1+\frac{0 \cdot 4}{980 \cdot 6}=1+0 \cdot 00041
$$

tedy 0.041%. Při středním tlaku barometrickém $744.5 \mathrm{~mm} \mathrm{Hg} 0^{0}$ Činila by tato redukce

$$
744.5 \times 0.00041=0.31 \mathrm{~mm}
$$

coz̃ odpovidá zmẻně bodu varu o

$$
0.0375 \cdot 0.31=0.012{ }^{0}
$$

Účinek rozdilné intensity gravitac̃ni jeví se tedy v setinách stupnê, tudiž u jemných teploměrů znatelnẽ, ac̉koli poloha Prahy od polohy normální jen málo jest odchỵlnou.

§ 7. Vyznam kalibru.

Odlehlost obou základnich bodủ teploměrných rozděluje se rovnoměrně*) na 100 neb 180 neb 80 dilủ čili stupǔn̂, dle přislušné soustavy teploměrné. To však předpokládá, že trubička teploměrná má veskrze průřez čili kalibr konstantní; nebot jen v tomto př́padě lze rovnoměrné dělení délkové pokládati zároveň za rovnoměrné dělení objemové. Jak dalece jest tomuto požadavku vyhověno, o tom se lze př̌esvědčiti kalibrováním trubičky.

Provádějíce kalibraci trubičky kapillární jakékoli, vpravíme do ní sloupeček rtufový a pošinujíce jej v trubičce od místa k místu, určujeme jeho délku. Jevíli se tato délka býti konstantní, jest také prủřez trubičky čili kalibr konstantni, trubička tudiž bezvadná. Jinak, mění-li se délka, jest kalibr více neb méně závadný. Na tomto základě lze před zhotovením teploměru z daného množství kapillárních trubiček učiniti výběr nejlepšich a jen těchto užiti pro účely teploměrné. To jest úkolem hotovitele, a jak patrno, úkolem snadným, poněvadž pǐi trubičce na obou stranách otevřené lze pohodlně vhodné množství rtuti do trubičky vessáti a v trubičce od místa k mistu pošinovati. Odčítání délky může se díti na millimetrovém měřítku skleněném, nejlépe zrcadlovém, aby pozorovatel dle obrazu svého oka kolmo k měřítku nazíraje, uvaroval se chyby parallakčni. Velmi presně určuje se délka komparatorem nebo přistrojem jednodušším, jemu podobným**).

V principu stejně provádí se kalibrace na rtutovém teploměru již hotovém, při čemž se délka sloupečku odčítá přímo na

[^7]dělení teploměrném, tedy na stupně a jeho dily, předpokládajic. že děleni lineárni jest přesně rovnoměrné. Práce tato jest úkolem pozorovatele, jenom že úkolem daleko nesnadnějšim. Nebot zde nejedná se jen o to, přesvědčiti se, zdali kalibr je správný čili nic, nýbrž též o to, chyby kalibrı uvésti v počet, vypracovati korrekční tabulku. Nemá-li však počet tento býti velmi obtižný a nepřehledný, musí sloupeček rtutový býti určité délky. nejlépe alikvotní částí intervallu obou bodủ základnich. Sloupeček takový obdržeti jest však velmi nesnadno, a právě u teploměrú jinak velmi dobrých a jemných, při nichž kalibrace jest žádoucí, tím nesnadnějši.

V čem tato nesnáz zảleži, poznảme z pokusu následujiciho. Vezměme do jedné ruky néjaký obyčejný teploměr a držice jej vodorovnẻ učiñme druhou rukou náraz ve smêru podélném na hořejší konec teplomẻru. Pozorujeme, že se sloupeček rtưový v trubičce teplomẽrné nárazem roztrhl na několik kusủ. Príčinou toho jest, že u takových obyčejných teploměrủ̉ nebývá trubiçka teploměrná naprosto čistou a że vzduch nebývá tak úplnẻ vypuzen, tak že se na nẻkterỷch místech uvnit̛̃ trubičky drží tẽsnẽ na skle malinké, mikroskopické bublinky vzduchové, kteréz̃ dávaji k roztržení rtufového sloupečku podnět. Takovéto bublinky zủstávaji na svém místé kdyz se teplomér zahr̛ívá neb chladi; rtut proteka vedle nich. Dle toho jest pak snadno odtrhnouti nárazem sloupeček určité délky. Kdyz̃ sloupeček zase splynouti s ostatní rtuti, pak, byl-li na pr̂. sloupeček kratší než žádoucno, zahřívá teplomẽr o tolik stupñủ, nnoholi jesteč scházelo, a učiní opět náraz; byl-li sloupeček pálisis dlouhý, chladí teplomẽr, až se rtứ o tolik stupñú vtáhla dovnitr̃, o mnoholi byl sloupeček pr̂iliš dlouhý ; opětnẙm nárazem odtrhne se pak sloupeček délky zaadoucí. Avšak cuim trubička teplomẽrná jest čistši, čim lépe jest vzduch vyvar̃ením vypuzen, zkrátka čím jest teploměr dokonalejši, tim nesnadnéji vede tato manipulace k cili. Ritut se neroztrhne, přetékí sem tam jako celek, a kdyz̀ nahodile se prece sloupeček odtrhne, není tak snadno dáti mu žádouci délku. Zejména zcela krátké sloupečky, jichž délka by byla alikvotním dílem odlehlosti bodủ základních, a jimiž by kalibrace byla nejjednodušši, lze velmi nesnadno obdrzeti. V připadech takových nelze chyby v kalibru jinak vystihnouti nežli srovnáváním daného teploměru s jiným teplomérem, který se oznac̃uje jakožto „normálni". Označení má se prikládati pouze takovým teplomẽrủm rtưovým, kteréž, nehledíc k jinaké jemnosti práce, zhotoveny jsou z trubiček bezvadného kalibru, coz̃ dlužno zjistiti pečlivou kalibraci před zhotovenim teplomẽru.

Podaři-li se odloučiti sloupeček rtufový délky takové, aby se přibližně rovnala n-tému dilu odlehlosti 100° obou základnich bodů, tedy délce

$$
a=\frac{100}{n}
$$

jest kalibrace velmi jednoduchou. Sloupeček pošinuje se od 0 do a, od a do $2 a$, od $2 a$ do $3 a$ atd. až do 100° a urěí se pokaždé jeho délka $a+\delta_{1}, a+\delta_{2}, a+\delta_{3}$ atd. ve stupnich a jich dilech. Jedná se pak o to, vypočísti temperaturní hodnotu $a+\delta^{*}$ tohoto sloupečku rtutového.

Položí-li se n-krát vedle sebe, vyplní trubičku teploměrnou od 0 do 100 a pak ještě o malou další část $\delta_{1}+\delta_{2}+\delta_{3}+\ldots$ $+\delta_{n}$. Kdyby základní body teploměrné byly zcela přesné, znamenalo by vyplnění trubičky od 0 do 100 přírůstek temperaturni 100°, a méli bychom pak rovnici

$$
n\left(a+\delta^{*}\right)=100^{\circ}+\delta_{1}+\delta_{2}+\delta_{3}+\ldots+\delta_{n}
$$

$$
\begin{equation*}
\delta^{*}=\frac{2 \delta}{n} . \tag{čili}
\end{equation*}
$$

Jinak řečeno : temperaturni hodnota $a+\delta^{*}$ sloupečku byla by arithmetickým průměrem jednotlivých odečtených hodnot $a+\delta_{1}, a+\delta_{2}, a+\delta_{3}$ atd. VŠeobecně budou však základní body míti malé korrekce; bod mrazu jest na př. při p_{0}, bod varu při p_{1}. Pak značí vyplnění sloupečku od 0° do 100° př̌irůstek temperaturní

$$
100+p_{0}-p_{1}
$$

a hořejší rovnice přejde v následující

$$
n\left(a+\delta^{*}\right)=100+p_{0}-p_{1}+\delta_{1}+\delta_{2}+\delta_{3}+\ldots+\delta_{u}
$$

z čehož

$$
\delta^{*}=\frac{p_{0}-p_{1}+\Sigma \delta}{n}
$$

Korrekční tabulku obdržíme, odčítajíce pokaždé nominálni temperaturni hodnotu $a+\delta$ sloupečku od faktické $a+\overline{\delta^{*}}$, při čemž a se ruši. Bude tedy:

$$
\begin{array}{cl}
\text { při stupni } & \text { korrekce } \\
0 & -p_{0} \\
a & -p_{0}+\delta^{*}-\delta_{1} \\
2 a & -p_{0}+\delta^{*}-\delta_{1}+\delta^{*}-\delta_{2} \\
3 a & -p_{0}+\delta^{*}-\delta_{1}+\delta^{*}-\delta_{2}+\delta^{*}-\delta_{3} \\
\vdots & \\
n a=100 & -p_{0}+\delta^{*}-\delta_{1}+\delta^{*}-\delta_{2}+\delta^{*}-\delta_{3}+\ldots
\end{array}
$$

$$
+\delta^{*}-\delta_{n}
$$

Dr. V. Stroukal: Thermika.

Početni kontrola spočívá v tom, že korrekce při 100° musí vyjiti $=-p_{1}$.

Má-li teplomér déleni dalši přes 100°, na př. do 200° nebo 300°, kalibruje se týmže způsobem dále a určí tabulka korrekčni stejným postupem početním, a to na základě temperaturni hodnoty $a+\delta^{*}$, jak se urči z kalibrace mezi 0 a 100°.

Za príklad, jak veliké by̌raji korrekce kalibru i u teplomẽrú jinak velmi dobry̌ch, budiz̀ uvedena kalibrace (autorova) teplomêru "Geissler ${ }^{4}$. Déleni na $\frac{10^{0}}{10}$ začinalo od nêkolika stupnú pod 0° a pokraçovalo až na jeden stupeñ́ nad 100°. Pr̂i kalibrováni ($n=10$) se odétala délka sloupec̈ku dalekohledem, prí cèmž bylo lze setiny stupné odhadnouti. Star zá kladnich bodú byl

$$
p_{0}=-0.03 \quad p_{1}=-0.15 .
$$

Hodnoty ∂ jakozzto vỵsledek kalibrace jsou sestaveny v tabulce následujici. Z nich vycházi

$$
こ \delta=0.26 \quad p_{0}-p_{1}=0.12 \quad \delta^{*}=0.038
$$

Počitají se pak difference $\partial^{*}-\delta$ a z wich hned korrekce; počet se vede o jednu decimâlu dále a ve vysledku se zaokrouhlf na setiny stupné.

Přiklad kalibrace jemného teplomèru (Geissler).

pri	δ	$\delta^{*}-\delta$	Korrekce	Definit.	
				+0.030	0.03
0			0.008	0.038	0.04
10	0.03	0.008	0.046	0.05	
20	0.03	-0.012	0.034	0.03	
30	0.05	0.008	0.042	0.04	
40	0.03	-0.039	0.010	0.01	
50	0.07	0.018	0.028	0.03	
60	0.02	0.018	0.046	0.05	
70	0.02	0.028	0.074	0.07	
80	0.01	0.038	0.119	0.11	
90	0.00	0.038	0.150	0.15	
100	0.00				

Výsledek kalibrace jakoz̃ i korrekčni tabulku lze dobře přehlédnouti grafickým znázorněním, jehoz̄ zde neuvádíme.

Podrobné pfedpisy kalibrační nález̃eji do fysiky praktické; viz na pŕ. F. Kohlrausch, Lehrbuch der prakt. Physik 1905, pag. 157, L. Pfaundler,

Physik 1598, II. -. pag. 15, a j. Dlužno však doznati, že za dnữ našich veskeré tyto dosti komplikované methody kalibrační jsou antikvované. Ústavy metronomické určuji chyby teplomẽrû, jez̃ se jim ke kontrole zaşlou, jenom tak, že je srovnávaji se svým vlastním rtutovỳm teplomérem normálním; chyby tohoto určuji se však nikoli kalibrací, ny̌brž prímým srovnáváním s teplomẻrem vodikovým, jenž je normálním v praegnantním smyslu slova (viz niz̃e). Timto srovnáváním se pak určuji chyby kalibru i základnich bodú i jinaké. v povaze rtuti a skla lez̃íci, všechny najednou. Proto jsme zde píestali jen na vyliceeni oné nejjednodussí methody kalibraçní, kteréz̃ se jestę zhusta v laboratorich uživá.

§ 8. Trvalé změny základnich bodů teploměru rtufového.

Užívajice teploměru rtutového měříme teplotu změnou objemu rtuti, ale nikoli změnou absolutni, nýbrž relationi, vzhledem ke sklu. Kdyby se sklo roztahovalo právě tak jako rtuf, ukazoval by teploměr při každé teplotě stejně. Pozorujeme tedy toliko preblytek roztažnosti rtuti nad roztažnosti skla. K posouzeni toho, jak veliký tento přebytek jest, budiž předběžnẽ uvedeno, že zahř̌átím z 0° na 100° měni se - absolutně počítáno - objem rtuti o 1.81%, objem skla o $1 / 4 \%$. Číslo pro rtuf jest určité, poněvadž rtut jakožto látka jednoduchá a kapalná jest přesuě charakterisovanon, kdežto čislo pro sklo jest pouze okrouhlé, poněvadž sklo jakožto látka pevná, složení rozmanitêho, má roztažnost poněkud měnlivou. Z čisel těch jest patrno, že sklo se teplem roztahuje méně než rtut, ale jeho roztažnost čini přece téměř 14% roztažnosti rtuti, tak že neustupuje tak zcela do pozadí Tím jest vysvětleno, proč některé zvláštnosti skla maji na údaje teploměrné znatelný účinek, ktery̌ž se jevi nejzřetelněji v poloze základnich bodů, zejména bodu nullového.

Když se totiž bod nullový krátce po zhotovení teploměru urči a pak po nějaké dobè kontrolluje, jevi se býti poněkud vyššim. Pravíme, že nullový bod stoupl. Opakuje-li se kontrolla v dobách dalšich, ukazuje se, že stoupání pokračuje, ač vždy volněji a volněji, tak že po uplynutí doby dostatečně dlouhé nastane konečnĕ ustáleni. Toto se uspísí, když se mezitím teploměru uživá při teplotách vyšších, nebo když se úmyslně delší dobu nechává v teplotě vysoké; zahiříváni pủsobi tu tak jako dlouhý čas; pravíme, že zahřívánim teploměr též (uměle) stárne. Ưkaz sám vysvětluje se nenáhlým stlačováním tenké nádobky teploměrné vnějšim tlakem vzduchovým, proti němuž z. vnitřka teplomĕru, kde jest vakuum, nepủsobi protitlak žádný. S bodem
mrazu stoupá ovšem téě̌ bod varu. Změny tyto jsou trvalé. U obyčejných teploměrů činivaji mnohdy vice než 1°.

Jak veliké bývaji trvalé změny bodu nullového i u teploměrů velmi jemných, ukazuji na př. pozorevání, jež byla na mnoha teploměrech konána od cis. norm. cejch. kommisse Berlinské v letech nedávných *). Uvádime jen hodnoty průměrné. Stoupání činilo

Vidêti z čisel těchto, že stoupáni jest čím dále tím mirněǰ̌i. Přibližně jest úměrno logarithmu času (Sidney Young 1893).

Poněvadž se stoupáni ukazuje hlavně v pruni dobĕ po naplnění teploměru, jest pravidlem základní body neurčovati lined pozhotoveni teploměru, nýbř̌ teprve po uplynutí doby dostatečně dlouhé, na př. po 3 až 6 měsicich neb i vice, a pak teprve teploměr definitivně graduovati.

§ 9. Přechodni změny základnich bodů teploměru rtufovèho.

Mějmež teploměr rtutový dostatečně starý, jehož nullovẏ bod se tedy již ustálil. Když se takový teplomĕr zahřivá na př. na $50^{\circ}, 100^{\circ}, 200^{\circ}$ atd., a když se po zahřátí opětně určí nullový bod, jevi se býti nižšim než byl před zahřátím; pravime, že nastala depresse bodu nullového. Tato jest však jen dočasná, přechodní; po nějaké době mizi, a bod nullový jest opět tak, jak byl původně. Zahřátím teploměru roztahuje se totiž nejen rtuf, nýbrž i skleněná nádobka teploměrná. Když se pak zase teploměr chladi, stahuje se rtut i nádobka, ale tato s jakýmsi opozđováním. Proto, když se dá teploměr do tajíciho sněhu, trvá ješté nějakou dobu, jakožto následek předchoziho zahřátí, malé zvětšeni objemu nádobky, čimž bod nullový se jevi býti nižšim. Úkaz jest tedy způsoben thermickou zvláštností skla, kteráz̆ jest analogickou s dopružováním těles pevných a pružných. Tam jest to deformace, která s deformujicí silou nepřestáva náhle, nýbrž v jakési miř̌e ještě po nějakou dobu trvá. Zde pak

[^8] 12, 1902.
jest to zvětšeni objemu, kteréž rovnĕž poněkud se ještě udržuje, i kdy̌̌ zahǔăti již pủsobiti přestalo.

Pozoruhodno jest však, že přechodni tato depresse nullového bodu závisí nejen na výši t předchoziho zahřăti, nýbrž též na době, po jakou zahřătí trvalo, a na rychlosti, s jakou se dálo ochlazeni. Přece však existuje určité maximum*) oné depresse, kteréž závisí jenom na výsi teploty t. V tomto smyslu mluví se o „nullovém bodu při teplotě t maximálně deprimoraném". Zavedením tohoto pojmu zjednodušuje se patruě otázka, poněvadž tato maximální depresse závisi pak jenom na teplotě t - ovšem určitý druh skla předpokládajíc. Obyčejně se vyjadřuje rovnicemi kvadratickými, formy

$$
z_{t}=z_{0}-a t-b t^{2}
$$

kdež značí z_{0} nullový bod stabilni, z_{t} při teplotě t maximálně deprimovaný**). Konstanty a, b této empirické rovnice jsou význačné pro ten druh skla, z něhoz̆ teploměr jest zhotoven. Tak udává Ch. Ed. Guillaume (1888) pro teploměr z tvrdého francouzského skla (verre dur) rovnici

$$
z_{t}=z_{0}-0.0008886 t-0.00000108 t^{2}
$$

ze kteréž plyne

$$
\begin{aligned}
\text { pro } t & =50^{\circ} & z_{50}=z_{0}-0.047 \\
t & =100^{\circ} & z_{100}=z_{0}-0.100 \quad \text { atd. }
\end{aligned}
$$

Pro účely teploměrné jest patrně žádouci, aby thermická retardace byla co možná malou. Tomuto požadavku vyhovuje velmi dobře tak zvané normálni sklo Jenské (s označenim 16ШI), jehož chemické složeni v procentech jest následujicí:

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{O}(14 \cdot 0 \%), \mathrm{ZnO}(7 \cdot 0), \mathrm{CaO}(7 \cdot 0), \mathrm{B}_{2} \mathrm{O}_{3}(2 \cdot 0), \mathrm{Al}_{2} \mathrm{O}_{3}(2 \cdot 5), \\
\mathrm{Mn}_{2} \mathrm{O}_{3}(0 \cdot 2), \mathrm{SiO}_{2}(67 \cdot 3 \%)
\end{gathered}
$$

Pro depressi nalezena rovnice ${ }^{* * *}$)

$$
z_{t}=z_{0}-0.0006484 t-0.000003104 t^{2}
$$

[^9]ze kteréž plyne
\[

$$
\begin{aligned}
\text { pro } t & =50 & z_{50} & =z_{0}-0.040 \\
t & =100 & z_{100} & =z_{0}-0.096 \quad \text { atd. }
\end{aligned}
$$
\]

Z uvedených přikladů jest patrno, že i pro druhy skla thermicky nejvýhodnějši nelze o stabilním nullovém bodu mluviti. Nullový bod není tedy, přísně vzato, určitým základním bodem. nýbrž dle teploty proménlivým. Vzhledem k tomu žádá se pro nejjemnějši práce thermometrické, aby teplota t na teploměru pozorovaná byla počitána od toho nullového bodu, který jí př̌sluši, čili aby odečtení teploměrné dle maximálni depresse teplotě t příslušici bylo korrigováno. Ale pak dlužno dủsledně i k bodu varu 100° přidružiti nullový bod pro tuto teplotu maximálně deprimovaný a definovati stupen̆ jakožto stý dil intervallu mezi bodem varu a tímto příslušným maximálně deprimovaným bodem nullovým, ktery̌ž by tudiž bylo dlužno určiti hned po bodu varu. kdežto stabilní bod nullový se určuje pred bodem varu. Dodatečné korrekce odečtení teploměrnóho usnadni se vhodnými tabulkami.

Jak z výkladu celkového patrno, pủsobí sklo jakožto materiál pro thermometry svými zvláštnostmi dosti značné obtiže pro nejpřesnějši měření temperaturní. Vzhledem k tomu jest zajímavo učiniti zmínku o teploměru rtufovém, jehož nádobka byla z platiny ${ }^{*}$). U tohoto teploměru osvědčil se bod nullový býti neproměnným.

§ 10. Účinek tlaku vnitřniho a vnějšiho.

U teploměrů velmi jemných neni jednostejno, zdali se jich uživá v poloze vertikální či horizontálni neb jakkoli šikmé, poněvadž dle polohy se měni tlak vnitřni, který vzniká sloupcem rtufovým a který poněkud měni objem nádobky. Vkládá-li se teploměr do kapalin, není zase vzhledem k hydrostatickému tlaku kapaliny samé, tedy tlaku vnějšimu, jednostejno, zdali se teploměr ponoři více nebo méně hluboko. Z téže přičiny mohou malinké rozdily vzniknouti též změnami tlaku barometrického. Všechny účinky takové dlužno u každého teploměru vyšetřiti zvlášf, poněvadž zde rozhoduje individuálnost teploměru, na př. způsob, jak nádoba teploměrná byla vyfouknuta, jak stěny jsou silné atd.

[^10]
§ 11. Korrekce způsobená vyčniváním sloupečku rtufovėho z prostředi, jehož teplota se méři, do vzduchu.

Teploměr má býti do prostředi (kapaliny, páry a pod.). jehož teplotu určujeme, úplně ponořen, anebo aspon̆ až tam, kde končí sloupeček rtutový. Často nelze požadavku tomuto vyhověti. Nádobka teploměrná a malá část sloupečku bývá ponořena do prostředí obyčejně značně teplejšího než okolní vzduch, avšak zbývající větší část sloupečku vyčnívá do vzduchu chladnějšího. Odečteni na teploměru jest pak o jakousi chybu \& menší než by bylo, kdyby do prostředí zasahal teploměr celý, a chyba tato může býti velmi značnou, když rozdil teplot prostředí a vzduchu jest veliký a sloupeček do vzduchu vyčnívající dlouhý, jak to bývá právě u jemnějšich teploměrů s podrobným dělením.

Budiž t teplota prostředí, s střední teplota sloupečku vyčnívajícího do vzdnchu, n délka sloupečku, vyjádřená ve stupních. Ochlazením o $(t-\tau)$ stupǔủ stáhne se sklo i rtuf, avšak rtuf více, o délku e na každý stupeň teploty a na každou jednotku délkovou, tudiž při rozdilu $(t-\tau)$ stupňủ a při n jednotkách délkových celkem o

$$
\delta=n u(t-r) .
$$

Číslo a zoveme relativním koefficientem roztažnosti rtuti vzhledem ke sklu. Mění se poněkud dle druhu skla; zde postači voliti hodnotu průměrnou

$$
\varepsilon=0.000181-0.000026=0.000155
$$

Délku n (počet stupňů) lze odečisti na teploměru, za t možno (velmi přibližně) přijmouti teplotu, kterou udává teploměr, se zanedbáním - neznámé - korrekce δ.

Obtǐ̌ působí však střední teplota τ sloupečku. K odhadnutí jejímu mů̌̌e se za základ vzíti teplota vzduchu, ale jest treba ji poněkud zvýšiti, vzhledem k tomu, že se tepelnou vodivosti teplo z prostředi šíři do té části teploměru, která do vzduchu vyčnívá. Dle konkretnich poměrů dovede zkušený pozorovatel teplotu τ dosti dobře odhadnonti. K usnadnění tohoto odhadu doporučuje se zavěsiti malý teploměr nádobkou do středni výšky vyčnívajícího sloupečku. Vždy však zůstává korrekce d poněkud nejistou.

Pŕmou cestou určil korrekci δ E. Rimbach *) pro nẻkteré teploméry určitých typů. Pozoroval totiž, mnoholi ukazovaly v parảch nêkterych

[^11]vroucich kapalin (chloroformu 60°, vody 100°, xylolu 140°. anilinu 184°, thymolu 233°), když tam byly ponoreny nejprve celou svou délkou a pak jen çastečnę, tak že do vzduchu vyẽnivaly sloupečky rtutové o délce 10°, $20^{\circ}, 30^{\circ}$ atd. ; konstatoval, oč teploměry za téchto pomérú ukazovaly méné. Methoda tato jest ponékud pracná, ale vede aspoñ k výsledkủm spolehilvéjsím. Propracovaním svého pozorovaciho materialu mohl gratickou interpolaci korrekce δ pro všechny ¡iné moz̃ué pr̃ipady již napřed urçiti.
dak značné tyto korrekce mohou nẻkdy býti, poznáme z přikladu tohoto. V bañce se vạ̛í anilin. Teplomér ukazuje 181°, vyčnívá však do vzduchu počinajic od 38°, tedy sloupečkem délky 143°; vzduch mai teplotu 20°, Odhadne-li se prûmérně teplota sloupečku na 35°, obdržime korrekci
çili
$$
\delta=0.000155 \cdot 143 \cdot(181-35)
$$
\[

$$
\begin{equation*}
\delta=3 \cdot \underline{2} \tag{cII}
\end{equation*}
$$

\]

line methody udali Ch. E. Guillaume, Mousson a Wiullner, A. Mahlke a j.

§ 12. Teploměr plynový. Vědeckả definice teploty.

Uvedli jsme, historický rozvoj thermometrie vykládajíce, že první látkou. jež byla za thermometrickou volena, byl vzduch (Galilei). Jest zajimavo, že prvni volba tato byla theoreticky nejlepši, ač prakticky nikoli nejvhodnějši. Novějši doba, kteráž přivedla reforma měr ve všech oborech vědeckých, upravila též thermometrii dle zásad nových. ač nikoli důsledně provedenýcb, a to tim, že za normálni látku thermometrickou přijala dokonaly plyn; při tom však podržela definici základních bodủ teplomèrných, přes to, že \mathbf{v} definici té byla pro normálni tlak ustanovena jednotka do nové soustavy měr se nehodici, a také graduaci podržela, jak byla dříive, totiž centesimálni. Moderní thermometr normální jest tudiž jen tím charakterisován. že jest za latku teploměrnou stanoven dokonalý plyn.

Při konkretni však volbě tohoto plynu vznikaji nesnáze, o nichž později ještě pojednáme. V seděni internacionáluiho komitétu konvence metrické dne-15. řijna 1887 přijat byl vodik.

Mějmež tedy jakési množství vodíku. Při teplotě 0° budiž v_{0} jeho objem, p_{0} jeho napěti. Zahřivá-li se vodik, zvětšaje se povšechně i jeho objem i jeho napěti. Můžeme však zaříditi podminky pokusu tak, že bud napětí zủstává konstantním, a zvětšuje se objem (změny isobarické), anebo že objem zůstává konstantním, a zvětšuje se napěti (změny isochorické). Vzhledem k tomu, že jest snáze konstantnim zachovati objem nežli napětí,
rozhodl onen komitét, aby teplota byla definována zmẻnou napéti vodiku při konstautnim objemu a to tak, aby napěti iniciálni při teplotě $0^{\prime \prime}$ bylo dáno tlakem sloupce rtutového nullstupŭového, výšky 1 m , za normálni intensity tiže. Zahřívá-li se vodik, stoupá jeho napěti. Při druhé teplotě základní, 100°, jest p_{1}. Relativni přirůstek zahřátím o tepelný intervall 0° až 100° činí tedy $\frac{p_{1}-p_{0}}{p_{0}}$. Zavedme stý dil tohoto přírûstku, připadajici na jeden stupeñ,

$$
\frac{1}{100} \cdot \frac{p_{1}-p_{0}}{p_{0}}=\gamma
$$

Pozorujeme-li pak, že při teplotě libovolné má vodik napěti p, pravime, že teplota obnáši t stupǔủ, činíli relativni přírủstek tlakový t-krát γ, je-li tedy

$$
\frac{p-p_{0}}{p_{0}}=t \cdot \gamma
$$

čili

$$
p^{\prime}=p_{0}(1+\gamma t)
$$

Rovuice tato obsahuje tudiž vèdeckou definici temperatury; nevyjadřuje - aspon̆ pro onu normálni látku thermometrickou žádného zákona, nýbrž plati "ex definitione".

V Rakousku zaveden byl normảhí teplomér vodikovỳ zákonem d. d. 12. ledua 1893. publ, v Z. R. IV. 31. ledna 1893, No. 10, ve zne̊ní nảsledujícim: „Pokud jest při merenf a váženf nutno stanoviti teplotu, platí za stupnici teplomérnou stupnice teploměru vodikn o konstantnim objemu a iniciálnim napéti $1 \cdot 3158$ atmostér pri teploté $0^{\circ} \mathrm{C}$. Za body zảkladní plati $0^{\circ} \mathrm{C}$, t. j. teplota tajiciho ledu, a $100^{\circ} \mathrm{C}$, t. j. teplota nasycených par vodnich pod tlakem jedné atmosléry. Atmosférou označuje se tlak sloupce rtufového 760 mm vysokého, hustoty 13.59598 za pûsobení normální intensity fize. ${ }^{\text {" }}$ Vzhledemt k tomu, że koefficient γ, jak presné pokusy ukázaly, na tlaku velmi nepatrné jest zaivisly, nemá ono pr̃esné stanoveni inicialního napêtí tak veliké dưležitosti. Horejsi číslo $1 \cdot 3158$ atmosfér vznikí, kdyz̃ se prepočte tlak sloupce rtutového, nullstupnového, výsky 1 metru, za normâlnf intensity tize, na atmosféry ($1: 0 \cdot 76=1 \cdot 3158$).

Volba vodiku za normálni látku teploměrnou stala se s tou supposici, že tim zaručena jest největši extensita, největši rozsah měřeni teploměrných směrem k teplotám nejnižšim i nejvyšším. Avšak zkušenost ukázala, že pro vyšši teploty vodik se neosvědčuje, poněvadž k materiálu teploměrné nádobky, v niž se nalézá (sklo, porculán, křemen, platina a j.), není chemicky zcela passivni a mimo to stěnami diffunduje. Proto metro-
nomické ústavy užívají vodiku jen do 100°, nad tuto teplotu dusiku. Ale také pro velmi nizké teploty se vodik již neosvědčuje, poněvaď̌ v blizkosti těch poměrû, při nichž se kondensaje, přestávaji údaje jeho býti spolehlivými. Zde vyhovaje daleko lépe helium, kteréž se nekondensuje ani při teplotě - 260° a při tlaku 60 atmosfér; ona teplota jest teplotou varu vodiku za tlaku 5 mm . Ostatně by i pro teploty velmi vysoké helium bylo výhodnější než vodik již z té přičiny, že u helia, jakožto plynu jednoatomového, odpadává moz̆nost dissociace při vysokých teplotách. Přechod od vodiku k heliu nečini žádných nesnází zásadních, poněvadž koefficient rozpinavosti γ jest u obou plynů identický. Chappuis nalezl pro vodik

$$
\gamma=0.00366254,
$$

Travers, Senter a Jaquerod v době nedávné (1902) nalezli

$$
\begin{aligned}
& \text { pro vodik } \gamma=0.00366256, \\
& \text { pro helium } \gamma=0.00366255 .
\end{aligned}
$$

Ale obtiže diffundováni stěnami teploměrné nádoby zústávaji u helia též. Tak zejména zmařeny naděje, kteréž ještě nedávno se kladly do skla křemenového, jinak pro vysoké teploty velmi vhodného; helium začiná jim diffundovati již při teplotě 200°. Z těchto dủvodů jevi se dle nynějsího stavu věci býti dusik plynem pro teploty vysoké ještě nejvhodnějšim.

U helia čini obtíze zbaviti jej plynů, s nimiž současně z přislus̃nỹch materialí (na pr̃. z minerálu Cleveitu) se dobývá, jako kryptonu, argonu, neonu. Nejlépe se osvédčilo frakcionovảni směsi při teploté varu vodiku. Také vodík zbaví se plynú primíseny̌ch (incl. vodních par) nejlépe tím, ze se vede (prii zmenšeném tlaku) skleněnou spiralou vnorenou do vzduchu anebo ješté vydatnéji skleněnou kouli vnorenou do tekutého vodiku.

Co se úpravy teploměru plynového týče, budiž zde př̌edběžně uvedeno následujíci. Rozeznáváme dvě hlavni části teploměru, totiž nádobu teploměrnou a zařizení manometrické. Nádoba mǔže býti do 500° ze skla (na pǐ. Jenského 59), do $1100^{\circ} \mathrm{z}$ porculánu, vně i uvnitř polévaného, do $1700^{\circ} \mathrm{z}$ platiny nebo ze slitiny platiniridiové; avšak nádoby tyto dlužno velmi pečlivě chrániti před plyny (na př. žárem, spalovánim vznikajícími). kteréz̆ by při těchto teplotách pronikaly skrze stěny dovnitř. Nádoba mívá formu podélného válce, aby se kladla vodorovně do lázně. Objem bývá na př. 1 litr, nebo jakkoli menší. Kapillárni trubičkou jest připojena k přístroji manometrickému, zpravidla rtufovému,
kde se odčitani děje kathetometrem. Tlak vzduchu se bud béře v počet zvlášt anebo se z manometrického odčítání vymýti. Roztažnost nádoby dlužno určiti zvlášt a vziti v počet. O manipulaci a způsobu počitání pojednáme obšírněji ve stati o roztažnosti plynú.

§ 13. Teplota absolutni.

Normální teploměr plynový určuje teplotu t dle definice

$$
\gamma \cdot t=\frac{p-p_{0}}{p_{0}}
$$

čili

$$
p=p_{0}(1+\gamma t) .
$$

při čemž se koefficient γ zavedl na základě stupně centesimálního, t. j. toho stupně, který jest stým dílem intervallu obou základnich temperatur, bodu mrazu a bodu varu. Jinak jest v hořejši rovnici obsažen jenom bod mrazu, jakožto nullový, na který se vztahuje napěti p_{0}. Tento bod lze však nahraditi jiným jakožto východním dle úvahy následujicí.

Pišme poslední rovnici ve formě

$$
p=\gamma \cdot p_{0}\left(\frac{1}{\gamma}+t\right) .
$$

V této formě přistupuje k teplotě t additivni konstanta $\frac{1}{\gamma}$, kteráž má též význam teploty. Položíme-li

$$
\frac{1}{\gamma}+t=T
$$

znamená T teplotu, která jest proti obyčejné o $\frac{1}{\gamma}$ větší, čili, která jest počítána od nullového bodu ležícilıo o $\frac{1}{\gamma}$ stupǔủ niže než bod nullový obyčejný.

Číselně jest
tudiž

$$
\gamma=0.00366255
$$

宛

$$
\frac{1}{\gamma}=273 \cdot 034
$$

tedy velmi přibližně 273°. Definitorická rovnice teploty t poakazuje tudǐ̌ k jinému nullovému bodu, proti obyčejnému o 273^{a}
niže ležicímu, jakožto novému východisku pro počítání teploty T. Zoveme jej absolutním bodem nullovým, a teplotu T od něho počitanou teplotou absolutni. Tato jest přímo úměrná expansi p. dle rovnice

$$
p=\gamma \cdot p_{0} . T
$$

čili

$$
p=\text { const. . } T
$$

kdež značí „const." konstantu úměrnosti. Při teplotě - $273^{\circ} \mathrm{ab}$ solutního bodu nullového stane se tudiž expanse plynu nullovou. Číselná hodnota konstanty úměrnosti jest známa, poněvadž iniciálni napěti p_{0} jest při normálním teploměru plynovém přesně určeno, jak jsme dřive vyložili.

§ 14. Redukce teploměrů rtufových na normálni teploměr plynový.

Stanovením teploměru plynového za normálni ve vědeckém slova smyslu nepozbývaji teploměry rtutové ničeho na své dủležitosti, zûstávajíce manipulačními prvního řádu. Ale ovšem jest třeba jich údaje připojiti na teploměr plynový, což se děje pečlivým srovnáváním ubou. Práce takové prováději příslušné ústavy metronomické a vydávaji pak pro teploměry zkoumané redukčni tabulku, obyčejně na základě grafické interpolace. Výsledkû takových srovnáváni, jež by všeobecně byly platnými, ovšem uvésti nelze; závisí na druhu skla, z něhož teploměr je zhotoven, a i tu jest každý teploměr vice méně individuálnim. Jen tolik lze říci, že redukce teploměrů rtutových na normálni plynový v intervallu tepelném - 30° až 130° jsou malé, při -30° asi $+0.3^{\circ}$, při 0^{0} mění znamení, kolem 50° čini -0.2° až -0.3°, při 100° opět mění znameni, stávaji se positivními a malými, ale přejdou záhy opět v negativni a stoupaji značně mezi 200° až 300°, kde mohou činiti několik stupňủ.

Za přiklad budtež uvedeny tabellárně redukce (průměrné) teploměrů zhotovených ze skla Jenského (druh XVI), a to intervallu $0^{\circ} \ldots 100^{\circ}$ na teploměr vodikový, nad 100° na teploměr vzduchov ${\underset{ }{\prime}}^{*}$):

0^{0}	\ldots	± 0	$100^{\circ} \ldots$	耳0	$200 \ldots-0.04$
20	-0.09	120	+0.05	220	-0.21
40	-0.12	140	+0.09	240	-0.47
60	-0.10	160	+0.10	260	-0.83
80	-0.06	180	+0.06	280	-1.30
100	∓ 0	200	-0.04	300	-1.91.

Pro teploty negativni máme redukce

$$
0^{\circ} \ldots \pm 0, \quad-20^{\circ} \ldots+0 \cdot 19, \quad-40^{\circ} \ldots+0 \cdot 49
$$

Při všech pozorováních, jež se konají teploměry rtutovými, nutno z důvodủ principiálných, aby jednotnost stupnice teploměrné byla zachována, předpokládati, že údaje teploměrů těch jsou redukovány na teploměr plynový.

Požadavku tomuto, naprosto nutnému, lze vyhovêti pro futuro, ale ne tak snadno pro praeterito. Kdo dnes zamýsli védecké práce tepelné konati, musí svůj rtufový teplomęr predevšim upraviti na normální teplomér vodikovẏ; ale pro vẻdecké práce v minulosti již vykonané jest velmi nesnadno zadati totéz̃. Jen tehda jest to moz̃no, kdyz̃ originálni teplomẽry rtưové, jez̃ tehda pozorováním byly základem, ještẽ existují. Tím vznikí v nas̃ich dobảch nutnost starši pozorováni revidovati, po připadẻ doplniti nebo nahraditi novými, jez̃ by se na normální teplomèr vodikový vztahovaly. Mnohé takovéto práce prováději se v internacionálním ústavu pro míry a vaihy (bureau international des poids et mesures) y Bréteuilu a v rísiském fysikálnẻ-technickém ústavu v Charlottenburku. Tyto ústavy, jakoz̃ i pưislušné normalni kommise cejchovní (na př. ve Vidni neb v Berlínẽ) prejímají téz̃ úkol, srovnati zaslaný jim teploměr rtutový s vodikovým a dávají ke každému exempláru redukénf tabulky. Nepromẻnlivost téchto tabulek jest zarucuena ovsem jen tehda, je-li rtufový teplomér dosti starým. Opatřenim tímto stala se zbyteẽnou úloha teploměry kalibrovati a tak chyby jejich počitati; nebot srovnánim s teplomẻrem vodikovým, jak již dr̂ive ($\$ 7$.) bylo rec̃eno, se vsechny chyby teploméru rtufového, necht mají původ jakŷkoli, jedinou korrekcí již odstrañují.

Praesidentem normální cejchovni komise ve Vidni jest dv, rada dr. Vikfor v. Lang. Praesidentem ústavu y Charlottenburku byl do nedavna dr. F. Kohlrausch; nyní (od 1. dubna 1905) jest jim dr. Emil Warburg, pred tím professor university berlinské. F. Kohlrausch żije nyni v Marburku (okres Kasselský).

Při srovnávání teplomẽrú jest žádoucno realisovati teploty co moz̃ná stálé. K tomu hodi se nejlépe teploty tavení nebo varu některých vhodných látek, zejména, když jsou tyto teploty dle teploméru plynového presné určeny. Doporučují se *) látky následujíci:
*) Obșirnéjsi tabulky tohoto druhu viz na pri. F. Kohlrausch, Prakt. Plyysik X, p. 621, 1903.
${ }^{\text {² }}$) Landolt a Börnstein, pag. 197, 1905.

Bod taveni:		Bod varu:	
rtut	$-38 \cdot 8$	vodik	$\left.-252 \cdot 5^{*}\right)$
cin	232	dusik	$-195 \cdot 6$
vismut	268	kyslik	$-189 \cdot 7$
kadmium	321	kysl. uhliçity	$-78 \cdot 2$
olovo	327	alkohol	$+78 \cdot 9$
zinck	419	anilin	$184 \cdot 1$
antinon	630	naftalin	$218 \cdot 0$
střibro	961	benzophenon	$306 \cdot 0$
zlato	1063	rtut	$357 \cdot 0$
méd (c̈istá)	1083	sira	$444 \cdot 6$
		zinek	917.

Uvedli jsme zde téz̃ teploty velmi nízké a velmi vysoké, kteréż ovs̊em nejsou mínény pro teploměry rtufové, nýbrǎ pro teplomẻry elektrické (thermoçlánkové, odporové), o nichz̃ jednáno bude pozdéji. Připojme k tomu jeşté jako poznámku, že teplota hořáku Bunsenova (plamen natriový) činí 1871 a teplota plamene vodikového ve vzduchu 1900° (Ch. Féry 1903).

§ 15 . Teploměry rtutovẻ pro teploty vysoké.

Teploměrủ rtufových obyčejných, vzduchu prostých, lze směrem k teplotám nizkým užívati až do -39°. Chtějíce zkoumati, jak daleko jsou teploměry ty spolehlivy směrem k teplotám vyššim, vkládáme je do láznĕ̀, na př. lněného oleje, který zahříváme, a pozorujeme, zdali se sloupeček rtufový udržuje v celosti. Velmi často se stává, že se sloupeček na některých mistech trhá, a to vlivem malinkých bublinek vzduchových, jež se usadily na stěnách teploměrné trubičky a zahřátím se rozepialy na větší objem. Pak lze poněkud odpomoci, když se teploměr z lázně vyndá, nechá schladnouti nejprve na teplotu obyčejnou a pak (mrazivou směsí neb podobně) na teplotu velmi nizkou, aby celá rtut se vtáhla do nádobky. Tím přijdou bublinky vzduchové nad rtuf, kdež, vyplňujice celý prostor, jsou neškodnými. Teploměrủ takových lze pak uživati až do 300°. Při teplotě ještě vyš̌si bližíme se varu rtuti, a údaje jsou nespolehlivé.

Varu rtuti lze však brániti velkým tlakem. K cili tomu naplni se teploměr nade rtuti plynem silně stlačeným, na př. dusíkem nebo kysličníkem uhličitým, o napětí 10 až 15 atmosfér. Sklo, z něhož teploměr je zhotoven, nesmi však při značnějším zahřátí měknouti, aby vêtšim tlakem vnitřním se nádobka ne-

[^12]roztáhla. Teploměry ze skla Jenského (číslo 59) vydrži ještě teplotu až do 550°.

To však jsou meze nejzazší. Jde-li o měření teplot ještě vyššich, o měření żáru (π vio = ohen̆), nutno na jiném základě sestrojiti tak zvané žaromèry čili pyrometry.

Byl učiněn pokus teploměry rtufové pro vysoké teploty zhotoviti z kǐišfálu (skla křemenového). Avšak látka tato se neosvědčila. Ze zpráv fysik. techn. řišského ústavu německého za rok 1904 se dovídáme, že jeden takový teploměr př̌i zkoušce v lázni roztaveného ledku ($5 \check{5} 0^{\circ}$) náhle praskl - následkem značného tlaku vnitřnibo - při čemž větší množství červenožhavé látky bylo rozmetáno. Proto se v onom ústavu pro budoucnost teploměry takové ke zkoušce již nepřipouštějí.

§ 16. Teploměry lihové, toluolové, pentanové a petrolaetherove pro teploty nizké.

Pro teploty velmi nizké, při nichž rtut již tuhne, nutno voliti kapaliny jiné. K lihu ($C_{2} H_{5} . O H$), jehož uživání jest již staré, přistoupily v novější době toluol $C_{7} H_{8}$ a pentan $C_{5} H_{12}$. Obě kapaliny jsou uhlovodiky; pentan náleží do skupiny $C_{n} H_{2 n+2}^{12}$ a přisluši hodnotě $n=5$ (odtud jeho jméno, aćvtc pět); toluol pak do skupiny $C_{n} \boldsymbol{H}_{2 n-6}$, jejižto prvnim členem, $n=6$, jest benzol, druhým pak, $n=7$, toluol (methylbenzol). Obě kapaliny jsou bezbarvé, čiré, jako líh. Teploměru lihového lze užiti asi do -70°, toluolového do -100°, pentanového do -190°. Konečně navrhuje se též (F. Kohlrausch) t. zv. petrolaether, který ani v kapalném vzduchu netuhne a má roztažnost značnou. Jest tmavohnědý, což při odčitání teploměru jest výhodno. Všechny tyto teploměry vyžaduji však velmi pečlivého srovnání s teploměrem plynovým. U toluolu, který vře teprve při 110°, jest možno provésti graduaci samostatnou, jako u teploměru rtufového, dle bodu mrazu a varu, a lze pak dělení prodloužiti pod 0° směrem k teplotám nizkým. Ale pak jeví se proti teploměru plynovému odchylky velmi značné; když tento udává na př. $-20^{\circ},-40^{\circ},-60^{\circ}, \ldots$ ukazuje toluolový $-16.9,-33 \cdot 2$, $-48.9 \ldots$, tedy číselně značně méně (Chappuis). Jinak dlužno vzhledem k špatné vodivosti tepelné oněch kapalin u všech těchto teploměrủ déle čekati, než se teploty vyrovnají. Omáčení skla uvnitř trubičky teploměrné nutno při srovnání s teplomĕrem plynovým vziti též, pokud to možno, v korrekci.

§ 17. Teploměry hypsometrickė.

Bod varu vody závisi na tlaku atmosférickém (§ 5.). Závislost tato jest na základě četných a přesných pozorováni podrobně vyšetřena; úkol jest jen části jiného všeobecného, vyšetřiti totiž vztah mezi napětím nasycených par vodních a jich teplotou. Možno tudiž z tabulek vhodně upravených ke každému danému tlaku atmosférickému nalézti bod varu vody, ale také naopak dle toho, jaký byl pozorován bod varu vody, souditi na tlak barometrický. Je-li tudiž teploměr na přesné pozorovánı tohoto bodu varu účelně zařízen a prozkoumán. může nahraditi barometr. Odtud jeho jméno thermobarometr (nebo barothermometr), aneb hypsothermometr, poněvadž dle tlaku barometrického na dvou stanicich současně pozorovaného lze počítati rozdil výskový obou stanic*).

Ku posouzení otázky, jaké požadavky dlužno na hypsothermometr klásti, slouží obr. 厄̄., v němž jest vyjádřeno graficky ubývání tlaku barometrického s výškou, čiselně též (pro geograf. šiřku 45°) ubývání středni roční teploty s výškou, a v němž ke stupnici výškové jest též připojena stupnice udávající bod varu vody. Jest pozoruhodno, že obě tyto stupnice postupují - aspoň v mezích výkresem udaných - rovnoměrně; na každých 100 metrů umenší se bod varu vody $0 \frac{1}{3}^{\circ}$. Proto přísluši pozorované změně bodu varu o τ^{0} výškový rozdil 300τ metrů ${ }^{*=}$).

Možno-li tudiž bod varu vody odečisti přesně na $\frac{1}{100}^{0}$, lze výšku počitati přesně na 3 metry. Pro účely obyčejné to dojista stačí. Ale neni nemožno odečtení na teploměru zařiditi ještě přesněji, na $\frac{1}{500}{ }^{\circ}$ neb $\mathrm{i} \frac{1}{1000}{ }^{\circ}$. Teploměrná trubička jest pak úzkou, nádobka objemnějši. Bod nullový nemá nikdy scházeti. již ke kontrole jeho eventuální proměnlivosti. Nad tímto bodem se pak trubička teploměrná rozšiřuje, čímž celá řada stupňú se přeskoči ; děleni pokračuje teprve stupněm 80°, po případě již 70°. K vlastnímu pozorování slouží pak přistroje podobné úpravy, jak v \& 6. bylo popsáno. jenom že rozměrů vzhledem ke transportu co nejmenších.

Hypsothermometr jakožto zástupce barometru rtufového vyznačuje se tou zvláštností, že jeho údaje nejsou závislé na
intensitě gravitačního pole. Užívá-li se ho jako přístroje praecisního, což jest zcela dobře možné, pak dlužno též přihlédnouti, zdali tabulky, jichž se užívá, udávající, jak napětí nasycených

- par vodních závisi na teplotě, předpokládají teplotu obyčejného teploměru rtufového nebo normálního vodikového; dle téhoz̆ teploměru musí pak býti hypsothermometr prozkoumán.

§ 18. Teploměry maximálni a minimálni.

Jest mnohdy žádoucno zjistiti, jaká byla v určitém časovém intervallu (na př. v meteorologii za jeden den) teplota největši a nejmenší. Za tím účelem byly již záhy sestrojeny teploměry, rtufové pro maximum, lihové pro minimum teploty, při nichž extrémy teploměrné měly býti udávány vhodným pohyblivým indexem do trubičky teploměrné vpraveným.

1. U teploměru maximálního byl indexem tímto váleček železný (Rutherford), který rtutí se pošinoval vpřed a zůstal ležeti na tom místě, až kam při stoupající teplotě nejdále byl pošinut. Po odečteni jeho polohy, jimž byla určena teplota maximální, mohl magnetem (nebo poklepáváním) býti přiveden zpět. Jednoduchá tato myšlenka v praxi se osvědčila málo. Je-li váleček snadno pošinovatelný, - v kterémžto případu teploměr vodorovně umístěn býti musí, - pošine se často již nahodilým otřesením; pakli je nesnadno pošinovatelný, vniká rtut mezi váleček a sklo. V obou případech jest odečteni teploty maximální chybným.
2. Proto jest lépe jakožto indexu uživati sloupečku rtutového, který jest od ostatni rtuti oddělen nepatrným množstvím vzduchu. Při stoupajicí teplotě stlačuje se vzduch ten až na malou bublinku, která má dostatečné napěti, aby při dalším stoupání teploty onen sloupeček pošinovala ku předu. Tento sloupeček počítá se však svou délkou k ostatni rtuti, tak že teplota maximální jest stanovena polohou druhého konce sloupečku (tedy jinak, než při zařízeni 1.). Teploměry tohoto druhu osvědčuji se dosti dobře ; užívá se jich mnoho k účelům lékařským při stanovení tělesné teploty nemocných, při čemž se nádobka teploměrná klade pod paži. Maji tu výhodu, že netřeba teplotu nemocného odečísti v jeho blízkosti a hned, nýbrž dodatečně, když již teploměr byl odložen. Jsou opatřeny stupnicí s podrobným dělením (na desetiny stupně) kolem 37°, v intervallu

[^13]na př. 33° a ă 43°. Do nižší polohy, za účelem nového pozorování, přivede se sloupeček prudšim švihnutím teploměru rukou, působením síly centrifugální, jež při švihnuti vzniká.
3. Jiný zpủsob, použiti sloupce rtutového samého k odčitání maximálni teploty, záleži v tom, že trubička teploměrná v blizkosti nádobky jest silně zúžena. Při stoupání teploty protlači se rtuf touto zúženinou, zpátky však, při klesáni teploty, sloupeček se nevrací; rtut se při zúženině odtrhne a stahuje se jen v nádobce, sloupeček zůstává ležeti a ovšem udává teplotu maximálni. Teploměr se umísfuje vodorovně pro jistotu, aby se odtrženi rtuti tím určitěji stalo. Spojeni sloupečku po odčitání tepelného maxima s ostatni rtuti provede se opět nejjistěji švihnutím (opakovaným) teploměru - méně se doporučuje poklepáváni, kterým se může teploměr poškoditi.
4. U teplomèru minimálniho jest indexem malá tyčinka skleněná, na obou koncích malými, temnými kuličkami opatřená a do trubičky teploměrné vpravenả. Teploměr jest umistěn vodorovně. Stoupá-li teplota, rozlévá se sloupeček alkoholický přes tyčinku nechávaje ji ležeti.. Klesá-li teplota a přijde-li sloupeček alkoholický svým koncem ažk tyčince, táhne ji povrchová blanka sloupečku s sebou až k mistu nejzazšímu, tak že druhý konec tyčinky udává minimum teploty. Při novém zařizování teploměru postači teploměr obrátiti a postaviti vertikálně; skleněná tyčinka klesá v alkoholu volně $a \check{a} k$ povrchové blance, kde se zastaví.

Jsou jiné ještě zpûsoby takovýchto extrémních teploměrů, jakož i kombinace obou, tak že jediným teploměrem - alkoholickým - se pomocí sloupce rtutového a dvou indexů stanoví extrémy tepelné, jako na pǐ. teploměr Sixủv (Six-Bellani). Jiný takový teploměr, kovový, seznáme později. Dříve měly teploměry extrémní v meteorologii svůj význam; dnes ho již nemaji ; nebot na stanice meteorologické zavádějí se vesměs thermografy, t. j. přistroje, které registrují nejen extrémy teploty, nýbrž vůbec průběh teploty během doby, tak že lze stav teploty pro každou dobu z diagrammu odečísti.

§ 19. Thermografy

Přístrojem nyni velmi rozšiřeným a dobře se osvědčujícim jest thermograf Richard-Frères (v Pařiži). Úprava podobná jako barografu od téže firmy*). Obr. 8. nkazuje větši model. Teplo-

Obr. 8.
Thermograf.
měrnou částí jest zde tenkostěnná trubice Bourdonova naplněná alkoholem aethylnatým. Prứřez její jest čočkovitý, forma kruhového oblouku délky 6 cm , šì̛ky $3^{1 / 2} \mathrm{~cm}$; objem čini $3.3 \mathrm{~cm}^{3}$, povrch $42 \mathrm{~cm}^{2}$, vodní hodnota alkoholu jest 1.7 gramm-kalorie. Jedním koncem jest trubice upevněna na skřínce stroje, druhým souvisí pomoci tyče s převodem pákovým a registračním perem. Stoupá-li teplota, roztahuje se alkohol a trubice zmenšuje své zakřivení, tlači tyč dolủ, čímž registrační pero jde nahoru. Papír s přiměřeným dělením dle doby a stupňủ jest navinut na válci, který se hodinovým strojem za týden jednou kolem otáči.

Thermografy konaji dobrou službu ve vědě meteorologické, při výpravách v ballonu a j. Závadou přesnosti jest ovšem tepelná setrvačnost a tím zaviněná retardace jak při stoupáni tak při klesání teploty, kteráž zejména jest značná, ději-li se tyto změny rychle, náhle.

[^14]
§ 20. Citlivost teploměrů.

O citlivosti teploměrủ možno mluviti ve smyslu dvojím, který bychom mohli krátce označiti jakožto statický neb kinetický. Ve smyslu statickém nazveme teploměr citlivějsím, lze-li teplotu - když se ustálila - odečísti na malou ještě část stupně, tedy na př. na desetiny, setiny nebo i tisíciny stupně. Tak mívaji hypsothermometry, teploměry kalorimetrické, teploměry Beckmannovy a jiné úpravu takovou, že lze v okolí určité teploty odečisti ještě setiny i tisíciny stupně, stanoviti tedy teplotu, jak řikáme, velmi citlivě. Naproti tomu nazveme ve smyslu kinetickém teploměr více méně citlivým dle toho, jak rychle teploměr, vložený z prostředí o teplotě t_{1} do prostředi o teplotě t_{2} na př. vyšši, tuto novou teplotu přijme. Rychlost, s jakou teploměr stoupá, možno za úměrnou rozdilu $t_{2}-t_{1}$ pokládati; konstantu 2 této úměrnosti nazývá Ch. E, Guilleaume citlivosti teploměru. Ale ta závisi též na povaze prostředí, na tom, je-li prostředi v klidu nebo pohybu a j., nemi tedy charakteristickou jenom pro daný teploměr. Ve vodě na př. každý teploměr rychleji přijme novou teplotu než ve vzduchu, a to zase rychleji, je-li voda nebo vzduch v pohybu. Jakousi setrvačnost má každý teploměr, menší rtufový, větši alkoholický, toluolový, pentanový a j. a to zase menší, je-li množství teploměrné kapaliny menší, a má-li nádoba teplomèrná velký povrch. Když se však teplota prostředí rychle měni, jako na př. při výstupu v ballonu, neukazuje žádný teploměr teplotu, jaká v určitém okamžiku byla, poněvadž jakousi retardaci jeví teploměr každý*).

§ 21. Jak se měři teplota na základě thermoelektrickém.

Přístrojem teploměrným jest zde thermočlánek, jejž obdržime spájice dva různé kovy I a II dané ve formě tyčinek neb drátů, k nimž svorkami připojíme vedení na př. k voltmetru. Je-li t teplota na mistě, kde kovy jsou spájeny, t^{\prime} pak teplota svorek, vzniká růzností obou teplot elektromotorická síla e, kterou přímo udává voltmetr o velikém odporu. Početně určuje ji vzorec Avenariův ve formě

$$
e=a\left(t-t^{\prime}\right)+b\left(t^{2}-t^{\prime 2}\right)
$$

*) Zajimavou studii o této otázce uveréejnil H. Hergesell v Meteorol. Z. XIV. p. 433. 1897.
anebo též

$$
e=\left(a t+b t^{2}\right)-\left(a t^{\prime}+b t^{\prime 2}\right)
$$

Zde jde o to, z pozorované elektromotorické sily e souditi na teplotu t, je-li teplota t^{\prime} známa. K zjednodušení úkolu volí se zpravidla $t^{\prime}=0$. Pak jest prostě

$$
e=a t+b t^{2}
$$

Z několika známých, vhodně volených teplot t a ze současně pozorovaných příslušných hodnot e počítají se konstanty a, b, a když tyto jsou známy, propočítá se tabulka tak obširná, aby naopak ke každé pozorované hodnotě e se interpolací ihned určila teplota t, anebo se sestroji diagramm a použije interpolace grafické. Konečně lze i voltmetr opatřiti stupnicí podle t zařizenou, tak že se stane přímo indikatorem přislušné teploty t. Neníli pľi tom $t^{\prime}=0$, pak se pro odchylné t^{\prime} ona hodnota t přiměřeně korriguje, dle zvlástní vhodně upravené tabulky.

Kovy, jichž se k účelům thermometrickým v rozmanitých kombinacích užívá, jsou antimon, vismut, železo, měd, nikl, platina; dále slitiny: konstantan (60% mědi a 40% niklu), patentní nikl (75% mědi a 25% niklu, kov niklových německých peněz), zvláště pak slitiny platiny (90%) s iridiem, rhodiem, rutheniem (10%). Elektromotorická sila e rủzných kombinací v Mikrovoltech (10^{-6} Volt) na každý stupeň, v intervallu $0 \ldots 100^{\circ}$, přibližně též mimo tento intervall, udává se následovně.

Orientační údaje
o elektromotorické síle některých thermočlánků
(v intervallu $0 \ldots 100^{\circ}$).

Kombinace	e Mikrovolt pro 1°
$S b \ldots B i$	100
$F e \ldots[0 \cdot 6 \mathrm{Cu}+0 \cdot 4 \mathrm{Ni}]$	53
$\mathrm{Fe} \ldots[0 \cdot 75 \mathrm{Cu}+0 \cdot 25 \mathrm{Ni}]$	45
$\mathrm{Cu} \ldots[0 \cdot 6 \mathrm{Cu}+0 \cdot 4 \mathrm{Ni}]$	40
$\mathrm{Fe} \ldots \mathrm{Ni}$	32
$P t \ldots[0 \cdot 75 \mathrm{Cu}+0 \cdot 25 \mathrm{Ni}]$	28
$\mathrm{Cu} \ldots \mathrm{Ni}$	22
$P t \ldots[0 \cdot 9 \mathrm{Pt}+0 \cdot 1 \mathrm{Ir}]$	7
$P t \ldots[0 \cdot 9 \mathrm{Ft}+0 \cdot 1 \mathrm{Ru}]$	stoupá pak až
$P t \ldots[0 \cdot 9 \mathrm{Pt}+0 \cdot 1 \mathrm{Rh}]$	na 10 a vice.

Posledních tří článkủ užívá se zejména při teplotách velmi vysokých; zde pak stoupá e na každých 100° až na 1 Millivolt a vice.

Ze všech těchto kombinaci užívá se v technické praxi zvláště hojně jenom dvou. Pro teploty nízké neb mírně vysoké, v intervallu - 200° a ̌̌ $+500^{\circ}$ kombinace měd - konstantan. Pro teploty vysoké až velmi vysoké, v intervallu 400° až 1600° kombinace platina - platinrhodium (Le Chatelier), nebo též platina - platiniridium (Barus), ač kombinace tato pro velmi značný žár se méně osvědčila. Thermoelementy Le Chatelierovy rozšiřila v Německu firma W. C. Heraeus v Hanavě; ke zkoušeni je přijímá fysikálně-technický řišský ústav v Charlottenburku*). Na mistě horkém jde proud od platiny k slitině platinrhodiové. Zajimavost kombinace Le Chatelierovy oproti jiným přibuzným spočívá v tom, že elektromotorická sila e stoupá s teplotou $t \mathrm{v}$ mírných intervallech tepelných téměř úměrně. Pro velký intervall 300° až 1600° stanovili Holborn a Wien interpolačni vzorec pro e v Mikrovoltech, jak následuje:

$$
e=-310+8.084 t+0.00172 t^{2}
$$

Dle vzorce tohoto, vyjádříce e raději v přehlednějši jednotce Millivolt, obdržíme:

$$
\text { pro } t=
$$

Stoupá tedy elektromotorická sila s teplotou urychleně. ale jen mirně urychleně; v grafickém znázorněni (obr. 9.) vychází křivka, která jest jen mírně konvexní k ose temperaturni, což jest pro grafickou interpolaci k účelům thermometrickým výhodné. Dráty thermočlánku Le Chatelierova v úpravě Heraeově bývaji 0.5 neb 0.6 mm silné, musi však býti - vzhledem k vodivosti tepelné - dostatečně dlouhé, nejméně $1 / 2$ metru, lépe. však 1 až $1^{11 / 2}$ metru. Jeden drát procházi úzkou trubičkou
*) V roce 1904 bylo thermočlánkú tẻchto zkoumảno 735.
porculánovou, ta pak je vložena do druhé širši trubice porculánové, která chrání a isoluje drát druhý; celek pak spočivá v ochranné trubici ocelové (Mannesmannovẽ) nebo čistě niklové (obr. 10.). Mezery jsou vyplněny asbestem. Část ochranné trubice, která za žáru vyčnívá ven, chladí se na př. ledovou vodou. Mimo trubici mohou jíti dráty ještě dále v délce až $21 / a$ metru, aby nebylo třeba připojování drátů jiných. Voltmetr (obr. 11.) bývá aperiodický soustavy Deprez-d'Arsonval; vedle

Obr. 9.
Jak roste u článku Le Chatelierova elektrom. sila s teplotou.
dělení na Millivolty mívá hned stupnici teploměrnou připojenu. Jde-li o velmi přesné určení elektromotorické síly e, lze užiti methody kompensační (Dr. Lindeck). K mnohým účelủm používá se s výhodou methody autoregistrační (Siemens a Halske). Při uživáni pyrometru v žáru výhní, pecí a pod. vzniká vždy nebezpečí, aby se žárem ocelová (neb niklová) obalujíci trubice neprohnula, čímž by vnitřní porculánové trubice popraskaly. Proto se ochranná trubice obalaje hlinou (chamottovou) a klade na rovné podložky. Pozoruhodno jest, jak veliký intervall tepelný se ovládá thermočlánky, totiž od -200° do $+1600^{\circ}$.

V novêjši dobẻ (1905) doporučuje A. de Forest-Palmer thermoçlánek zelezo-advance, který se v intervallu $0^{\circ} \ldots 200^{\circ}$ dobre osvědčil. Advance ${ }^{*}$ jest slitina $55 \% \mathrm{Cu}, 44.4 \% \mathrm{Ni}, 0.6 \% \mathrm{Fe}$.

Pro nejnižší teploty pobliz̃e absolutniho bodu nulloveho osvéděil se thermočlanek argentan-platina; tímto určoval J. Dewar (1905) teplotu pevného (135 abs .) a tajícího ($15 \cdot 0 \mathrm{abs}$.) vodiku. Argentan cili nové střibro e slitina složeni mẻnlivého; stredni hodnoty komponent jsou $55 \% \mathrm{Cu}$. $30 \% \mathrm{Zn}, 15 \% \mathrm{Ni}$.

Obr. 10.
Prúr̃ez článku Le Chatelierova v üpravê pro ưčely technickẻ.

Obr. 11.
Clánek Le Chatelierův ve spojeni s voltmetrem.
s jiné strany (H. Kamerlingh Onnes a C. A. Crommelin, Leiden 1903) doporučuje se pro velmi nizké teploty thermoelement železokonstantan v takové úpravé, že spájecí misto je vnor̃eno do obalu méděného a tím chráněno, ježto ochlazení se sdili v prvni fơadẽ mědi a pak teprve elementu.

§ 22. Jak se měrí teplota změnou galvanického odporu.

Galvanický odpor vodičủ mění se s teplotou; stoupá-li teplota, přibývá odporu u vodičů metallických a ubývá u vodičủ elektrolytických. Je-li tedy vzájemný vztah mezi odporem a teplotou vyšetřen, lze z odporu pozorovaného souditi na ne-
známog teplotu. Základní této myšlenky (Will. Siemens) užito speciálně při platině a to jak pro teploty velmi nizké tak i velmi vysoké. Jemný drátek ve spirálu stočený z čisté platiny jeví k účelu tomu nejlepši stálost a neproměnlivost jak oproti silnému ochlazováni tak i zahřívání.

Odporu platiny přibývá s teplotou téměř úměrně. Je-li w_{0}, w_{t} odpor při teplotě $0, t$, platí relace lineárni

$$
v_{t}=w_{0}(1+\alpha t)
$$

Koefficient a se urči, když se stanoví ještě odpor w_{100} při druhé základni teplotě 100°. Jest pak

$$
w_{100}=w_{0}(1+100 r e
$$

Z obou rovnic plyne

$$
\frac{w_{t}-w_{0}}{w_{100}-w_{0}}=\frac{t}{100}
$$

z čehož lze t počítati. Teplota takto určená zove se zkrátka „platinová" (Callendar) a označuje se *) t_{p}. Byla by to teplota t skutečná dle normálního teploměru plynového, kdyby ona lineární relace mezi odporem w a teplotou t byla zcela přesná. Fakticky jest však jen přibližná; přesnějši byla by relace kvadratická. Jest však výhodnější, rozdil $t-t_{p}$ obou teplot vyjádřiti vzorcem zvláštním. Udává se vzorec ${ }^{* *}$)

$$
\begin{gathered}
t-t_{p}=\delta\left[\left(\frac{t}{100}\right)^{2}-\frac{t}{100}\right] \\
\delta=1.54
\end{gathered}
$$

Dle toho jsou hodnoty k sobě příslušné na př.

$$
\begin{array}{rccccc}
t=0, & 50, & 1 \cdot 00, & 200, & 300, & 400 \\
t-t_{p}=0, & -0 \cdot 4, & 0, & 3 \cdot 1, & 9 \cdot 2, & 18 \cdot 5
\end{array}
$$

Odpor platinové spirály, jenž při obyčejné teplotě $\left(14^{\circ}\right)$ bývá 10 Ohm. určuje se methodou differenciálni ${ }^{* * *)}$. Aby se eliminoval odpor dlouhých připojovacích drátů, jež jsou též platinové ale tlustši než spirála, jsou v trubici, do níž spirála je vložena, upraveny tři stejné připojovaci dráty. Obr. 12, ukazuje schematicky uspořádání pokusu dle methody differenciálni.

[^15]Proud hlavní se rozvětvuje v bodě A; v jedné větvi jest spirála a jeden prripojovaci drát (krajni na pravo), v druhé jest rheostat a opět připojovaci drát (krajni na levo); proudy se spoji v bodě B, a prostředním připojovacim drátem jde již proud hlavní k batterii zpět. Jest patrno, že tímto zpûsobem účinek obou

Obr. 12.

- Ưprava teploměru platinovẻho na mérení galv. odporu.
připojovacích drátů se kompensuje a že rheostatem se vyvažuje odpor spirály samotné. Tato vzájemná kompensace jest tim dủležitě̌jǐi, poněvadž teplota drátủ těch po celé jich délce jest velmi rûzná a nelze ji ani odhadem určiti.

Platinového teploměru užívá se zejména pro teploty velmi nizké ale též vysoké (do 1200°). Dle toho bývá úprava rozličná.

Tenký frrátek platinový se na př. naviji na skřižené dvě destičky slídové a vkládá se do trubice z tvrdého skla, při vyšších teplotách navijí se na válec, na př. chamottový, který se zase vkládá do železných, 2 m dlouhých ochranných trubic. Drátek, jehož užíval Callendar (ponejprv r. 1887, Phil. Trans.), měl 0.17 mm v prủměru a 1 m délky, a byl spirálovitě navinut na skleněnou trubičku, ke spirále pak, odporu asi 5 Ohm, byly připojeny dráty platinové tlouštky 0.73 mm .

Teploměr platinový vyznačuje se velkou extensitou pozorováni a dosti velikou citlivosti. Jen toho pamatovati dlužno, zdali užíváním zejména při extrémních teplotách odpor platiny se ponenáhlu neměni. Proto dlužno tento odpor na př.. při teplotě nullové čas od času kontrolovati. Také jinak osvědčil se princip, ze změn odporových souditi na zmèny teploty, a to u tak zvaných bolometrů, přistrojủ, jimiž se mě̌̌í teplo zářici.

§ 23. Jak se měři teplota na základě kalorimetrickém.

V kalorimetru z tenkého leštěného plechu niklového, nebo zlaceného mosazného, jest odváženo vhodné množstvi M_{1} (gramm) vody teploty t_{1} a specifického tepla C_{1}. Vedle toho jest připraven váleček platinový (do 1500°) nebo niklový neb měděný (do 1000°) hmoty M_{2} a specifického tepla C_{2}. Váleček vloží se do prostředi na př. výhně, žáru, roztaveného kovu a pod., jehož teplotu t_{2} dlužno stanoviti. Pozorování záleží pak v tom, že se horký váleček vhodi do vody v kalorimetru a že se pozoruje, na jaké teplotě τ se voda (po náležitém promicháni) ustálí. Rovnice kalorimetrická

$$
M_{2} C_{2}\left(t_{2}-\tau\right)=M_{1} C_{1}\left(\tau-t_{1}\right)
$$

vyjadřuje, že teplo, kteréž váleček ochlazenim ztrácí, voda ohřátim ziskává. Z rovnice té lze pak t_{2} počitati. V podrobnostech dlužno při pozorování tomto šetřiti mnohých pravidel, o nichž teprve při kalorimetrii bude jednáno. Proto se k tomuto zpủsobu měření teploty později ještě vrátíme.

§ 24. Optické pyrometry.

Tepelný zdroj, jehož teplota stoupá nad 500°, počiná vedle paprskủ tepelných, neviditelných, vysilati též paprsky viditelné, počíná svititi, s počátku, při teplotě $500^{\circ}-600^{\circ}$ světlem tmavočerveným, $600^{\circ}-800^{\circ}$ v̌̌dy jasněji červeným, $800^{\circ}-900^{\circ}$ oran-
žovým, $900^{\circ}-1100^{\circ}$ žlutým, $1100^{\circ}-1300^{\circ}$ žlutobílým, $1300^{\circ}-1500^{\circ}$ jasně bílým. Udaná čísla jsou vzhledem k neurčitosti přechodů jen orientačni. Díváme-li se na takový žár dalekohledem, s nímž jest spojen přímohledný spektroskop, pozorujeme při znenáhla stoupajíci teplotě žáru spektrum, jež začiná barvou červenou, k níž se přidruži postupně část oranžová, žlutá, zelená, modrá a konečně i fialová. Dle tohoto postupného rozšiřování spektra lze též na teplotu světelného zdroje souditi. K cíli tomu připoji se ve spektrálnim apparátu na místě, kde se spektrum pozoruje, stupnice a zařidí tak, aby na kraji, až kam spektrum se rozšírí, se odčítala přímo teplota. Tak jest upraven spektrálni pyrometr Hempeluiv. Lze ho nžiti od 700° do 1350°, pro oči zvlášt citlivé až i do 1600°. Přesnost měření není však veliká, již proto, že onen kraj spektra není dosti určitý, a mimo to, že spektrum jest podmíněno též povahou tělesa v žár uvedeného. Uživá se pyrometru toho v praxi technické pro posonzení teploty v pecich dle žáru chamottek, jimiž pec jest obyčejně obložena.

Jest však též možno z tohoto spektra vybrati a pozorovati jen určitou, malou část, nejlépe červenou, aby totǐ̌ bylo lze pozorování již od mirného žáru začiti. Stoupající teplotou zvysuje se pak intensita tohoto určitého záření červeného; k jejímu měřeni lze použíti methody fotometrické, t. j. srovnávati ji s intensitou jiného konstantního záření, na pǐ. lampy žárové, amylacetové a j., jejiž světlo rovněž spektrálně se rozloží. V pozorovacím přístroji jeví se pak červené zorné pole ve dvou polovičkách, jedna od lampy, druhá od tepelného zdroje. Tato bude zpravidla intensivnější; nutno tedy tuto intensitu vhodně seslabiti, aby se rovnala intensitě druhé. U pyrometru Wannerova děje se to na základě polarisace. Světlo od daného zdroje se polarisuje a pozoruje analysátorem, který se otáčí o úhel takový, aby obě polovičky zorného pole měly intensitu stejnou. Z úhlu soudí se pak na teplotu zdroje. Pyrometru tohoto, jenž jest přesnější než předešlý, užívá se od 900° počínajíc až do žáru bilého.

Bez spektrálního rozboru lze červenou část záření vybrati absorbováním ostatních části spektra, nejlépe červenými skly, jež jsouce zabarveny kysličnikem mědičnatým ($\mathrm{Cu}_{2} \mathrm{O}$) dávaji světlo dosti homogenní. Seslabovati neb sesilovati lze pak obráceně než u pyrometru předešlého intensitu srovnávací lampy žárové. Na těchto základních myšlenkách upravili pyrometr L.

Holborn a F. Kurlbaum*). Jest to pozorovací dalekohled (obr. 13.), v němž na místě nitkového kǐǐ̌e jest umistěno vlákno žárovky (4-voltové), spojené s akkumulátory, regulačním odporem (na stativu) a ampèremetrem. Ve schematickém obrazci jest kreslena přehledně žárovka jako o 90° otočená. Před okulárem jest červené skličko, dvou- neb čtyrmillimetrové. Pod 800° netřeba sklíček žádných. Při pozorování obrátí se pyrometr na zdroj žáru. Na zorném poli - jež jest přiměřeně zúženo diafragmaty, promítá se vlákno lampičky černě na ploše ohnivé. Na to se nechá lampička svítiti při znenáhla stoupající intensitě proudu. Jest viděti, jak vlákno se jako by rozplývá na oné ploše červeně zářicí, až konečně úplně zmizí; v okamžiku tom se odečte ampèremetr. Intensita proudu a teplota vlákna souvisi kvadratickou rovnici, jejiž konstanty dlužno empiricky určiti, a pak

Obr. 13.
Optický pyrometr Holborn-Kurlbaumúr.
sestaviti tabulku. Je-li žár zdroje příliš silný, - tak že žár lampičky nestačí k rovnosti, - seslabí se odrazem na dvou hranolech (v obrazci před dalekohledem naznačeno). Lampičky se totiž uživá zpravidla jen do žáru asi 1500°, toliko výjimečně nejvýše do 1900°, čímž však stálost jejího světla bývá již ohrožena.

Budiž uveden konkretni priklad. Waidner a Burgess zkoumali (1906, V Bureau national of Standards ve Washingtonu) optickým pyrometrem, 0 němž se zde jedná, teplotu vyzǎ̃ování lampiček zárových a to uhlikových tantalových a wolframových. Pro souvislost intensity J proudu a teploty t pro lampicku wolframovou nalezli rovnici (pro $\lambda=0 \cdot 66 \mu$)

$$
J=-0.0285+0.0001041 t+0.000000099 t^{2}
$$

*) Annalen d. Physik, 10. pag. 225, 1903. Pyrometr hotovi firma Siemens a Halske. Skizza v obr. 12. jest reprodukována dle cenníku têto firmy.

C̛iselné vztahy mezi napétím, spotřebou elektrické práce (za sek.) na normälni svičku prepočtenou a mezi teplotou jevily se u jednotlivy̌ch lampiček následovnè:

Lampička	Volt	$\frac{\text { Watt }}{\text { svička }}$	approx. teplota
uhliková.	50	4	1800°
-mava	118	35	1850
$\cdots \cdots$	118	$3 \cdot 1$	1950
tantalovå. .	110	$2 \cdot 0$	2000
wolframová . .	100	0.95	2300

Bod tavení wolframu určen na $3200^{\circ} \mathrm{C}$.
Konečně lze na místě nitkového křiže do pozorovaciho dalekohledu vložiti přímo thermoelement, na př. z jemných drátkǔ železa a konstantanu, a spojiti jej s galvanometrem. Tak jest zařizen pyrometr, jejž sestrojil Ch. Féry*). Obrátíli se dalekohled na zdroj tepelného zářeni, oteplí se thermočlánek, galvanometr dává výchylku, která jest úměrná absolutní teplotě zdroje.

Viklady o thermometrii, jak zde byly podány, vyčerpán jest předmẻt y hlavnich vęcech dosti úplnẽ, avšak v podrobnostech bylo by moz̃no ještě mnoho pripojiti. V té príčinẻ budiz̀ poukảzáno na nêkteré çlảnky česky napsané z doby nejnovéjsi, zejména: Dr. Vlad. Novák, 0 elektrickém teploměru; o pokroku pyrometrie; Casop. pro pěst. math. a fys. 25. pag. 204, 1896 a 30. pay. 161, 1901. Dr. Boh. Kučera. O fysikâlnich vlastnostech hmoty za velmi nizkẏch teplot; tamtéż, 30. pag. 184, 1901. Dr. Jan Koutný, 0 rozvoji teploměrství, Programm st. gymnasia ve Val. Mezirící 1903 referát dra Petíry. Casop. pro pěst. math. a fys. 33. pag. 280, 1904) a ovẻem téz. Přehledy pokrokñ fysiky, roc̉niky nejnovéjsí.
*) Ch. Féry, Bull. soc. chim. (3) ${ }^{31 / s a}$ p. 701, 1904. Referováno dle Beiblätter d. Ph. 29. p. 228, 1905.

II

Změna objemu.

§ 25. Ủvahy všeobecnė.

Teplem měni se objem těles. Zkoumajice u daného tělesa změny tyto, vycházime od jeho objemu v_{0} při teplotě 0° jakožto základní a pozorujeme, jaký jest jeho objem v při teplotě vyšši t. Zpravidla jest $v>v_{0}$, t. j. teplem se tělesa roztahují, jich objem se zvětšuje.

Na místě objemu múžeme stanoviti též specifickou hmotu tělesa s_{0} při teplotě 0^{0} a s při teplotě t. Vzhledem k relaci

$$
v . s=m
$$

dle niž součin z objemu a hmoty specifické jest (ex definitione) veličina stálá, totiž hmota tělesa, soudíme, že, co řečeno o objemu v, plati obráceně o hmotě specifické s. Proto jest zpravidla $s<s_{0}$, hmoty specifické s teplotou ubývá, tělesa stávaji se zahříváním specificky lehčími, řidšími.

Dle toho jest jednostejno, zdali studujeme účinek tepla na objem v nebo na specifickou hmotu s. Zpủsob prvý jest názornější; objem dá se přímo pozorovati, specifickou hmotu nutno počítati; způsob druhý mủže však v některých případech býti pohodlnější, jakož na svém místě později vyložíme. Zde ve výkladu přidržíme se způsobu prvého.

Abychom vystihli, dle kterého zákona se objem s teplotou měni, zjednáme sobě pozorováním číselný materiál, určujíce objem v pro jednotlivé teploty t četně a vhodně volené. Na základě tohoto pozorovacího materiálu mủžeme pak ihned výsledek graficky znázorniti, nanášejice teplotu za úsečkn a objem za pořadnici; obdržíme tolik bodủ, kolik podvojných hodnot (v, t) jest dáno; interpolujíce pak graficky, obdržime určitou křivku jakožto obraz závislosti $v=f(t)$ objemu v na teplotě t, a to pro ten konkretní případ, pro který pozorování platila.

K objasnění toho, co zde řečeno, jsou v obr. 14. některé takové křivky rýsovány, a to pro olovo, alkohol aethylnatý a vzduch, jakožto zástupce těles pevných, kapalných a plynných; při tom jest stupeň znázorněn délkou $1 / 2 \mathrm{~mm}$, objem teplotě nullové přislušný délkou 1 dm . Změna objemu jednoho procenta dána tudiž délkou 1 mm .

Obr. 14.
Roztažnost olova, alkoholu aethylnatėho a vzduchu teplem.
V obrazci 14. vystupuji zřetelně některé zvláštnosti, jimiž se vyznačuji skupenství. Již dle velikosti změn. Tělesa pevná jeví změny malé, kapaliny větší, plyny však největší; pro relativní změnu $\frac{v_{100}-v_{0}}{v_{0}}$ vintervallu tepelném 0° až 100° ukazuje olovo sotva 1%, alkohol aethylnatý 13%, vzduch však 367%. Ale také dle způsobu změn. Čára pro tělesa pevná a plynná jest přímkou, pro kapaliny křivkou; tělesa pevná a plyny roztahují se s teplotou rovnoměrně, kapaliny nerovnoměrně, urychleně.

§ 26. \cdot Koefficient roztažnosti.

Grafické znázornění jest vhodným orientačním základem pro mathematické řešení úkolu. Funkci $v=f(t)$ vyjádříme mathematicky velmi jednoduše, děje-li se roztahováni rovnoměrně. Zvýšime-li teplotu $\mathrm{z} 0^{0}$ na 1^{0}, zvětší se každá jednotka objemová z 1 na $1+$ c. Je-li roztahování rovnoměrné, stoupá jednotka objemová při každém dalšim zuýšení teploty o 1° stejně, na $1+2 \kappa, 1+3 \kappa, \ldots, 1+\alpha t$; značí-li tedy v_{0} počet
takových objemových jednotek při teplotě nullové jakožto základní, obdržíme objem závěrečný

$$
v=v_{0}(1+\alpha t)
$$

Roztažnost jest tudiž charakterisována jedinẏm čiselným koefficientem α, který se nazývá koefficient roztažnosti.

Jinak vystihneme jeho význam úvahou následující. Relativní změna objemu při zvyšováni teploty z 0° na t^{0} čini $\frac{v-v_{0}}{v_{0}}$. Děje-li se roztahováni rovnoměrně, na každý stupeň o touž část, obdržíme tento relativní přirủstek objemu na jeden stupen̆ připadajíci, když počtem stupňủ dělíme. Máme tedy výraz

$$
u=\frac{1}{t} \cdot \frac{v-v_{0}}{v_{0}},
$$

jenž jest ovšem s hořejši rovnici v souhlasu.
Týmž zpủsobem mủžeme však výklad vésti, je-li roztažnost nerounoměrná; koefficient a jest pak priměrným pro temperaturní intervall $0^{\circ} \ldots t$. Všeobecněji, pro temperaturní intervall $t \ldots t^{\prime}$, obdržíme průměrný koefficient analogicky výrazem

$$
\kappa=\frac{1}{t^{\prime}-t} \cdot \frac{v^{\prime}-v}{v_{0}}
$$

čili

$$
\kappa=\frac{1}{v_{0}} \cdot \frac{v^{\prime}-v}{t^{\prime}-t} .
$$

V tomto smyslu závisi hodnota a koefficientu průměrného jednak na teplotě t, od niž vycházime, jednak na temperaturnim intervallu $t^{\prime}-t$ samém.

Chceme-li miti koefficient, jeň̌ by byl charakteristický jenom pro teplotut, nesmíme se od této teploty oddáliti než jen velmi málo, na př. (jak pro praxis vždy stačí) o 1°, tak že ẓměny

$$
t^{\prime}-t=\Delta t, \quad v^{\prime}-v=\Delta v
$$

jsou velmi malé. Jest pak

$$
a=\frac{1}{v_{0}} \cdot \frac{\Delta v}{\Delta t}
$$

tak zvaný koefficient roztažnosti pravý.
Význam obou koefficientủ, průměrného i pravého, lze dobře objasniti methodou grafickou. V obr. 15. znázorn̆uje křivka nerovnoměrné roztahováni nějakého tělesa, na př. aetheru aethylDr. V. Strouhal; Thermika.
natého, tedy roztahování, jak vskutku jest. Koefficientem prioměrným vyznačuje se roztahování, jak by v intervallu $t \ldots t^{\prime}$ bylo, kdyby se dálo dle sečné S, položené přislušnými body (t, v) a $\left(t^{\prime}, v^{\prime}\right)$ křivky; koefficient jest úměrný tangentě úhlu, určujícího odchylku této sečné od osy úseček. Zmenšuje-li se intervall $t^{\prime}-t$ vždy více a více, až se stane velmi malým, přecházi sečná S více a více k tečné T, položené v bodu (t, v) ke kǐivce dané. Udává tudiž pravý koefficient roztahování, jak by od bodu

Obr. 15.
Geometrickẏ význam koefficientu roztaz̃nosti průmérnẻho a pravého.
(t, v) - při teplotě t - se dálo podél tečné $T \mathrm{k}$ teplotě nejbliže vyšši. Koefficient « jest úměrný tangentě úhlu, udávajícího odklon této tečné od osy úseček. Dle toho jest pravý koefficient určen stoupánám křivky a mění se od teploty jedné ke druhé, tak jako pokračuje toto stoupání, tečnou určené, od bodu jednoho k sousednímu.

Přechod od koefficientu průměrného k pravému znamená ve smyslu počtu'differenciálního přechod od kvocientu differenčního $\frac{\Delta v}{\Delta t} \mathrm{k}$ jeho limitě, t. j. ke kvocientu differenciàlnímu $\frac{d v}{d t}$; koefficient pravý jest tedy

$$
\alpha=\frac{1}{v_{0}} \cdot \frac{d v}{d t}
$$

Dẻlení differenciálního kvocientu $\frac{d v}{d t}$ objemem původním (při teplotě 0°) poukazuje k tomu, że koefficient, ve smyslu fysikálním, se $v z ̌ d y$ vztahuje ke zmẽnám objemu relationím a to vzhledem k objemu při teploté
hullové. Proto také není koefticient pravý rovným tangentê úhlu, ktery tečná, ke křivce $v=f(t)$ v bodẽ daném vedená, svírả s osou temperaturní, ny̌brž jest jemu úměrným. Kdyby se koefficient pravý pr̛i teploté t zztahoval na objem v při téže teplotẽ t, byl by jeho význam zcela jinỳ Z rovnice

$$
\frac{1}{v} \cdot \frac{d v}{d t}=\text { const. }=a
$$

by na př. následovalo integraci

$$
v=v_{0} e^{a t}
$$

tedy vztah exponenciálni na misté lineárního.
Theoreticky jest zmẽna $d t$ a tudiž i $d v$ nekonečně malá. Prakticky však pr̛i poměrech, jak fysikảlně vskutku jsou, postačí úplné bráti pro změnu dt jednoduše změnu o $1^{\text {a }}$, çimž koefficient pravý nabude významu velmi jasného; jest to relativni změna objemu při oteplení o jeden stupeñ, počitaná vzhledem k púvodnímu objemu při teplotẽ nullové.

Forma hořejší relace

$$
v=v_{0}(1+\alpha t)
$$

zachovává se ve fysice i také v těch připadech, kdy roztahováni teplem jest nerovnoměrné; k lineárnimu členu připojuje se pak člen kvadratický, po připadě*) ještě člen kubický, což má tu výhodu, že dle akcessornich koefficientů ihned múžeme posouditi, jak znaěně roztahování jest nerovnoměrným. Tím vzniká relace formy

$$
v=v_{0}\left(1+A t+B t^{2}+C t^{3}\right)
$$

kteráž má význam formule interpolační; koefficienty A, B, C dlužno počtem určiti tak, aby objem v pro určitou teplotu t dle hořejší formule vypočtený co možná souhlasil s objemem při této teplotě pozorovaným.

Prúměrný koefficient pro intervall temperaturní $t^{\prime}-t$ počitá se pak z rovnic

$$
\begin{gathered}
v=v_{0}\left(1+A t+B t^{2}+C t^{3}\right) \\
v^{\prime}=v_{0}\left(1+A t^{\prime}+B t^{\prime 2}+C t^{\prime 3}\right) \\
\frac{v^{\prime}-v}{t^{\prime}-t}=v_{0}\left(A+B\left[t^{\prime}+t\right]+C\left[t^{\prime 2}+t t^{\prime}+t^{2}\right]\right)
\end{gathered}
$$

cili

$$
\frac{1}{v_{0}} \cdot \frac{\Delta v}{\Delta t}=A+B\left[t^{\prime}+t\right]+C\left[t^{\prime 2}+t t^{\prime}+t^{2}\right]
$$

Tento prúměrný koefficient přejde v pravý pro teplotu t, když se od teploty t vzdálíme velice (nekonečnẽ) málo, tedy \mathbf{v} limitẽ, kdyz̃ položíme

[^16]$t^{\prime}=t$. Poměr differenční $\frac{\Delta v}{\Delta t}$ préejde pak v pomẽr differenciälní $\frac{d v}{d t}$ a pro koefficient pravý vyjde výraz
$$
\frac{1}{v_{0}} \cdot \frac{d v}{d t}=A+2 B t+3 C t^{2}
$$
kterẏž se ovsem z rovnice púvodni pro v rychleji odvodí prímou differenciací.

Budiž ještě poznamenáno, jak se přepočitává při rovnomèrné roztažnosti objem v při teplotě t na objem v^{\prime} při teplotě t^{\prime} na př. vyšši. Máme tu vztahy:

$$
\begin{aligned}
v & =v_{\mathrm{e}}(1+c t) \\
v^{\prime} & =v_{0}\left(1+\alpha t^{\prime}\right), \\
\frac{v^{\prime}}{v} & =\frac{1+\alpha t^{\prime}}{1+c t}
\end{aligned}
$$

$$
=1+\alpha\left(t^{\prime}-t\right)-\alpha^{2} t\left(t^{\prime}-t\right)+\cdots
$$

Koefficient e jest zpravidla čislo tak malé, že jeho ětverec proti jedničce mizi. Vzhledem k tomu lze v posledním výrazu přestati na členu lineárním a psáti

$$
\frac{v^{\prime}}{v}=1+\alpha\left(t^{\prime}-t\right)
$$

čili

$$
v^{\prime}=v\left(1+e\left[t^{\prime}-t\right]\right) .
$$

Přepočítávání objemu z teploty t na t^{\prime} se pak děje dle téhož způsobu jako z teploty nullové na teplotu t.

Jde-li o změny specifické hmoty s s teplotou t, pak platí všechny relace dosud odvozené s tim jen rozdilem, že násobení přejde v dělení v souhlasu s tim, že specifické hmoty s teplotou ubývá. Máme tedy výrazy

$$
s=\frac{s_{0}}{1+c t}
$$

anebo

$$
s^{\prime}=\frac{s}{1+\alpha\left[t^{\prime}-\bar{t}\right]}
$$

anebo při roztahování nerovnoměrném

$$
s=\frac{s_{0}}{1+A t+B t^{2}+\cdots}
$$

při čemž pojmy koefficient prủměrný nebo pravýi zde zūstávají v přiměřeném smyslu v platnosti.

§ 27. Roztřiděni úkolů.

Předbě̌̌né výklady dosud podané plati pro tělesa všech skupenství všeobecně. Při studiu podrobném jest v́ýhodno úkol všeobecný roztřiditi ve tři zvláštni dle skupenstvi pevného, kapalného a plynného. Při tom dlužno zkoumati, jak dalece ono roztahováni rovnoměrné, jež jsme v úvodnich úvahách vytkli pro tělesa pevná a plynná, ve skutečnosti přesně plati. Ukazuje se, že tomu presně tak není ani u těles pevných, kde rovnoměrnost jenom pro úzké meze temperaturní možno připustiti, a také ne u plynủ, kde ovšem rovnoměrnost plati velmi přibližně. Poněvadž pak objem těles se mění též tlakem, nutno k účinku tlaku přihližeti zvlášt. U těles pevných a kapalných ustupuje účinek tento do pozadi, jeví se býti značným jen za tlaků mimořádně velikých, jinak má význam podřizený. Naproti tomu u plynû jest účinek tlaku na objem rovnocenným s účinkem teploty; tím vzniká u plynủ problém zvláštní, zkoumati totiž při daném množství plynu vzájemné vztahy, jakéž plati mezi jeho objemem, teplotou a tlakem. Dvě z těchto veličin lze voliti, třetí jest na nich závislá; zpủsob pak této závislosti určují zákony pro plyny význačné.

Roztažnost těles pevných.

§ 28. Roztažnost dèlkovả.

Objem těles pevných mění se teplem. Jest však zvláštností peoného skupenstvi, že můžeme tento účinek tepla pozorovati, jak se jevi v jediném pouze směru. Zahříváme-li na př. mosaznou pravoúhlou tyč, mění se jeji délka, šiřka i tlouštka současně; múžeme však stopovati každou tuto změnu zvlášt, na př. změnu délky, nevšimajice sobě změny šiřky a tlouštky. Znamená-li tudiž l_{0} délku tyče při teplotě $0^{0}, l$ při teplotě t, jest podobně jako při objemu $l-l_{0}$ roztažnost absolutni, $\frac{l-l_{0}}{l_{0}}$ relativni, a to délková. Veškeré vztahy a definice, jež jsme př̌i roztažnosti objemové uvedli, můžeme podobně pro roztažnost délkovou stanoviti. Píseme tedy

$$
l=l_{0}(1+\beta t)
$$

při roztažnosti rovnomérné a nazýváme β koefficientem roztažnosti délkové.

Pro teploty t a t^{\prime} jest všeobecněji :

$$
\begin{aligned}
l & =l_{0}(1+\beta t) \\
l^{\prime} & =l_{0}\left(1+\beta t^{\prime}\right),
\end{aligned}
$$

tudiž

$$
l^{\prime}-l=l_{\mathbf{0}} \cdot \beta\left(t^{\prime}-t\right)
$$

čili

$$
\Delta l=l_{0} \cdot \beta \cdot \Delta t
$$

a odtud

$$
l_{\mathrm{o}} \beta=\frac{\Delta l}{\Delta t}
$$

Podobně plati při roztažnosti nerovnoměrné vztah

$$
l=l_{6}\left(1+a t+b t^{2}\right)
$$

Při tom nastává zde, u těles pevných, tak dalece zjednodušení, že úplně postačí připojiti jenom člen kvadratický, poněvadž nerovnoměrnost v roztahování těles pevných jest velmi skrovná.

Průmẽrný koefficient pro intervall $t^{\prime}-t$ jest analogicky

$$
\frac{1}{l_{0}} \cdot \frac{l^{\prime}-1}{t^{\prime}-t}=a+b\left[t^{\prime}+t\right]
$$

čili

$$
\frac{1}{l_{0}} \cdot \frac{\Delta l}{\Delta t}=a+b\left[t^{\prime}+t\right]
$$

tudiž pravẏ koefficient, při $t^{\prime}=t$,

$$
\frac{1}{l_{0}} \cdot \frac{d l}{d t}=a+2 b t
$$

Casto psãvá se vzorec

$$
l=l_{0}\left(1+a t+b t^{2}\right)
$$

ve formè

$$
l=l_{0}(1+[a+b t] t)
$$

a klade se

$$
\beta=a+b t
$$

Pak má koefficient β takto stanovený vẏznam koefficientu prûmérného v intervallu tepelném od 0° do t. Oproti tomu jest

$$
\beta_{t}=a+2 b t
$$

koefficient pravy pro teplotu t.

§ 29. Vztah mezi koefficientem objemovým a délkovým.

Oba koefficienty, objemový a délkový, souvisí vespolek jednoduchou relaci, kterou odvodime uvážíce, že objem tělesa lze vždy vyjádřiti součinem tří na sobě kolmých rozměrủ a, b, c. Jest tedy při teplotě t

$$
v=a b c
$$

a podobně při teplotě nullové

$$
v_{0}=a_{0} b_{0} c_{0}
$$

Značí-li β délkový koefficient roztažnosti materiálu, o který se jedná, pak jest dle odstavce předešlého

$$
\begin{aligned}
& a=a_{0}(1+\beta t) \\
& b=b_{0}(1+\beta t) \\
& c=c_{0}(1+\beta t)
\end{aligned}
$$

z čehož násobením vychází

$$
v=v_{0}(1+\beta t)^{3}
$$

čili

$$
v=v_{0}\left(1+3 \beta t+3 \beta^{2} t^{2}+\beta^{3} t^{3}\right)
$$

U těles pevných jest však koefficient β čislo velice malé, tak že jeho druhá a tim vice jeho třetí mocnost proti jedničce mizí. Není-li tudiž teplota t přiliš veliká, můžeme členy $3 \beta^{2} t^{2}$ a $\beta^{3} t^{3}$ zanedbávati proti členům zbývajicím a obdržíme pak jednoduše

$$
v=v_{0}(1+3 \beta t)
$$

Srovnáme-li s tímto výsledkem výraz

$$
v=v_{0}(1+\kappa t)
$$

vyjádřující rovnoměrnou roztažnost objemovou, obdržíme relaci

$$
\varepsilon=3 \beta
$$

mezi koefficientem objemovým α a lineárnim β.
Odvození toto předpokládalo, že roztahováni tělesa ve směrech a, b, c jest stejné, že těleso jest thermicky isotropní. Není-li tomu tak, pak jest nutno v každém z těchto tři směrû předpokládati jiný koefficient roztažnosti lineární, $\beta_{1}, \beta_{2}, \beta_{3}$, psáti tudiž

$$
\begin{aligned}
& a=a_{0}\left(1+\beta_{1} t\right) \\
& b=b_{0}\left(1+\beta_{0} t\right) \\
& c=c_{0}\left(1+\beta_{3} t\right)
\end{aligned}
$$

Násobíce obdržime:

$$
v=v_{0}\left(1+\beta_{1} t\right)\left(1+\beta_{2} t\right)\left(1+\beta_{3} t\right)
$$

anebo

$$
v=v_{0}\left(1+\left[\beta_{1}+\beta_{2}+\beta_{3}\right] t+\left[\beta_{1} \beta_{2}+\beta_{2} \beta_{3}+\beta_{1} \beta_{3}\right] t^{2}+\beta_{1} \beta_{2} \beta_{3} . t^{3}\right)
$$

Uvážíme-li opět, že koefficienty β jsou velmi malé, tak že jich součiny dávaji čisla velmi malá druhého, resp. třetího ǐádu, jež lze proti jedničce zanedbávati, obdržíme jednoduše

$$
v=v_{0}\left(1+\left[\beta_{1}+\beta_{2}+\beta_{3}\right] t\right)
$$

z čehož ve spojení s relaci

$$
v=v_{0}(1+c t)
$$

soudime, že jest

$$
a=\beta_{1}+\beta_{2}+\beta_{3} .
$$

Připad dřivějši, kde $\beta_{1}=\beta_{2}=\beta_{3}$, jest ovšem v tomto obecnějším obsažen.

§ 30. Pokusy o roztažnosti objemové.

Známý a také v podrobnostech poučný jest pokus následujíci. Mosazná koule, na řetizku zavěšená (obr. 16.), prochází právě ještě kruhovým otvorem mosazného stolečku, když teploty koule a stolku jsou stejné. Zahřeje-li se koule mírně na př. plamenem Bunsenovým a spusti-li se řetízkem na stolek, neprojde jeho otvorem, nýbrž spočine na stolku na důkaz, že se její objem zahřátím zvětšil. Avšak za nějakou dobu propadne přece, nebof dotekem zahřeje se stolek též a roztáhne. Když se po chvilce koule na řetízku zvedne, neprojde otvorem stolku nýbrž stolek se s kouli vyzvedne; nebof zatím se ochladil více než koule. Za krátko však stolek spadne, když dotekem opět zahřátí stolku nastalo. Koule chladne velmi zvolna.

Budiž na tomto místě poznamenáno, že dutiny, utvořené uvnitř těles pevných, zvětšují svůj objem právě tak, jako kdyby byly vyplněny látkou těchto těles. Tak v našem přikladu změna prủměru onoho kruhového stolečku vypočetla by se z koefficientu roztažnosti mosazi, tak jako změna průměru oné koule právě stolkem procházející. Proto také objem nádob vypočitáváme z koefficientu roztažnosti toho materiálu, z něhož nádoba jest vytvořena.

Pokus tento, v jiné pone̊kud formé, znali již çlenové akademie >del Cimentos a také jiné podobné pokusy. Viz na pr̃. Paul La Cour a Jak. Appel, Fysika v rozvoji historickém. Brunšvik, 1905.

Roztažnost skla ukáže se na teploměrné nádobce, když se rychle ponoři do míně horké vody; sklo, jsouc tenké, zahřeje se dřive než kapalina thermometrická, a proto v první chvili

Obr. 16.
Demonstrováni roztaz̃nosti objemové.
sloupeček kapaliny klesne. Pokus se daři velmi pěkně teploměrem rtufovým a ještě lépe lihovým, poněvady̌ líh má proti rtuti menši vodivost tepelnou; při tom jest pro pozorování výhodno, je-li líh zbarvený.

§ 31. Pokusy o roztažnosti délkové.

Zména délková Δl, zpûsobená změnou teploty Δt, jest velmi skrovná. Aby se učinila oku patrnější, dlužno ji vhodným zařizenim zvětšiti. Jednoduchý jest způsob pákový (obr. 17.). Otoči-li se soustava o úhel $\Delta \mathcal{F}$, jest velmi přibližně

$$
\begin{aligned}
\Delta l & =r \cdot \Delta \mathscr{q} \\
\Delta n & =R \cdot \Delta q
\end{aligned}
$$

tudiž

$$
\frac{\Delta n}{\Delta l}=\frac{R}{r}
$$

Prodloužení Δl jeví se zvětšeně pošinutím ukazovatele R na stupnici o Δn dilců, při čemž koefficient zvětšení jest $\frac{R}{r}$. Výraz jest v platnosti, pokud lze předpokládati, že oblouček,

Obr. 17.
Jak se znázorni roztaz̃nost tyče soustavou pâkovou.
který konce ramen r a R opisuji. jest malou přímkou pripadající do směru tyče, resp. stupnice. Tomu se dostatečně vyhovi, když se ramena r a R postavi k tyči, resp. k stupnici tak, aby průběhem pokusu zůstávala kim téměř kolmými, tedy s počátku asi o polovici toho úhlu zpátky, o který se průběhem pokusu otočí.

Obr. 18.
dak se znázorni roztaz̃nost tyče otáčením jehel s ukazovateli.
Jiný způsob znázorňuje obr. 18. Tyč spočívá na dvou přičně položených tenkých drátcích, které leži na vodorovných (skleněných) podložkách a maji na jednom konci lehké (aluminiové) ukazovatele v těžišti přičně upevněné. Zahřívá-li se tyč uprostřed lihovým plamenem, roztahuje se na obě strany, a roztahování jevi se oku otáčením ukazovatelủ. Když se tyč na jednom konci upevní, děje se roztahování jenom směrem ke konci druhému. Je-li r poloměr drátku, Δq úhel, o který se
ukazovatel otoči, jest

$$
\Delta l=r \cdot \Delta \varphi
$$

čili

$$
\Delta q=\frac{1}{r} \cdot \Delta l
$$

Koefficientem převodním jest tedy $\frac{1}{r}$ v míře obloukové.
Přístrojem v obr. 19. znázorněným lze ukázati, jakou silou se roztahování teplem, resp. stahování chladem děje. Tyč, o jejiž roztahování teplem se jedná, jest z kujného železa, délky 25 cm , prủřezu čtverečného 0 straně $2^{1 / 2} \mathrm{~cm}$. Na jedné (v obr. levé) straně končí šroubem, k němuž náleží příslušná pákovitě prodloužená matice şroubová. Na druhé (v obr. pravé) straně má

Obr. 19.
Mohutnost kontrakce prì ochlazeni tyče pred tím zahřăté.
na konci kruh, s ostrou hranou uvnitř. Tyč se vkládá do výǏezú dvou massivních sloupů silného litého stolu tak, že se na pravém konci tyčinkou z litiny asi 1 cm v průměru do kruhu vloženou uzavře a na levém konci šroubem prozatím jen málo dotáhne. Na to se velkým hořákem Bunsenovým rozpáli téměř do červeného žáru a šroubem pevně dotáhne. Když pak chladne. stahuje se, a stahování děje se silou tak značnou, že ona tyčinka z litiny praskne.

Mohutnosti, s jakou takové stahování se děje, lze použiti též k účelủm technickým. Tímto způsobem zachránil inženýr Humbert de Molard v Pařiži budovu konservatoře ,des Arts et Métiers", jejiž rozstupujíci se zdi soustavou silných horizontálnich tyči železných, střidavě (po dvou) zahřívaných a pak chlazených, stáhl, až zdi byly opět vertikálnimi.

§ 32. Jak se stanovi koefficient lineárni z měřeni délkových.

V předešlémı § bylo vyloženo, jak se dá zařizením pákovým malé prodloužení tyče Δl zvětšiti na Δn dílců stupnicových, při čemž jest $\frac{R}{r}$ koefficientem zvětšení. Methodu tuto učiníme jemnější a přesnějši, když rameno pákové R nahradíme světelným paprskem, odraženým na malém rovinném zrcátku, kteréž upevnime podél osy O. Tím se docili výhody dvojí; jednak lze paprsek R učiniti značně dlouhým, jedınak zdvojnásobí se koefficient zvětšeni na $2 \frac{R}{r}$ vzhledem k tomu, že odražený paprsek R opiše úhel 2. Δ_{q}, když rameno pákové r se otočí

o úhel $\Delta_{\mathcal{T}}$ (obr. 20.). Jest tudiž

$$
A n=2 \frac{R}{r} \cdot \Delta l
$$

a naopak

$$
A=\frac{1}{2} \frac{r}{R} \cdot \Delta n
$$

Výraz $\frac{1}{2} \frac{r}{R}$ má pak vẏznam redukěního koefficientu, kterým se pošinuti světelného ukazovatele na stupnici o Δn dílců přepočitá na skutečné prodloužení tyče Δl. Koefficient roztažnosti lineárni jest pak (§ 28.)

$$
l_{0} \cdot \beta=\frac{\Delta l}{\Delta t}
$$

Obr. 21. ukazuje apparát (Edelmann, Mnichov) účelně zařizený pro pozorováni laboratorní i pro pokusy přednáškové. Veškeré části k pozorováni určené jsou montovány na dřevěném trámci,
spočívajicím na dvou silných dvojitých nohách železných. Na trámci jest zavěšen na dvou příčkách mosazný, něco přes metr dlouhý lineál, na který se klade*) tyč k pozorováni určená. Jeden konec této tyče opírá se o pevný, druhý o pohyblivý bod, hrot to malého kužele; prvý náleži mosazné přičce, jež se dá v poloze libovolné na trámci upevniti; drubý tvoři konec pohyblivého ramene r, končícího válcovitou osou O, jež se pružným perem vtlačuje do ložiska na trámci upevněného. Pružné pero působi na malé páce tak, že se nejenom osa v ložisku drží, nýbrž rameno r též proti rovinné ploše tyčové kolmo tlači, aby zde kontakt byl dokonalý. Na trámei jest zavěšena plechová

Obr. 21.
Apparát laboratorni (Edelmanmúv) ke stanoveni koefticientu roztaz̃nosti lineárni.
nádoba, pro lázeň - vodni neb olejovou, - do niž se tyč vkládá. Zahříváni se děje řadou malých plynových (nesvítivých) plaménků. Teplota se určuje dvěma teploměry, jež bývaji k pohodlnějšimu odčítáni vertikálně zavěšeny; aby se posoudila teplota vyčnivajících z lázně sloupečkû rtutových a korrekce z toho vznikajici (§ 11.), jest připojen uprostřed teploměr třeti, udávajíci teplotu vzduchu nad lázní. Korrekce tato odpadá, když se teploměry vloží v mírném sklonu úplně do lázně. Na ose jest nastrčeno malé rovné zrcátko. Pozorování mủže se diti bud’ subjektivně neb objektivně.

[^17]Při pozorováni subjektivním postavi se proti zrcátku vodorovně odčítaci dalekohled, majíci po straně svislou stupnici. Nejprve zařidi se okulár dalekohledu tak, aby nitkový kǐiž se jevil zcela ostře; potom se namíří dalekohled téměř kolmo proti zrcátku, za nimž opticky se jevi stupnice vedle dalekohledu umistěná; dalekohled zařídí se pak na tento obraz stupnice tak. aby se též jevila zcela ostře, t. j. aby proti nitkovému křiži nebyla žádná parallaxa. Nitkový křiž v okuláru stanoví určitý dílec stupnice na millimetry rozdělené i jeho desetiny, jež se odhadnou. Zrcátko otoči se tak, aby světelný paprsek R v zamýšleném intervallu tepelném ukazoval blizko středniho dilce stupnice, s počátku něco pod ním, později při vyšši teplotě něco nad ním. Přibližné formule dříve odvozené maji pak svou platnost.

Při pozorování objektivním vede se proti zrcátku od lampy elektrické (nebo Drummondské) v laterně*) svazek paprsků a to raději nikoli př̌imo, nýbrž pomocí totálně odrážejícího hranolu v úhlu 90°. Laterna stoji pak stranou a nepřekáži. Za kollimujici čočkou laterny jest tmavý index, na př. šipka tmavá v jasném poli, který se čočkou, před totálně reflektujicím hranolem umístěnou, zobrazuje reálně na stupnici, jež jest v odlehlosti P od zrcátka vertikálně postavena.

Před pozorováním odměrí se délky r a R, a počitả se napred již redukční koefficient $\frac{1}{2} \frac{r}{R}$. Ustanoví se pak plán pozorování. Jest výhodno zvyšovati ponenáhlu ${ }^{* *}$) teplotu na př. od 0° po 10 stupních, tedy zařiditi a udržovati co možná konstantně po nějakou dobu teploty blizko $0^{\circ}, 10^{\circ}$, $20^{\circ}, 30^{\circ}$ atd. Odečitá se pak současně na teplomérech teplota t a dilec stupnice n. Tím se obdrži pozorovací materiall, kterého se hned použije ke grafickému znázornění. Eventuálni korrekce teploměrů se ovšem k odec̃tené teplotẽ připojí. Grafické znázornění, pr̃i nẻmž se teploty t nanásejeji jako úsečky, dilce n jako pořadnice, orientuje pozorovatele ihned, zdali roztahování se déje rovnomérnẽ nebo urychlenẽ. V prvém případu body (t, n) druz̃i se k sobẻ v přímce, v druhém v křivce. Tak na př. kdyby se studovala roztaz̃nost tyče ebonitové, ukázalo by se, že body svẙm seskupením naznačují rozhodnẽ průběh křivky; roztahovảní ebonitu jest značně urychlené. Existujî početní methody, - na př. methoda nejmenšich čtvercủ - jimiž jest možno konstanty oné přímky neb křivky ćíselnẽ určiti. Mnohdy jest však
*) Světlo Drummondské má proti elektrickému, (jez̃ ovĚem jest stkrêlejši), zase tu výhodu, že jest klidnéjsín, že svitici plocha se nikterak nepošinuje, coz̄ zejména při mêreni jest přijemné.
**) Při prudšim zahr̄ivảni retarduje teplota tyče proti teplomẽrủm a pozorováni jest chybné.
neméně spolehlivou a pri tom daleko jednodušsí methoda grafické interpolace. Zkušený pozorovatel dovede soustavou bodú (t, n) vésti přimku neb kr̃ivkn tak, aby pozorováním bylo co nejlépe (vzhledem k pozorovacím chybám) vyhověno. Je-li tato přimka vedena, urči se pro vhodné na diagramnuu volený intervall $A t$ přislus̃né Δn, toto se přepoćitá na $a l$ dle koefficientu $\frac{1}{2} \frac{r}{R}$, a počitá se pak ihned koefficient roztaz̃nosti β, dle rovnic

$$
\Delta l=\frac{1}{2} \frac{r}{R} \cdot \Delta n, \quad l_{0} \cdot \beta=\frac{\Delta l}{\Delta t} .
$$

Je-li roztaz̃nost nerovnomérnả, urči se dle těchto rovnic koefficient priomérný, platíci pro tepelný intervall $\Delta t=t^{\prime}-t$. Máli se však propočitati rovnice kvadratická

$$
l=l_{0}\left(1+\beta t+\beta^{\prime} t^{2}\right)
$$

vyberou se z diagrammu tři teploty t_{1}, t_{2}, t_{3}, dvě krajni a jedna uprostřed, odmêrí se k nim přislušné n_{1}, n_{2}, n_{3}, počitá se dvojí Δt a Δn, a přejde se redukčním koefficientem od Δn ku Δl; konečnẽ se vloži tyto hodnoty do rovnic, jez̃ subtrakci vyplynou, když se ona rovnice pro l napis̃e třikráte, pro teploty t_{1}, t_{2}, t_{3}, a kdy̌̀ se prvâ rovnice odečte od druhé, druhá pak od třeti. Tím lze pak dvẽ neznámé β a β^{\prime} počitati. Tento zpúsob řešeni jest rychlejši nez̃li ten, při nêmz̃ se uživá na pr̃. methody nejmenších çtvercủ, a výsledky jsou rovnėž dobré. Ovšem z̃e poc̃itání dle methody nejmenšich čtvercủ jest vẻdecky přesnêjším a objektivně správnějsím, poněvadz̃ nepředpokládá grafické provedení příslušné křivky, kteréž jest přece do jisté mirry subjektivni.

Methody zde uvedené, ovšem v podrobnostech poněkud odchylné, uživali ponejprv Lavoisier a Laplace, jak udává Biot ve své Traité de physique, Paris 1816.

Malé prodloužení Δl lze ostatně - bez jakéhokoli zvětšování zařizením mechanickým - měřiti též přímo, totiž mikroskopy, jež jsou opatřeny okulárním mikrometrem. Úprava přistrojủ jest pak analogická té, kterou mají komparatory *). Tímto způsobem studují ústavy metronomické zejména roztažnost normálních étalonů metrových. Zahřívání děje se v lázni suché, vzduchové, přiměřené úpravy.

Jednoduchá svou základní myšlenkou jest methoda differenciální, jak ji navrhl De-Luc a prováděl (při francouzském měřeni meridiánovém) Borda, později (1816-1818) též Dulong a Petit. Vedle tyče platinové, $A B$ (obr. 22.), jež slouží jako za základ, položí se tyč druhá, $A^{\prime} B^{\prime}$, na př. měděná tak, aby jich konečné plochy A, A^{\prime} na jedné straně stále přesně splývaly a se nepošinovaly. Na druhých koncích B, B^{\prime} maji tyče na plo-

[^18]chách hořejšich dělení, k sobě přiléhajici, tyč platinová stupnici millimetrovou a tyč druhá k ni př́slušný nonius. Při zahřívání pošinuje se nonius podél dělení a udává, oč se druhá tyč roztahuje vice než platinová. Tyče, jichž užívali Dulong a Petit, byly 120 cm dlouhé, 2.5 cm široké, 0.4 cm tlusté *).

§ 33. Jak se stanovi koefficient lineárni methodou interferenční.

Optických zjevů interferenčních, jez̆, jak známo, vynikaji svou jemností a citlivostí, použil r. 1864 Fizeau**), udav přistroj, kterým lze již i nejmenší prodloužení thermické daných těles citlivě studovati i měřiti. Touto methodou prováděl Fizeau (1866) a po něm Benoit (1881) v mezinárodním ústavu pro míry a váhy v Brétenilu celé řady cenných prací. Později (1884) zdokonalil pozorovací přistroj $A b b e^{* * *}$), a přístrojem tim provedl četná pozorování jeho žák G. Weidmann (1889) zejména o thermických vlastnostech nových druhů skel, vyšlých z technické laboratoře skelné v Jeně. V novějši době byl to C. Pulfrich (1892), jenž v optickém závodĕ Karla Zeisse v Jeně dủležitému přistroji tomu dal úpravu jaksi definitivní, učiniv z něho apparát dosti složitý, ale zároveň tak zdokonalený, že se stal apparátem jednak velmi praecisním, jednak k pozorováni velmi pohodlným†).

[^19]Podstatnou části ap parátu jest přístroj interferenční (obr. 23. uprostřed). Jest to tak zvaný Fizeau-ův stolek, ocelový, kulatý, rovinně hlazený, kterým prostupují tři stejné ocelové stavěcí šrouby, mající nahoře i dole hroty kuželové ${ }^{*}$). Ke stolku náleží kryci sklo, planparallelní **), kteréž se volně klade na hořejši

Obr. 23.
Interferenění přistroj Fizeau-Pulfrichûv ke studiu roztaz̃nosti lineárni.
hroty šroubové. Těleso pak, kteréž se má zkoumati, na př. kus skla určitého druhu, upraví se tak, aby nahoře i dole mělo dvě rovinné rovnoběžné plochy, z nichž hořejši jest zvláště pečlivě
*) Stolek, kterým pracoval Benoit, jakoz̃ i jeho šrouby, byly vyhotoveny z têhoz̀ kusu slitiny platiniridiové $(90 \%$ Pt a 10% Ir). Pro strední koefficient roztažnosti této slitiny od 0^{0} do t^{0} nalezl

$$
10^{6} \cdot \beta=8.540+0.0023 . t
$$

${ }^{* *}$) ne zcela, roviny sviraji úhel 20^{\prime}. Úcel toho vyloz̃en niže.
Dr. V. Strouhal: Thermika.
hlazena. Těleso toto položí se na stolek, a dle tlouštky jeho zařídí se šrouby tak, aby mezi spodní rovinnou plochou krycího skla a mezi vrchní rovinnou plochou tělesa se utvořila tenká vrstra vzduchová velmi slabě klínovitá. Aby se to provésti dalo s přesností co největší, jsou ony šrouby velmi jemně pracovány, majíce výšku otočky šroubové toliko 0.2 mm .

Když se tato vrstva shora osvětli světlem monochromatickým, na př. natriovým (neb jiným vhodnějším), vznikne soustava interferenčních tmavých pruhủ, kteréž, je-li vrstva vzduchová vskutku přesně lilínovitá, jsou př̌imočaré a vespolek aequi. distantně rovnoběžné. Jakmile oteplováním a sončasným roztahováním tělesa hořejší jeho rovinná plocha jen nepatrně rovnoběžně postoupí, jeví se toto postupování velmi citlivě pošinováním celé soustavy oněch interferenčních pruhủ, kteréž lze pozorovati.

Theoretický základ zjevu tohoto ob-

Obr. 24.
Theoretický základ methody interferenčni. jasǔuje obr. 24. Z paprsků světelných kolmo dopadajících některé*) se odrážejí již na dolejší ploše krycího skla, jiné vnikají do vrstvy vzduchové a odrážejí se pak na hořejší ploše daného tělesa, na př. skla. Tyto poslednějši paprsky mají proti prvnějším dráhový rozdil $2 d$, kdež značí d tlouštku vrstvy vzduchové právě na tom místě; opozdí se tudiž ve fasi**) proti prvnějším o $2 d \cdot \frac{2 \pi}{2} ; \mathrm{k}$ tomu však přistupuje ještě opozděni fasové π následkem odrazu na skle, tedy na prostředí opticky hustším. Celé opozdění fasové činí pak

$$
2 d \cdot \frac{2 \pi}{2}+\pi
$$

[^20]Oba paprsky, interferujice vespolek, ruší se, činí-li tento fasový rozdíl lichý počet π, tedy je-li

$$
2 d \cdot \frac{2 \pi}{2}+\pi=(2 k+1) \pi
$$

coz̆ jinak psáno stanoví podmínku

$$
d=2 k \cdot \frac{\lambda}{4}
$$

Interferenčni pruhy spojuji tedy místa stejné vrstevní tlouštky - mohli bychom čáry ty nazvati isopachické neb isopachy*) - a to místa, kde tlouštka vrstvy činí sudý počet čtvrtvln; změna Δd tlouštky od jedné čáry ke druhé činí tedy

$$
2 \cdot \frac{\lambda}{4}=\frac{\lambda}{2}
$$

a tolikéž činí změna tlouštky vrstevní na určitém místě, když se následkem thermického roztažení tělesa interferenčni cáry o jednu pošinou. Pro světlo natriové jest na př. okrouble $\lambda=0.6 \mu$, tudǐ̌ $\frac{1}{2} \lambda=0 \cdot 3 \mu$, a lze-li ještě desetinu onoho pošinuti odhadnouti, znamená to stanoveni thermické roztažnosti až na 0.03μ, tedy neobyčejně citlivě. Pozoruje-li se pak, mnoho-li při zahřívání tělesa čar interferenčních na určitém místě přejde, násobí se počet tento f čislem $\frac{\lambda}{2}$ a obdrži se thermické roztažení tělesa.

Avšak jenom zdánlivé. Nebot roztahuje se netoliko těleso, nýbrž též ocelové šroubky. Je-li a lineární koefficient roztažnosti daného tělesa, β ocelových šroubů, L tlouštka tělesa, E délka ocelových šroubů ${ }^{* *}$), Δt změna teploty, zuamená

$$
E \cdot \beta \Delta t, \quad L \cdot \alpha \Delta t
$$

thermické roztažení tělesa a šroubů, tudiž jest pozorovaná změna tloušfky vrstvové

$$
\Delta d=E \beta \Delta t-L u \Delta t
$$

odkudž plyne

$$
\frac{\Delta d}{\Delta t}=E \beta-L \alpha
$$

E a L zmèří se sférometrem nebo kontaktním citlivým měřítkem. Methoda dává tudǐ̌ a, je-li znám koefficient β.

[^21]Tento koefficient β určí se direktně touž methodou, když se kryci sklo odstrani, stolek obráti, deska kryci opět přiloži a tak utvoří vrstva vzduchová, jejižto dolejši ohraničení dává rovina (hlazená) stolku samého.

Za délku λ dlužno bráti hodnotu, jež plati pro vzduch té teploty (průměrné), při jaké bylo pozorováno*).

Nedá-li se dané těleso rovinně hladiti, přikryje se pomocnou, dokonale hlazenou kryci deskou skleněnou nebo křištálovou, jejíž roztažnost jest známa.

Na místo stolku Fizeau-ova užil Abbe též dutého válečku křištálového, jehož osa souhlasí s osou krystallografickou. Váleček jest 10 mm vysoký a má vnitřní průměr 25 mm . Spočivá na desce křištálové a kryje se rovněž deskou křištálovou. Regulace ve výšce ovšem zde odpadává. Koefficient roztažnosti křištálu dá se určiti s velkou přesností.

Interferenční přístroj tvoři prvou hlavní část celého apparátu. Druhá část jest vhodný přístroj oteplovaci. Třetí pak jest pozorovací dalekohled s autokollimaci, tak totiž zařízený, aby se jeho pole optické dalo osvětliti postranně umistěným zdrojem světla homogenního. Užívá se světla natriového, nebo raději světla Geisslerových trubic, naplněných vodíkem neb rtutí, čímž se obdrží několik tónủ světla monochromatického. Jsou to tóny příslušející jasným čarám spektrálním:

$$
\begin{array}{lll}
H & \lambda=656.3 \mu \mu & \text { červená }(\kappa) \\
H & \lambda=486.1, & \text { zelená } \\
H g & \lambda=577.8, " & \text { žlutá } \\
H g & \lambda=546.1, & \text { zelená } \\
H g \quad \lambda=435.8, & \text { modrá. }
\end{array}
$$

Obyčejně se voli k pozorování jen tóny barevné dva, na př. $H(\alpha)$ červená a $H g$ zelená. Dalekohled zařídí se vodorovně; paprsky světelné vedou se dvěma hranoly tak, aby pak ve směru svislém dopadaly na interferenční přistroj, umístěný v př̌ístroji zahřívacím. Schematicky ukazuje úpravu apparátu obr. 23.; stolek a celé zařízení pozorovací jest kresleno v nárysu, vedle toho v půdorysu dalekohled pozorovací s postrannim zdrojem světelným (trubičkou Geisslerovou); v úpravě této řadí se k nejdokonalejšim a nejpřesnějším apparátům fysikálním.
${ }^{*}$) Jeli λ_{0} délka vlny ve vakuu, n exponent lomu vzduchu, jest $2=\frac{\lambda_{0}}{n}$ dẻlka vlny ve vzduchu. Při tom stoupán $n-t$ úmérnẽ s hustotou vzduchu. Vêc plati ovšem pro plyny vûbec.

§ 34. Přikiady číselné.

Práce novějši o změnách délkových účinkem teploty a také mnohé starší - založeny jsou vesměs na vzorci kvadratickém

$$
l=l_{0}\left(1+a t+b t^{2}\right)
$$

kterýž, jak již bylo řečeno, pro tělesa pevná úplně vystači. Z materialu pozorovacího pro určitý, konkretní případ počítají se konstanty a a b; těmito jest pak určen koefficient roztažnosti průměrný, na př̌. pro intervall tepelný 0° až t^{0} dle vzorce

$$
\beta=a+b t
$$

a podobně koefficient pravý, pro teplotu t dle vzorce

$$
\beta_{t}=a+2 b t
$$

V tabulkách udávají se bử konstanty a a b, nebo koefficient prúměrný β obyčejně pro intervall 0° až 100° a vedle toho koefficient pravý obyčejně pro teplotu 18° (nebo 20°), jež se pokládá za obvyklou teplotu laboratorní. Dủležito jest, aby při konstantách a a b bylo ndáno, v jakých mezích tepelných pozorováni bylo konáno. Užiti výsledků pozorovacích značně přes tyto meze znamená extrapolaci, a tato jest vždy daleko méně bezpečnou než interpolace.

Jakožto přiklad k tomu, co zde řečeno, buđtež uvedeny výsledky pozorování, jež v novějši době o roztažnosti platiny provedli Benoit, Holborn a Day, Scheel. Teplota stanovena teploměrem vodikovým.

Lineární roztažnost platiny.

Pozorovatel	a	b	$0^{0} \ldots 100^{\circ}$	β_{18}
Benoit (1888)	0.0000	0.000000	0.0000	0.0000
Holborn a Day (1900) Scheel (1903)	08868	00132	09000	08915

Jest zajímavo těchto výsledkủ si blizze povšimnouti. Shoda v číslech a, b mezi jednotlivými pozorovateli není právě nejlepşi ; rủznost jde az̃ nad 1 procento v ćislech a, jez̃ jsou hlavními, v čislech pak b, jez̃ mají vỳznam korrekční, jeví se rūznost daleko vêtşi. Avšak to vêzi nejen v pozorování, nýbrì téż v početním mechanismu. Kde je vêtsí a, jest za to menši b a naopak. Tím se stává, že v prủmêrném koefficientu pro intervall $0^{\circ} \ldots 100^{\circ}$ počitaném jest shoda daleko lepši; rozdíly jdou málo nad $0 \cdot 2 \%$, u obou novéjších pozorování jest shoda témêr̃ úplná. Také v koefficientech pravých jest shoda lepší. Rủznosti ćisel a se kombinováním s čísly b ponêkud umens̃uji.

Podobně jako pro platinu byly pro četné jiné látky odvozeny na základě pozorování vzorce pro roztažnost lineární*) v úpravě analogické. Pro účely obyčejné jest však pohodlnější a přehlednějši, když se uvedou jen koefficienty průměrné β, na př. pro intervall obou základních bodủ teploměrných $0^{\circ} \ldots 100^{\circ}$. V tomto smyslu jest upravena následující tabulka, obsahující tyto koefficienty β v pořádku vzestupném pro obyčejné kovy**).

Koefficient roztažnosti lineární u kovů.

Kov	$\left\lvert\, \begin{gathered} \beta \\ 0^{\circ} \ldots 100^{\circ} \end{gathered}\right.$	Kov	$0^{\circ} \ldots 100^{\circ}$
	$0 \cdot 0000$		0.0000
Iridium .	067	Zlato .	147
Rhodium	086	Měd	171
Platina .	090	Střibro .	194
Antimon	105	Cin . . .	230
Ocel	11	Magnesium	23
Palladium	119	Aluminium	242
Železo	12	Olovo .	290
Kobalt	127	Zinek	297
Nikl	135	Kadmium .	316
Vismut	137		

*) V tabulkách fysikálnich, jez̃ vydali 1905 Börnstein-Meyerhoffer, jsou výsledky takovỳchto praci sestaveny na stránkách 206 a 207.
${ }^{* *}$) Viz F. Kohlrausch, Prakt. Physik, Tab. 11. 1905. Börnstein-Meyerhoffer, Physik. Tabellen. 1905.

Z dủležitějšich slitin bửtež uvedeny:

$$
\begin{align*}
& \text { Konstantan } \\
& 60 \mathrm{Cu}+40 \mathrm{Ni}
\end{align*} \quad \beta=0.00001521
$$

Bronz fosforový (tvrdý)
$97.6 \mathrm{Cu}+2.2 \mathrm{Sn}+0.2 \mathrm{~Pb}$
Bronz
$81 \cdot 2 C u+8 \cdot 6 Z n+9 \cdot 9 S n+0.2 P b$
Mosaz
1840
$73 \cdot 7 \mathrm{Cu}+24.2 \mathrm{Zn}+1.5 \mathrm{Sn}+0.6 \mathrm{~Pb}$
Platina-Iridium

$$
90 \mathrm{Pt}+10 \mathrm{Ir}
$$

Roztažnost skla jest velmi různá dle jeho složení.
Extremní hodnoty koefficientu β jsou zde

$$
\beta=0.0000037 \text { a ̌ } 0.0000097
$$

Malou roztažnost má porculán, na př. MíŠeňský
podobně mramor

$$
\begin{aligned}
& \beta=0.00000269 \\
& \beta=0.00000117
\end{aligned}
$$

Nejmenši dosud známou roztažnost jeví sklo křištálové. V nádobách z čistého iridia dá se křemen roztaviti při teplotě od 1850° počínajíc. Žáru k tomu potřebného dociluje se ve výhni vodíko-kyslikové, kde se spaluje vodik přímo v kysliku, podobně jako se děje při světle Drummondském. Brasilské kusy křemene hodi se pro sklo křemenové nejlépe. Teplota měři se thermoelementem iridium-iridioruthenium. V tekutém stavu jest sklo toto velmi tuhé. Pro paprsky ultrafialové jest úplně propustné.
Specifická jeho hmota jest $22 \frac{g}{\mathrm{~cm}^{3}}$ (Chappuis a Holborn). Koefficient roztažnosti jest 17 kráte menši než u platiny a čini mezi 0° a 1000° (Holborn a Henning 1903)

$$
\beta=0.00000054
$$

Baňky z tohoto materiálu lze rozpáliti do červeného žáru a pak vhoditi do studené vody, a neprasknou. Lze jich použíti i do 1330°; při 1500° začínají měknouti.

Budiž ke konci učiněna zajímavá poznámka následující.
Položíme-li za základ lineárni roztaz̆nosti vzorec kvadratický

$$
l=l_{o}\left(1+a t+b t^{2}\right)
$$

jest koefficient pravý při teplotě t dán výrazem

$$
\beta_{t}=a+2 b t
$$

Mathematicky stává se tento koefficient nullovým při teplotě

$$
t^{*}=-\frac{a}{2 b}
$$

Zdali tato vypočtená teplota má též fysikální smysl, nutno pro jednotlivé případy zvláš́t vyšetřiti. Zpravidla připadá tato teplota do dalekých (negativních) hodnot, kam až extrapolaci nelze rozšíriti. Ale v některých případech vycházejí čísla fysikálně platná.

Tak nalezl Fizeau pro diamant

$$
a=0.00000056243, b=0.0000000072385
$$

z čehož vypočítáme

$$
t^{*}=-38 \cdot 8
$$

Podobně pro kysličník mědičnatý

$$
a=-0.00000009452, b=0.000000011531
$$

z čehož vychází

$$
t^{*}=+4 \cdot 1
$$

Z číselných hodnot a, b soudime, že obě tyto látky, jež krystallisuji v soustavě regulární, se roztahují velice nepatrně

Chlazením se smrštuji až k teplotě t^{*}, při níž mají objem minimální a tudǐ̌ hustotu maximální. U kysličníku mědičnatého souhlasí tato teplota s tou, při níž také voda má objem minimální čili hustotu maximální, jak později vyložime.

V nejnovější době studoval K. Scheel*) roztažnost křemene (ve směru osy), platiny, palladia a křemenového skla při teplotě tekutého vzduchu, a odvodil přislušné formule. Jednu z nich, a to pro sklo křemenové, uvádíme; zni

$$
l_{t}=l_{0}\left(1+0217.10^{-6} \cdot t+0.002379 .10^{-6} \cdot t^{2}\right)
$$

Z té vycházi, že se sklo křemenové při zahříváni od - 190° do 16° neprodlužuje, nýbrž na každý metr délky o 0.041 mm stahuje. Křivka roztažnosti tohoto materiálu má tedy též minimum a to, jak z formule lze vypočísti, při -46°. Baňka ze skla křemenového měla by tedy při této teplotě objem minimální.

[^22]
§ 35. Pokračování. Tepelná anisotropie.

Látky dosud za přiklad uvedené roztahuji se ve všech směrech stejně; látky takové jsou thermicky isotropní, koefficient roztažnosti jest pro všechny směry stejným. Látky thermicky anisotropní jeví v různých směrech roztažnost různou, koefficient roztažnosti β jest dle směru proměnlivým. Po způsobu analytické geometrie určujeme každý takový směr $O U$ úhly směrnými $q, \psi, \%$, jež uzavírá se třemi zảkladními směry $O X, O Y, O Z$ os souřadnicových (obr. 25.).

Obr. 25.
Roztaz̃nost látek anisotropnich.
Předpokládejme, že také u látek thermicky anisotropnich lze pro každý směr $O U$ vyjádřiti lineárni roztažnost stejným zákonem

$$
l=l_{0}(1+\beta t)
$$

při čemž jest jednostejno, zdali β znamená koefficient konstantní anebo průměrný, na př. pro relaci kvadratickou

$$
\beta=a+b t
$$

Připustíme-li tento př̌edpoklad, jehož smysl jest, že rovinné hraničné plochy tělesa zůstávají rovinnými i při zahřátí, pak lze lineární roztažnost tělesa ve všech směrech vystihnouti třemi koefficienty $\beta_{1}, \beta_{2}, \beta_{3}$, připadajícími do směrů oněch os souřadnicových $O X, O Y, O Z$. Koefficient β pro směr libovolný $O U$
jest pak stanoven výrazem

$$
\beta=\beta_{1} \cos ^{2} \varphi+\beta_{2} \cos ^{2} \psi+\beta_{3} \cos ^{2} \chi
$$

kdež jsou q, ψ, \% směrné úhly nahoře již vyznačené.
Vytkněme ve smęru $O U$ bod M, jehoz̃ souřadnice jsou x, y, z. Zahrátím tęlesa z teploty nullové na t pos̃ine se bod ten všeobecnẽ ze smẽru $O U$ ponẽkud málo stranou do polohy M^{\prime}, kteráz̃ je určena sour̃adnicemi $x^{\prime}, y^{\prime}, z^{\prime}$. Pak jest dle našeho předpokladu

$$
\begin{aligned}
& x^{\prime}=x\left(1+\beta_{1} t\right) \\
& y^{\prime}=y\left(1+\beta_{2} t\right) \\
& z^{\prime}=z\left(1+\beta_{3} t\right) .
\end{aligned}
$$

Zavedeme-li odlehlosti $O M=r, O M=r^{\prime}$, a máme-li na paméti, že bod M^{\prime} jen velmi nepatrnẽ ze smẽru $O U$ se vyšine, mủz̉eme psáti analogicky

$$
r^{\prime}=r(1+\beta t)
$$

Prii tom jest

$$
\begin{aligned}
& x=r \cos \psi \\
& y=r \cos \psi \\
& z=r \cos \psi
\end{aligned}
$$

Povýsime-li všechny tyto rovnice na druhou mocnost a máme-li na zreteli, že jsou koefficienty roztažnosti čisla velmi malá, tak že jich čtverce lze témễ̌ za nullové pokládati, obdržíme
podobně

$$
\begin{aligned}
& x^{\prime 2}=x^{2}+2 x^{2} \beta_{1} t \\
& y^{\prime 2}=y^{2}+2 y^{2} \beta_{2} t \\
& z^{\prime 2}=z^{2}+2 z^{2} \beta_{3} t \\
& r^{\prime 2}=r^{2}+2 r^{2} \beta t
\end{aligned}
$$

a konečně

$$
\begin{aligned}
& x^{2}=r^{2} \cos ^{2} \varphi \\
& y^{2}=r^{2} \cos ^{2} \psi \\
& z^{2}=r^{2} \cos ^{2} \psi
\end{aligned}
$$

K tomu pristupuji známé základni relace

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2}+z^{2} \\
r^{\prime 2} & =x^{\prime 2}+y^{\prime 2}+z^{\prime 2} \\
1 & =\cos ^{2} \varphi+\cos ^{2} \psi+\cos ^{2} \%
\end{aligned}
$$

Vzhledem k těmto rovnicím obdržíme, sečtouce výrazy pro $x^{\prime 2}, y^{\prime 2}, z^{\prime 2}$,

$$
r^{\prime 2}=r^{2}+2 r^{2} t\left(\beta_{1} \cos ^{2} \varphi+\beta_{2} \cos ^{2} \psi+\beta_{3} \cos ^{2} \gamma\right)
$$

a když s tímto výrazem srovnáme hořejši výraz pro $r^{\prime 2}$, obdržíme

$$
\beta=\beta_{1} \cos ^{2} \varphi+\beta_{2} \cos ^{2} w+\beta_{3} \cos ^{2} \psi,
$$

tedy relaci nahore uvedenou.

Jednodušeji a rychleji odvodíme tuto rovnici počtem differenciảlním. Jest totiz̀

$$
r^{2}=x^{2}+y^{2}+z^{2}
$$

z čehoz̃ differenciací

$$
r d r=x d x+y d y+z d z
$$

Zavedouce sem za $d x, d y, d z$ malé, oteplením vznikajici píirůstky $x^{\prime}-x, y^{\prime}-y, z^{\prime}-z$ a podobně za $d r$ přirŭstek $r^{\prime}-r$ obdržíme:

$$
\begin{aligned}
& x d x=x \cdot x \beta_{1} t=r^{2} \cos ^{2} q \cdot \beta_{1} t \\
& y d y=y \cdot y \beta_{2} t=r^{2} \cos ^{2} \psi \cdot \beta_{2} t \\
& z d z=z \cdot z \beta_{3} t=r^{2} \cos ^{2} \chi \cdot \beta_{3} t,
\end{aligned}
$$

a podobně

$$
r \cdot d r=r \cdot r \beta t=r^{2} \cdot \beta t
$$

Dosazením obdržime, vynechávajíce společný faktor r^{2} a t, ihned

$$
\beta=\beta_{1} \cos ^{2} \psi+\beta_{2} \cos ^{2} \psi+\beta_{3} \cos ^{2} \chi
$$

jako nahore.
Užijme relace, kterou se koefficient β v jakémkoli směru $O U$ stanovi, pro tři na sobě kolmé směry $O U^{\prime}, O U^{\prime \prime}$ a $O U^{\prime \prime \prime}$. Zavedouce souhlasná označení obdržíme:

$$
\begin{aligned}
& \beta^{\prime}=\beta_{1} \cos ^{2} q^{\prime}+\beta_{2} \cos ^{2} \psi^{\prime}+\beta_{3} \cos ^{2} \chi^{\prime} \\
& \beta^{\prime \prime}=\beta_{1} \cos ^{2} \varphi^{\prime \prime}+\beta_{2} \cos ^{2} \psi^{\prime \prime}+\beta_{3} \cos ^{2} \chi^{\prime \prime} \\
& \beta^{\prime \prime \prime}=\beta_{1} \cos ^{2} \psi^{\prime \prime \prime}+\beta_{2} \cos ^{2} \psi^{\prime \prime \prime}+\beta_{3} \cos ^{2} \chi^{\prime \prime \prime}
\end{aligned}
$$

Při tom jest

$$
\begin{aligned}
& \cos ^{2} \varphi^{\prime}+\cos ^{2} \varphi^{\prime \prime}+\cos ^{2} \varphi^{\prime \prime \prime}=1 \\
& \cos ^{2} \psi^{\prime}+\cos ^{2} \psi^{\prime \prime}+\cos ^{2} \psi^{\prime \prime \prime}=1 \\
& \cos ^{2} \chi^{\prime}+\cos ^{2} \chi^{\prime \prime}+\cos ^{2} \chi^{\prime \prime \prime}=1
\end{aligned}
$$

Vzhledem k těmto rovnicím vycházi ihned

$$
\beta^{\prime}+\beta^{\prime \prime}+\beta^{\prime \prime \prime}=\beta_{1}+\beta_{2}+\beta_{3}
$$

Součet koefficientủ roztažnosti pro jakékoliv tři na sobě kolmé směry jest tudiž konstantním. Dle § 29. jest tímto součtem stanoven koefficient roztažnosti objemový a.

Látkami tepelně anisotropními jsou všeobecně krystally. U těchto vynikají tři na sobě kolmé směry jakožto hlavni; jsou to ty, ve kterých molekuly při zahřívání setrvávají, nevybočujíce stranou. Právě tyto směry, jež také opticky jakožto základní se vyznačují, jest obyčejem voliti za osy souřadnicové $O X, O Y, O Z$. Koefficienty $\beta_{1}, \beta_{2}, \beta_{3}$ do těchto směrủ připadající zovou se pak hlavními.

$$
-76-
$$

Ze všech možných směrủ $O U$ vytkněme zvlášt ten, jenž s osami $O X, O Y, O Z$ uzavírá úhly stejné, t. j. pro který platí

$$
q=\psi=\%
$$

Dle relace

$$
\cos ^{2} q+\cos ^{2} \psi+\cos ^{2} \chi=1
$$

vychází

$$
\cos ^{2} \varphi=\cos ^{2} \psi=\cos ^{2} \gamma=\frac{1}{3}
$$

Z toho vypočítá se hodnota společnả

$$
q=\psi=\gamma=54^{0} 44 \cdot 2^{\prime}
$$

Koefficient β^{*} do tohoto směru připadajíci jest pak dán výrazem

$$
\beta^{*}=\frac{1}{3}\left(\beta_{1}+\beta_{2}+\beta_{3}\right)
$$

čili

$$
\beta^{*}=\frac{1}{3} \alpha
$$

Nazývá se koefficientem středním (Fizeau). Vztah mezi timto lineárním koefficientem β^{*} a objemovým koefficientem « jest tedy týž jako u těles thermicky isotropních.

Zkušenosti u krystallů učiněné akázaly, že některý z koefficientů hlavních může někdy býti negativním, t. j. že v přislušném směru nastává kontrakce. Tím jest dána možnost, že by střední koefficient β^{*} byl nullovým anebo i negativním, t. j. že by objem krystallu při zahřívání bud se neměnil anebo dokonce se umenšoval. Případy takové jsou sice velmi vzácné, ale přece některé se vyskytují, jakož níže uvedeme. Za to však existují v krystallu takovéto směry, pro které příslušný koefficient lineární β jest nullovým. Směry tyto, vedeme-li je od začátku souřadnic, tvoří ve svém úhrnu kuželovou plochn, kteráž jest analyticky určena rovnicí

$$
\beta_{1} \cos ^{2} \varphi+\beta_{2} \cos ^{2} \psi+\beta_{3} \cos ^{2} \chi=0
$$

Proužek krystallu v tomto směru vyřiznutý měl by délku na teplotě nezávislou.

Výklady dosavadní platí pro krystally všech soustav. Opticky i thermicky roztřiduji se krystally na isotropni, soustavy krychlové, a anisotropní, soustav ostatnich; tyto pak jsou opticky i thermicky bử jednoosé nebo dvojosé.

U krystallủ jednoosých nastává zjednodušení v tom smyslu, že máme jen dva koefficienty hlavní, jeden β_{1} ve směru osy,
druhý $\beta_{2}=\beta_{3}$ ve směrech k ose kolmých. Koefficient střední jest pak

$$
\beta^{*}=\frac{1}{3} \alpha=\frac{1}{3}\left(\beta_{1}+2 \beta_{2}\right)
$$

Koefficient β ve směru libovolném $O U$, který s osou svirá úhel φ, jest dán výrazem

$$
\beta=\beta_{1} \cos ^{2} \varphi+\beta_{2} \sin ^{2} \varphi
$$

Je-li jeden z obou hlavnich koefficientů negativním, jest β nullou pro směry q určené rovnici

$$
\operatorname{tg} 9=\sqrt{-\frac{\beta_{1}}{\beta_{2}}}
$$

Tyto směry, od bodu O vedené, tvoří plášt kruhového kužele, jehož osou jest osa krystallu.

Thermickou anisotropii krystallú objevil Mitscherlich ${ }^{*}$) (1824). Mêre úhly krystallové dvojlomného vápence, konstatoval, ze je již zvýšením teploty o 3^{0} úhly se zmenṡily o $30^{\prime \prime}$. Z výsledkủ takových soudil, že roztaz̃nost tohoto jednoosého krystallu jest vêtší ve smẽru osy nez̃ kolmo k ose; výpočet pak ukázal, že kolmo k ose nastává dokonce kontrakce, tedy z̃e koefficient příslušný jest negativni.

Císelnè vyšlo:

$$
\begin{array}{ll}
\beta_{1}=0.0000293, & \beta_{2}=-0.00000487 \\
& \alpha=0.0000196
\end{array}
$$

Mitscherlich rozšíril svá měření také na některé krystally jiných soustav, a odvodil vêty o krystallech isotropnich (soustavy regulárni), thermicky jednoosých a dvojosých, jak v predeslaném výkladu byly uvedeny. V pokusech pokračoval Pfaff **) (1858 a 1859), jenž proméřil značný počet krystallû. Četná a velmi přesná mérení provedl svýnı na interferenci spočívajícím přistrojem (§ 33.) Fizeau (1866), jenž při výpočtu položil za zãklad vzorec kvadraticky

$$
l=l_{\mathrm{o}}\left(1+a t+b t^{2}\right)
$$

a urěil

$$
\beta=a+b t
$$

pro hlavní směry thermické roztaz̃nosti. V nové době vykonali zdokonaleným prístrojem Fizeau-ovým velmi přesná měreni Benoit, Scheel a j.

[^23]Za přiklad uveđ̛̣me především výsledky pro křištál a dvojlomný vápenec, tyto repraesentanty jednoosých krystallủ opticky positivnich a negativních. Benoit nalezl pro křiš́tál

$$
\begin{aligned}
& \beta_{1}=0.000007161+0.0000000081 t \\
& \beta_{2}=0.000013255+0.0000000116 t
\end{aligned}
$$

a pro vápenec

$$
\begin{gathered}
\beta_{1}=0.000025135+0.0000000118 t \\
\beta_{2}=-0.000005578+0.0000000014 t
\end{gathered}
$$

Teplota t vztahuje se na teploměr vodikový. Ve směru osy roztahuje se tedy křištál méně, vápenec pak více ve směrech k ose kolmých. Jinak jest pozoruhodnou malá roztažnost křištálu a dosti značná vápence.

Zajímavý přiklad podávaji krystally jodidu střibrnatého, jenž krystallisuje v soustavě hexagonálni. Pro teplotu 40° nalezl Fizeau

$$
\begin{aligned}
& \beta_{1}=-0.00000397 \\
& \beta_{2}=+0.00000065,
\end{aligned}
$$

z čehož pro kubický koefficient plyne

$$
\alpha=\beta_{1}+2 \beta_{2}=-0.00000267 .
$$

Krystally tyto se tudiž zahřátím stahují, ochlazením se jich objem zvětšuje. Fizeau usoudil dle změny koefficientu teplotou, že by při teplotě as -60° jich objem byl maximální, hustota minimální.

Zajímavý případ thermické anisotropie podává kaučuk po délce své napiatý; oteplením, jak Joule první pozoroval, se podél stahuje, napřič roztahuje. Kaučuková trubice, závažím zatižená, se stáhne, když se oteplí proudem vodní páry trubicí vedené. Koefficient kontrakce roste s napětím. Celkově se však oteplením objem zvětšuje.

Jiný přiklad thermické anisotropie ukazuje dřevo, jež zpravidla, jak Villari nalezl, napřičc se značně více, 5 až $20 \mathrm{kráte}$ oteplením více roztahuje než podél.

§ 36. Jak se užívả koefficientu roztažnosti.

1. Me̛řitka. Jemné měřítko, přesným účelûm vědeckým sloužící, udává jednotky délkové správně jen při určité teplotě t_{o}, kteráž jest jeho normální. Pracujeme-li při teplotě t na př. vyšší, má každá jednotka měřítková délku

$$
1+\beta\left[t-t_{0}\right]
$$

a když jich - stanovíce odlehlost délkovou dvou bodů - odečteme l, jest skutečná odlehlost
čili

$$
\begin{gathered}
l\left(1+\beta\left[t-t_{0}\right]\right) \\
l+l_{\beta}\left[t-t_{0}\right] .
\end{gathered}
$$

Dlužno tedy k odečteni připojiti korrekci $l \beta\left[t-t_{0}\right]$. Obyčejně bývá $t_{o}=0$; měřítka na př. na kathetometrech, komparatorech, anebo normální metry bývaji správné při teplotě nullové.

Korrekce nahỡe udaná mưz̃e prii vêtšich rozdilech tepelných býti dosti značnou. Je-li mẽritko stríibrné, jest $\beta=0.000019$, tedy na př. pro $t=30^{\circ}, \beta t=0.00057$, t. j. 0.06%. coz na délku jednoho metru činí 0.6 mm .

Stríbro hodi se pro jemná méritka velice dobře; jest mêkké, dá se dokonale hladiti a na jeho bilé půdẽ vystupuji tmavé jemné carrky i prii mikroskopickém odợtanini velice zretelně, zvlástê kdyz̃ se uz̃ije sikmé clonky z jemného bilého papíru k odstranẽni lesku. Stríbrné proužky zapoustéji se do mosazi; tato kombinace kovú chová se thermicky jednotnẽ, ponévadz̃ koefficienty pro oba kovy mohou prii vhodné volbě mosazi býti zcela stejné.

Materiálem ovšem daleko dokonalejsím jest slitina platino-iridiová $(90 \% P t+10 \% I r)$, kteréż však pro jeji velkou cenu lze uživati jen pro méritka základni, jak je mají ústavy metronomické *). Pro takový normální prototyp metrovy̆ № 15 , jenž pripadl Rakousku, ndává se jeho délka pri teplotẽ t (teplomẽru vodikového) vzorcem

$$
1 m+0 \cdot 9^{\prime \prime}+8 \cdot 655^{\mu} t+0 \cdot 00100^{\mu} t^{2} \pm 0 \cdot \vartheta^{\prime \prime}
$$

kdez̃ značí μ tisicinu millimetru (mikron); +0.9 jest stálá redukce na mêtre des archives, ± 0.2 pravdépodobná chyba srovnáni obou.

Jakožto dalsí priklad múže sloužiti redukce, kterou se pozorování barometrická přepočitávaji z teploty t na teplotu 0^{0}. Prí této redukci ${ }^{* *}$) prihliží se k objemové roztaz̃nosti rtuti, ale také k dêlkové roztaz̃nosti mêrítka.
2. Nádoby kalibrované. Co bylo řečeno o měřitkách ve smyslu délkovém, platí též o nádobách kalibrovaných ve smyslu objemovém. Normální jejich teplotou t_{0} bývá 0°, ale také 15°. Při teplotě t znači každá odečtená jednotka objemová vlastně objem

$$
1+a\left[t-t_{o}\right]
$$

když se tedy při teplotě t odečte objem v, jest skutečný objem

$$
v\left(1+\alpha\left[t-t_{0}\right]\right)=v+v_{\alpha}\left[t-t_{0}\right],
$$

[^24]tudíž korrekce odečtení + vce $\left[t-t_{0}\right]$. Zpravidla bývají kalibrované nádoby, mensury, byretty, pipetty at. d. skleněné. Koefficient objemový \& skla jest však dle složení skla dosti různý; určuje se pomocí rtuti způsobem, o němž níže pojednáme. Prủměrná jeho hodnota jest
$$
\varepsilon=\frac{1}{40000}
$$
kteráž, není-li nic určitějšiho známo, brává se za základ korrekce.

Dle toho nádoba kalibrovaná, při 15° správná, má prii 35° objem $1+\frac{20}{40000}$, tedy vêtši $0 \frac{1}{20} \%$. Při $1000 \mathrm{~cm}^{3}$ činí toto zvětšení $0.5 \mathrm{~cm}^{3}$.

Velmi nepatrnê mění se objem nádob ze skla křiş̉ảlového. Koefficient roztažnosti jest tu

$$
a=0.0000015
$$

V prikladẽ horejejsín zvêtsil by se objem takové nádoby od 15° do 35^{0} na

$$
1+0 \cdot 00003
$$

tedy o 0.003%. Prí $1000 \mathrm{~cm}^{3}$ činilo by toto zvětšení jen $0.03, \mathrm{~cm}^{3}$ tedy 13 kráte méné nez̃ kdyz̃ jest nádoba sklenẽnou.
3. Zkouška nádob kalibrovaných. Aby se zjistila správnost kalibrace, naplni se nádoba až po čárku označujici určitý objem \boldsymbol{V} kapalinou, jejížto specifická hmota s při každé teplotě t jest známa. Obyčejně se užívá vody nebo rtuti. Budiž M váha kapaliny netto, jak se obdrží vážením (na vahách rovnoramenných) ve vzduchu. Pak jest její váha absolutní t. j. na vakuum redukovaná (vlastně hmota)

$$
\text { jednak } V_{s}, \text { jednak } M+k M
$$

kdež znači k redukční faktor na vakuum*). Je-li σ specifická hmota vzduchu, δ specifická hmota závaží, jest

$$
k=\left(\frac{1}{s}-\frac{1}{\delta}\right) \sigma .
$$

Máme tedy rovnici

$$
V_{s}=M+k M
$$

z níž vychází

$$
V=\frac{M+k M}{s}
$$

Pro výpočet koefficientu k přijímaji se hodnoty číselné

$$
\delta=8.4 \frac{g}{\mathrm{~cm}^{3}}, \sigma=0.00120 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Uživá-li se tedy rtuti, na př. $t=18^{\circ}$, jest

$$
s=13.552, k=-0.000054
$$

Užívá-li se vody, což u velkých nádob jest pravidlem, lze k zjednodušení počtu použiti okolnosti, že specifická hmota vody s jest téměř $=1$, tak že rozdil $1-s$ jest číslo velmi malé, právě tak jako k. Pak lze přibližně psáti :

$$
\begin{aligned}
\frac{V}{M} & =\frac{1+k}{1-(1-s)} \doteq(1+k)[1+(1-s)] \\
& \neq 1+k+(1-s)=1+\varrho
\end{aligned}
$$

čimž nabýváme formy pro praxi pohodlné

$$
V=M+\varrho M
$$

Koefficient k má pro $s=1$ hodnotu ${ }^{*}$)

$$
k=0.00106
$$

tak že jest

$$
\varrho=1 \cdot 00106-s
$$

Tak jest na prí.

pro t	$=10^{0}$	15^{0}	20°	25°
s	$=0.99973$	0.99913	0.99824	0.99707
ρ	$=0.00133$	0.00193	0.00282	0.00399.

Na každých 1000 g , jež vážením ve vzducbu pro M nalezneme, objem V obnáši $1000 \mathrm{~cm}^{3}$ a korrekci, jež při teplotě 10°, $15^{\circ}, 20^{\circ}, 25^{\circ}$ činí okrouhle $1 \cdot 3,1.9,2 \cdot 8,4.0 \mathrm{~cm}^{3}$. Nádoba má tedy při těchto teplotách objem $1001 \cdot 3,1001 \cdot 9,1002 \cdot 8,1004 \cdot 0 \mathrm{~cm}^{3}$.

Mnohdy žádá se, aby bylo stanoveno, jaký objem má ta neb ona kalibrovaná nádoba při určité, normální své teplotě, na př. 18^{0}. Pak dlužno výsledek V měření při teplotě t pomoci koefficientu roztažnosti a ještě na tuto normální teplotu přepočítati.
4. Kompensace kyvadel. Tyč obyčejného kyvadla fysického prodlužuje se teplem, redukovaná dèlka l kyvadla a tím i doba kyvu roste. Mají tudiž variace teploty t na pravidelný chod hodin účinek rušivý.

[^25]Jest poučno cúselnẻ se orientovati o tom, jak značný tento úćinek teploty mảze by̌ti. Pro dobu kyvu T_{0} a T prí teplotẽ 0° a t máme relativnẻ

$$
\frac{T}{T_{0}}=\sqrt{\frac{l}{l_{0}}}=\sqrt{1+\beta t}
$$

tudiž pro frekvenci N_{0} a N v dobé libovolné relativně

$$
\frac{N}{N_{0}}=\frac{1}{\sqrt{1+\beta t}}
$$

Pofitáme-li frekvenci na jeden den, abychom obdrželi ihned denní chod hodin teplotou pozměněnŷ, poloz̃íme

$$
\begin{aligned}
N_{0} & =86400 \\
N & =\frac{86400}{\sqrt{1+\beta t}}
\end{aligned}
$$

Pro kyvadlovou tyç ocelovou a teplotu na př. 25° obdržime:

$$
\beta=0 \cdot 000010, \quad t=25^{\circ}, \quad N=86400-10 \cdot 8
$$

Pro kyvadlovou tyé mosaznou a teplotu 25° podobnẽ :

$$
\beta=0 \cdot 000018, \quad t=25^{\circ}, \quad N=86400-19 \cdot 4
$$

Na $1^{\text {n }}$ zmẽny teploty pripadá tudiž změna dennilıo chodu hodin okrouhle $0 \cdot 4$ sek. pro tyć ocelovon, $0 \cdot 8$ sek. pro tyé mosaznou. Zmẽna jest fudiž dosti znac̃nou; hodiny jsou oproti zmẽnảm teploty prístrojem dosti citlivým. Mohli bychom celou otázku obrátiti. Ze zmẻny denního chodu hodin mohli bychom - u hodin dokonalého juak mechanismu - souditi na změny teploty a to prúmérné za celý den; a tato prủměrná teplota byla by z denmho chodu hodin vypočtena daleko spolehlivěji, než, jak se obyčejnẻ déje, z ęasovẽ aequidistantnich pozorování teplomérných. U chronometrů nekompensovanỷch jest účinek teploty jestẽ vêtsí. U mosazných vahadel chronometrù čini +10 až +12 sek. za den na 1^{0} zvy̌sené teploty. Zde tedy chronometr jakoz̃to sintegratore temperaturni udává dennim chodem prủměrnou teplotu denní jeştẽ značné citlivéji.

Kompensaci kyvadel, kterou se účinek tepelný odstran̆uje anebo aspoň značně seslabuje, udal Harrison**) svým kyvadlem mǐ̌žkovým z roku 1725 . Jest to kombinace tyčí ze dvou kovů různé roztažnosti, z nichž tyče hlavni se roztahuji směrem dolů, tyče kompensujici směrem nahoru. při čemž jich délka jest tak volena, aby střed kyvu málo jen vzdálený od tě̌̌ištè kyvadlové čočky zůstával od osy v odlehlosti stálé. Punvodni kyvadlo

[^26]Harrisonovo mělo 5 tyči železných, 4 kompensujici mosazné. Stači však také kombinace jednodušší. Obr. 26. znázorňuje kyvadlo mřižkové, kteréž má 3 tyče železné a 2 kompensujicí zinkové, anebo, lépe vyjádřeno, jednu (dvojitou) tyč železnou A, kompensující (dvojitou) tyč zinkovou B a tyč železnou A^{\prime}, kteráž nese čočku. Spojeni tyči přičkami jest provedeno způsobem z obrazce patrným. Při teplotě t maji tyto tyče délku

$$
\begin{aligned}
A+A^{\prime} & =\left(A_{0}+A_{0}^{\prime}\right)(1+a t) \\
B & =B_{0}(1+b t) .
\end{aligned}
$$

Žádá se, aby přírủstky délkové tyči hlavních a kompensujicich byly stejné. To vede k podmince

$$
a\left(A_{0}+A_{0}^{\prime}\right)=b B_{0}
$$

kdež postači místo délek pǐi teplotě nullové bráti délky při teplotě obyčejné, tedy psáti

$$
a\left(A+A^{\prime}\right)=b B
$$

Tím obdržíme podmínku

$$
\frac{A+A^{\prime}}{B}=\frac{b}{a}
$$

a podobně pro připad všeobecný, o větším počtu tyčí,

$$
\frac{A+A^{\prime}+A^{\prime \prime}+\ldots}{B+B^{\prime}+\ldots}=\frac{b}{a}
$$

Pro železo a zinek jest

$$
a=0.000011, \quad b=0.0000286, \quad \frac{b}{a}=2 \cdot 6
$$

železné tyče maji tedy míti délku něco více než dvojnásobnou, čemuž lze vyhověti dle kombinace v obr. 26. znázorněné. Pro železo a mosaz jest

$$
a=0.000011, \quad b=0.000018, \quad \frac{b}{a}=1.64
$$

Obr. 26. Kyvadlo mřiz̀kové.
délka tyčí železných a mosazných jest zde v poměru přibližnè $3: 2$, čemuž lze vyhověti dle kombinace nejbliže následujíci, kde
jest dvojtyč železná, pak kompensujici dvojtyč mosazná, opět dvojtyč železná, opět kompensujicí dvojtyč mosazná a konečně tyč železná, která nese čočku kyvadla. Jinou volbu kovủ navrhuje V. Hoser*), totiž ocel a aluminium, pro kterou jest, jak udává

$$
\frac{b}{a}=2 \cdot 0313
$$

tak že lze užiti jednodušši kombinace prvé.
Kyvadla mřižková maji tu vadu, že se na délkách tyčí, jakmile jednou kyvadlo jest zhotoveno, nedá ničeho dodatečně měniti. Proto také jest nutno, aby se prủměrné koefficienty a, b pro tepelné intervally v našich meteorologických poměrech možné, tedy v observatořích exponovaných -25° a $\check{z}+35^{0}$, přimo stanovily a to pro ty určité tyče, jichž k vypracováni kyvadla se má užiti. Nestačilo by, aby se tyto koefficienty prostě z nějakých tabulek vypsaly, aspoй ne. jde-li o přesné účely vědecké.

Možnost dodatečné korrekce podává liompensované kyvadlo Grahamovo (1726)**). Hlavni kyvadlová tyč jest ocelová, na místě obvyklé kyvadlové čočky nese válcovou nádobu obyčejně skleněnou (nebo též ocelovou), do niž se naleje rtuti. Při stoupání teploty má roztahováni ocelové tyče směrem dolủ býti kompensováno roztahováním rtuti směrem nahoru, tak aby redukovaná délka kyvadla se neměnila. Rozměry kyvadla, jakož i zejména množství a výška rtuti, daji se předběžně stanoviti počtem ***), dodatečně pak jest možná korrekce jednak posouvánim nadoby skleněné, jednak přiléváním neb ubiránim rtuti. Misto jedné nádoby o velikém průřezu lze lépe
*) V. Hoser, Beiblātter 21, pag. 684, 1897.
**) Gcorge Graham, hodinář a mechanik v Londýnẻ (1675-1751), pracoval mnohé praecisni nástroje pro lıvėzdárnu Greenwichskou.
***) Viz Zenger-Čecháč, Mechanika, pag. 61, 1883, kdez̃ o tẽchto otázkach jest pojednáno obširnēji.
voliti dvě anebo i čtyři o prủřezu malém, čímž se spíše zamezi retardováni ve změnách teploty. Obr. 27. ukazuje model takového kyvadla se čtyřmi nádobami z hvězdárny Lickovy*).

K rychlé orientaci o tom, jaké rozméry pro rtufové kyvadlo sekundové dluz̃no voliti, staçi počet následujíci. Tyč ocelovả má délku l, rtut v nádobẽ výsku h. Stred kyvủ jest velmi pribliz̃né**) v tézisisti rtuti, tedy v odlehlosti od osy $l-\frac{\dot{h}_{2}}{2}$. Vzroste-li teplota o t stupnúa, zméni se tato odlehlost o $\left(l-\frac{h}{2}\right) \beta t$, kdez̃ jest β koefficient délkové roztaz̃nosti oceli. Sončasnẽ vystoupi vsak tězistê rtuti o $\frac{h}{\underline{Q}}$ ret, kdez̃ jest a koefficient objemové roztažnosti rtutr. Ma tudizà bŷti

$$
\left(l-\frac{h}{2}\right) \beta t=\frac{h}{2} c c t,
$$

z čehoz

$$
\frac{h}{l}=2 \frac{\beta}{a+\beta}
$$

Císelně jest

$$
\begin{gathered}
\beta=0.000011 \\
\alpha=0 \cdot 000182 \\
\frac{h}{l}=\frac{22}{193} \cdot \text { přibližnẽ }=\frac{1}{9}
\end{gathered}
$$

Redukovaná délka kyvadla sekundovẻho jest velmi prỉbliz̃nẽ 1 metr, tedy v centimetrech

$$
l-\frac{h}{\underline{q}}=100 \mathrm{~cm}
$$

Z poslednich dyou rovnic vypočteme

$$
h=12 \mathrm{~cm}, \quad l=106 \mathrm{~cm}
$$

Gísla tato maji jen význam orientačni, aby bylo vidéti, v jakém asi pomèru jest výska rtuti k celé délce kyvadla.

Vadou všech těchto kyvadel kompensovaných jest, že tyče různého materiálu, tudiž různé vodivosti a kapacity tepelné, nesleduji eventuálni náhlejši změny teploty současně, zejména,

[^27]maji-li značnějši průřez. Proto navrhuje V. Hoser (1. c.), aby misto massivnich tyčí se uživalo kovových trubic. U kyvadla rtutového bývá retardace rtuti proti kovové tyči dosti značná. Jest z toho viděti, že kompensace vystači jen při změnách teploty nenáhlých. V novějši době uživà se pro kyvadla též zvláštni tak zvané niklové oceli, jejíž roztažnost jest tak malá, že se délka téměř nemění; odtud jméno „invar* (invariabilis), kteréž pro tuto zvláštní slitinu bylo voleno.

Chod hodin závisi též na tlaku vzduchu; když stoupá, stá vá se vzduch hustšim. klade pohybu kyvadla větši odpor, hodiny retarduji ; udává se retardace asi o $0 \cdot 1$ sec denně, když tlak stoupl $0.1 \mathrm{~cm} \mathrm{Hg} 0^{\circ}$. Kompensace je zde možná rtufovými manometry po způsobu barometrů dvojramenných upravenými; rtuf při větsim tlaku stoupá v ramenu zataveném a klesá v otevřeném, čimž střed kývání se pošinuje výše, t. j. kyvadlo se zkracuje, tak že kývá rychleji. Trubičky kompensačnich manometrû (obyčejně dvou souměrně umístěných) maji kalibr malý, asi 2 až 3 mm v prủměru. Počtem lze napřed kompensaci vypočisti, ale definitivni regulaci dlužno přece jen empiricky zakončiti; věc se komplikuje tim, že kyvadlo jisté množstvi vzduchu s sebou jako vleče a udržuje v pohybu.

Y nejnotejsisi dobé zkoušel Dr. Frt. Kühler v obšíné práci, zdali zemský maqnetismus nejevi účinek na hodiny, jichž kyvadlo jest z onoho (výše jmenovaného) invaru. Dochází závęrku: Zména intensity zemskẻho magnetismu nemá patrného vlivu na dobu kyvu kyvadel uživanỵch nỵı k relativnímu měrení tiže a dá se k iomuto me̛rení uživati kyvadel z niklove oceli. Viz Véstník král. č. Spol. nauk, trida mathem.-přírod., 1906.
5. Teploměry kovové. Kdy̌̌ při teplotě t snýtujeme nebo spájíme dva tenké rovné proužky různých kovủ v proužek jediný, a když jej pak zahř̌íváme, zůstává rovným, mají-li oba kovy týž koefficient roztažnosti, jako na př. střibro a mosaz; pakli mají rizný koefficient roztažnosti, jako na př. železo a mosaz, nebo železo a zinek a pod., krouti se proužek při zahřivání a to tak, že kov o roztažnosti větší zủstává při zahřívání na straně konvexní (obr. 28. nahoře), při ochlazováni na straně konkavni (obr. 28. dole). Stoči-li se takový dvojproužek ve spirálu, jejiž jeden konec se upevní, pak při změnách teploty pozorujeme, jak se spirála svinuje neb rozvinuje, a jak se následkem toho druhý volný konec spirály pošinuje. Toto pošincvání lze přenésti na ručičku, jež se pohybuje podél stupnice rozdělené empiricky na stupně teploměrné. Tak vzniká
teploměr kovový. Existuje několik modelủ. Jednoduchý a přehledný jest teploměr, který konstruovali Hermann a Pfister v Bernu (obr. 29.), a který má tu výhodu, že se ručičkami volně s obou stran na pohyblivé rameno doléhajicími stanovi ještě také extrémy temperaturni, t. j. maximum a minimum teploty za určitý intervall časový, na př. za jeden den. Jak se takového teploměru dá užíti k elektrickému siğnalisování extrémů temperaturnich napřed stanovených, mezi nimiž se má teplota v nějakém prostoru udržovati, objasňuje dostatečně obr. 30. Pohybem volného konce teploměru kovového vznikají kontakty, když teplota bud značně klesne neb značně vystoupí, tím se uzavře galvanický proud, kterým se avede v činnost příslušný signálový zvonek.

Teplomérủ kovovẏch užívi se. kde jde o presné úcely, dnes jižz málo. Vadou jejich jest jakási nelybbnost, kterai zputsobuje, že nereaguji také na rychlejsi zmény teploty; teploméry kovové vżdycky vice ménẻ retarduji. Na hvẽzdárné Pražské byl roku 1871 na misté driivéjsiho Kreilova thermografu postaven kovový thermograf Hippite s registraci elektrickou, kterýz pro lehdejši dobu znamenal velký pokrok. Zaznany jeho redukovaly se vżdy dle primých,

Obr. 28. Deformace leplem.

Obr. 29.
Teplomér kovory. současny̌ch odečleni na teploméru rtufovém, v jeho blizkosti postaveném; pri tom bylo lze onu retardaci castěji zjistiti ${ }^{*}$). Od roku 1901 neni jiz̀ ve funkci, ustoupiv thermografu Richard frères v l’âiži, jenž spolehlivosti se mu vyrovnảvá a jednoduchosti úprary ho predèi, zejména tím, ze neuz̃ivai proudu elektrického a nerus̄i tím blizké pristroje magnetické. Lépe hodi se teplomẽry kovové k zjisitēni extrémit

[^28]temperaturních. Tak udává L. Pfaundler, že zkoušel kovové teploméry lékaĩské, určené k pozorováni teploty lidského têla zejména ve slavu horečném a zze je shledal býti správnỳmi a spolehlvyimi. Ale podotẙká, ze
 úpravy mohou také bỳti i proti nảhlejšim změnám leploty citlivými, ukázal Breguet. Spirāla jeho teploměru sklảda se z jemnỵch prouẑkủ střibrny̌ch, zlaty̌ch a platinových; prouz̃ky jsou späjeny, zlatý uprostred mezi střibrným. jenz se roztahuje nejvice, a mezi platinovým, jenž se roztahuje nejménẽ. Z prouz̀kũ s poćátku silnéjsisch se válcovãnim vytrỡi velmi slabé. Teplomẽr byl zạ̛izen téz jako indikator proudu galvanického; nebof proudem vzniká zalı̛̣áli spirály, kteráz se následkem toho rozvine a tak ručiçku nad stup-

niel uvede v pohyb. Za dnủ naşich užívá se tohoto tepelného úćinku téz k indikaci proudŭ, zejména střídavých, ale proud se vede nikoli takovouto spirálou z nêkolika kovủ sloz̃enou, nýbrž prostẻ drátem platinoyým nebo platino-iridiovým ; oteplením se drát poněkud prodlouži, a toto prodlonženi prevàdi se pricuyy napiatým drátkem přimo na ukazovatele.

Na témže základu, jako měřeni teploty kovovými teploměry, spočivá též tepelná kompensace na vahadle chronometrủ. K ramenu vahadla (obr. 31.) jsou po obou stranách upevněny dva kruhové pásky složené z oceli (uvnitř) a mosazi (vně); na svých koncích nesou pásky tyto malá pošinovatelná závažička. Účelem celého zařizeni jest, aby při stoupání teploty moment setrvačnosti celku se neměnil; vahadlo se roztahuje, jeho moment stoupá, ale současně svinují se poněkud ony pásky, čímž zase moment klesá; oba účinky maji se kompensovati. Vyrabitelé chronometrủ mají své modely již empiricky vyzkoušené. V obr. 31. jest znázorněn model Airyho; má dvoji mủstek, jeden hlavní,
pevný, druhý pomocný, otáčivý; tímto lze malá závažička na obvodu vahadla souměrně pošinovati a tak kompensaci hlavni ještè dodatečně korrigovati.

Roztažnost kapalin.

§ 37. Přehled method pozorovacich.

Teplotou měni se objem kapalin, měni se současně jejich hustota. Co již v $\$ 25$. všeobecně bylo řečeno, platí zde zvlášf: jest to jednostejno, studujeme-li účinek teploty na objem, nebo na hastotu čili specifickou váhu. Vskutku užívá se u kapalin zpûsobu jednoho i druhého; bud měříme objem, což jest názornějši, nebo vážíme, což jest přesněǰ̌í. Prvý zpủsob vede k methodě objemoměrné čili dilatometrické, druhý zpủsob k methodě hustoměrné čili densimetrické.

Při methodě objemoměrné uživáme zvláštních, zpravidla skleněných nádob, jež jsou upraveny na zpussob většich teploměrû a jež se zovou dilatometry. Když se takový dilatometr naplni nějakou kapalinou a pak v lázni zahřívá, pozorujeme, jak kapalina v něm se roztahuje, jako rtuf v teploměru. Avšak současuě roztahuje se též dilatometr sám. Jen proto, že roztažnost skla je malá, vyniká větši roztažnost kapaliny; jinak, kdyby roztažnosti byly stejné, pak by kapalina v dilatometru zaujímala při zahřiváni i ochlazování objem stálý, neproměnný. Pozorujeme tedy vlastně jen přebytek roztažnosti, a nemůžeme následkem toho určiti roztažnost kapaliny skutečnou, nýbrž jen zdánlivou. Methoda vede k relaci mezi koefficienty roztažnosti kapaliny a a nádoby \%; jenom když jest z známo, lze počítati a; (ovšem také naopak). Vzhledem k tomu dlužno methodu dilatometrickou zváti methodou relativni.

Právě tak jest tomu při methodě hustomèrné. Jak známo *). určujeme hustotu kapalin bud pyknometrem nebo těliskem ponorným. V obou případech jedná se o to, určiti váhu nějakého objemu kapaliny; u pyknometru určujeme tuto vábu přímo, u ponorného tělíska nepřímo. Když vážení provedeme jednou při teplotè nižši, po druhé při teplotě vyšši, zvětší se zahřátím objem jak pyknometru tak tělíska ponorného, a tim základní

[^29]předpoklad, stejnost objemu, jest porušen. Když se jedná o hustotu samou, při některé teplotě, jeví se účinek teploty na objem skla jen jako malá korrekce. Zde však jde o změny této hustoty, a tu změny objemové maji význam značnější. Opět obdržime relaci mezi koefficienty roztažnosti kapaliny a a skla κ, tak že nutno znáti $\%$, má-li se obdržeti \boldsymbol{c}. Jest tedy i methoda densimetrická methodou relativní.

K oběma těmto methodám, jichž relativnost jest ovšem závadou, přistupuje methoda třetí, která nemajíc této vady jest methodou absolutni. Spočíá na zákonu o spojitých nádobách; proto se zove hydrostatickou. Je-li spojitá nádoba naplněna kapalinami různými, jest poměr specifických hmot dán obráceným poměrem výšek. Totéž plati, je-li různost zpûsobena teplotou. Zákon není závislý na průměru nádoby, tudiž také ne na její roztažnosti. Methoda vede k rovnici, z níž lze přimo počítati α.

Základ této absolutni methody lze pro úçely prednás̉ek nkázati jednoduchým experimentem. Obyčejná spojitá nádoba sklenẻná naplni se vodou, jež jest indigokarminem modre zbarvena, a pak se jedno rameno zahřívà mirnẻ plamenem Bunsenova hofaku. Voda se otepluje. a sloupec rody se zvẻtšuje, tak że již prí mírném zahřátí rozdil jest oku patrnỵ. Také alkohol aethylnatý, zbarveny fuxinem červené, lze k tomuto pokusu voliti, ale jen pro zahưatí míné; při zahưati vétšim vznikají bublinky páry alkoholické, jez̄ vêtsi svou expansi sloupec kapaliny zvedaji. Na zápalnost alkoholn dlužno ovšem pamatovati.

Úkol, o který se v tomto odstavei jedná, lze tedy řešiti methodami třemi. První dvě mají společnou vadu nahoře vytčenou, totǐ̌ závislost na skle, ale jsou jednodušsí, pohodlnějši. Methoda třetí jest této vady prosta, ale jest obtižnějši, nákladnějši.

Všechny tyto methody dávaji koefficient ce priměrný, pro tepelný intervall t. . . t^{\prime}. Položíme-li u kapalin za základ roztažnosti rovnici kubickou

$$
r=v_{0}\left(1+A t+B t^{2}+C t^{3}\right)
$$

souvisi onen průměrný koefficient ℓ s konstantami A, B, C relaci (§ 26.)

$$
a=A+B\left(t+t^{\prime}\right)+C\left(t^{2}+t t^{\prime}+t^{\prime 2}\right)
$$

Ke stanoveni tři konstant dlužno tedy e určiti aspoň pro tři tepelné intervally, vhodně volené. Když se vycházi od teploty nullové a určuje a pro tepelný intervall $0^{\circ} \ldots t$, zjednodušuje se relace hořejši na rovnici

$$
r=A+B t+C t^{2}
$$

Pak dlužno při měření postupovati aspon̆ ke třem teplotám t vhodně voleným. Když pak konstanty A, B, C jsou vypočítány, obdrží se koefficient pravý pro teplotu t vzorcem

$$
\alpha_{t}=A+2 B t+3 B t^{2}
$$

jak v § 26. bylo vyloženo.

§ 38. Methoda dilatometrická.

Kapalina v dilatometru zaujímá při teplotě t objem v. Zahřătím na teplotu t^{\prime} zvětši se tento objem na

$$
v+v e\left(t^{\prime}-t\right)
$$

kdež jest a prủměrný koefficient roztaz̆nosti kapaliny pro temperaturni intervall $t \ldots t^{\prime}$. Dilatometr ukazuje objem kapaliny v^{\prime}. To jest objem o něco menši než hořejší výraz udává, poněvadž se dilatometr při zahǐáti též roztáhl (obr. 32.). Dlužno tedy počtem objem v^{\prime} dilatometru redukovati dle jeho vlastniho koefficientu*) roztažnosti $\% ~ z$ teploty t^{\prime} na t, kterážto redukce čini

$$
v^{\prime} \approx\left(t^{\prime}--t\right)
$$

O tolik by dilatometr ukazoval větši objem kapaliny zahřáté, kdyby se neroztahoval. Pak máme zakladni relaci methody dilatometrické:

$$
v^{\prime}+v^{\prime} x\left(t^{\prime}-t\right)=v+v a\left(t^{\prime}-t\right)
$$

čili

$$
\frac{v^{\prime}}{v}=\frac{1+r\left(t^{\prime}-t\right)}{1+\pi\left(t^{\prime}-t\right)}
$$

Odtud odvodime vztah

$$
\frac{v^{\prime}-v}{t^{\prime}-t}=r v-« v^{\prime}
$$

z něhož plyne, je-li známo z,

Obr. 32.
Methoda dilatometrickâ.

$$
a=z \frac{v^{\prime}}{v}+\frac{1}{v} \frac{v^{\prime}-v}{t^{\prime}-t}
$$

[^30]a ovšem též naopak, je-li známo a,
$$
\because=a \frac{v}{v^{\prime}}-\frac{1}{v^{\prime}}, \frac{v^{\prime}-v}{t^{\prime}-t} .
$$

Dvoji této interpretace základní rovnice dilatometrické se vskutku v praxi uživá. Kapalinou, jejiž̌to roztažnost dle třeti methody absolutní velmi dobř̀e známe, jest rtut. Postupuje se tedy tím způsobem, že se dilatometr nejprve pomocí rtuti prozkoumá, graduuje, aby se poznala jeho vlastní roztažnost $\%$, a teprve potom se ho použije ke studiu roztažnosti rozmanitých kapalin jiných; předběžná ona práce jest vykonána jednou pro vždy. Jinak, je-li znám druh skla, počitá se \% z jeho koefficientu lineárniho β podle vztahu

$$
\left.x=3 \beta^{*}\right) .
$$

Dilatometry úçelủm přednášek sloužicí jsou sklenéné a sestávají z baňky, k níž jest přímo přitavena delší trubice s dělením objemovým (obr. 32.). Baňka má kapacitu na pǐ. 1 litru; trubice jest 110 cm dlouhá a má průměr 10 mm ; dělení pokračuje v desetinách cm^{3}, při čemž odlehlost dǒlicích čárek jest 13 mm , tak že lze ještě setiny cm^{3} velmi dobře odhadnouti. Objem dilatometru až k nullovému bodu děleni objemového urči se předběžně vážením s vodou (§ 36.). Na to se dilatometr vysuši a naplní kapalinou, jejǐ̌ roztažnost se má studovati. Pro účely přednášek jest nejjednodušším množstvi kapaliny voliti tak, aby při teplotě nullové vyplǔovala dilatometr až k nullovému bodu dělení. K tomu cili vloží se dilatometr s kapalinou do tajícího sněhu neb ledu a když se teplota nullová ustálila. doleje se kapaliny (dlouhou nálevkou) anebo odssaje (pijavým papirem), mnoho-li třeba. Pak se vloži dilatometr do vodni lázně, kterou lze zahřivati, a odčítá se přímo př̌irủstek objemový. Roztahováni kapalin, zvláště jsou-li vhodně zbarveny, vynikí velice poučně, a také výsledky čiselné bývaji uspokojujici. Ovšem dlužno zahřívati zvolna a čekati na vyrovnáni teplot v lázni a dilatometru, aby nenastala retardace v chodu tepelném.

Velice poučný jest pokus, který provedeme se třemi takovými dilatometry, z nichž jeden je naplněn vodou, jež jest zbarvena na př. indigokarminem modře, druhý alkoholem aethyl-

[^31]natým, který jest zbarven fuxinem červeně, a třeti aetherem, který je zbarven aurancii žlutě. Když se tyto tři dilatometry vloži do ledu neb sněhu na několik hodin, a upravi množstvi kapalin až do nullového bodu, jak bylo vyloženo, a kdy̌̌ se pak přenesou všechny tři do téže lázně vodni 35stupňové, ukáže se velmi pěkně, jak voda se roztahuje velmi málo, alkohol daleko vice, aether pak nejvice.

Dilatometry k účelûm vědeckým jsou malé, jemmě pracované, a jsou opatřené zátkou skleněnon, aby vypařování kapaliny se zamezilo.

§ 39. Methoda densimetrická.

Methodu lze, jak již vyloženo, prováděti zpûsobem dvojim: bud pyknometrem nebo tělískem ponorným.

Budiž dána nádobka skleněná, pyknometr (teploměr na váhu). Naplníme ji při teplotě nižši t kapalinou a odvážíme; limota netto kapaliny budiž p. Pak ji zahřejeme na teplotu vyšši t^{\prime}, při čemž něco kapaliny odteče; po ochlazeni opět odvážíme; hmota netto kapaliny budiž p^{\prime}. Znači-li v, v^{\prime} objem nádobky, s, s^{\prime} specifickou hmotu kapaliny, obé při teplotě t, t^{\prime}, jest

$$
p=v s, \quad p^{\prime}=v^{\prime} s^{\prime}
$$

Budiž dále \% průměrnẏ*) objemový koefficient nádobky a ce průměrný objemový koefficient kapaliny pro tepelný intervall $t \ldots t^{\prime}$. Pak jest

$$
\begin{aligned}
& v^{\prime}=v\left[1+u\left(t^{\prime}-t\right)\right] \\
& s^{\prime}=\frac{s}{1+u\left(t^{\prime}-t\right)}
\end{aligned}
$$

Z těchto relaci plyne ihned

$$
\frac{p}{p^{\prime}}=\frac{1+a\left(t^{\prime}-t\right)}{1+\pi\left(t^{\prime}-t\right)}
$$

jakožto základni rovnice methody densimetrické, ve formě souměrné a přehledné. Z ni pak odvodíme vztah

$$
\frac{p-p^{\prime}}{t^{\prime}-t}=«{ }^{*} p^{\prime}-\star p
$$

[^32]z něhož plyne. je-li známo x,
$$
\varkappa=\% \frac{p}{p^{\prime}}+\frac{1}{p^{\prime}} \frac{p-p^{\prime}}{t^{\prime}-t}
$$
a ovšem též naopak, je-li známo ε.
$$
x=a \frac{p^{\prime}}{p}-\frac{1}{p} \frac{p-p^{\prime}}{t^{\prime}-t}
$$

Srovnávajíce základní vzorce methody dilatometrické a densimetrické shledáváme úplnon analogii. Co tam jest v, v^{\prime}, to zde r^{\prime}, p, při čemz̃ zûstává souhlas v tom, že jest $v<v^{\prime}, p^{\prime}<p$. Proto pišeme taun $v^{\prime}-v$, zde pak $p-p^{\prime}$. Při vys̊síi teplotẽ jest tam vétši objem prii téze hmotẽ, zde mensi hmota při málo zménẻném objemu.

Budiž dáno ponorné tělisko (na př. malý rtufový teplomèr vhodné formy). Ztráta na váze tohoto tělíska jednou v kapalině studenèjší, po druhé teplejší, značí totéž, co p, p^{\prime} u pyknometru; souhlasný význam má též v, v^{\prime}. Proto zủstávaji všechny vzorce pro pyknometr odvozené úplně v platnosti též pro tělísko ponorné.

Methoda pyknometrická má oproti methodẽ ponorného tẻliska tu prednost, że lze uživati nádobek malŷch a tak vystaçiti s malým množstvim kapaliny. Jiná vẙhoda jest téz v tom, že lze pyknometr zavésiti do par, jez̃ vystupuji z néjaké vroucí kapaliny, čimž se docili lázně o velmi konstantní teplotẽ. Mnohé práce byly provedeny téz̃ tak, że se pyknometr s kapalinou, na pĩ. s methylalkoholem, vložil do par téže kupaliny do varu zulíùté, tedy na pr. do par varícího se methylalkoholu, činzz se obdržela specifickí hmota, čili specifický objem nebo molekulovy objem dané kapaliny při vlastním bodu varu a ovšem téz jeji koefficient roztažnosti. Úpravu pokusu objasñuje ethoda pyknometrickà. obr. 33. Objemem molekulovým rozumíme specificky̌ objem násobený vahou (hmotou) molekulovou. Své doby se právé tẻmto molekulovým objemủm při bodu varu prikládal zvlástní vyznam, který vsak vzhledem k závislosti bodu varu na tlaku sotva ma.

§ 40. Methoda hydrostatická.

Mějmež dvě různé kapaliny o specifické hmotě s_{0} a s. Dva sloupce těchto kapalin o výšce h_{0} a h jsou hydrostaticky aequivalentni, je-li

$$
h_{0} s_{0}=h s
$$

Stejná rovnice plati pro případ, že jest dána kapalina jediná, Že však v oněch sloupcich jest různě temperovaná, čimž vznikaji též rủznosti ve hmotě specifické. Je-li teplota obou sloupců 0° a t a značíli ae prūměrný koefficient objemové roztažnosti dané kapaliny pro tepelný intervall $0 \ldots t$, jest

$$
s=\frac{s_{0}}{1+\text { ct }}
$$

tudiž dosazenim

$$
h_{0}=\frac{h}{1+\alpha t}
$$

odkud vychází

$$
\alpha=\frac{1}{t} \frac{h-h_{0}}{h_{0}}
$$

Sloupce hydrostaticky aequivalentní máme u spojitých nádob. Naplnime tedy takové spojité nádoby kapalinou a udržujeme jedno rameno tajícím ledem neb sněhem na teplotě nullové, druhé pak vhodnou lázni wa teplotě t, kterou třeba stanoviti teploměrem plynovým. Kdybychom pro teplotu t užili páry z vody při tlaku jedné atmosféry se vaříci, byla by teplota t fundamentálni 100° jako ona teplota nullová, a nebylo by pak třeba teploměru k jejimu zjištěni. Koefficient a jest vždy príměrným pro intervall obou teplot.

Všeobecnêjsisi rovnice pr̃i libovolných teplotách t a t^{\prime} jsou dle analogického označení

$$
\begin{aligned}
h s & =\dot{h}^{\prime} s^{\prime} \\
s^{\prime} & =1+\frac{s}{1+\alpha\left(t^{\prime}-t\right)}
\end{aligned}
$$

tudiz̃

$$
h=\frac{h^{\prime}}{1+\pi\left(t^{\prime}-t\right)}
$$

a odtud

$$
a=\frac{1}{t^{\prime}-t} \frac{h^{\prime}-h}{h}
$$

kdez̃ jest «e průměrným koefficientem kapaliny pro intervall tepelný $t \ldots t^{\prime}$.
Bylo již řečeno v úvodních výkladech. v čem záleží základni význam methody hydrostatické. Jest to jediná methoda absolutni, při niž koefficient roztažnosti kapaliny stanovime přímo, nepotřebujice znáti roztažnosti nádob, v nichž kapalina se nalézá. Touto methodou byla pủvodně studována roztažnost rtuti, této pro četné účely metronomické dủležité kapaliny.

Teprve v novější době studována touto methodou též roztažnost vody. Jakmile roztažnost rtuti byla určena, bylo lze užíti rtuti k předběžnému studiu roztažnosti dilatometrủ na objem i na vahu a tak učiniti také obě ony methody relativní methodami i k přesným účelům způsobilými.

§ 41. Roztažnost rtuti.

Roztažnost rtuti studovali methodou hydrostatickou Dulong a Petit*) v letech 1818 při práci, jejiž účelem bylo zkoumati základy thermometrie. Do té doby bylo jen přibližně známo, jak se rtut teplem roztahuje. Zvětšení jejího objemu při zahřátí z 0° na 100° určil Fahrenheit na 1.61%, Lavoisier a Laplace na 1.75%; obě hodnoty byly malé. Dulong a Petit, uživajice nádoby spojité, udržovali jeden sloupec rtufový výšky H_{0} na teplotě tajícího ledu, druhý pak sloupec výšky H zahřívali v lázni olejové, jejiž teplotu t určovali teploměrem vzduchovým. Uspořádáni jejich pokusu objaš̌uje obr. 34. K měření malých rozdilủ výškových $H-H_{0}$ sestrojili (1817) zvláštní přistroj, kathetometr, ovšem o rozměrech přiměřeně malých. Z relativního přirůstku $\frac{H-H_{0}}{H_{0}}$ výšek a z přírủstku t teploty od nully počínajic vypočítali prûměrný koefficient roztažnosti a dle vzorce ($\$ 40$.)

$$
c=\frac{1}{t} \frac{H-H_{0}}{H_{0}}
$$

a nalezli
pro intervall $0 \ldots 100^{\circ}$ koefficient $\varepsilon=0.0001802$
$\begin{array}{llll}0 \ldots & 200^{\circ} & \# & 0.0001843 \\ 0 \ldots & 300^{\circ} & 0.0001887\end{array}$
Z výsledků těchto bylo tedy patrno, že rtuf se roztahuje s teplotou poněkud urychleně.
*) Pierre Dulong (1785-1838), professor a pozdẹji reditel polytechnické skoly y Paruižì, chemik a fysik. Alexis Pefit (1791-1820), fysik, rovnễ professor skoly polytechnické na Lycée Bonaparte, pozdẻji Collegge roy. de Bourbon v Pařizìi. Společná jich práce vyšla ve zprávảch akademie Paíižskéa a byla cenou poctēna. Titul jeji byl: Recherches sur la mesure des temperatures et sur les lois de la communication de la chaleur. Také v Annal. chim.-phys. 7, pag. 127, 1818 byla uveřejnéna a vyß̧la téż jako spis samostatnỳ.

O čtvrt stoleti později ujal se téže úlohy H. Regnault*). Metho da jeho byla též hydrostatická, ale uspořádáni pokusu lišilo se přece v podrobnostech dosti významných od té úpravy, kteréž

Obr. 34.
Methoda hydrostaticki, jak ji upravili Dulong a Petit.
uživali Dulong a Petit. Také Regnault postavil proti sobě dva sloupce rtufové, rủzuě temperované a vespolek kommunikujicí,

[^33]Dr. V. Strouhal: Thermika.
ale o výškách H_{0}, H steiných. Sloupce tyto nebyly tudiž hydrostaticky aequiralentní, jich tlak byl různý. Tuto ruzzost vyrovnal malými sloupečky rtufovými o výškách h_{0}, h, umistěnými od hlavnich sloupců dosti daleko, ale u sebe velmi blizko, aby mohly býti stejně temperovány a aby jich rozdíl výškový mohl přesně býti odměřen. Tyto sloupečky kompensační souvisely s hlavnimi sloupci bud dole, nebo nahoře. Měl tedy Regnault pokus dvojím zpúsobem uspořádaný, jak znázorňuji schematicky obrazce 35. a 36. Při umístěni kompensačnich sloupečkủ dole (obr. 35.) bylo nutno komprimovaným vzduchem držeti rovnováhu s hlavními sloupei; proto byly příslušné skleněné trubičky dohromady spojeny trubici kovovou, jež vedla k reservoiru, kde se vzduch komprimoval na tlak asi dvou atmosfér. Hlavní sloupce byly nahoře spojeny vodorovnou trubicí kovovou, v nǐ̌ uprostřed byl malý otvor. Tlak v onom reservoiru reguloval se tak, aby se v tomto otvoru vystoupením rtuti právě objevila kapka rtutová. Při umistěni kompensačních sloupečkủ nahoře (obr. 36.) nebylo třeba těchto opatření, poněvadž na sloupečky působil jen obyčejný tlak vzduchu. Hlavní sloupce byly pak spojeny vespolek vodorovnou trabici kovovou dole.

Ona mysilenka kompensac̃nich sloupeçkủ mèla tu rỵhodu, zee se mohlo pr̂i nich dociliti společné. stejné teploty. Poněvadž pak také kalibr obou sklenẻnỵch trubiček byl stejnỳ, byla také kapillární depresse rtuti v obou têch trubičkich stejná. tak z̀e v differenci obou vy̌šek se z pozorovản vyloučila. Pŕi uspỡảdáni, jehoz̃ uživali Dulong a Petit, byl sice téz kalibr obou trubic stejný, ale teplota byla velmi rủzná; proto účinek kapillární depresse z jich pozorování zcela vyloučen nebyl. Blizké umistění obou têch sloupečkủ kompensaćnich u sebe umožnilo mimo to též presnẻjsi mẻrení rozdílu výskovêho.

Základní rovnice jest pro oba způsoby pokusu v podstatě stejná. Je-li t_{0}, t teplota obou hlavních sloupcủ, α_{0}, α průměrný koefficient roztažnosti rtuti pro intervall $0^{\circ} \ldots t_{0}$ a $0^{\circ} \ldots t$, jsou tyto sloupce o výškách H_{0}, H aequivalentní se sloupei rtuti nullstupǔové o výskách (redukovaných)

$$
\frac{H_{0}}{1+\alpha_{0} t_{0}}, \quad \frac{H}{1+\alpha t} .
$$

Podobně, je-li t^{\prime} společná teplota sloupečkũ kompensačnich, ' ${ }^{\prime}$ průměrnỷ koefficient roztažnosti rtuti pro intervall $0 \ldots t^{\prime}$, jsou tyto sloupečky o výškách h_{0}, h aequivalentní sloupečkûm rtuti nullstupǔové o výškách (redukovaných)

$$
\frac{h_{0}}{1+e^{\prime} t^{\prime}}, \frac{h}{1+a^{\prime} t^{\prime}}
$$

Tyto kompensační sloupečky připojuji se k sloupcům hlavním. a to subtraktivně při prvém uspořádáni pokusu, additivně při druhẻm uspořádání pokusu. Vyjádříme tedy hydrostatickou rovnováhu v obou případech rovnici:

$$
\frac{H_{0}}{1+a_{0} t_{0}} \mp \frac{h_{0}}{1+\alpha^{\prime} t^{\prime}}=\frac{H}{1+\alpha t} \mp \frac{h}{1+\alpha^{\prime} t^{\prime}},
$$

Obr. 35.

Obr. 36.

Methoda hydrostatickí y úpravé Regnaultovè.
ze kteréž plyne pro prvé uspořádáni

$$
\frac{H}{1+\alpha t}=\frac{H_{0}}{1+\varepsilon_{0} t_{0}}-\frac{h_{0}-h}{1+\alpha^{\prime} t^{\prime}}
$$

a pro druhé uspořádáni

$$
\frac{H}{1+\alpha t}=\frac{H_{0}}{1+\alpha_{0} t_{0}}-\frac{h-h_{0}}{1+\alpha^{\prime} t^{\prime}}
$$

Při tom jest přibližně $H_{0}=H$, až na malé rozdily nahodilé, jak vznikají rủznosti oteplení.

Při pokusech Regnaultových byly teploty t_{0}, t^{\prime} velmi blizké nulle; bylo k temperováni užito studené proudící vody.

Proto maji součiny $\varepsilon_{0} t_{0}$, $e^{\prime} t^{\prime}$ význam malých korrekci, pro kteréž bylo lze užiti aspon̆ provisorně těch hodnot koefficientu c, jež nalezli Dulong a Petit. Hlavni věci bylo počitati koefficient a pro řadu vyššich teplot $t_{1}, t_{2}, t_{3}, \ldots$. Po výpočtu' těchto, již lepšich hodnot koefficientu a bylo lze též pro α_{0} a e^{\prime} vziti lepši hodnoty a počet provésti znova. Tak obdržel Regnault postupnou approximacísvé definitivní hodnoty průměrných koefficientů $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ pro intervally temperaturní $0 \ldots t_{1}$, $0 \ldots t_{2}, 0 \ldots t_{3}, \ldots$ a položiv výpočtům za základ rovnici kvadratickou

$$
v=v_{0}\left(1+A t+B t^{2}\right)
$$

kdež teplota t byla určena teploměrem vzduchovým. obdržel pro konstanty A, B hodnoty

$$
A=0.00017905, \quad B=0.0000000252
$$

Z těch se počitá koefficient a prủměrný pro intervall $0 \ldots$ t vzorcem

$$
\varepsilon=A+B t
$$

a koefficient pravý pro teplotu t vzorcem

$$
\alpha_{t}=A+2 B t
$$

Dle toho jsou objemy rtuti na př. při teplotách $0^{\circ}, 100^{\circ}$, $200^{\circ}, 300^{\circ}$ následujíci:

t	v_{t}	Přirústek
0	1.000000	0.018157
100	1.018157	0.018661
200	1.036818	0.019165
300	1.055983	

Z této tabulky, jež v hlavních číslech dobře orientuje, poznáváme, že rtuf se s teplotou roztahuje urychleně, že však toto urychlení jest velmi mírné. Ještě lépe objasňuje věc diagramm (obr. 37.) pro roztažnost rtuti, v němž přímkou jest naznačeno, jak málo se skutečné roztahování rtuti odchyluje od toho, jež bychom extrapolaci usoudili z průměrného roztahováni mezi 0° a 100°. Právě tento (velmi přibližný) parallelismus mezi roz-
tahováním rtuti a vzduchu objasǐuje, proč rtutové teploměry, jakožto manipulačni, jen malé jeví odchylky od teploměrủ plynových jakožto normálnich.

Fundamentálni práce Regnaultovy vzbudily ve fysikálním světě vědeckém živỳ zájem a účastenství veliké. Důkazem toho jest diskusse, která již za živobyti Regnaultova vznikla a po jeho smrti dále vedena byla a která měla za účel čiselné zpracování jeho výsledkủ pozorovacich podrobiti vědecké kritice a

Obr. 37.
Roztaz̃nost rtuti.
zdokonaliti. Diskusse této zúčastnila se celá Y̌ada fysikủ. Někteří, jako Mendélëjev*), přijímajíce pro objem vzorec kvadratický nalezli pro konstanty A, B na základě malých korrekcí hodnoty lepši; jini, jako Reclnagel, Wüllner, Levy a Broch, navrhovali pro objem vzorec kubický a počitali jeho konstanty A, B, C. Vedle toho ukázal Bosscha, že pozorováním vyhovuje téz̃ výraz

[^34]exponenciálni, formy
$$
v=v_{0} e^{a t}
$$
kdež jest
$$
a=0.00018077
$$

Na pryni pohled prekvapuje, ze lze tatã̌ pozorováni vyjádřiti interpolačni formulí bud kvadratickou, nebo kubickou, nebo dokonce exponenciảlni. Avšak vêc vysvętluje nejlépe diagramm roztažnosti obr. 37. Nerovnomèrnost v roztahováni jest velmi malá, kr̃ivka v diagrammu jednotlivými body naznačená, konćíc teplotou mảlo nad 300° mả y tomto rozsahu zakřivení nepatrné. Kdyby se ony formule extrapolací rozširíly k teplotám vysokým, - coz̃ by zde ovšem mêlo jen smysl mathematický - rozcházely by se dojista znac̃nẻ. Formule Bosschova jest zajimavá tím, zee obsahuje jenom jedinou konstantu e. Jeji význam jest dản vztahem

$$
\alpha=\frac{1}{v} \frac{d v}{d t}
$$

Dřive (§ 26.) zavedli jsme jakožto pravý koefficient r \boldsymbol{r}_{t} pro teplotu t výraz

$$
\mu_{t}=\frac{1}{v_{0}} \frac{d v}{d t} .
$$

Koefficient rovnice Bosschovy jest tedy analogický pravému, ale vztahuje se na proměnlivý objem v. Na rozdilnost tuto bylo již upozornéno v \& 26.

Studium roztažnosti rtuti obraly si v době nejnovějši za úkol též předni ústavy metronomické v Bréteuilu (internacionální ústav pro míry a váhy, zde zejména Chappuis 1903 a 1905) a v Charlottenburku (fysikálně-technický ústav řišský, zde Thiesen, Scheel a Sell 1895 a 1898). Tyto práce obsáhly intervall temperaturní $0^{\circ} \ldots 100^{\circ}$, kterýž ovšem jest nejdůležitější. Pro celý intervall tepelný $0^{\circ} \ldots 300$ přijímaji se hodnoty, jak je z pozorování Regnaultových vypočital Broch*). Vzhledem k velikému významu, jaký má rtuf ve fysice, uvádíme v následujicím tabulku**) znázorňující číselně vše, co se k roztažnosti rtuti vztahuje.
*) Ole Broch (1818-1889), prof. university v Christianii, ūčastnil se čelných praci v internat. ústavu Bréteuilském a mél vynikajici ủčastenstri při zavedeni soustavy metrické v Norsku.
${ }^{* *}$) Landolt-Bōrnstein, Physik, chem. Tabellen, 1900.

Průměrný koefficient roztažnosti α, objem $1+\alpha t$, specif. hmota s a specif. objem $\frac{1}{s}$ rtuti při teplotě $t=0 \ldots 360^{\circ}$.

t	α	$1+r e t$	s	$\frac{1}{s}$
0	0.00018179	1.000000	$13: 5955$	0.0735540
10	180	01818	5708	36877
20	181	03636	5462	38215
30	183	05455	5217	39552
40	186	07274	4973	40891
50	189	09094	4729	42229
60	193	10916	4486	43569
70	198	12738	4244	44910
80	203	14563	4003	46252
90	209	16388	3762	47594
100	216	18216	3522	48939
110	224	20046	3283	50285
120	232	21878	3044	51633
130	241	23713	2805	52982
140	250	25551	2567	54334
150	261	27391	2330	55688
160	272	29235	2093	57044
170	284	31082	1856	58402
180	296	32933	1620	59764
190	309	34788	1384	61128
200	323	36646	1148	62405
210	338	38509	0913	63865
220	353	40377	0678	65239
230	369	42249	0443	66616
240	386	44126	0209	67996
250	403	46008	12.9975	69381
260	421	47895	9741	70769
270	440	49788	9507	72161
280	459	51686	9273	73558
290	480	53591	9039	74958
300	500	55502	8806	76364
310	522	57419	8572	77774
320	544	59342	8339	79189
330	367	61272	8105	80609
340	591	63210	7872	82033
350	616	65154	7638	83464
360	0.00018641	1.067106	12\% 705	0.0784900

Pro intervall $0^{0} \ldots 100^{\circ}$ vypočital Chappuis*) (1905) ze svých četných, methodou densimetrickou (teploměr na váhu) provedenẙch pozorovảni následujici formuli interpolačni:
$v=v_{0}\left(1+0.000181690 t-0 \cdot 000000002951 t^{2}+0.00000000011456 t^{3}\right)$,
kterả jest zajimavou tím, że koefficient B çlenu kvadratického jest negativni.

Z formule této vycházeji hodnoty objemu ponêkud malo odchylné, nez̃ jak jsou ob zaženy v tabulce predcházejicí. Za príklad uvedme hodnoly objemu pro teploty 50° a 100° :

	t	$=50^{\circ}$	100°
(Pegnault)	v	$=1 \cdot 009094$,	$1 \cdot 018216$,
(Chappuis)	v	$=1 \cdot 009091$,	$1 \cdot 018254$.

Nieménê jsou odchylky tak malé, že jsou

Obr. 38.
Apparàt na rozlažnost rtuti k ữěelûm prèdnášek. spîse dủkazem vzảcné presnosti obou pozorováni, a to tím spíse, poněvadž Regnuult užival teploměru vzduchového, Chappuis vodikového, tak že nepatrné odchylky již touto rủzností teplomẻrủ, jez̃ úplnẽ nekoincidují, mohou býti vysvétleny.

Obr. 38. ukazuje apparát na roztažnost rtuti k účelủm přednášek zařizený, jimž se experimentuje pohodlně a dosti přesně. Apparát jest celý skleněný, což jest výhodou, poněvadž je úpravu pokusu dobře viděti. Obě spojité nádoby mohou zůstati stále rtutí naplněné. Jsou dole připojeny dobrou kaučukovou trubičkou k ocelovému kohoutu, který je tak vrtán, aby dle postavení kohoutu bud byly obě trubice spojeny vespolek, (když se pokus provádi), anebo jedna neb druhá aby vyústila ven (když se chce rtutz jedné nebo druhé trubice vypustiti). Má-li se pokus provésti, obloži se jedna z nich tlučeným ledem, do druhé pak se žene z malého parního kotliku horem pára vaříci se vody, jež se pak dolem odvádi a kondensuje. Je-li proud páry prudký, netřeba se obávati

[^35]značnějšiho ochlazení páry vnějším vzduchem. Odečteni rozdilu výškového provede se kathetometrem. Na bod varu vody (dle tlaku barometrického) má se ovšem vziti zřetel. Výsledek tohoto měřeni na zpủsob methody Dulong-Petitovy upraveného bývá dosti dobrý a pro účely přednášek poučný.

§ 42. Anomalie vody.

Roztažnost vody byla studována zejména v době novějsí od přečetných badatelû, jichž práce tvoří samostatnou, dosti obsáhlou literaturu tohoto předmětu. Přičina toho jest především všeobecná; má zajisté voda veliký význam v přírodě organické i anorganické, jakož i velikou dủležitost v meteorologii i v klimatologii. Vedle toho však rozhoduje přičina zvláštní, totiž význam, jaký má voda speciálně ve fysice: nebot zde jest látkou, na kterou vztahujeme hustotu těles pevných i kapalin a dle které stanovíme jednu z čelných fysikálních jednotek, totiž jednotluu hmoty, a to na základě vlastnosti velice pozoruhodné a dûležité, kterouž označnjeme jakožto anomalii*) vody.

Uvedli jsme v prvních výkladech tohoto oddilu (§ 25.) pravidlo, že tělesa, jsouce zahřivána, objem svůj zvětšují. Když však zahříváme vodu, jež na př. táním ledu neb sněhu právě vznikla, tedy od teploty nullové počinajic, pozorujeme, že objem svůj stále zmenšuje až k určité teplotě t^{*}, při nǐ̌ jest objem nejmenši, a teprve potom při dalším zahřívání že objem svůj zvětšuje. Má tedy voda při této pro ni charakteristické teplotě t^{*} minimum svého objemu čili maximum své hustoty.

Tuto zvláštnost vody poznali již kolem roku 1670 členové „Akademie pokusu" ve Florencii; avšak teprve ve století 19. byly podniknuty četné práce zejména k tomu směřujicí, aby teplota t^{*} byla přesně určena. Práce nejnovějjši vedly k výsledku

$$
t^{*}=3.98^{0}
$$

a to dle teploměru vodikového. Poněvadž mnohé výsledky, zejména starších měření, vedly k hodnotám poněkud větším, přijímá se dnes okrouhlá hodnota $4 \cdot 0^{\circ}$ dle normálniho teploměru vodikového jakožto pravdě nejpodobnější (až na málo setin

[^36]stupně); objem pak vody při této teplotě, jakož i jeji hustota a dle definice grammu i hmota specifická bére se za jednotku.

K čiselnému posouzení objemových změn, jakéž ukazuje voda v okolí teploty 4^{0}, slouži tabulka následujicí, tak uspořádaná, aby také eventuálni souměrnost těchto změn vzhledem k nižším i vyššim teplotám vynikla.

Roztažnost vody v okolí 4°.
(Anomalie vody.)

t	v	t	v
0	$1 \cdot 000132$	8	$1 \cdot 000124$
1	073	7	071
2	032	6	032
3	008	5	008
4	$1 \cdot 000000$	4	$1 \cdot 000000$

Dle těchto čísel nakreslen jest v obr. 39. diagramm objemový (horni křivka), z něhož podstata anomalie ještě lépe a názorněji vyniká.

Obr. 39.
Anomalie vody, jak se jeví ahsolutné i relativnê v dilatometru skleněném.
Zmẽny objemové, jež i v celém intervallu $0^{\circ} \ldots 4^{\circ} \ldots 8^{\circ}$ jsou velmi malé, stávají se nepatrnými v bezprostrednim sousedstvi teploty 4 , jakoz̃ z povahy minima samého následuje. Tak na př. o milliontinu zvětşi se objem teprve zahřátím na $4 \cdot 4^{0}$ nebo ochlazenim na $3 \cdot 6^{\circ}$, pri kterýchžto teplotách jest objem (plné) 1.000001. Vzhledem k tomu nelze se diviti, ze ve výsledeich různých autorú pro teplotu t^{*} shledáváme variace dosti velké, v mezich $3 \cdot 33$ (Hope) až 4.44 (Lefevre-Gineau); nebof tyto jinak znac̃né variace temperatury jeví se v objemu úcinkem velice nepatrným, při celém litru variaci pouze jednoho kubického millimetru.

Anomalii vody lze stndovati všemi, v § 37. uvedenými methodami. Z nich nejnázornějši, bezprostřední, jest ta, kteráž uživá dilatometrů, majícich tvar jako poněkud větši teploměry rtufové; nádobka jest naplněna čistou, vzduchu prostou vodou, a trubička jest pečlivě graduována. Vzhledem však k relativnosti methody dilatometrické pozorujeme celý zjev značně pozměněný; nebof $k d y z ̌ ~ s e, ~ o d ~ t e p l o t y ~ n u l l o v e ́ ~ p o c ̌ i n a j i c, ~ d i l a t o-~$ metr s vodou zahřívá, roztahuje se sklo, tudiž jevi se objem vody býti zmenšeným o tolik, mnoho-li čini zvětšeni objemu dilatometru. Proto se zdánlivě voda stahuje prudčeji, a obrat v minimu nastává nikoli pr̀̀i 4°, nýbrž teprve při teplotě kolem 6°, tedy značně později. K objasnění toho jest v obr. 39. (dolni křivka) přesně nakresleno, jak se anomalie vody jeví v dilatometru, jehožto koefficient roztažnosti má hodnotu (průměrnou)
$\frac{1}{40.000}$; minimum nastává tu př̌i $5^{3} / 4^{\circ}$.
Stejná relativnost jeví se též v methodě densimetrické, af již se užívá pyknometru nebo ponorných tělísek. Pozorování lze však přepočisti na absolutní, když se zná roztažnost skla, kteráž musí býti na témže materiálu skelném určena, z něhož pyknometr nebo tělisko ponorné je zhotoveno.

Výhodou je zde míti materiál o roztažnosti velmi malé. Proto bylo v novější době na mistě skleněného těliska ponorného uživáno koule křištálové. Pro dilatometr nebo pyknometr hodilo by se velmi dobře sklo křišfálové, jehožto roztažnost jest nepatrná (§ 36.).

V obr. 40. je téz naznac̃eno, jak se graticky nalezne teplota t^{*} absolutního minima, když jest sestrojena křivka pro relativni zmẽny objemové. Vede se k této kr̄ivce tečná ve smẽru, jímz̃ jest pro intervall asi $0^{\circ} \ldots 10^{\circ}$ udána roztaz̃nost skla. Anebo se v blizkosti relativaiho minima v tomtéz̃ sméru vede têtiva a rozpûli se. Přimka bodem dotekovým oné tečné, anebo stredním bodem této têtivy kolmo k ose temperaturní vedená vytkne zde teplotu t^{*}.

Jest však ještě jedna methoda, kteráž na vrstvení vody spočívajíc dovoluje teplotu t^{*} přímo určiti s přesnosti dosti značnou. Do vysoké, válcovité nádoby (obr. 41.), naplněné vodcu, jsou se strany vodorovně zasazeny dva velmi jemné teploměry, sahajíci až do prostřed nádoby. Dolejší teploměr ukazuje teplotı t_{1} vrstev dolnich, hořejší teplotu t_{2} vrstev hornich. Začáteční teplota vody volí se několik stupňů nad t^{*} a nádoba se přenese do místnosti s teplotou několik stupňủ pod t^{*}. Následkem toho voda
ponenáhlu chladne; vrstvy tě̌̌̌̌i sestupuji dolủ, lehči vystupuji nahoru. Nez̆ se voda prochladí na t^{*}, jest $t_{1}<t_{2}$, když se voda prochladi pod t^{*}, jest $t_{1}>t_{2}$; přechod nastává př̀i $t_{1}=t_{2}$, kdež oba teploměry ukazuji teplotu t^{*}. Dlužno tedy v pravidelných intervallech časových odecítati oba teploměry, znázorniti dle těchto odečtení časový postup teplot t_{1} a t_{2} graficky a hledati průsek obou křivek; tímto prủsekem jest určena teplota t^{*}. Definitivní hodnota z častějšich pozorování pro teplotu t* nalezená přepočitá se ještě na teploměr vodikovỳ.

Obr, 40.
Jak se konstrukci nalezne z relativnich méreni teplota absolutniho minima.

Obr. 41.
Anomalie vody, jak se jevi ve rrstiveni a jak se určuje.

Methody na vrstvení vody zaloz̃ené uživali jizž počátkem století 19. Hope a Rumford (1805), pozdéji Tralles (1807) a Hallström (1827).
 teplomêrư, a F. Exner (1873) thermočlánkû. V nejnovêjsí dobẽ pozorovali dle methody této L. Weber (1878) a zejména L. Coppet (1893 a 1903).

Výklady zde podané platí pro vodu, jak se rozumí samo sebou, dokonale čistou. Avšak voda na povrchu zemském nebývá zcela čistou, má v sobě obyčejuě rozpuštěné mnohé soli, jest více méně tvrdá, voda mořská pak jest značně slaná. Vzhledem k tomu jest velice dủležito zkoumati, jaký účinek takovéto soli vodě v malém množstvi přimišené maji na zjev anomalie. Otázkou touto zabývali se mnozí badatelé, zejména Despretz (1836 a 1839), Karsten (1846), Marignac (1870), Rosetti (1871) a Ermann (1872). Výsledky jsou jednoduché. Přidáváme-li do 100 grammủ vody $1,2,3, \ldots m$ grammů soli, sniži se každým grammem soli teplota t^{*} maximálni hustoty konstantně o k stupǔú, a bod tání Θ současně $0 \times$ stupňủ. Jest tudiž

$$
t^{*}=4^{\circ}-k m . \quad \Theta=0^{0}-\kappa m
$$

V grafickém znázoruění (obr. 42.) obdržime pro snižené teploty t^{*} a Θ v závislosti na m přímky, na důkaz, že účinek jest množství přiměěené soli úměrný. Avšak přímky tyto postupuji v různém sklonu, přimka pro t^{*} klesá prudčeji než pro Θ, koefficient k jest větši než \%. Proto jest s počátku $t^{*}>\theta$, pro určité m stává se $t^{*}=\Theta$, a potom jest $t^{*}<\Theta$; maximálni hustota jevi se pak u vody již přechlazené.

Koefficienty k a $\%$ jsou různé dle látek ve vodě rozpuštěných. Následující tabulka udává některé přiklady, a to pro chlorid sodnatý (kuchyňskou sûl) a vápenatý, siran draselnatý a síran sodnatý (Glauberovu sůl), uhličitan draselnatý (potaš) a sodnatý (sodu).

Koefficienty k a $<$, jimiž se stanovi, jak se bod maxim. hustoty
a bod tavení snižuje přidáváním některých solí do vody.

	k	$\%$		k	$\%$	
$\mathrm{Na} \mathrm{Cl} . .$.	$2 \cdot 40$	$0 \cdot 64$	$\mathrm{Na}_{2} \mathrm{SO}_{4}$.	$2 \cdot 27$	$0 \cdot 30$
CaCl_{2}	.	$1 \cdot 61$	$0 \cdot 43$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$.	$2 \cdot 21$
$\mathrm{~K}_{2} \mathrm{SO}_{4}$.	1.70	$0 \cdot 23$	$\mathrm{Na} \mathrm{CO}_{2}$.	$2 \cdot 93$

Pro vodu slanou (Na Cl) obdržíme:

m	t^{*}	Θ
0	4^{0}	0^{0}
1	$1 \cdot 60$	-0.60
2	-0.80	-1.24
3	$-3 \cdot 20$	-1.88
4	-5.60	-2.52
5	-8.00	-3.16

Při $m=2.3$ jest $t^{*}=\tau=-155^{0}$. Voda mořská mívá více kuchyňské soli; proto jest zde zpravidla $t^{*}<\Theta$. Rosetti nalezl v moři Adriatickém, dle počasí ročních, $t^{*}=-3 \cdot 2^{\circ}$ až $-3 \cdot 9^{\circ}$ a $\Theta=-1 \cdot 9^{\circ}$ až $-2 \cdot 1^{\circ}$.

Pravili jsme, že změna teplot t^{*} a Θ s množstvím m soli se dẻje dle zákona primky. To jest ovsem jen approximace. Ve skutečnosti jsou to
 to pfi fysikalních zjevech často bývá; odtud pak ono formálni zjednodušeni zákona. V obrazci 42. jest dle hởejšich dat pro sủl kuchyñskou prủběh onêch pr̃imek znảzornẻn. Pro t^{*} obdržel Rosetti prímým pozorováním hodnoty $4^{0}, 1 \cdot 77^{\circ},-0 \cdot 58^{\circ}, \ldots$. Tyto json poněkud vyssí než ony hodnoty, jez̃ by z pŕimkového prưběhu následovaly, a naznačuji, že cára jest k ose úseček pone̊kud konkàvnf.

Obr. 42.
Jak se snizi teplota maxim. hustoty a tuhnuti při vodẽ účinkem kuchyñiské soli ve vodẽ rozpusténé.

Účinek podobný, jako soli, maji též jiné přimišeniny, jako: alkoholy, aethery, některé kyseliny, glycerin a pod., ovšem vždy jen v tak malém množství přidané, aby voda značně převládala. Pozoruhodno jest, že přidáváním alkoholu aethylnatého, jakož i methylnatého teplota t^{*} s počátku při malém m o několik desetin stupně stoupá a pak teprve při většim m klesá. (De Coppet, 1892 a 1893.)

§ 43. Pokračování; roztažnost vody.

Jako anomalie vody tak byla i roztažnost vody studována od velmi četných badatelủ, zvláštẽ pečlivě v tom intervallu tepelném. ve kterém se vody užívá při určováni hustot, tedy $0^{\circ} \ldots 35^{\circ}$, ale také při dalších teplotách vyšších, až do 100°, ba až do 300°, zde ovšem za vyššiho tlaku než atmosférického.

V dobách nynèjšich bylo nutno výsledky dosavadní revidovati a to vzhledem k tomu, že teplota dle norem nynějšich má býti stanovena teploměrem vodikovým. Poněvadž pak takovéto přepočitáváni v̌̆dy jest vice méně nejisté, ježto není známo, z jakého druhu skla byly zhotoveny ony teploměry rtutové, jichž při staršich měřenich bylo užíváno, podnikly předni ústavy metronomické nové měřeni, velmi pečlivě založené a provedené, aby se docililo výsledkủ definitivnich. V internacionálním ústavu Bréteuilském byl to Mareli a Chappuis, u cis. normálni cejchovni kommisse v Berlíně Plato, Domke, Harting, zejména pak v řišském fysikálně-teclnickém ústavu v Charlottenburku Thiesen, Scheel a Diesselhorst. Tito provedli svá měření methodou absolutní, hydrostatickou, a to v té modifikaci, kteréž užil Regnault. Sloupce vodní, různě temperované, byly stejně dlouhé a nahoře vespolek spojeny; různý pak jich tlak byl měřen dole sloupečky vodními stejně temperovanými. Zahřívání dělo se lázní vodní, při čemž cirkulace vody za účelem zajištění teplot konstantnich velmi účelně byla upravena. Teplota byla měřena jemnými teploměry rtufovými, jež byly s teploměrem vodikovým pečlivĕ srovnány, jich údaje byly pak přepočteny na tento teploměr normálni. Intervall tepelný, v němž bylo pozorováno, činil $0^{\circ} \ldots 40^{\circ}$. Veškerá pozorováni shrnuta pak v jedinou inter polační formuli:

$$
1-\varepsilon=\frac{(t-3 \cdot 98)^{2}}{503570} \frac{t+283^{\circ}}{t+67 \cdot 26^{\circ}}
$$

ve kteréž ε značí hustotu vody, kteráž jest jedničkou při $t^{*}=3 \cdot 98 ;$ účelně jest pak formule tato založena tak, aby udávala nikoli ε, nýbrž rozdil $1-\varepsilon \vee$ závislosti na rozdílu $t-3 \cdot 98$, jehož ětverci jest odchylka $1-\varepsilon$ zejména při vy̌̌šich teplotách přibližně úměrnou.

Dle formule této počitána pak obširná tabulka*) jak pro hustotu ε, tak pro objem $\frac{1}{\varepsilon}$. Obě tabulky, pro intervall tepelný $0^{\circ} \ldots 35^{\circ}$, jsou zde uvedeny obšíně, a to vzhledem k tomu, že hodnoty v nich obsažené za nejspolehlivějši a zajisté již za definitivní lze pokládati.
${ }^{\text {* }}$) uveřejnēná v Zeitschr. f. Instrumentenkunde 17, pag. 332 a 333,1897 , a prijjatá téz̃ do tabulek Landolt-Bōrnsteinovy̌ch 1905. Obsirné jest o celé práci pojednảno ve vêdeckẏch roupravách riissskêho fysik.-lechn ústavu 3, 68 a 69; 1900.

Objem vody
príi teplotě $0^{\circ} \ldots 35^{\circ}$ dle teploměru vodikového.

	00	0.1	$0 \% 2$	03	0.4	05	0.6	0.7	0.8	0.9
0	1000132	126	119	113	107	101	095	089	084	$07 \overline{9}$
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	016	013	011	009
3	008	006	005	004	003	002	001	001	000	000
4	000	000	000	0 O	001	002	003	004	005	007
5	008	010	012	014	016	O18	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	071	075	080	085	090	096	101	107	112	118
8	124	130	137	143	149	156	163	170	177	184
9	192	199	207	215	223	231	239	247	256	264
10	273	282	291	300	309	319	328	338	348	358
11	368	378	388	399	409	420	431	44_{2}	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	622	635	648	66 I	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	874	890	905	920	936	951	967	983	999	*015
16	1001031	048	064	081	098	114	131	148	165	183
17	200	218	235	253	271	289	307	325	343	361
18	380	399	417	436	455	474	493	513	532	55 I
19	571	591	610	630	650	67 I	691	711	732	752
20	773	794	815	$83 \overline{6}$	857	878	899	92 I	942	964
21	985	*007	*029	*051	*073	*og $\overline{6}$	* 118	*140	${ }^{*} 163$	${ }^{\text {\% }} 18 \overline{6}$
22	1.002208	231	254	277	300	324	347	370	394	418
23	44 I	465	489	513	$53 \overline{8}$	562	586	611	635	660
24	685	710	735	760	785	810	835	86 I	886	912
25	938	964	990	*016	*OH2	*068	\%094	* 121	${ }^{1} 47$	${ }^{*} 174$
26	1.003201	227	254	281	308	336	363	390	418	445
27	473	501	529	556	585	613	641	669	698	726
28	755	783	812	841	870	899	928	957	987	*016
29	1.004 046	075	105	135	165	194	225	255	285	315
30	346	376	407	437	468	499	530	561	592	623
31	655	686	717	749	781	812	844	876	908	940
32	972	*005	*037	* ${ }^{\circ} \mathrm{O}$	${ }^{1} 102$	${ }^{*} 135$	*167	*200	${ }^{2} 233$	266
33	1005299	332	365	399	432	465	499	533	566	600
34	634	668	702	736	771	805	839	874	908	943
35	978	*013	*047	*082	${ }^{1} 11 \overline{8}$	*153	${ }^{*} 188$	*223	*259	*294

Hustota vody

při teplotě $0^{\circ}, \ldots 35^{\circ}$ dle teploměru vodikového.

	00	O\%I	0.2	$0 \cdot 3$	0.4	05	0.6	077	0.8	0.9
-	00999868	$8-4$	881	887	893	899	905	911	916	922
1	927	932	936	941	945	950	954	957	961	965
2	968	971	974	977	980	982	985	987	989	991
3	992	994	995	996	997	998	999	999	*000	*000
4	1.000 000	000	000	*999	*999	*998	*997	*996	*995	*993
5	09999992	990	988	986	984	982	979	977	974	971
6	968	965	$96 \overline{2}$	958	954	$95 \bar{\square}$	947	$94 \overline{3}$	938	934
7	929	925	920	915	910	904	899	893	888	882
8	876	870	864	857	851	844	837	830	823	816
9	808	801	793	785	$77 \overline{8}$	769	761	753	744	736
10	727	718	709	700	691	681	672	662	652	642
11	632	622	612	601	591	580	569	558	547	536
12	525	513	$502 \overline{2}$	490	478	466	454	442	429	417
13	404	391	$37 \overline{9}$	366	353	339	326	312	299	285
14	271	257	243	229	215	200	186	171	156	14I
15	126	III	096	081	065	050	034	-18	002	*986
16	0.998970	953	937	920	904	887	870	853	836	819
17	801	784	766	749	731	713	695	677	659	640
18	622	603	585	566	547	528	509	490	47 I	451
19.	$43 \overline{2}$	412	392	372	352	332	312	292	271	25 I
20	230	210	189	168	147	126	105	083	062	040
21	019	*997	*975	*953	*931	*909	*887	-864	*842	*819
22	0.997797	77^{4}	751	728	705	682	$65 \overline{9}$	635	612	588
23	565	5^{41}	517	493	469	445	421	396	372	347
24	323	298	273	248	223	198	173	147	122	096
25	071	045	019	*99 ${ }^{4}$	*968	*941	*915	*889	*863	* 836
26	0.996810	783	756	730	703	$67 \overline{6}$	648	621	594	567
27	539	512	484	456	428	400	372	344	316	288
28	259	231	202	174	145	116	087	058	029	000
29	0.995 971	941	912	882	853	823	793	763	733	703
30	673	643	613	582	552	521	491	460	429	398
31	367	336	305	273	242	211	179	148	116	084
32	052	020	*988	*956	*924	* 892	*859	*827	*794	*-62
33	0.994729	696	663	630	597	564	531	498	464	431
34	$39 \overline{8}$	364	330	296	263	229	195	161	126	092
35	058	023	*989	*954	*920	*885	*850	*815	${ }^{7} 80$	* 745

Dr. V. Strouhal: Thermika.

K tabulkám těmto druží se dalši, jež udávaji objem a hustotu vody pro tepelný intervall $30^{\circ} \ldots 100^{\circ}$ dle normálnihe teploměru vodikového*). Jsou zde uvedeny zkráceně, od stupně ke stupni, což pro obyčejné účely fysikální v tomto intervallu tepelném postačí.

Objem vody

při teplotě $30^{\circ} \ldots 100^{\circ}$ dle teploměru vodíkového.

	-	1	2	3	4	5	6	7	8	9
30	1.00435	466	497	530	563	598	633	669	706	743
40	782	821	861	901	943	985	*028	*072	${ }^{1} 116$	${ }^{\circ} 162$
50	Hor 207	254	301	349	398	448	498	548	600	632
60	705	758	813	867	923	979	*036	*093	*151	${ }^{2} 210$
70	102270	330	390	452	514	576	639	703	768	833
80	899	965	*032	*099	*168	*237	*306	*376	*447	${ }^{*} 518$
90	1.03590	663	736	810	884	959	*035	${ }^{*} 111$	${ }^{\circ} 188$	${ }_{26}$
100	104343	422	501							

Hustota vody

při teplotě $30^{\circ} \ldots 100^{\circ}$ dle teploměru vodikového.

Uvedenými tabulkami jest úkol o roztažnosti vody řešen v těch mezích teploty, $0^{\circ} \ldots 100^{\circ}$, ve kterých voda za obyčejného tlaku zůstává kapalnou. Jest zajímavo studovati kontinuitu výsledkủ také přes tyto meze. Vodu lze přechladiti, tak že i při
*) M. Thiesen, Vędecké rozpravy rî̀ského fysik.-techn. ústavu v Charlottenburku 4. 1, 1904.
teplotě několika stupňủ pod 0° zủstává kapalnou. Vysokým tlakem lze vodu také nad 100° udržeti kapalnou. Pozorování ukazují úplnou kontinuitu výsledkủ, číselně přehlédneme je z obou tabulek, jež zde k zakončení jak pro objem tak pro hustotu uvádíme. První tabulka obsahuje výsledky pozorování, jež provedli Pierre, Weidner a Rosetti; druhá výsledky, jež obdrželi Ramsay, Young, Waterston a Hirn*).

Objem a hustota vody přechlazené.

t	Objem	Hustota	t	Objem	Hustota
-10	1.00186	0.99815	-5	1.00070	0.99930
-9	157	843	-4	055	945
-8	131	869	-3	042	958
-7	108	892	-2	031	970
-6	088	912	-1	021	979
			0	013	987

Objem a hustota vody nad obyčejným bodem varu.

t	Objem	Hustota	t	Objem	Hustota
100	1.0433	0.9585	220	1.195	0.837
110	1.0515	0.9510	230	1.215	0.823
120	1.0601	0.9434	240	1.236	0.809
130	1.0693	0.9352			
140	1.0794	0.9 .264	250	1.259	0.794
			260	1.283	0.779
150	1.0902	0.9173	270	1.308	0.765
160	1.1019	0.9075	280	1.34	0.75
170	1.1145	0.8973	290	1.38	0.72
180	1.1279	0.8866			
190	1.1429	0.8750	300	1.42	0.70
200	1.1590	0.8628	320	1.51	0.66
210	1.177	0.850			

[^37]Velmi dobře vynikne roztažnost vody grafickým znázorněním. V obr. 43. jest proveden diagramm v mezich teploty 0° až 320°, kterým se velmi dobře ukazuje, jak křivka pro roztažnost vody stoupá vždy rychleji. Přírůstek objemu při 100° činí 43%, při 200° již 15.9%, př̌i 300° však 42%, při 320° přibylo objemu o vice než polovičku. Koefficient roztažnosti v intervallu $310^{\circ} \ldots 320^{\circ}$ činí 0.005 , jest značně větší, než koefficient roztažnosti plynủ, který, jak později shledáme, obnáśí 0.00367 . Ke srovnání jest proto v diagrammu přikresleno, jak se roztahuje vzduch a také jak se roztahuje rtuf. Tečna, v bodě 320° ke křivce pro roztažnost vody vedená, ukazuje od osy temperaturní větší odklon než přímka, jež platí pro plyny.

Obr. 43.
Roztažnost vody v pĭirornání s roztaz̃nosti rluti a vzduchu.
Uvedli jsme pro roztažnost vody jen výsledky praci nejnovêjšich. Práce starši mêly svůj význam v době, kdy byly provedeny; dnes o nich v učebnici obširné referovati nebylo by vhodno. Prece však budtez̃ aspoñ uvedena jména těchto drívéjsich badatelũ. Methodou dilatometrickou pracovali Despretz (1836), Pierre (1845), Kopp (1854), Jolly (1864), Rosetti (1868), Kreitling (1897), Scheel (1897). Landesen (1902). Methodou densimetrickou a sice ponornỳm teßliskem pracovali Hallström (1824) a Matthiessen (1866), v novéjši pak době Thiesen (1889) a Marek (1891), kteři uz̃ivali têliska kr̂isstálového. Pyknometrem méril hustotu vody Henrici (1845).

Kaz̃dý z téchto pozorovatelủ zpracoval svả pozorování dle nẽjjaké formule interpolační, platící bud pro objem nebo pro hustotu. V nejčetnéjsich připadech měly na př. pro objem tyto vzorce formu

$$
v=v_{0}\left(1+A t+B t^{2}+C t^{3}+D t^{4}\right)
$$

Konstanty takovýchto vzorcá byly vypoc̃teny pro urçitý intervall tepelný, v němž bylo pozorováno. Tak na př. vypočital Scheel (1897) pro intervall $0^{\circ} \ldots 33^{\circ}$ "́́selné hodnoty:

$$
\begin{aligned}
& A=-6 \cdot 427 \cdot 10^{-5} \\
& B=8 \cdot 5053 \cdot 10^{-6} \\
& C=-6 \cdot 7898 \cdot 10^{-8} \\
& D=4 \cdot 0121 \cdot 10^{-10}
\end{aligned}
$$

z nichž pro teplotu t^{*} maximální hustoty vody vycházi

$$
t^{*}=3.96
$$

Podobné úpravy jsou vzorce postupujicí dle mocnosti rozdilu ($t-4$).
Výpočty o hustotě vody konal téz̃ Mendělějev. Zajímavou jest formule, kterouz̃ uvádí pro intervall tepelný velmi veliky̆, totiz̀ - $10^{\circ} \ldots 200^{\circ}$, a kterou se stanoví hustota vody ε nảsledovnẽ:

$$
1-\varepsilon=\frac{(t-4)^{2}}{A(B+t)(C-t)}
$$

konstanty jeji maji ćiselné hodnoty

$$
A=1 \cdot 9, \quad B=94 \cdot 1, \quad C=703.5
$$

Ze vzorce toho se na př. vypocítá

$$
\begin{array}{rlrl}
\text { pro } t & =0^{0} & 100^{\circ} & 200^{\circ} \\
\varepsilon & =0.99987 & 0.95859 & 0.86346 .
\end{array}
$$

V hor̃ejšich tabulkách se udává

$$
\varepsilon=0.99987 \quad 0.95838 \quad 0.86280
$$

Souhlas jest jenom v hlavnich decimalách; pres to jest ona formule pro veliký svůj intervall pozoruhodnou.

Pr̂iklady uveđené postači, aby se objasnilo, jak lze pozorování jakoby shrnouti v jediný výraz. Jinak však jest rešení tabellární daleko přehlednêjsí a pro praxis pohodlnéjsi.

Dlužno ještě zmíniti se o otázce, jaký účinek má na hustotu vody vzduch vodou absorbovaný. Otázku tuto studoval podrobně Marek*). Účinek jeví se jen při teplotách nižších, kdež se absorbovaným vzduchem hustota umenšuje, mezi $0^{\circ} \ldots 14^{0}$ 03 milliontiny (maximum 3.4 při 7°), mezi $16^{\circ} \ldots 17^{\circ}$ jen o 2 milliontiny, mezi $18^{\circ} \ldots 20^{\circ}$ již jen o 1 milliontinu, nad 20° účinek mizí. Patrně souvisí věc s tím, že koefficient absorpce s teplotou se rychle umenšuje. Data dříve uvedená platí pro vodu vzduchu zbavenou.

[^38]
§ 44. Roztažnost ostatnich kapalin.

Vzhledem k velikému počtu rozmanitých kapalin jest pozorovaci materiál o tomto předmětu velice rozsáhlý. Každý z pozorovatelů hleděl svá pozorování shrnouti v jediný vzorec, jehož konstanty číselně propočital. Užíváno vesměs vzorcủ formy

$$
v=v_{0}\left(1+A t+B t^{2}+C t^{3}\right)
$$

a pozorováni prováděna v určitém intervallu temperaturním, obyčejně až k blizkosti teploty, při niž se kapalina vaři. U některých kapalin byla však provedena měření roztažnosti také přes tuto teplotu, užitím většiho tlaku. Celkově lze řici, že roztažnosti u kapalin přibývá urychleně s teplotou, t. j. konstanty A, B, C jsou obyčejně všechny positivni. Jde-li o to, aby se kapaliny vespolek srovnávaly, jak která se roztahuje více než jiná, počítají se pravé koefficienty na př. pro 18°. Dobrý přehled podávaji diagrammy roztažnosti, přehled nejlepší a nejpohodlnějši pak tabulky objemu od stupně ke stupni propočítané. Tabellární toto řešení úkolû není dosud povšechně provedeno. Pro počitání logarithmické jest výhodno konstanty A, B, C udávati v jednotkách s faktorem 10^{n}, aby tím ihned vynikla charakteristika logarithmu; n jest ovšem čislo negativni.

Budtež zde uvedeny jen některé přiklady, a to kapalin, jež ve fysice mají větši význam.

Pro alkohol aethylnatý $C_{2} H_{6} O$, hustoty $0 \cdot 8095$, (tedy 94%, jak v obchodě přicházívá), nalezl Kopp ($0^{\circ} \ldots 79 \cdot 8^{\circ}$)
$A=1.04139 .10^{-3}, \quad B=7 \cdot 836.10^{-7}, \quad C=1 \cdot 7618.10^{-8}$.
Pro sirouhlik $\left(\mathrm{CS}_{2}\right)$ nalezl Pierre ($-34^{\circ} \ldots 60^{\circ}$) $A=1 \cdot 11398.10^{-3}, \quad B=1 \cdot 37065.10^{-6}, \quad C=1 \cdot 91225.10^{-s}$.

Pro aether aethylnatý $\left(C_{4} H_{10} O\right)$ nalezl Pierre ($-15^{\circ} \ldots 38^{\circ}$) $A=1 \cdot 51324 \cdot 10^{-3}, \quad B=2 \cdot 35918 \cdot 10^{-6}, \quad C=4 \cdot 00512 \cdot 10^{-8}$.

Z hlavnich konstant A jest tu viděti, že z těchto tří kapalin se roztahuje aether nejvíce, sírouhlik méně a alkohol ještě méně. Lépe vynikne rozdíl z pravých koefficientů α_{20} pro teplotu 20°, počitaných dle vzorce (§ 26.)

$$
\alpha_{t}=A+2 B t+3 C t^{2}
$$

Zde vychází

$$
\begin{aligned}
& C_{2} H_{t_{0}} O \ldots \mu_{20}=0 \cdot 001094, \\
& C_{2}, \\
& C_{4} H_{10} O \ldots \alpha_{20}=0 \cdot 001218,
\end{aligned}
$$

Tabellárně, v udaných mezích, pro které vzorce platí, vypočitaji se výsledky následujici:

Roztažnost alkoholu, sírouhliku a aetheru.

t	v	v	v
	$C_{2} H_{5} . O H$	$C S_{2}$	$C_{2} H_{5} \cdot O \cdot C_{2} H_{5}$
-30°		0.96730	
-20		0.97812	0.97036
-10		0.98898	0.98506
0	1.00000	1.00000	1.00000
10	1.01051	1.01130	1.01541
20	1.02100	1.02298	1.03153
30	1.03242	1.03517	1.04860
40	1.04404	1.04788	1.06687
50	1.05623	1.06152	
60	1.06911	1.07590	
70	1.08278		
80	1.09734		

Na základě těchto výsledkủ jest v obr. 44. proveden diagramm a připojena ke srovnání čára udávající roztažnost rtuti (téměř přímka) a vzduchu (přímka).

Pro ostatní kapaliny, pokud byly zkoumány, jsou hodnoty konstant A, B, C nejúplněji sestaveny v tabulkách LandoltBörnsteinových 1905.

Velmi značnou roztažnost a při tom značné urychlování této roztažnosti s teplotou jeví ztužené plyny. Za přiklad uvádíme:

O_{2},	$\alpha=0.00385$ v intervallu $-205^{\circ} \ldots$	-184°,		
N_{2}	558	n	$-205 \ldots$	$\ldots 184$,
CO	491	n	$-205 \ldots$	184,
CO_{2}	4951	n	$-50 \ldots$	0,
	991 j		$0 \ldots$	50.

Obr. 44.
Roztažnost rtuti, vody, alkoholu, sirouhliku, aetheru a vzduchu.

Oproti tomu jest koefficient roztažnosti plynů 0.00367; kysličnik uhličitý jevi roztažnost téměř 3kráte větší. První, jenž na tuto okolnost poukázal, byl Thilorier (1835), týž, jemuž se podařilo ztužiti kapalný kysličnik uhličitý ve sníh, tedy ve skupenstvi pevné.

§ 45 . Účinek tlaku na roztažnost kapalin.

Objem v kapalin mění se teplotou t, mění se též tlakem p. Jest tudíž zřejmo, že oba tyto účinky jsou vespolek v souvislosti. Uvažujíce o tom blíže, vytkněme objemy $v_{t, p}$ a $v_{t, p^{\prime}}$, jaké zaujímá kapalina. jednou při teplotě t a tlaku p, po druhé při teplotě t^{\prime} a tlaku p^{\prime}, při čemž rozdily $t^{\prime}-t=\Delta t, p^{\prime}-p=\Delta p$ buđ̉tež malé. Pak lze objem prvý převésti na druhý způsobem dvojím: bud napřed při konstantním tlaku a pak při konstantní teplotě, anebo naopak, napřed při konstantní teplotě a pak při
konstantnim tlaku. Tedy schematicky
bud

$$
v_{t, p} \ldots v_{t^{\prime}, p} \ldots v_{t^{t}, p^{*}}
$$

nebo

$$
v_{t, p} \ldots v_{t, p^{4}} \ldots v_{t^{t}, p^{4}}
$$

Nazveme pravé koefficienty roztažnosti u a stlačitelnosti*) (kompresse) l_{i} a naznačme indexy, pro jaký tlak p nebo p^{\prime} a pro jakou teplotu t neb t^{\prime} koefficient plati. V souhlasu s onim schematickým označením pochodủ isobarických nebo isothermických obdržíme
bud

$$
v_{t, p}\left(1+\alpha_{p} . \Delta t\right)\left(1-k_{t^{\prime}} . \Delta p\right)
$$

nebo

$$
v_{t, p}\left(1-k_{t} . \Delta p\right)\left(1+\alpha_{p^{*}} \cdot \Delta t\right) .
$$

Poněvadž oba tyto výrazy značí týž objem $v_{t^{\prime} p^{\prime}}$, obdržíme srovnáním:

$$
\frac{1+\alpha_{p} \cdot \Delta t}{1+\alpha_{p^{\prime}} \cdot \Delta t}=\frac{1-k_{t} \cdot \Delta p}{1-k_{t^{\prime}} \cdot \Delta p}
$$

Je-li tedy

$$
\begin{aligned}
& k_{t^{\prime}}<k_{t} \\
& \alpha_{p^{\prime}}>\alpha_{p}
\end{aligned}
$$

jest
a naopak. Když se tedy při vyšši teplotě koefficient stlačitelnosti umenšuje, musí koefficient roztažnosti se zvětšovati. Věe jest vlastně samozřejmou. Má-li se od objemu $v_{t, p}$ přijíti k témnž objemu $v_{t^{*}, p^{*}}$ dvojí cestou, musí menši stlačitelnost býti kompensována větší roztažností a naopak.

Pokusy ukazují, že koefficient k stlačitelnosti u všech kapalin - vodu vyjímajíc - s teplotou stoupá. Kapaliny teplejší jsou větší měrou stlačitelné. Následkenı toho klesá větším tlakem koefficient roztažnosti. Kapaliny pod silným tlakem roztahuji se mèrou menší. Proto v diagrammu roztažnosti čáry objemové větším tlakem jakoby sestupuji k hodnotám menším, následkem kompresse, ale při tom jeví stoupání stále menší a menši. Za přiklad budiž uveden, místo dat číselných, diagramm v obr. $45 .$, objasňující roztažnost aetheru při tlaku stále rostoucím, dle pozorování, jež provedl Amagat. Ukazuje se zároveň, že také zakřivení čar objemových se umenšuje, čáry se blǐzi za velkého

[^39]$$
-122-
$$
tlaku přimkám, koefficient pravý stává se téměř konstantním, na teplotě nezávislým, kapaliny se roztahuji rovnoměrně.

Poměry odchylné jsou však při vodě. Koefficient stlačitelnosti k v intervallu $0^{\circ} \ldots 60^{\circ}$ s teplotou klesá, a pak teprve při teplotách nad $60^{\circ} \mathrm{s}$ teplotou stoupá. Proto koefficient roztažnosti v intervallu $0^{\circ} \ldots 60^{\circ}$ s tlakem stoupá a pak teprve při teplotě nad $60^{\circ} \mathrm{s}$ tlakem klesá. Jak se v důsledku toho roztaž-

Obr. 45.
Rozažnost aetheru v zivislosti na tlaku.
nost vody mění velikým tlakem, lze lépe než čísly objasniti diagrammem v obr. 46. dle pozorováni Amagatových provedeným. Křivka nejhořejši ukazuje roztažnost vody za obyčejného tlaku 1 atm . Když se tlak více a více zvyšuje, sestupují křivky celkově niže a niže následkem kompresse, což jest samozřejmo. Ale zároveň se mění jejich tvar. V té větvi, jež jde od 60° k teplotám vyšším, zmirňuje se čím dále tím více její výstup; naproti tomu ve větvi počáteční, od 0° do 60°, se naopak výstup zveličuje; minimum ustupuje rychle k teplotám nižším, křivka pak celkově vždy více a více bliží se prímce. Od 1000 atm .
počinajic stává se roztahováni vody téměř rovnoměrným, koefficient α_{t} mění se $\mathrm{s} t$ jen málo.

Jest z toho patrno, že urychlené roztahování se kapalin naznačuje blizkost změny skupenstvi, blizkost varu; jakmile tlakem var se oddálí, ztráci se téz ono urychlování.

Ustupování teploty t^{*} pro hutnost maximální vyšsím tlakem p atm. vyjadřuje S . Lussana (1895) vzorcem

$$
t^{*}=4 \cdot 1-0.0225(p-1)
$$

Amagat udává

$$
\begin{array}{rl}
t^{*}= & 3 \cdot 3^{0} \text { při } p=41 \cdot 6 \mathrm{~atm}, \\
& 2 \cdot 0 \mathrm{n} \\
0.6 \mathrm{n} & 93 \cdot 3 \mathrm{n},
\end{array}
$$

Z hořejšiho vzorce by pro udané hodnoty tlaku p následovaly pro t^{*} hodnoty $3 \cdot 2,2 \cdot 0,0 \cdot 9$, tedy dosti souhlasné.

Roztažnost a rozpínavost plynů.

§ 46. Přehled úkolů.

Objem těles měni se teplotou i tlakem. U těles pevných a kapalných jeví se účinek tlaku býti podřaděným, již proto, že jest proti účinku tepelnému nepatrný, ale ještě více proto, že tělesa pevná i kapalná maji svûj určitý objem i když tlak vnější úplně přestává. Bezvýznamným ovšem tlak pří nich není; viděli jsme u kapalin, že tlakem mimořádně zvy̌̌̌eným může jejich roztažnost tepelná býti pozměněna velmi značně.

U plynů má se však věc podstatně jinak. Plyny nemají určitého objemu; jich vlastností význačnou jest rozpínavost, expanse, t. j. tendence zaujmouti objem co možno největší. Jen tím, že proti této rozpinavosti působíme tlakem vnějším, nabývaji při dané teplotě určitého objemu. U těles pevných a kapalných udáváme, jaký maji objem při určité teplotě, nevšimajice si tlaku, o němž jen předpokládáme, že jest obyčejný, tedy nikoliv mimořádně veliký; malý múže býti jakkoliv. U plynû by udání takové nemělo žádného smyslu. Význam tlaku pro objem jest zde souřadéný s významem teploty, i musí obě tyto veličiny objem podmiňující vždy současnẽ býti udávány.

Studujíce závislost objemu v na teplotě t a tlaku p hledíme účinek jedné neb druhé z obou veličin podmiňujících isolovati. Proto zařídime podmínky pokusu tak, aby, když se jedna z obou těch veličin mění, druhá zůstávala konstantoa, ovšem arbitrární. Zahříváme tedy plyn za určitého, konstantniho tlaku p; objem v mění se pak steplotou t, jak pravime, isobaricky. Anebo stlačujeme plyn za určité, konstantní teploty t; objem v mění se pak tlakem p isothermicky. U plynů lze však také toho docíliti - což není možno u těles perných nebo kapalných, - že i objem v plynu může udržen býti konstantním; zvyšováním teploty t stoupá pak expanse plynu p, jak pravíme, isochoricky.

V historickém rozvoji byl trojí tento úkol řešen především v důležité approximaci, kterouž docileno zákonủ velmi jednoduchých. Tyto zákony byly nalezeny především pro vzduch, hlavni to repraesentant plynú, dále pro plyny vzduch skládajicí, kyslik a dusik, pro vodik a j. Vskutku se právě u těchto plynủ ony jednoduché zákony velmi dobře osvědčily. Takovým jest zákon Boyle-Mariotte-ův, kterým se vyslovaje*), že při změnách

[^40]isothermických součin $v p$ objemu a tlaku zủstává konstantním. Takovým jest též zákon Gay-Lussac-ův, o němž v následujicím odstavci jednáme podrobněji. Spojením obou zákonủ dociluje se jednotného zákona, tak zvané rovnice stavojevné, velice jednoduché. Ale právě tato jednoduchost vzbudila v dalším rozvoji otázky skepsi, dala podnět k novým a novým pracím, jimiž se ukázalo, že onen spojený zákon jest vzhledem ku plynům vủbec jenom approximaci. Některé plyny se jím řídi, ale i ty ne naprosto přesně. Proto se zavedla formulace, že zákon ten platí pro plyny „ideálné". Vlastně jest takovýto plyn ideálný oním zákonem definován, jakožto takový, jenž by se jím přesně řídil. Plyny skutečné ukazuji odchylky; proto dlužno pro ně onu stavojevnou rovnici vhodně modifikovati, aby se těmto odchylkám vyhovělo. Tak vznikla stavojevná rovnice van der Waalsova, s četnými variacemi.

Vedle toho pak rozhojnil se pozorovaci čiselný materiál měrou dřive netušenou. Ona jednoduchost ustupuje dnes složitosti, jež není snad tak značná, jako u kapalin, ale přece dostatečnou, aby se ukázalo, že ona universálnost zákonủ pro plyny vủbec platí jen v hlavních rysech, v podrobnostech však že platí individuálnost podobně jako u těles pevných a kapalných.

Pro zmény stavu prí konstantním objemu plynu jsou v uãívání nảzvy isometrické, isochorické, isovolumické. Poslední slovo bylo by nejsrozumitelnéjsi, ale kombinace reckého iso-s latinským volumen se neschvaluje. Slovo isometrickỳ má jizz v krystallografii určity význam (soustava isometrická $=$ tesserảlní), téż y geometrii (projekce isometrickà). Proto se nejlépe doporučuje označení isochorické (\not Øoons $\dot{\delta}=$ prostor, misto). Zmẽny
 vy̆razu dáváme prednost vzhledem k tomu, že název isobary pro krivky stejnêho tlaku jest všeobecne prijat.

§ 47. Zảkon Gay-Lussac-ův.

Otázkou roztažnosti plynů za stálého tlaku zanášeli se koncem 18. a počátkem 19. stoleti Charles*), Dalton ${ }^{* *}$), hlavně

[^41]pak Gay-Lussac*). Všichni seznali nebo spiše uhodli, že plyny za stálého tlaku roztahují se rovnoměrně a stejně; avšak v dủležité otázce této má Gay-Lussac účastenství proto vynikající, že hleděl měřením správnost oné věty dokázati a zároveǔ roztaz̆nost kvantitativně určiti.

Methoda, kteréž hlavně užíval, byla dilatometrická. Ke kouli skleněné (průměru as 1 cm) známého objemn byla přitavena skleněná trubička (as $1 / 2 m$ dlouhá, prủměru 1 až $11 / 2 m m$), kalibrovaná; suchý plyn, do dilatometru tohoto zavedený, byl od okolniho vzduchu oddělen malým sloupečkem rtafovým. Při pokusu byl dilatometr vodorovně umistěn do tajícího sněhu a pak do vařicí vody a bylo pozorováno, oč se sloupeček rtutový pošine. Tímto způsobem stanovil Gay-Lussac (1802) roztažnost vzduchu, kyslíku, dusíku, vodiku, kysličníku uhličitého, siřičitého a ammoniaku, a usoudil ze svých pokusủ, že všechny tyto plyny se roztahují stejně. Jeho pokračovateli byli Rudberg (1837), Magnus (1841) a zejména slavný Regnault (1841 a 1842); pracemi tohoto badatele byla otázka co do stránky kvantitativní velmi přesně dále zkoumána, zejména též v tom směru, zdali roztažnost plynủ jest závislá na tlaku, t. j. zdali plyny zhuštenné i zředěné se roztahují stejně. Ukázalo se, že v mezích obyčejných tomu tak jest. Následkem toho jest možno roztaz̆nost plynủ vystihnouti lineární rovnicí o jediné konstantě, totiž rovnici

$$
v=v_{0}(1+\gamma t)
$$

ve kteréž konstanta γ, koefficient roztažnosti, má význam nikoli individuální, nýbrž universální; platí pro plyny vủbec, zhuštěné nebo zředěné. Zákon, touto rovnicí vyjádřený, nazývá se zákonem Gay-Lussac-orým.

Dle toho má zákon Gay-Lussac-úv trojí stránku, jejižto vẏznam vynikne π^{a} contrario ${ }^{\text {a }}$, kdy̌̌ v té pricicině srovnáváme plyny s kapalinami. Kapaliny roztahují se nerovnoměrnẽ, plyny rovnomẽrnẽ; kapaliny roztahuji se kaz̃dá jinak, tedy individuâlnẽ, plyny vesmês stejneé; tlak modifikuje roztaz̃nost kapalin, ale nikoli roztaz̃nost plynů. Při tom dlužno však upozorniti na okolnost souvisici se zpûsobem, jak se mêfí teplota. Gay-Lussac, a po nêm i jiní, užívali jen teplot základních, tání ledu a varu vody. Regnault užival teploméru vzduchového. Za dnủ naşich uživáme teploméru

[^42]vodíkového. Pro tento plyn, za normálni látku teplomẽrnou sloužíci, platí ona rovnice objemová
$$
v=v_{0}(1+\gamma t)
$$
,ex definitione ${ }^{\text {" }}$; jest samozrejmou, poněvadž dle ní teplotu definujeme (§ 12.). Zákon Gay-Lussacův záleži pak vlastnẻ v tom, že vśechny plyny, zhuştênẻ neb zredẻné, roztahuji se s vodîiem longruentné.

Pro koefficient γ nalezl Gay-Lussac hodnotu poněkud velikou, totiž 0.00375, z dủvodu, kterýž Magnus objasnil; sloupeček rtufový v dilatometru neuzavírá totiž plyn naprosto spolehlivě. Dnes přijímáme hodnotu Regnaultovu

$$
\gamma=0.0036 \overline{7}=\frac{1}{273}
$$

§ 48. Důsledky ze zákona Boyle-Mariotte-ova.

Mějmež plyn objemu v_{0} při teplotě 0° a tlaku p_{0}. Zachovávajíce tento tlak konstantním, zahřívejme (isobaricky) z 0° na t; objem se zvětší na v dle zákona Gay-Lussac-ova

$$
v=v_{0}(1+\gamma t)
$$

Zachovávajíce pak tuto vyšši teplotu konstantní, stlačme plyn (isothermicky) z objemu zvětšeného v na původní v_{0}; tím tlak p_{0} zvýší se na p dle zákona Boyle-Mariotte-ova

$$
\frac{p}{p_{0}}=\frac{v}{v_{0}}
$$

Jest však

$$
\frac{v}{v_{0}}=1+\gamma t
$$

tudiž také

$$
\frac{p}{p_{0}}=1+\gamma t
$$

Jako tedy zahříváním stoupá objem plynu za konstantního tlaku (isobaricky), právě tak stoupá zahřiváním napětí plynu za konstantniho objemu (isochoricky). Máme tedy rovnici

$$
p=p_{0}(1+\gamma t)
$$

v nî̃ γ znači koefficient rozpinavosti plynu. Výsledek tento plyne ze zákona Boyle-Mariotte-ova. Platí-li tento zákon, pak jest koefficient rozpínavosti plynu týž, jako jest koefficient roztažnosti; pro rozpínavost i roztažnost platí rovnice souhlasné, jež obě můžeme jako zákon Gay-Lussac-ûv označiti.

§ 49. Spojený zákon Boyle-Mariotte-Gay-Lussac-ův.

Daný plyn necht má objem v_{0} při teplotě 0° a tlaku p_{0} a objem v príi teplotě t a tlaku p. Hledajice závislost objemủ v a v_{0} provedme ony změny teploty a tlaku postupné, nejprve isothermicky a pak isobaricky, dle schematu:

$$
\left.\begin{array}{lll}
v_{0}, & 0^{\circ}, \\
x, & 0^{\circ}, & p_{0} \\
v, & t, & p
\end{array}\right] \text { isothermicky; zákon B.-M. }
$$

Při prvé změně isothermické máme dle zákona Boyle-Mariotte-ova

$$
\frac{x}{v_{0}}=\frac{p_{0}}{p}
$$

při druhé pak změně isobarické máme dle zákona Gay-Lussac-ova

$$
\frac{v}{x}=1+\gamma t .
$$

Násobíce obě rovnice obdržíme, s vyloučením přechodního objemu x.

$$
\frac{v}{v_{0}}=\frac{p_{0}}{p}(1+\gamma t)
$$

$$
\begin{equation*}
v p=v_{0} p_{0}(1+\gamma t) \tag{čili}
\end{equation*}
$$

kterážto rovnice formuluje spojený zákon Boyle-Mariotte-Gay-Lussac-ův. Z něho plynou specialisací zákony jednotlivé. Oba zákony Gay-Lussac-ovy obdržíme ihned, kladouce bud $p=p_{0}$ (pro změny objemu isobarické) nebo $v=v_{0}$ (pro změny napěti isochorické). Zákon Boyle-Mariotte-ûv vycházi pak ve formě $v p=$ const., jakmile t jest konstantní (změny isothermické).

§ 50. Absolutni teplota.

Ze spojeného zákona v předešlém odstavci odvozeného

$$
v p=v_{0} p_{0}(1+\gamma t)
$$

můžeme odvoditi modifikaci, kterou se zákon formálně zjednoduší. Pišeme především

$$
v p=v_{0} p_{0} \gamma\left(\frac{1}{\gamma}+t\right)
$$

přijmouce pak hodnotu (§ 13.)

$$
\gamma=\frac{1}{273}
$$

obdržíme

$$
v p=\frac{v_{0} p_{0}}{273}(273+t)
$$

V závorce objevuje se teplota t zvýšená o konstantní počet stupňu 273 , tedy teplota počitaná od jiného nullového bodu, jenž jest při

$$
t=-273^{\circ}
$$

Tento nullový bod, jenž jest přírodním zákonem samým, anebo vlastuě číselnou hodnotou jeho konstanty γ určen, zoveme absolutním bodem nullovým. Teplotu pak

$$
273+t=T
$$

od něho počitanou zoveme teplotou absolutní.
Zavedouce ještě konstantu

$$
\frac{v_{0} p_{0}}{273}=R
$$

obdržíme spojený zákon čili rovnici stavojevnou plynủ ve formě

$$
v p=R T
$$

ve kteréž vzájemná závislost všech tří proměnných veličin v, p, T se jeví ve způsobu nejjednodušším, totiž v prosté úměrnosti.

Dluz̃no upozorniti, že v teplotě, kterouž jsme jako absolutni zavedli, jest jenom nullový bod absolutním, t. j. takovỳm, na který príroda sama poukazuje. Jednotka temperaturní však, stupeñ, jest stejná jako při normálním teploměru vodikovém dle stupnice Celsiovy. Také to dlužno pr̃ipomenouti, že zavedení absolutniho bodu nullovêho dëje se extrapolací, t. j. do tẽch teplot, pr̃i kterých prímá pozorování činiti jest velice nesnadno. Proto jest jeho význam predevsin mathematicliý; jak dalece jest téz fysikální, možno jen pokusy rozhodnouti. V té príčinẽ lze poznamenati, že fysika moderni realisaci nizkẏch teplot se onomu absolutnímu bodu nullovẻmu přibližila již̃ dosti značnẽ, az̃ na málo stupnưu, jakoz̃ na svém mistẽ upozornime.

§ 51. Konstanta rovnice stavojevné.

Konstanta rovnice stavojevné, obyčejně písmenou R označovaná, jest číselně různá dle toho, zdali užíváme v rovnici teploty obyčejné,

$$
p v=R(1+\gamma t), \quad R=p_{0} v_{0}
$$

Dr. v. Strouhal: Thermika.
anebo teploty absolutní

$$
p v=R T, \quad R=\frac{p_{0} v_{0}}{273}
$$

Formálně jest rovnice stavojevná v této druhé úpravě jednodušši ; proto se ji ve fysice theoretické uživá téměř výhradně. Avšak ve fysice experimentálni jest teplota absolutní přece jen cizi, poněvadž pozorování se děje vždy dle teploty obyčejné, ze které teplotu absolutní teprve nutno počitati. Pro výraz $1+\gamma t$ jsou vypočteny obšíné tabulky. Vzhledem k tomu budeme i my v knize této nadále uživati rovnice stavojevné v úpravě prvé, s teplotou obyčejnou, a pro tuto úpravu budeme také počitati konstantu R. Z této se ostatně konstanta R pro teplotu absolutní snadno vypočte dělenim na 273 .

Rozměr konstanty R jest dle jeji hořejši definice dán součinem rozměrů pro objem $\left(\mathrm{L}^{3}\right)$ a tlak na jednotku plochy vztahovaný $\left(\frac{\mathrm{F}}{\mathrm{L}^{2}}\right)$, tudiž součinem FL. Má tedy konstanta R význam práce*), nebo energie.

Značí-li m množství daného plynu, kteréž při normálních poměrech teploty 0° a tlaku p_{0} zaujímá objem v_{0} a má specifickou hmotu s_{0}, jest

$$
m=v_{0} s_{0}
$$

tudiž

$$
R=m \frac{p_{0}}{s_{0}}
$$

Pro jiný plyn, téhoz̆ množstvi m, jest

$$
R^{\prime}=m \frac{p_{0}}{s_{0}^{\prime}}
$$

tudiž

$$
R: R^{\prime}=s_{0}^{\prime}: s_{0}
$$

Kunstanty R, R^{\prime} rủzných plynů mají se tudiž k sobě obráceně než jich specifické hmoty.

Na mistě poměru specifických hmot můžeme však klásti poměr hutnot**)

$$
R: R^{\prime}=A^{\prime}: A
$$

${ }^{*}$) Mechanika, pag. 141, 1901. Ke zkráceni znači zde F rozmẽr sily $=\frac{\mathrm{LM}}{\mathrm{T}^{2}}$ (la force, fortitudo).
**) Mechanika, pag. 97, 1901.

Tento poměr jest však, jak později vyložíme, roven poměru vah (hmot) molekulových. Jest tedy

$$
R: R^{\prime}=\mu^{\prime}: \mu
$$

Stači tudǐ̌ počitati konstantu R pro jediný plyn, na př. kyslik (nebo vodík), načež se pro každý jiný plyn dle vah molekulových snadno přepočte. A poněvadž m jest libovolné, počitá se jen výraz

$$
\frac{R}{m}=\frac{p_{0}}{s_{0}}
$$

t. j. počitá se R pro $m=1$ gramm.

Ciselná hodnota konstanty R pro $m=1$ závisi na volbě jednotek. Za jednotku hmoty bére se všeobecné gramm; za jednotku objemu bud cm^{3} anebo také litr. Nejvélsí rozmanitost jest ve volbẽ jednotky tlakové. V duchu absolutní soustavy mér byla by vhodnou jednotka

$$
\frac{d y n a}{c m^{2}} \text { nebo raději } \frac{\text { megadyna }}{c m^{2}}
$$

Dosud však užívá se jednotky atmosféra. V původním slova smyslu znaçí atmosféra tlak sloupce rtutového o vyssce 76 cm a teplotẽ 0° za normální intensity tiže, t. j. v geografické šfrcce 45° při hladinê mợské. Vedle této původni, tak zvané theoretické atmosféry uz̃ivả se téz atmosféry technické cili metrické, jez̄ jest definovana jako

$$
\frac{\text { válıa } \mathrm{kg}}{\mathrm{~cm}^{2}} \text {; }
$$

jde-li o vêtşí přesnost. dluz̃no ji téźz vztahovati na normálni intensitu tiž̃e. Tyto tři jednotky tlakové liši se od sebe jen o mảlo procent. Jest totiž*)

$$
\begin{aligned}
\text { atmosfért } & =1.01321 \frac{\text { megadyna }}{\mathrm{cm}^{2}} \\
\frac{\text { cáha } k g}{\mathrm{~cm}^{2}} & =0.980606 \frac{\text { megadyna }}{\mathrm{cm}^{2}}
\end{aligned}
$$

Tabulky fysikälni o plynech uz̃ívaji za jednotku flakovou dosud vesměs atmosféry, a to oné puivodni, theoreticlé. Neni o tom pochybnosti zádné, ze by se y duchu moderni soustavy absolutni dopornčovalo zavésti dűslednẽ jednotky cm^{3}, $\frac{\text { dyna }}{\mathrm{cm}{ }^{2}}$ nebo $\frac{\text { megadyna }}{\mathrm{cm}^{2}}$. Avsak vzhledem k tomu, ze i nejnovéjşi spisy a tabulky, jako na př. Landolt-Börnsteinovy 1905 (pag. 104) uživají starşi jednotky atmosfóry, jeví se býti opportunním prizpůsobiti se prozatím této zvyklosti, tím spî́e, ponẻvadz̃ jednotka tlaková atmosféra má v nauce o teple své oprávnẻní i v moderni době; nebot v thermometrii bod varu vody zústal normován dle této jednotky, a také body varu ostatnich kapalin vztahují se na touž jednotku tlakovon.

[^43]Dủsledkem této rozmanitosti jest téź rûznost jednotek pracovnich, v nichž se má vyjádr̃iti konstanta R. K jednotkám cm^{3} (litr) a atmosféra príslusí jednotka práce cm^{3}. atmosfíra (nebo litr. atmosféra). K jednotkám cm^{3} a $\frac{d y n a}{c m^{2}}$ nebo $\frac{\text { megadyna }}{c m^{2}}$ nález̃i jednotka práce erg nebo megaerg, anebo, coz̃ jest jeduotka nejvhodnějši, Joule (Watt-sec). Atmosféra technická, kteréž se zde neuživá, vedla by kstaré jednotce metr-kilogramm. Za to se Ceastéji vyjadruje R - vzhledem k úlohám thermochemickým v jednotce gramm-kaloric (Maxwellova 15°), tedy v hodnoté tepelné, jez̄ jest aequivalentem hodnoty pracovní, a o nî̃̀ jednảme v oddilu nejblizsím. Pr̂epočitávảní děje se dle ćíselnỵch relací, jež plynou z hof̂ejšich dat o rûzných jednotkảch tlakovỷch.

$$
\begin{aligned}
\mathrm{cm}^{3} . \text { atmosféra } & =1.01321 \cdot \mathrm{~cm}^{2} . \text { megadyna } \\
& =1.01321 \quad \text { megaerg } \\
& =0.101321 \quad \text { Joule } \\
\text { litr.atmosféra } & =101.321 \quad \text { Joule } \\
\text { Joule } & =0.239 \quad \text { cal }_{15} .
\end{aligned}
$$

Z dủvodủ jižz uvedených budeme počitati R vz̀dy napred v jednotce cm^{3}. atmosféra; odtud dá se pak prepocisti na jednotky jiné.

Pokud se váhy molekulové μ vztahovaly na vodík $H=1$, počitala se též konstanta R pro tento plyn. Dnes vztahují se váhy molekulové již povšechně na kyslik $O=16$; tudiž jest dủsledné počitati též konstantu R pro kyslik a pak dle poměru $32: \mu$ ji přepočisti na libovolný plyn jiný.

Specifickou hmotu kysliku určil Regnault pro Pařiž, Jolly pro Mnichov. Pûvodní data (lokální) viz Landolt a Börnstein, Tabulky pag. 222, 1905. Přepočitána na normální intensitu tiže (45° geogr. šiřky $0 m$ nad hlad. m.) jsou ona data následovně:

Regnault	. 0.00142963	$\frac{g}{c m^{3}}$	0°	1 atm .
Jolly	. $0 \cdot 00142884$	„	n	n
Středni hodnota	. $0 \cdot 00142923$	"	*	"

Lord Rayleigh (1897) a Leduc (1898) nalezli souhlasně 0.0014292. F. Kohlrausch ndává ve své prakt. fysice $0 \cdot 0014290$. Přijměme čislo 0.0014292 . Položice tedy $p_{0}=1$ obdržime pro kyslik

$$
\frac{R}{m}=\frac{1}{s_{0}}=\frac{1}{0 \cdot 0014292}=699 \cdot 69
$$

Tudiž pro plyn libovolný o molekulové váze μ

$$
\frac{R}{m}=699 \cdot 69 \cdot \frac{32}{\mu}=22390 \cdot \frac{1}{\mu}
$$

Zni tedy rovnice stavojevná čiselně, pro jednotky cm^{3} a atmosféra,

$$
p v=22390 \frac{m}{\mu}(1+\gamma t)
$$

V této úpravě udává $\frac{m}{\mu}$, mnoho-li gramm-molekul jest v úhrnném množství plynu m obsaženo. Položíme-li tedy

$$
\frac{m}{\mu}=N
$$

obdržime rovnici stavojevnou ve formě

$$
p v=22390 N(1+\gamma t)
$$

Forma tato je tim zajímavou, že neobsahuje žadué veličiny, jež by nějaký plyn individuálně označovala, že jest tudiž významu universálního pro plyny vůbec. Plyne z ní ihned objem jedné gramm-molekuly plynu jakéhokoli pro jakoukoli teplotu t a jakýkoli tlak $p_{0} \mathrm{~atm}$. Pro poměry normálni, $t=0, p_{0}=1 \mathrm{~atm}$., vychází

$$
N=1, \quad(v)=22390 \mathrm{~cm}^{3}
$$

čímž nabývá čiselná konstanta rovnice stavojevné konkretního fysikálního významu, značic objem (22.39 litru), v němž za normálních poměrủ $0^{\circ}, 1 \mathrm{~atm}$. jest obsaženo 32 grammy kysliku, 28.08 grammủ dusiku, 2.016 grammû vodikn, 44 grammy kysličníku uhličitého, 28 grammú kysličniku uhelnatého atd., počitáno dle atomových vah $O=16, N=14.04, H=1.008, C=12.00$ atd.

Kdyby se tento objem (22.39 litru) volil za jednotku objemovou, a kdyby se vždy volilo množství jedné gramm-molekuly plynu ($N=1$), zněla by rovnice stavojevná jednoduše

$$
\quad p v=1+\gamma t
$$

Tato zvlášstní jednotka objemová (v) zove se theoretickou jednotkou normální.

Jak již řečeno, užívá se ve fysice experimentálni zpravidla teploty objčejné. Když by se však uživalo absolutní, byla by konstanta rovnice stavojevné

$$
R=\frac{22390}{273}=82.015
$$

tak že by rovnice zněla

$$
p v=82 \cdot 02 N T
$$

pro jednotky cm^{3} a atmosféra.

Pro jiné jednotky vypočítáme R dle převodních koefficientů dřive uvedených. Obdržíme tak přehledně: (pro $N=1$).

$$
\begin{array}{rlr}
R= & 82.02 & \mathrm{~cm}^{3} \cdot \mathrm{~atm} . \\
& 0.08202 & \text { litr. atm. } \\
& 8.310 & \text { Joule } \\
& 0.8474 & \text { lilogramm-metr } \\
& 1.986 & \text { cal }_{1 \mathrm{~s}} .
\end{array}
$$

Provedli jsme zde výpoc̃et čiselné hodnoty pro konstantu R na základẽ jediného plynu, kyslíku, který má význaçné postavení mezi plyny tím, že se dle něho stanovi vảhy atomové. Fysikálnẻ by se lépe doporuc̃oval vodik; ale jeho váha atomovả není dosud zcela přesnẻ vzhledem ke kyslíku určena. V nejnovējši době ujala se této otázky v Německu ,Bunsenova Společnost fysikálně chemická" a to jeji kommisse pro jednotky měrné, jejiž předsedou byl prof. Nernst. Z iniciativy této kommisse pojednal D. Berthelot*) o celé otázce se stanoviska jiného; nevzal za základ plyn jediný, nýbrž četné plyny ideálnímu blízké a počital pravdépodobnou hodnotu konstanty R, jez̃ by co moz̃ná vyhovovala všem. Pro onu theoretickou normálnf jednotku objemovou (v) dostává ćislo $22412 \mathrm{~cm}^{3}$, tak ze by dle něho stavojevuá rovnice číselnẽ zněla

$$
p v=22412 N(1+\gamma t)
$$

Pro absolutní bod nullový nebére hodnotu 273°, jak se zpravidla dēje, ny̌brž 273.09 , čímz̃ obdrží pro absolutní teploty hodnotu konstanty R

$$
R=\frac{22412}{273 \cdot 09}=82 \cdot 068
$$

tak že pak rovnice zni

$$
p v=82 \cdot 07 N T
$$

pro jednotky cm^{3} a atmosféra. K návrhu predsedy prof. Nernsta byly tyto hodnoty v sedẽní oné kommisse dne 13 . března 1904 pr̃ijaty a v plenární schúzi oné Bunsenovy Společnosti y Karlsruhe dne 2. cervna 1906 schváleny.

Cislo pro $(v)=22412 \mathrm{~cm}^{3}$ cili 2244 litru, kteréz timto usnesením dosáhlo jaksi approbace védecké, jest proti nas̃emu, nahor̃e vypočtenému, (v) $=22390 \mathrm{~cm}^{3}$ čili 22.39 litru o 0.1% vẽtši. Tím však nastává nesouhlas s nẽkterẏmi dosud fysikálně uživanými relacemi.

Je-li za normálních poměrů ($0^{\circ}, 1 \mathrm{~atm}$.) objem gramm-molekuly plynu $22412 \mathrm{~cm}^{3}$, jest její specifická hmota $\frac{\mu}{22412} \frac{g}{\mathrm{~cm}^{3}}$. Za týchz̃ poměrũ normálních jest specifická hmota suchého vzduchu $0.001293 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$. Tudž̃ jest hutnota Δ plynu na vzduch vztahovaná

$$
\Delta=\frac{\mu}{22412}: 0.001293
$$

) Daniel Berthelot (1865), syn slavného chemika francouzského Marcellina Berthelota, Viz Zeitschrift für Elektrochemie 10, pag. 621, 1904 a 11, pag. 537 a $539,1905$.
anebo váha (hmola) molekulová z hutnoty \boldsymbol{A} vypoçtená a na kyslik $\mu=16$ vztahovaná

$$
\begin{aligned}
& u=224.12 \cdot 0 \cdot 001993 \cdot \Delta \\
& u=28 \cdot 98 \Delta
\end{aligned}
$$

čili
Dosud se však uživá *) relace

$$
\mu=28.95 \Delta
$$

Z hodnoty (v) nahore dle kysliku odvozené vychází

$$
\begin{aligned}
& \mu=22390 \cdot 0 \cdot 001293 \cdot \Delta \\
& u=28 \cdot 95 \cdot \Delta
\end{aligned}
$$

coz̃ jest úplný souhlas. Zdá se tudiz̃, že by méla býti dána prednost hodnotẽ

$$
\begin{aligned}
(v) & =22390 \mathrm{~cm}^{3} \\
& =22.39 \text { litru }
\end{aligned}
$$

W. Nernst préeočital **) hodnotu konstanty R při $N=1$ téż pro jiné jeduotky. Užívá při tom prevodních koefficientû

$$
\begin{aligned}
\mathrm{cm}^{3}, \text { atmosféra } & =0.101325 \text { Joule, } \\
\text { Joule } & =0.23872 \text { cal }_{15}
\end{aligned}
$$

Zvlasstẽ poslední koefficient jest mens̊i nez̃ nahorée dle zaokrouhlení všeobecnẽ prijatého (0-239) bylo uvedeno. Z těchto dat vypočtává konstantu R pro $N=1$ následovné***)

$$
\begin{aligned}
R & =82.07 \quad \mathrm{~cm}^{3} \cdot \mathrm{~atm} . \\
& =0.08207 \text { litr. atm. } \\
& =8.316 \quad \text { Joule } \\
& =0.8480 \text { lilogramm-metr } \\
& =1.985 \quad \text { cal }_{15} .
\end{aligned}
$$

§ 52. Grafickė znázornění rovnice stavojevné.

Souvislost veličin v, p, t, jak jest vyjádřena rovnicí stavojevnou, vynikne velmi poučně, kdy̌̆ se znázorní graficky. Aby diagramm měl význam povšechný, provede se pro $N=1$, t. j. pro jednu gramm-molekulu plynu libovolného. Rovněž doporučuje se voliti pro objem jednotku přehlednější, totiž litr. Pak

[^44]máme pro grafické znázornění číselně
\[

$$
\begin{aligned}
p v & =22.39(1+\gamma t) . \\
\gamma & =0.00367 .
\end{aligned}
$$
\]

Rovnice obsahuje tři proměnné ; k znázorněni bylo by tudiž třeba prostorového útvaru plošného. Můžeme však jednu z proměnných, nejlépe teplotu t, pokládati za konstantu arbitrární, t. j.

mûžeme pro ni voliti řadu hodnot aequidistantních a pro každou z těchto hodnot znázorniti závislost druhých dvou proměnných v, p. Tak obdržíme soustavu křivek, z nichž každá platí pro určitou teplotu t, jež jest konstantni; kǐivky ty jsou tuđ̉iž isothermy.
V obr. 47. jsou tyto isothermy přesně kresleny pro teploty $-200^{\circ}, 0^{9}, 200^{\circ}, 400^{\circ}, 600^{\circ}, 800^{\circ}, 1000^{\circ}$.

Každá z nich jest rovnoosou hyperbolou, jejižto analytická rovnice jest

$$
v p=\mathrm{const} .
$$

při čemž const. má hodnoty

$$
5 \cdot 96, \quad 22 \cdot 39, \quad 38 \cdot 82, \quad 55 \cdot 26, \quad 71 \cdot 69, \quad 88 \cdot 13, \quad 104 \cdot 56
$$

Určitému přirůstku teploty (zde 200°) přísluší při určitém v konstantní prírůstek proměnlivé p, a naopak při určitém p konstantní přírůstek proměnlivé $v . V$ diagrammu jeví se to tím, že jakákoli přímka, vedená rovnoběžně bud̉ s osou úseček v v odlehlosti p, nebo s osou pořadnic $p \mathrm{v}$ odlehlosti v protíná soustava isotherm v bodech aequidistantních, jež se k sobě druží těsněji a těsněji, když se ona přímka od přislušné osy bud úseček nebo pořadnic vzdaluje, t. j. když p nebo v jest větší.

Znázorniti stavojevnou rovnici útvarem plošným jest ovšem téź možno, ale znázornění jest více zajímavé než prospěšné; v té přicininẽ soustava isotherm jest výhodnéjさ̌̌i. Viz na př. E. Mach, Wärme, pag. 30, Fig. 25, 1900.

§ 53. Pokusy.

Pokusy o roztažnosti nebo rozpínavosti plynủ, maji-li se konati k účelủm vědeckého badání, vyžadují přístrojủ dosti složitých a nákladných. Takové byly přistroje, jichž užíval na př. Regnault. Ještě nákladnější jsou přístroje, jimiž pracují moderní naše velké ústavy metronomické. Jde-li však o účely laboratorní nebo přednáškové, postačí přístroje jednodušsí, jež ovšem nedovolují docíliti největší přesnosti, ale za to json cenou přístupnějši a při práci přehleduějši.

Velmi účelně zařízen jest přistroj (obr. 48.), který sestrojil Jolly*) a vhodně pozměnil Pfaundler**). Slouží ke studiu rozpínavosti plynů, po případě k určování teploty dle této rozpinavosti, jakožto teploměr plynový. Sestáváz části dvou: nádoby pro plyn a manometru rtufového. Nádoba pro plyn jest skleněná, mívá tvar koule anebo raději podlouhlého válce ∇, který se vyfoukne ze silnostěnné kapillární trubice; tato se pak dvakráte v pravém úhlu ohne a rozšiří v trubici širši m. Na místě, kde se kapillára v tuto trubici rozšiřuje, jest zatavena do skla malá,

[^45]tmavá skleněná jehla, tak zvaná jehla Jolly-ho. Sirši trubice m jest pak zatmelena do ocelového kování s kohoutem k; tímto kováním př̌ipojí se nádoba k manometru, jehožto části vlastně již ona širši trubice m jest.

Obr. 4 s .
Vodikovỹ teplomẽr Jolly-Pfaundlerûv. Manometr jest rtutový, skládá se z trubice kaučakové, která jest pevně nastrčena na dvou ocelových násadcich; do jedné z nich jest zasazeno ono kování s kohoutem k, na druhou jest pak přitmelena trubiceskleněná n téhož kalibru, jako trubice m. Oba pak tyto ocelové násadce vkládají se do mosazných svěráků, jež se daji pošinovati a šroubem uperniti na dvou vertikálnich mosazných sloupech, mezi nimiž visí měřítko kovové, střibřené, dělené na millimetry.

Než se. přístroj sestaví, jest výhodno, objem V nádoby jakož i objem v kapilláry stanoviti vážením se rtuti. Manipulace neni nesnadná, poněvadž Ize rtuf otevřeným koncem kapilláry vssáti. Potom se rtuf vypusti a nádoba i kapillára i trubice m naplní se suchým plynem, na př. vodíkem, který se opět otevřeným koncem ssaje. Když jest zaručeno, že při plněni veškeren vzduch jest vypuzen a zároveň zbytky vlhkosti odstraněny, vssaje se do trubice m ještě něco rtuti, načež se kohout k uzavře a zároven̆ kapillára u o zatavi. Potom se kování s kohoutem k zasadí do manometru již rtuti naplněného, a vzduch mezi kohoutem a rtutí v manometru se vypudí k cíli toma má kohout k ještě vrtání na venek, velmi jemné, kterým při náležitém postavení kohoutu
vzduch uniká, a hued za ním se rtuf protlačuje; jakmile začne vytékati rtuf, otoči se kohout tak, aby vzniklo spojeni mezi trubici m a manometrem.

Při pozorování vtlači se vodik vždy z trubice m do nádoby V tak, aby v trubici m rtuf se právě dotýkala oné jehly Jolly-ho. Tim jest zaručena konstantnost objemu V (resp. $V+v$) plynu - až na změny objemové nádoby, jež vznikají účinkem tepla a jež nutno korrekcí vziti v počet. Nádoba V múže se vložiti na pǐ. do tajícího sněhu, nebo do vařicí se vody nebo do lázně jakékoliv. Tlak plynu, který dlužno měřiti, skládá se vždy ze dvou časti: tlaku manometrického a tlaku barometrického. Posledni dlažno na barometru odečisti zvlášf.

Odčitáni na manometru dẽje se nejlépe dalekohledem. Odečtení manometrické dlužno redukovati na teplotu nullovou právě tak, jako jest to pravidlem u odečteni barometrického *). Lze-li předpokládati, že rtuf v manometru a v barometru má teplotu stejnou, může tato redukce odpadnouti, vzhledem k tomu, že jde zpravidla o měření relativní - jakož z následujicích výkladủ lépe vysvitne. Stroje lze užívati, jak již řečeno, bud ke studiu rozpínavosti plynu, t. j. k určení koefficientu γ, nebo jako teploměru plynového, k určeni teploty t. Dle účelu jednoho neb druhého nutno výpočty upraviti.

§ 54. Výpočet koefficientu rozpinavosti.

Jako výsledek pozorováni obdržime

$$
\text { při teplotě } 0^{\circ} \text { napětí } P_{0} \text {. }
$$

Výpočet koefficientu γ můžeme provésti v trojím zpủsobn, dle menšiho nebo většiho stupně přesnosti.

1. Pro první orientaci o výsledku lze předpokládati, že objem plynu se - téměř - neměni, že tudiž platí zákon Gay-Lussac-ův
ze kteréhož plyne

$$
P_{t}=P_{0}(1+\gamma t)
$$

$$
\gamma=\frac{P_{t}-P_{0}}{t P_{0}}
$$

*) Mechanika, pag. 512, 1901.
2. Objem plynu nezůstává však přesně konstantni, poněvadž se oteplením mění objem nádoby. Dlužno tudiž počítati dle rovnice stavojevné

$$
V_{t} P_{t}=V_{0} P_{0}(1+\gamma t)
$$

Budiž k objemový koefficient roztažnosti pro materiál, z něhož nádoba pracována. Pak jest

Dělením vyjde

$$
V_{t}=V_{0}(1+k t)
$$

$$
P_{t}=V_{0} \frac{1+\gamma t}{1+k t}
$$

z kteréhožto vzorce vysvítá, že napětí P_{t} následkem roztahování se nádoby roste volněji než dle zákona Gay-Lussac-ova, jakož také jest pochopitelno. Jinak lze rovnici posledni též psáti

$$
P_{t}+k P_{t} \cdot t=P_{0}(1+\gamma t)
$$

Odečtené napětí P_{t} dlužno tedy korrigovati na P_{t}^{*} dle vzorce

$$
P_{t}^{*}=\dot{P}_{t}+k P_{t} \cdot t
$$

a pak lze počítati jako přii 1.

$$
\gamma=\frac{P_{t}^{*}-P_{0}}{t P_{0}}
$$

3. Ale nejen v nádobě, také v kapilláře a nade rtuti (u jehly Jolly-ho) jest plyn; celý tento prostor v jevi se jakožto škodlivý. Plyn v tomto prostoru, kterýž z velké části se nalézá mimo dosah teploty 0° a t, má teplotu jinou τ_{0}, τ, kterou nutno určiti neb aspoň odhadnouti. Pak dlužno dle stavojevné rovnice psáti:

$$
\begin{gathered}
\frac{V_{t} \cdot P_{t}}{1+\gamma t}+\frac{v P_{t}}{1+\gamma^{z}}=V_{0} P_{0}+\frac{v P_{0}}{1+\gamma \tau_{0}} \\
V_{t}=V_{0}(1+k t)
\end{gathered}
$$

Z obou rovnic vychází

$$
P_{t} \cdot \frac{1+k t}{1+\gamma t}=P_{0}-\frac{v}{V}\left(\frac{P_{t}}{1+\gamma^{\tau}}-\frac{P_{0}}{1+\tau_{j}}\right)
$$

Při 2. jsme měli

$$
P_{t} \frac{1+k t}{1+\gamma \tau}=P_{0}
$$

Účinek škodlivého prostoru jeví se tudiž tim, že nutno odečtené napětí P_{0} korrigovati na P_{0}^{*} dle vzorce

$$
P_{0}^{*}=P_{0}-\frac{v}{V}\left(\frac{P_{t}}{1+\gamma \tau}-\frac{P_{0}}{1+\gamma \tau_{0}}\right)
$$

při čemž, poněvadž jde o korrekce nepatrné, za γ se dosadi hodnota přibližná. Jinak by se výpočet zbytečně komplikoval. Na to se počítá analogicky jako při 2. dle vzorce

$$
\gamma=\frac{P_{t}^{*}-P_{0}^{*}}{t P_{0}^{*}}
$$

V mnohých případech bývá moz̃no za τ_{n} a τ poloz̃iti společnou teplotu sině r, čimž se výpočet zjednoduši ; korrigované P_{0} jest pak

$$
P_{0}^{*}=P_{0}-\frac{v}{V} \frac{P_{t}-P_{0}}{1+\gamma^{\tau}}
$$

Úprava vzorcú, jak zde byly odvozeny, podána tak, aby hlavni vzorec. který plyue ze zảkona Gay-Lussac-ova, vzdy zretelnẻ vynikl i tehda, když by korrekcemi mohl býti zastren. Zpúsob tento má dojista své vy̆hody nejen pro studium, ny̌brž̀ též pro posouzení vlivů, jeż korrekce mohou miti na vysledek; proto se má postup výpočtu vżdy dle téchto hlavnich rysú zachovati.

§ 55. Teploměr plynový.

Teplomèr plynový, jednostejno, zdali jest úpravy jednodušsí, jak v odstavcích předešlých bylo předpokládáno, anebo složitějši, vyžaduje, aby dříve, než se ho k účelủm teploměrným uživá, byly určeny jeho konstanty. První z nich jest koefficient k objemové roztažnosti teploměrné nádoby. Druhá jest koefficient γ rozpínavosti toho plynu, kterým jakožto látkou teploměrnou jest tato nádoba naplněna. Při dané objemové kapacitě nádoby mủže tohoto plynu býti do nádoby vtěsnáno vice nebo méně; na tom závisi pak hodnota třeti konstanty, totiž iniciálního napětí P_{0}, jaký má plyn při teplotě nullové jakožto základni.

Znáti objem V nádoby jakoz̆ i objem v škodlivého prostoru jest nutno jen vzhledem ke korrekcím, jimiž účinek tohoto škodlivého prostoru se béře v počet.

Konstanty k, jakož i V a v dlužno určiti dřive, než se teploměr plynem naplni a sestavi. Konstanta P_{0} určí se po naplnění plynem při základní teplotě tajícího sněhu, a konstanta γ se vypočitá z pozorovaného napěti P_{t} při druhé základni teplotě vařici se vody.

Když to vše bylo provedeno, jest teploměr plynový připraven k měřeni teplot. Způsob výpočtu urči se úvahami podobnými, jako v odstavci předešlém.

1. Kdyby nebylo roztažnosti nádoby teploměrné, a kdyby se účinek škodlivého prostoru mohl zanedbávati, počítala by se
teplota t z pozorovaného napěti P_{t} dle vzorce

$$
t=\frac{P_{t}-P_{0}}{\gamma P_{0}} .
$$

Teplota byla by prostě úměrná přírǔstku napěti, a na manometru dala by se stupnice teplomerrná nanésti jednou pro vždy tak jako u obyčejných teploměrú.
2. Avšak tato stupnice následkem roztažnosti nádoby ukazovala by teploty malé. Jak z předešlého odstavce patrno, je správná teplota dána výrazèm

$$
t=\frac{P_{t}-P_{0}}{\gamma P_{0}-k P_{t}} .
$$

Stupnice teploměrná musila by tedy dle tohoto vzorce býti pozměněna.
3. Ale ani tato stupnice nebyla by definitivní, ba vủbec žádná, vzhledem k tomu, že jakýsi vliv na výsledek má též škodlivý prostor, jehož teplota se nedá napřed zajistiti. Jak z odstavce předešlého vychází, dlužno korrigovati iniciálni napěti P_{0} dle vzorce

$$
P_{0}^{*}=P_{0}-\frac{v}{V}\left(\frac{P_{t}}{1+\gamma \tau}-\frac{P_{0}}{1+\gamma \tau_{0}}\right),
$$

v němž teploty τ_{0} a τ natno aspoň přibližně odhadnouti, a pak teprve počitati teplotu dle vzorce jako při 2 ., totiž

$$
t=\frac{P_{t}-P_{0}^{*}}{\gamma P_{0}^{*}-k P_{t}} .
$$

Vzhledem k nejistotě teplot τ_{0} a τ jest vždy výhodou, když poměr $\frac{v}{V}$ jest co možná malým. Při měřeních velmi přesných nutno určiti též koefficient rozpínavosti resp. stlačitelnosti nádoby teploměrné vzhledem k tomu, že jeji objem se poněkud málo zvětši, když má při vyššich teplotách plyn velké napěti, a naopak zmenší vnějším tlakem, když plyn puri teplotách velmi nizkých má napětí malé.

Pfi kalibraci nádoby teplomèrné (v obr. 48. zuaizorněné) rtuti shledáno, że objem kapilläry v obsîhne 2.6205 g rtuti, a objem $V 541 \cdot 325 \mathrm{~g}$ rtuti. (Teplota rtuti $=14.9^{\circ}$.) Z toho suadno vypoésti objem v i V.

Pro pomér obou, na kterém zde hlavné zălez̃i, vychuzzi

$$
\frac{v}{V}=\frac{2 \cdot 6205}{541 \cdot 325}=0.00484
$$

1. j. témêr $1 / a$ procenta. Pro velmi presná méreni byl by pomẽr tento poněkud velkŷ, tedy ménẽ príznivý. Proto má apparåt ještě druhou nádobu teplomẻrnou, znac̃nẽ vêtsí, do reservy, kteráz̃ však pro experimentování y prednáškảch jest ménẽ pohodlnou.

Přistroj v obr. 48. znázorněný jest určen pro pokusy přednéǎkové a osvědčuje se tu svým jednoduchým a účelným za-

Obr. 49.
Vodikovẏ teploměr Bréteuilsky.
řizením velmi dobře. Obr. 49. ukazuje přistroj sloužící přesným účelûm vědeckým.' Jest to teploměr vodikový, jak jej sestavil (1888) Chappuis*) pro internacionální ústav Bréteuilský. Teploměrnou nádobou G jest podélný dutý válec, 110 cm dloulý,

[^46]3.6 cm vnějšiho prủměru, ze slitiny platiniridiové ($90 \% \mathrm{Pt}$, $10 \% \mathrm{Ir}$), o kapacitě 1.09 litru. Koefficient roztažnosti i stlačitelnosti jest přesně určen. Při stanoveni teploty, zejména pak při srovnáváni teploměrủ rtutových s vodikovým klade se tato nádoba steploměry srovnávanými vodorovně do vhodných lázní. Nádoba končí trubičkou 5 cm dlouhou, platiniridiovou, ke které se připojuje kapillární trubička platinová přes $1 m$ délky a jen 0.7 mm vnitřniho průměru a tato zakončuje těsně v přistroji tlakoměrném. Poměr objemový $v: V$ škodlivého prostoru k teploměrné nádobě činí jen $0 \cdot 1 \%$. Přístroj, jim̌̌ se má napětí plynu měřiti, jest kombinací manometru a barometru. Tím jest stanoveni tohoto napětí zjednodušeno; určí se ze dvou odečtení kathetometrem. Cást manometrická skládá se ze široké skleněné trubice R na levé straně sloupu pošinovatelné. která jest tenkou ocelovou, dostatečně dlouhou, ohebnou trubičkou spojena s dvěma souběžnými skleněnými, 2.5 cm silnými trubicemi m, m^{\prime} na pravé straně sloupu upevněnými; obě daji se kohouty dole uzavřiti (obr. 49.c). Trubice m jest jako nádobou tlakomèru nádobkového, jehož část s Torricelliho vakuem jest nahoře na sloupu pošinovatelná; odtud se trubice barometrická zúžuje a zahýbá a zasahuje do rtuti v trubici m. Souběžná trubice m^{\prime} jest přepažena kováním p na dvě samostatné, vespolek nesouvisící části, které však obě kommunikuji s trubici m. Do části hořejši ústi ona od teploměrné nádoby jdoucí platinová kapillára, jež prostupuje část hořejši ve způsobu v obr. 49. b) znázorněném. Při s jest Jolly-ho jehla. Pošinováním reservoiru R podél sloupu zařidí se (zhruba i jemně, mikrometrickým šroubem) postaveni tak, aby se rtut v části n oné jehly dotýkala. Pak udává kathetometricky měřený výškový rozdil menisku při s a v barometru B napětí vodiku. Cást trubice m^{\prime} nad kováním p naplni se též rtuti; to má jen účel ten, aby se tlak barometrický dal též pro sebe stanoviti, totiž kathetometricky mě̌̌eným rozdilem ve výšce menisku v m^{\prime} a nahoře v barometru B. Proto jsou tyto dva menisky a meniskus při s v téže přímce vertikální.

Budiz̄ jesté na nêkteré podrobnosti upozornẽno. Korrekce pro kapillární depressi rtuti prii sifice 2.5 cm sklenẽnỵch trubic odpadà úphẽ. Vakuum v barometru B lze kontrolovati methodou, již udal Arago. Predpokládejme, że by ve vakuu zûstalo nẽco mâlo vzduchu o napêtí β; pak by barometr udával tlak $b-\beta$. Redukujme posinutím části B na sáñkich ono vakuum na polovicku. Pak by napéti vzduchu ve vakuu stouplo na 2β, barometr by udával $b-2 \beta, \mathrm{t}$. j. odečteni by bylo mens̉i, a to právé o β, tedy o napéti, jez̀ by se jako korrekce z obou téchto odec̃tení stanovilo. Proto
jsou v čisti B umistẽny dva indexy (jehly skleněné), dle nichž se objem vakua dá upraviti. Koneçnẽ budiz̃ poznamenáno, že při teplotẽ nullové teploměrné nádoby G rozdil výškovẙ obou meniskủ pr̃i s a y B činí $1 m$ (§ 12.).

Existuji téźz differenciální teploměry plynové, jak je sestrojili Leslie, Rumford a j. Dvě skleněné nádoby teploměrné, obyčejně koule, jsou spojeny kapillárou, dvakráte v pravém úhlu ohnutou, v niž jest pohyblivý index, bud rtutový neb alkoholový. Při stejné teplotě vzduchu v obou nádobách zaujme index jakési vhodné postavení střední; pošine se však, jakmile nastane jednostranné oteplení. Jsou tudiž takovéto přístroje citlivými thermoskopy, pro mnohé poknsy instruktivními, ale pro přesnějši měření kvantitativni se nehodí.

8. 56. Jak se provảději redukce objemu nebo specifické hmoty na urciitou teplotu a určitý tlak.

1. Při redukcich objemu nějakého plynu slouži za základ rovnice

$$
v p=v_{0} p_{0}(1+\gamma t) .
$$

Obyčejný připad bývá ten, že objem v plynu, jak se nalezne při teplotě t a tlaku p, má se redukovati na poměry normální, t. j. na teplotu 0° a tlak jedné atmosféry. Pak máme vzorec

$$
v_{0}=v \frac{1}{1+\gamma t} \frac{p}{p_{0}}
$$

Tlak p bývá určen sloupcem nullstupňové rtuti o výšce $b \mathrm{~cm}$. Souhlasně dlužno tlak p_{0} jedné atmosféry vyjádřiti sloupcem nullstupñové rtuti o výšce 76 cm . Vzorec zní pak

$$
v_{0}=v \frac{1}{1+\gamma t} \frac{b}{76}
$$

2. Pro redukce specifické hmoty dlužno na základě stejnosti součinủ

$$
v s=v_{0} s_{0}
$$

vyjadřujicich hmotu m plynu psáti hořejší rovnici ve formě

$$
\frac{p}{s}=\frac{p_{0}}{s_{0}}(1+\gamma t)
$$

Úkol bývá zde obrácený. Z tabulek se vypiše s_{0} pro poměry normální a má se vypsané číslo redukovati na poměry obyčejné.

Pak máme vzorec

$$
s=s_{0} \frac{1}{1+\gamma t} \frac{p}{p_{0}}
$$

anebo

$$
s=s_{0} \frac{1}{1+\gamma t} \frac{b}{76}
$$

Ve výkladu právě učiněném značí b výšku sloupce rtuti nullstup̌oové. Obyčejně pozoruje se výška b^{\prime} sloupce rtutového za jiné teploty t^{\prime}, kteráž jest zároveň teplotou i rtuti i měřitka, na kterém se výška odečítá. Redukce na teplotu nullovou provádi se pak dle vzorce*)

$$
b=b^{\prime}-0.000163 b^{\prime} t^{\prime}
$$

anebo

$$
b=b^{\prime}-0.000173 b^{\prime} t^{\prime}
$$

první vzorec plati pro měřítko mosazné, druhý pro skleněné.
Jde-li o účely védecké, tudiz̃ o nejvétši presnost, pak dluẑno vzpomenouti, że tlak sloupce nullstupnové rtuti o výşce 76 cm se rovná tlaku jedné atmosféry jen při normálni intensitě tiže $g_{45,0}, \mathrm{t}$. j. v geografické sirce 45° a ve výšce 0 metru nad hladinou moriskou. Následkem toho nutno tlak vyjádřenỷ výskou b sloupce rtuti nullstupñové prepočítati na tuto normální intensitu tiźe, t. j. místo pozorovaného b nutno do počtu dosaditi redukované b, dle vzorce

$$
b \cdot \frac{g}{y_{45,0}} \text {. }
$$

kdez̃ g značí intensitu tiže na tom misté kde bylo pozorováno. Redukce jest tedy jednoduchou, je-li g známo. Pro Prahu, Klementinum, jest na pf..**)

$$
g=981 \cdot 010 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}
$$

coz̄ vzhledem k normální intensitê tiže

$$
g_{45,0}=980.606 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}
$$

dává pomẻr

$$
\frac{g}{g_{45,0}}=\frac{981 \cdot 010}{980 \cdot 606}=1+0 \cdot 00041
$$

Všechny výsky b bylo by tedy nutno o $\frac{4}{100}$ procenta zvêtsiti, coz̃ pr̃i sloupci 1 metru çini $0 \cdot 41$ millimetru. Redukce jest ovsem malá, poněvadz̄ geografickí sirkka w Prahy, (Klementinum hvęzdárna $50^{\circ}, 5^{\prime} 15 \cdot 8^{\prime \prime}$) se jen málo

[^47]od 45° liší, a také výška nad morem (197 m) jest malã. Neni-li g známo, vypocitti se z rovnice*)
kdež jest
$$
g=g_{45,0}\left(1-v \cos 2_{w}\left(1-\varepsilon h_{i}\right) .\right.
$$
\[

$$
\begin{aligned}
& \vartheta=0.0025523 \\
& \varepsilon=0.000000314
\end{aligned}
$$
\]

anebo z rovnice jednodušsí

$$
g=g_{45,0}\left(1-e^{2} \cos 2 \psi\right)-0 \cdot 00030867 .
$$

prí čemž h určeno v metrech. Jiný vzorec udãá Helmert, 1901 $g=g_{45,0}\left(1-0.002644 \cos 2 \psi+0.000007 \cos ^{2} 2 \psi^{*}\right)-0.0003086 h$. Pro určité misto pozorovací se ovšem vzorec takový propočitá jednou pro vżdy a určí pomẽr $\frac{g}{g_{45,0}}$ ve formé $1+\varepsilon$, kdež ε v procentech udává redukci sloupcù b.

§ 57. Odchylky od spojeného zákona Boyle-Mariotte-Gay-Lussac-ova.

Spojený zákon Boyle-Mariotte-ův a Gay-Lussac-ův vystihuje vlastnosti plynủ v hlavních, zaikladních rysech. Avšak v podrobnostech ukazuji plyny odchylky, méně znatelné za poměrủ obyčejných, při kterých plynů v laboratoři užíváme - ale tím vice patrné za poměrủ mimořádných. Odchylky tyto jeví se ve všech těch třech stránkách, jež jsme vytkli u zakona Gay-Lussac-ova.

Předevšim ani roztažnost ani rozpinavost plynủ s teplotou (normálním teploměrem vodikovým měřenou) neni zcela přesně rovnoměrnou.

Tak nalezl Chappuis u dusiku při iniciálnim napětí 1002 mm $\left(H g 0^{\circ}\right)$ prûmèrný koefficient roztažnosti

$0^{\circ} \ldots 20^{\circ \prime}$	$7=0.0036770$
0.240	36750
0.2100	36732

a podobně prūměrný koefficient rozpinavosti

$0^{0} \ldots 20^{0}$	$\gamma=0 \cdot 0036754$
$0 . \cdots 40$	36752
$0 . . .100$	36744.

[^48]Rozdily jsou však velmi malé. Poněkud větší nalezl Chappuis na př. u kysličniku uhličitého, za stejného iniciálniho napěti, 998 mm ($\mathrm{Hg} 0^{\circ}$). Koefficient roztažnesti určil:

$0^{\circ} \ldots 20^{\circ}$	$\gamma=0.0037602$
$0 \ldots 40$	37536
$0 \ldots 100$	37410

a koefficient rozpinavosti

$0^{\circ} \quad .20^{\circ}$	$\gamma=0.0037335$
$0 \ldots 40$	37299
$0 \ldots 100$	37262.

Ale i zde jsou rozdily jen míné. Pozoruhodno jest, že koefficienty při vyššich teplotách se poněkud umenšuji. U kapalin jest tomu naopak. Celkem lze říci, že v této stránce jsou odchylky od zákona Gay-Lussac-ova malé, tak že se k nim přihliži jen v případech řídkých. Jinak lze připustiti, že roztažnost i rozpinavost plynů jest s teplotou velmi blizce stejnoměrná

Co se druhé stránky zákona Gay-Lussac-ova týče, ukazuje skutečnost (jak také z přikladů již uvedených vychází), že koefficienty roztažnosti jakoži rozpínavosti u rủzných plynủ nejsou stejné; každý plyn má svůj koefficient roztažnosti a rozpinavosti, a oba tyto koefficienty liši se též mezi sebou. Poněvadž rovnost obou těchto koefficientů vyplynula ze zákona Boyle-Mariotte-ova tedy z toho následuje, že ve skutečnosti se plyny od tohoto zákona odchylují.

Koneěně ani v třetí stránce zákon Gay-Lussac-ův neplatí; roztažnost i rozpinavost jest jiná, je-li nějaký plyn zǐedèný, a jiná, je-li zhuštĕný. Přiklady seznáme později.

Vzhledem k tomuto stavu věci jest nutno vzájemnou závislost veličin v, p, t vyjádřiti třemi koefficienty zvláštními. Jest to:

| γ_{p} | koefficient roztažnosti | při stálém tlaku | | p, | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| γ_{v} | $\#$ | rozpinavosti | $\#$ | $\#$ | objemu v, |
| γ_{0} | $\#$ | stlačitelnosti | , | , | teplotě t. |

Definice těchto koefficientů jest obsažena v rovnicích:

$$
\begin{array}{rlr}
p=\text { const. } & v=v_{0}\left(1+\gamma_{2} t\right), & \gamma_{p}=\frac{1}{v_{0}} \frac{\Delta v}{\Delta t}, \\
v=\text { const. } & p=p_{0}\left(1+\gamma_{v} t\right), & \gamma_{v}=\frac{1}{p_{0}} \frac{\Delta p}{\Delta t}, \\
t=\text { const. } & v=v_{0}\left(1+\gamma_{t}\left[p-p_{0}\right]\right), & -\gamma_{t}=\frac{1}{v_{0}} \frac{\Delta v}{\Delta p} .
\end{array}
$$

Index při koefficientu γ poukazuje tudiž, že tento koefficient platí na př. pro tlak p nebo pro objem v, jenž zuistává konstantním; podobně pro teplotu t, jez̆ zuistává konstantni. Jinak řečeno, index naznačuje konstantu, ovšem arbitrárni. Objem v_{0} znači v prvé rovnici objem při teplotě $t=0^{0}$ jakožto začătečni; v třetí rovnici objem při tlaku $p=p_{0}$ jakožto začátečním.

V označování tomto neni vsak shoda. Mnozi autorové na pr̂. Chwolson Winkelmann označují indexem právê naopak veličinu mẽnlivou. U nich tedy znamená γ_{p}, koefficient prii mẻnlivém tlaku, tudî̀ koefficient rozpínavosti, podobnê γ_{ν} koefficient při mẽnlivém objemu, tudî̀ koefficient roztaz̃nosti. Označení \neq tr neužívaji. Ale na druhé strané titiž autorové znamenají C_{p}, C_{b} kapacitu tepelnou pri konstantním tlaku p resp. pri konstantnim objemu r. V tom tedy jest nedúslednost. Oznac̈eni v našem smyslu jest zavedeno téż v tabulkäch Landolt-Börnsteinových, 1905.

Prírûstky $\Delta t, \Delta v, \Delta p$ jsou libovolnẽ veliké, pokud pripustíme vztaliy lineárni. Jinak platí vseoobecnéji definice

$$
\begin{aligned}
\gamma_{t} & =\frac{1}{v_{0}} \frac{d v}{d t} \\
\gamma_{k} & =\frac{1}{p_{0}} \frac{d p}{d t}, \\
-\gamma_{t} & =\frac{1}{v_{0}} \frac{d v}{d p} .
\end{aligned}
$$

Dle hořejšich vztahủ vyjádřime přechod isobarický
vztahem

$$
\left(v_{0}, 0^{0}, p_{0}\right) \ldots\left(v, t, p_{0}\right)
$$

$$
v=v_{0}\left(1+\gamma_{p} t\right)
$$

a přechod isochorický

$$
\left(v_{0}, 0^{\circ}, p_{0}\right) \ldots\left(v_{0}, t, p\right)
$$

vztahem

$$
p=p_{0}\left(1+\gamma_{v} t\right) .
$$

Kdyby platil zákon Boyle-Mariotte-ův pro stavy závěrečné
následovalo, by z tolıo

$$
v p_{0}=v_{0} p,
$$

$i_{p}=\gamma$
Poněvadž však skutečnost této shodě obou koefficientủ odporuje, neplati přisně zákon Boyle-Mariotte-ův, nýbrž jest

$$
\begin{array}{rlll}
\text { bud } & v p_{0}>v_{0} p, & \text { a tudǐ̌ } & \gamma_{p}>\gamma_{v}, \\
\text { nebo } & v p_{0}<v_{0} p, & " \quad, & \gamma_{p_{s}}^{*}<\gamma_{0}
\end{array}
$$

V prvém případu se při stoupajicim p. t. j. pr̆i postupném komprimováni plynu součin objem \times tlak umenšuje, v druhém zvětšuje; prvni případ se osvédčuje u všech plynủ - zde pak jest $\gamma_{p}>\gamma_{r}-\mathrm{s}$ jedinou výjimkou vodiku, pro který plati druhý připad a tudiž $\%_{p}<\gamma_{w}$. Vskutku nalezl Chappuis (1903) pro vodik iniciálního napětí 1000 mm ($\mathrm{Hg} \mathrm{O}^{\circ}$) v intervallu $0^{\circ} \ldots 100^{\circ}$ hodnoty

$$
\gamma_{p}=0.0036600, \quad \gamma_{v}=0.0036626
$$

\checkmark souhlasu s oním výsledkem theoretickým.

§ 58. Stavojevná rovnice van der Waalsova.

Pravili jsme, že rovnice stavojevná, sloučením obou zákonủ B.-M. a G.-L. vzniklá,

$$
p v=R(1+\gamma t),
$$

plati pro plyny ideální. Vzniká tudǐ̌ otázka, zdali by nebylo možno vzhledem k odchylkám v předešlém odstavci vyloženým rovnici tu pozměniti tak, aby platila pro plyny reálni. Důležitý pokus v této př̌ičině podává modifikace, kterou zavedl van der Waals ${ }^{*}$). Stavojevná rovnice jeho zní následovně:

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R(1+\gamma t)
$$

Pravá strana rovnice této shoduje se úplnĕ s pravou stranou rovnice pro plyny ideální; konstanty R, γ maji i číselně týž význam; modifikována jest však její levá strana. Vizme především, jaký má tato modifikace význam.

V rovnici pro plyny ideálni vychází $v=0$ pro $p=\infty$; tlakem stále stoupajícim by se tedy objem plynu zmenšoval až na nullu. Misto této limity nullové klade van der Waals limitu $v=b$. Objem hmoty nemúže se státi nullovým, nýbrž nabývá i při tlaku nejzazším hodnoty konečné.

Také tlak p má v rovnici van der Waalsově additivní člen, ale nikoli konstantní, nýbrž s objemem proměnlivý. Klesajicí teplotou ubývá expanse p. Tato expanse, pravili jsme, jest pro plyny charakteristická, zejména oproti kapalinám, u nichž pozo-

[^49]rujeme i při velké pohyblivosti částic kohaesi, pocházející ze vzájemné přitažlivosti molekulové. A však tato přitažlivost nemǔže zcela zmizeti, když kapalina přechází v páru; tudiž ani ne kohaese. Jenom že expanse převládá, ale kohaese - v opačném smyslu, jaksi negativním, proti expansi se jevici - zủstává též v platnosti. A právě výraz $\frac{a}{v^{2}}$ formuluje tuto kohaesi, která stoupá, když se plyn komprimuje, t. j. když jest v menši, a to s objemem v čtverečně; a jest konstantou úměrnosti. Při absolutním bodu nullovém přestává expanse a zbývá jen kohaese, kterou udává rovnice
$$
p+\frac{a}{v^{2}}=0
$$
z niž vychází
$$
p=-\frac{a}{v^{2}}
$$

Čiselné hodnoty konstant a, b souvisí právě tak, jako hodnota konstanty R s volbou jednotek. Když se tlak měří v atmosférách, objem v kubických centimetrech, jest (§ 51.)

$$
R=22390 \mathrm{~N}
$$

Kdyby se pro objem v přijala theoretická normální jednotka (22.39 litru, §50.), zněla by rovnice van der Waalsova pro gramm-molekulu plynu ($N=1$) jednoduše

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=1+\gamma t
$$

V této jednotce jsou na př. v tabulkách Landolt-Börnsteinových (1905, pag. 187) počitány pro četné plyny konstanty a, b a to z tak zvaných kritických dat. Za přiklad uvádíme:

Pro kyslik:	$a=0.0027 \cdot 2$,	$b=0.00141$
dusík:	0.00268	0.00171
vodik:	0.00042	0.00088.

Hodnoty jsou ostatně jen přibližné, orientačni, poněvadž z dủvodủ theoretických není vůbec pravděpodobno, že by a, b byly naprosté konstanty.

§ 59. Koefficienty rozpinavosti a roztažnosti plynů dle stavojevné rovnice van der Waalsovy.

Vycházejice od rovnice stavojevné van der Waalsovy

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R(1+\gamma t)
$$

odvodme výrazy pro koefficienty rozpinavosti a roztažnosti plynů.

1. Pro poměry normální $\left(v_{0}, 0^{0}, p_{0}\right)$ obdržíme

$$
\left(p_{0}+\frac{a}{v_{0}^{2}}\right)\left(v_{0}-b\right)=R .
$$

Zachovávajíce objem v_{0} konstantním zvýšime teplotu z 0° na t; čimž tlak stoupne z p_{0} na p. Pro konečný stav $\left(v_{0}, t, p\right)$ obdržíme

$$
\left(p+\frac{a}{v_{0}^{2}}\right)\left(v_{0}-b\right)=R(1+\gamma t)
$$

Dle definice jest koefficient rozpinavosti při konstantním objemu

$$
\gamma_{v}=\frac{p-p_{0}}{t p_{0}} .
$$

Z obou hořejšich rovnic nabudeme dělením

$$
\frac{p+\frac{a}{v_{0}^{2}}}{p_{0}+\frac{a}{v_{0}^{2}}}=1+\gamma t
$$

odtud

$$
p=p_{0}+\gamma t\left(p_{0}+\frac{a}{v_{0}^{2}}\right)
$$

aneb

$$
\frac{p-p_{0}}{t p_{0}}=\left(1+\frac{a}{p_{0} v_{0}^{2}}\right) \gamma
$$

čili

$$
z_{0}=\left(1+\frac{a}{p_{0} v_{0}^{2}}\right) \%
$$

2. Vyjděme opět od poměrů normálních $\left(v_{t}, 0^{\circ}, p_{0}\right)$,

$$
\left(p_{0}+\frac{a}{v_{0}^{2}}\right)\left(v_{0}-b\right)=R .
$$

Zachovávajice tlak p_{0} konstantním zvýšíme opět teplotu z 0° na t^{0}, čímž objem stoupne z v_{0} na v. Pro konečný $\operatorname{stav}\left(v, t, p_{0}\right)$
obdržime

$$
\left(p_{0}+\frac{a}{v^{2}}\right)(v-b)=R(1+\gamma t) .
$$

Dle definice jest koefficient roztažnosti při konstantnim tlaku

$$
i p=\frac{v-v_{0}}{t v_{0}} .
$$

Dělením obou hořejšich rovnic nalezneme:

$$
\frac{p_{0}+\frac{a}{v^{2}}}{p_{0}+\frac{a}{v_{0}^{2}}} \frac{v-b}{v_{0}-b}=1+; t
$$

čili

$$
\frac{1+\frac{a}{p_{0} v^{2}}}{1+\frac{a}{p_{0} v_{0}^{2}}} \cdot \frac{v-b}{v_{0}-b}=1+i t
$$

aneb
$v-b+\frac{a}{p_{0} v}-\frac{a b}{p_{0} v^{2}}=v_{0}-b+\frac{a}{p_{0} v_{0}}-\frac{a b}{p_{0} v_{0}^{2}}+\gamma t\left(1+\frac{a}{p_{0} v_{0}^{2}}\right)\left(v_{0}-b\right)$.
Vynechávajice na obou stranách - b a upravice rovnici tak, aby vynikla difference $v-v_{0}$, obdržíme:

$$
v-v_{0}+\frac{a v_{0}-a v}{p_{0} v_{0} v}+a b \frac{v^{2}-v_{0}^{2}}{p_{0} v_{0}^{2} v^{2}}=\gamma t\left(1+\frac{a}{p_{0} v_{0}^{2}}\right)\left(v_{0}-b\right)
$$

čili

$$
\left(v-v_{0}\right)\left(1-\frac{a}{p_{0} v_{0} v}+a b \frac{v+v_{0}}{p_{0} v_{0}^{2} v^{2}}\right)=\gamma t\left(1+\frac{a}{p_{0} v_{0}^{2}}\right)\left(v_{0}-b\right),
$$

odtud

$$
\frac{v-v_{0}}{t v_{0}}\left(1-\frac{a}{p_{0} v_{0} v}+a b \frac{v+v_{0}}{v_{0}^{2} v^{2}}\right)=\gamma\left(1+\frac{a}{p_{0} v_{0}^{z}}\right)\left(1-\frac{b}{v_{0}}\right),
$$

konečně

$$
i p=\frac{\left(1+\frac{a}{p_{0} v_{0}^{2}}\right)\left(1-\frac{b}{v_{0}}\right)}{1-\frac{a}{p_{0} v_{0} v}\left(1-b \frac{v_{0}+v}{v_{0} v}\right)} \%
$$

Vizme předevšim, jaké dûsledky všeobecné z výrazû pro \%o io lze odvoditi.

1. Výraz pro ;\% jest velmi jednoduchý. Koefficient rozpinavosti plynủ všech jest větši než $/$ a stoupá, když se plyn zhustí,
t. j. když začáteční tlak p_{0} jest velký; nebot tim stává se v_{g} menšim, a poněvadž součin $p_{0} v_{0}$ - dle zákona Boyle-Mariotte-ova - zde aspoň přibližně platného - jen málo se měni, zûstává v součinu $p_{0} v_{0}^{2}$ účinek menšiho v_{0}, kterým se koefficient γ zvětšuje. S tím pozorování souhlasí. Tak na přiklad nalezl Regnault pro vzduch

$$
\text { pro } p_{0}=\begin{array}{rr}
760 \mathrm{~mm} & H g 0^{u} \\
2000 & \eta
\end{array} \quad \gamma_{e}=0.0036650
$$

Vzduch zhuštěnějši jevi tedy při zahříváni rozpinavost větši, v souhlasu s tím, jak rovnice van der Waalsova udává.

Naproti tomu ukazuje vodik změny koefficientu $\%$ steplotou t velmi nepatrné, při čem̌̌ jest zároven̆

Z toho by následovalo

$$
\begin{aligned}
& \gamma_{v}=\gamma \\
& a=0 .
\end{aligned}
$$

Vodîl zaujimá tedy mezi plyny postavení zulás̊tní - a tim jest dodatečně odûvodněno, proč byl vodik zvolen za normální látku teploměrnou a to na základě své rozpinavosti. Co se pak týče jeho koefficientu roztažnosti $\gamma_{\%}$, obdržíme z podmínky $a=0$ jednoduše

$$
\gamma_{p}=\left(1-\frac{b}{v_{0}}\right) \gamma
$$

Koefficient roztažnosti vodiku jest tedy menši než ; a klesá, když tlak p_{0} jest větši a tudiž v_{0} menší, t. j. klesá, když se vodik velkým tlakem zhuštuje. Také tento důsledek z rovnice van der Waalsovy potvrzuji pozorování. Tak nalezl Amagat pro vodik

$$
\begin{array}{cr}
p_{0}=200 \mathrm{~atm} . & \gamma_{p}=0.00332 \\
400 & 295 \\
600 & 261 \\
800 & 241 \\
1000 & 218
\end{array}
$$

Rovnice stavojevná van der Waalsova nabývá pro vodik jednoduchého tvaru

$$
p v=R(1+\gamma t)+b p .
$$

Když jde o zmèny isothermické - jak je zákon Boyle-Mariotte-úv předpokládá - obdržíme

$$
p v=\text { const. }+b p .
$$

Odchyluje se tedy vodik od zákona Boyle-Mariotte-ova v tom směru, že součin $v p$ tlakem p, t. j. s pokračujícim zhuštováním vodiku, se zveličnje. Také tento důsledek ze stavojevné rovnice van der Waalsovy se zkušeností potvrzuje.
2. Výraz pro koefficient γ_{p} jest povšechně složitěǰ̌í. Vysvitá vĚak z něho, že jest

$$
\gamma_{p}=\frac{1-\frac{b}{v_{0}}}{1-\frac{a}{p_{0} v_{0} v}\left(1-b \frac{v_{0}+v}{v_{0} v}\right)} \gamma_{c}
$$

Vyšetřovali jsme, jak se výrazy pro $\%$ a $\%$ utváří, když jest $a=0$. Přihlédněmež také k případu, když by bylo $b=0$. Pak jest

$$
\begin{aligned}
& \gamma_{v}=\left(1+\frac{a}{p_{0} v_{0}^{2}}\right) ; \\
& \gamma_{p}=\frac{\gamma_{0}}{1-\frac{a}{p_{0} v_{0} v}}
\end{aligned}
$$

Jest tedy

$$
\gamma_{r}>\gamma_{v}>\gamma
$$

Rovnice stavojevná vander Waalsovy nabývá pak formy jednodušši

$$
p v=R(1+\gamma t)-\frac{a}{v} .
$$

Pro změny isothermické vychází tudiž

$$
p v=\text { const. }-\frac{a}{v},
$$

plyny takové odchyluji se tedy od zákona Boyle-Mariotte-ova v opačném smyslu než vodik. Skutečnost ukazuje, že všechny plyny, mimo vodik, se v tomto opačném smyslu od zákona Boyle-Mariotte-ova odchyluji - z čehož soudime, že u všech těchto plynủ b jest aspon̆ když ne $=0$, zajisté velmi malé proti a, obráceně než u vodíku, kde jest a velmi malé nebo $=0$ proti b.

Dalši dûsledky z rovnice van der Waalsovy týkají se otázky, poněkud složité, jak dalece koefficienty $\gamma_{\%}$ a γ z závisí na teplotẽ. Srovnáváni výrazů, jichž zde neuvádíme, s výsledky měřeni vede pak dále k tomu, že ani rovnici van der Waalsovu nelze za definitivní pokládati, v tom smyslu totiž, že veličina a není konstantou, nýbrž jest závislou na teplotě. Formulací této závislosti dostáváme komplikovanějši rovnice stavojevné, jaké na př. udal Clausius, Sarrau a j.

TII.

teple specifickém.

§ 60. Výklady úvodni.

V oddilu předešlém jednali jsme o změnách objemu u plynů též o změnách napětí - s teplotou. Zkoumali jsme vlastně parallelismus, jaký v té přičině jest mezi normálni látkou teploměrnou a látkami jinými; když se za určitých podmínek zahříváním roztahuje neb rozpíná vodik, jak se současně roztahuje nějaké těleso jiné aneb po případě rozpiná nějaký plyn jiný. Tím však jest zjev vystižen jenom v jedné stránce; nebof otázka, jak a čím se toto zahřívání zpủsobuje, zůstala při tom stranou.

Zkušenost ukazuje, že zahříváni tělesa jednoho bývá spojeno s ochlazováním tělesa druhého. Když se dvě tělesa různé teploty sty̌kaji, ohřǐvá se studeněǰ̌i a ochlazuje tepleǰ̌i, tak jako by něco, co bychom teplem zvali, z jednoho tělesa přecházelo na druhé. Analogie s kapalinami jest blízkou. Jsou-li ve dvou nádobách kapaliny na rûzné výši, př̃etéká též př̌i spojení obou nádob kapalina z jedné nádoby do druhé. Vzhledem k tomu záhy vznikala představa, že zde také z tělesa teplejšílo přechází jakási lảtka tepelná na těleso chladnější. Podobné zkušenosti se ukazovaly při míchání vody teplejši s vodou studenější; při stejném množstvi vody studené a teplé vznikla teplota středni - to se pokládalo za samozřejmé, a dle toho se připravovaly lázně vodni různé teploty pro graduaci teploměrủ. Jiři Richmann *), jenž rovněž vycházel od představy látky tepelné, (calor, materia calorica), udal již vzorec všeobecnějక̌i pro

[^50]výpočet teploty výsledné. Když se množství m_{1} vody o teplotě t_{1} smíchá s množstvím m_{2} vody o teplotě t_{2}, vznikne směs, jejiž teplota t jest dána vzorcem
$$
t=\frac{m_{1} t_{1}+m_{2} t_{2}}{m_{1}+m_{2}},
$$
při čemž jest jednostejno, zdali „množství" vody se stanoví objemem nebo vahou. Avšak při mícháni vody a rtuti toto „pravidlo Richmannovo" se neosvědčilo, ani dle objemu ani dle váhy; i byl to J. Blacl *), jenž první poznal, v čem přičina toho spočívá. Pravi velmi jasně: „Rtut má menši kapacitu pro látku tepelnou (smím-li uživati výrazu tohoto) nežli voda, a vyžaduje menší množství této látky, aby jeji teplota o stejný počet stupǔú se zvýšila". **)

Z krátké této skizzy historické jest patrno, že J. Black jest zakladatelem moderni kalorimetrie, a že základni pojmy její, totiž množství tepla a kapacitu tepelnou ponejprv jasně vystibl, ovšem na základě představy o látce tepelné. Dle toho tvoři větší neb menši množstvi této látky v nějakém tělese jeho obsah tepelný.

Postupem času ukázalo se, že představu o jakési látce tepelné nelze udržeti, poněvadž s mnohými zjevy tepelnými srovnati se nedá. Avšak ony pojmy, na základě této pủvodni představy vytvořené, udržely se až dosavad, což nemúže překvapiti, poněvadž empirické výsledky zde zjednané jsou nezávislé na představách, jež sobě o podstatě tepla činíme.

Pravili jsme, že studium změn objemových neb změn napěti v souvislosti s teplotou vystihuje zjev pouze v jedné stránce co do výše tepelné, tedy ve stránce thermometrické. Druhá stránka zjevu spočívá v současných změnách obsahu tepelného, jest tedy povahou svou, jak řikáme, kalorimetrická. Tam, kde teplota byla proměnnou základní, byly změny objemové vystiženy koefficientem roztažnosti. Jestliže také zde podržíme teplotu za základní proměnnou, múžeme změny obsahu tepelného vystihnouti čislem

[^51]analogickým, totiž tak zvaným teplem specifickým. Analogie obou těchto veličin jde dosti daleko; proto také pojmy, jako „teplo specifické prủměrné a pravé ${ }^{\text {. }}$. jsou zcela tak tvořeny, jako pojmy „koefficient roztažnosti průměrný neb pravý".

Recké slovo iò oqguór teplo znači totéż co latinské calor, -is; jest vsak zcela účelné, tohoto latinského označení užívati ve smyslu obsahu tepelného, a onoho řeckého ve smyslu výse tepelné. Mélo by se tak difti dủsledně; nẽkteré však návrhy z let nejnovéjsích, jak v dalšim naznačime, zcela zbytećně od dosavadni zvyklosti se odchyluji.

§ 61. Jednotka tepelnėho množstvi.

Jednotkou tepelného množství jest teplo, kterým se hmotná jednotka vody zahřeje o jeden stupen̆ (teploměru vodikového). Nazývá se kalorie, a to malá (cal) neb velká (Cal) dle toho, zdali se za jednotku limotnou voli 1 gramm nebo 1 kilogramm. Jest tudiž

$$
\text { Cal }=1000 \mathrm{cal} .
$$

Budeme zpravidla nživati gramm-kalorie a jen výjimečně kilo-gramm-kalorie.

Definice kalorie právě podaná postači pro účely obyčejné. Jde-li však o účely vědecké, nutno udati, aby definice byla určitou, od které teploty se při zahřiváni vody má vyjíti. V té přičině dlouhý čas byla v užívání kalorie Regnaultova, při niž se stanovilo zahřívání z 0° na 1°. Dnes jest více užívanon lialorie Maxvellova, při nǐž se zahřivání stanoví z $14^{1}{ }_{\underline{2}}{ }^{0}$ na $15^{1}{ }_{2}{ }^{0}$, tak aby střední teplota vody byla 15°. Mnozí konečně (jako Bunsen, Schuller, Wartha) uživaji priměrné lalorie, definujice ji jakožto stý dil toho tepla, kterým se hmotná jednotka vody zahřeje z 0° na 100°. Dlužno přiznati, že tato definice kalorie se velmi dobře druži k definici stupné. Obě definice souhlasí dobře vespolek, spočívajice na týchž teplotách základnich. Také pro pozorováni kalorimetrická, jež se obyčejně v intervallu 0° až 100° konaji. jest tato prủměrná kalorie, jež se Bunsenovou zove, velmi vhodnou. Přes to jest nyní větší nálada pro kalorii Maxwelloru, ačkoli tím v definováni jednotky pro tepelnou vỷsi a tepelný obsah vzniká nesoublas dosti rušivý.

Dle výsledkủ dosavadních kalorimetrických praci pǐijimaji se následující číselné vztahy mezi jednotlivými kaloriemi, při
čemž se kalorie Maxwellova (cal $_{15}$) béře za základ:

$$
\begin{aligned}
& \text { cal. Regnaultova }=1.007 \mathrm{cal}_{15}, \\
& \text { cal. Bunsenova }=1.000 \mathrm{cal}_{15}
\end{aligned}
$$

Dle toho jsou obě kalorie, Bunsenova (prủměrná) a Maxwellova $\left(15^{\circ}\right)$ prakticky stejné.

Jednotka tepelného množství, předcházejícími definicemi stanovená, jest čistě empirickou. V duchu absolutni soustavy měr bylo by nejlépe použiti aequivalence mezi teplem a mechanickou praci a definovati absolutní čili mechanickou kalorii jakožto teplo, které jest rovnomocné jedničce práce, Joule čili Watt-sec. Za základ srovnání platila by relace:

$$
\begin{aligned}
\mathrm{Cal}_{15} & =427 \text { kilogramm-metr } \\
1000 \mathrm{cal}_{15} & =427 \cdot 0 \cdot 9806 \text { megadyna } \cdot 10 \text { decimetr } \\
1000 \mathrm{cal}_{15} & =4187 \text { megadyna. decimetr }
\end{aligned}
$$

tudiž

$$
c^{c a l_{15}}=4 \cdot 19 \mathrm{Joule}
$$

čili

$$
0239 \mathrm{cal}_{15}=\text { Joule. }
$$

Dle této relace rovná se tedy mechanická kalorie téměř čtvrtině kalorie Maxwellovy. *) Stabilisování koefficientu 0.239 brání však dosud ta okolnost, že ona relace, od níz jsme vyšli, resp. onen aequivalent 427 není ještě definitivní.

Stejná přićina zpúsobila, že nenalezl ohlasu návrh, který učinil Griffith, aby tepelné množství aequivalentní 4.189 Joule, anebo eventuálnẽ okrouhle 4.2 Joule, bylo voleno za jednotku tepla a nazváno „Rowlandem ${ }^{4}$. Císlo $4 \cdot 189$ Joule nalezl totiz̄ Rowland jakoz̃to aequivalentní kalorii Maxwellové (paxi 15°). Viz: Dr. Vlad. Novák, Jednotka tepelného mnoz̃ství, Casop. pro pest. math. a fys. 25, pag. 199, 1896.

Uvedenýni definicemi neni pestrost, která v kaloriích zavládla, vyćerpana. Byla navrhovảna téż kalorie od 4^{0} do 5^{0}, jiná od 15^{0} do 16^{0}. Vzhledem k nejistotě, jaká jest jeştě v čiselných vztazích mezi Joule a cal ${ }_{15}$, bylo téź navrhováno, aby se volila kalorie, jež by byla aequivalentní okrouhlému cúslu $4 \cdot 2$ Joule, což by souhlasilo s kalorií od $9^{1} /{ }_{2}{ }^{0}$ do $10^{1} / 2^{0}$ (Griffith).

Jinak bylo navrhovảno, aby se prijala kalorie prûmęrná, $\frac{1}{100}\left(0^{\circ} \ldots 100^{\circ}\right)$, ale ta aby se normovala jako $4 \cdot 184$ Joule, coz̃ by souhlasilo s kalorií od 17° do 18° (Griffith). Také název "therm $17^{0 \alpha}$ aneb „Rowland" byl pro
*) Gíselná data prijata zde tak, jak je F. Kohlrausch v nejnovêjsím vydảni své Prakt. Physik (1905) uvádi (pag. 193). Mechanická jednotka práce Joule čili Watt-sekunda, což jest präce = megaerg \times decimetr, volena jest tak, aby se rovnala elektrické jednotce pracovni Volt-Ampère-sekunda, V elektrické praxi jest nyní vseobecnê obvyklou jednotka kilowatt-hodina. Viz téż Mechaniku, pag. 143, 1901.
tuto kalorii navrhován (Griffith, Chwolson). Vsechny tyto návrhy nejsou
 v předes̃lém § bylo naznačeno.

Oznac̃ování kalorie malé a velké symboly „cal" a „Cal ${ }^{4}$ jest voleno dle latinského pravopisu a prijỉmá se internacionảlnê, podobně jako označení sekundy symbolem . $\sec ^{*}$ nebo ve psani názvu pro elektrické jednotky Ohm, Coulomb, Ampère a pod. Této uniformity, ač dojista vhodné a žádouci, se však zcela všeobecně nešetrí a píse se již tu i tam „kal", $n^{\text {sek }}{ }^{4}$ podobně jako v némecké literature se pise Ampere, s konec̃nỷm e sice, ale bez akcentu.

O jednotce tepla podal podrobný referát E. Warburg pri sjezdu némeckẏch prírodozpytcŭ v Mnichové a přednesl jej ve schủzi dne 21. zárí 1899, na které se jednalo o experimentảlnich zakladech thermodynamiky. Referát vyšel téż samostatně (v Lipsku 1900). E. Warburg zcela dúvodně odmftl návrhy na stabilisování nějaké jednotky internacionální, jak tomu chtêl E. H. Griffith a postavil v popředí dvě toliko kalorie jakožto nejdûlez̃itẻjsín, totiž střední a Maxwellovu. Strední není závislá na mẽrenich thermometrických; Maxwellova hodi se lépe pro méreni kalorimetrická za obyčejných poměrů temperaturnich. E. Warburg přimlouvá se, aby jednotka Maxwellova byla přijata všeobecnê jakoz̃ i aby jeji pomêr k jednotce střední byl co možná přesné určen. Tuto úlohu provedl U. Behn*) v laboratorí fysikálního Spolku ve Frankobrodu n. M. a to methodou ledového kalorimetru Bunsenova, o němż niže se jedná. Z jeho práce vysla pro pomèr kalorie Bunsenovy ke kalorii Maxwellové hodnota 0.9997. Pro ty̌z poměr obdrželi jini pozorovatelé vétšinou hodnoty vẻtşí. Tak Ludin (1900) 1.0052, Dieterici (1895) 1.0103, J. Joly (1899) 0.9957, Callendar (1901) $1 \cdot 0004$, Barnes (1902) 0.9998. Vzhledem ke všem těmto výsledkủm pokládá F. Kohlrausch (v předmluvẽ k poslednímu vydání své Praktické fysiky) za pravdê nejpodobnéjsí hodnotu onoho poméru $1 \cdot 000$, (nahor̃e uvedenou) ; proto bylo nahoře f̌ečeno, že obě jednotky Bunsenova a Maxwellova jsou - prakticky - stejné; je-li mezi nimi nẹjakého rozdílu, jde tento jen do setin procenta, tedy do téch mezi pr̃esnosti, kterouz̃ při méfenich kalorimetrických zaruciti jest velice nesnadno.

§ 62. Tepelná kapacita a teplo specifické.

Jakmile se rozhodneme pro určitou jednotku tepla, na pǐ. Maxwellovu, (cal ${ }_{15}$), mủžeme již definovati přední veličiny kalorimetrické. Jsou to: tepelná kapacita a teplo specitické. Tepelná kapacita daného tělesa jest teplo, kterým se toto těleso zahřeje o jeden stupeň. Specifické teplo jest teplo, kterým se jeden gramm tělesa zahřeje o jeden stupeñ.
*) U. Behn, Ueber das Verhāltnis der mittleren (Bunsenschen) Kalorie zur 15° Kalorie. P. Drude's Annalen d. Ph. 4, 16, pag. 65̄3, 1905.

Vytkněmež především, jaký jest mezi oběma veličinami rozdil. Kapacita charakterisuje dané tëleso jako celek bez ohledu na to, nejen zdali je velké nebo malé, těžké nebo lehké, nýbrž též, což jest důležitější, zdali jest homogenní nebo heterogenní, tedy bez ohledu na jeho složeni. Dělíme-li kapacitu hmotou tělesa, v grammech vyjádřenou, obdržíme teplo specifické. Zde tedy přepočitáváme kapacitu celkovou na každý gramm daného tělesa. Jest však patrno, že toto přepočtení má smysl jenom tehda, když jest dané těleso homogenní. Jen v tomto případě má výsledek všeobecně platný zájem, ježto se jím charakterisuje látka, ze které toto homogenni těleso je složeno. V tom smyslu mluvíme na př. o specifickém teple železa, mosazi, skla, rtuti a pod. a naopak zase o kapacitě dané železné koule, mosazné nádoby, o kapacitě teploměru, kterýž jest tělesem nehomogenním, složeným ze rtuti a skla a t. d.

Ne vżdycky se tyto dva pojmy kalorimetrické tak rozlišovaly a dosud rozlišují, jak zde jest vyloženo. Dríve se pojmu kapacita tepelná uz̃ivalo v identickém významu jako teplo specifické. Jen Clausius navrhoval, když již mají obě pojmenováni vyjádrovati totéz̃, aby se raději pojmu „tepelná kapacita ${ }^{\text {U }}$ dal význam jiný - jak o tom pozdēji jesté se zmíníne - "ýznam, který byl vice theoretický nez̃ praktickŷ. S onou identitou souvisí, że se teplo specifické dosud označuje všeobecnẽ písmenou C, coz̃ upomíná na slovo capacitas. Chwolson užívá názvú: kapacita tẻlesa a kapacita látky, posledního názvu tedy na místẽ tepla specifického. Ale název teplo specifické jest dobrý, poněvadz̃ jest tvor̃en dle jiných analogií, jako specifická hmota, specifický magnetismus, specifická vodivost a j. Není tedy vhodné tento název odstrañovati a uživati slova jediného, kapacita, ve dvojím smyslu, který pokaz̃dé musí býti bliže označen, tím méně, ponẽvadz̃ název kapacita látky nemá analogie ve fysice. Użiváme totiž pojmu kapacita téz̃ v elektřiné, ale nikdy jako kapacita latky, nýbrž jako kapacita danẻho vodiče, kondensatoru a pod. Jednotnost názoru vede tudiž prímo k tomu, aby se i v thermice názvu kapacita užívalo vy̌hradnẽ v tom smyslu, jak nahor̃e bylo stanoveno.

Znajice teplo specifické C nějaké látky, můžeme u homogenniho tělesa hmoty M vyjádřiti, jak jeho tepelný obsah roste s teplotou. Je-li Q_{0}, Q tento obsah (kvantita tepelná) při teplotách 0° a t, obdržíme relaci
Při jiné teplotě $t^{\prime} \quad \begin{array}{ll}Q & =Q_{0}+M C t . \\ Q^{\prime} & =Q_{0}+M C t^{\prime} .\end{array}$
Z obou těchto relací odvodíme pak vzorec

$$
\frac{1}{M} \cdot \frac{Q^{\prime}-Q}{t^{\prime}-t}=C
$$

Dr. v. Strouhal: Thermika
dle něhož počitáme teplo specifické z přirủstku $t^{\prime}-t$ teploty a současného přirusstku $Q^{\prime}-Q$ obsahu tepelného.

Vzorec tento byl odvozen na základě předpokladu, že tepelný obsah roste s teplotou rovnoměrně. Neni-li tomu tak, múžeme přece vzorce tohoto použíti, a obdržíme pak teplo specifické C prưměrné, pro intervall temperaturni $t^{\prime}-t$.

Má-li však teplo specifické charakterisovati, jak obsah tepelný stoupá při určité teplotě t, nesmíme se od této teploty vzdáliti než jen nepatrně. Přírůstky

$$
t^{\prime}-t=\Delta t, \quad Q^{\prime}-Q=\Delta Q
$$

jsou pak velmi malé, a teplo specifické C_{t}, platíci pro určitou teplotu t, jest určeno vzorcem

$$
C_{t}=\frac{1}{M} \cdot \frac{\Delta Q}{\Delta t} .
$$

Nazývá se teplem specifickým pravým. Pro experimentální praxi postači úplně bráti $\Delta t=1^{\circ}$. Pak znači C_{t} teplo, kterým se každý gramm daného tělesa (gramm určité látky) zahřeje z t na $t+1^{\circ}$. Aby se pak jeho měnlivost s teplotou t přehlédla, vyjadřujeme C_{t} rovnici, jež bývá dle teploty t obyčejně kvadratickou, (zřídka kubickou), tedy rovnici formy

$$
C_{t}=C_{0}+a t+b t^{2} .
$$

Ve smyslu poču differencialního jest teplo specifické pravé určeno differenciälním kvocientem

$$
C_{t}=\frac{1}{M} \cdot \frac{d Q}{d t}
$$

a naopak, mnoz̃ství tepla pr̃i zmẽnẽ teploty od t do t^{\prime} integrálem

$$
Q^{\prime}-Q=M \int_{t}^{r^{\prime \prime}} C_{t} d t
$$

Je-li tudizz známo teplo specitické pravé jako funkee teploty, na pr. dle vzorce nahore uvedeného

$$
C_{t}=C_{\omega}+a t+b t^{2}
$$

obdrz̈ime, provedouce integraci,

$$
Q^{\prime}-Q=M C_{0}\left(t^{\prime}-t\right)+\frac{1}{2} M a\left(t^{2}-t^{2}\right)+\frac{1}{3} M b\left(t^{3}-t^{3}\right)
$$

Prûme̊rné teplo specifické, v intervallu temperaturninı $t \ldots t$, jest pak určeno relací

$$
\frac{1}{M} \cdot \frac{Q^{\prime}-Q}{t^{\prime}-t}=C_{0}+\frac{1}{2} a\left(t^{\prime}+t\right)+\frac{1}{3} b\left(t^{2}+t^{\prime} t+t^{2}\right)
$$

Když se tento intervall, t. j. teploty t a t^{\prime} vhodně mění, lze konstanty C_{0}, a, b dle hỡeǰ̌i rovnice počitati a tím ćiselné odvoditi vzorec pro pravé teplo specifické C_{t}, který se pak do výsledkủ prijme. Tak na pr̂. se uvadi pro rtut' (Bartoli a Stracciati 1895)

$$
C_{t}=0.033583+0.00000117 t-0.0000003 t^{2}
$$

Vzorec platí pro intervall tepelný $0^{0} \ldots 30^{\circ}$ dle teploméru vodikovêho a vztahuje se na kalorii 15°.

Budiz̃ však hned poznamenáno, že jest sice velni obsáhlý materiál číselný v pracích kalorimetrických ulożen, że však přes to jest dosud málo látek, pro které vzorce takové jsou propočitány.

V úvodních výkladech bylo poukázáno na analogii mezi koefficientem roztaz̃nosti a teplem specifickỷm. Analogie tato vynikne velmi zretelné z výkladu právê podaného, ze vzorcủ zde odvozených, a rovnéż velmi jasnê na základẻ grafickém. Obr. 15. (pag. 50.) znázorñuje, jak se mẽní objem v têlesa s teplotou t. Ty̌ž obrazec mohl by znázorñovati, jak se méní tepelný obsah Q s teplotou. Sečná S a tečná T udávaji tangentou úhlu, kterỳ svíraji s osou úseček, koefficient roztaz̃nosti prủměrný a pravý; mohly by právé tak udávati specifické teplo prủmẽrné a pravé. V jedné vẽci jest formálni rozdil. Koefficient roztaz̃nosti jest ćíslo, které udává prírủstek objemu relationí; naproti tomu specifické teplo udává přirủstek obsahu tepelného absolutní (nehledic k faktoru M). Zde se dovídáme, jaký jest přirủstek prímo v kaloriích; tam naproti tomu, jaký jest prírůstek y éảstech púvodnîho objemu při teplotě nullové. Koefficient roztaz̃nosti jest prosté ćislo, nepojmenované, kdežto specifické teplo jest čislo pojmenované majicí vztah přimo ke kalorii. Také v úpravě vzorcủ jest formální rozdíl. Zde koefficienty a, b vstupuji do vzorce pro teplo specifické pravé, a tam koefficienty a, b (§ 28.) nebo analogické A, B (§ 26.) do vzorcủ pro koefficient roztaz̃nosti prủměrný. Tím vznikaji formální rozdílnosti - dojista zbytečné, ale již všeobecnẽ obvyklé - kteréż onu vécnou analogii ponêkud zastirají.

§ 63. Specifické teplo vody.

Voda zaujimá v kalorimetrii postavení význaěné, již proto, že se ji při měřeních kalorimetrických skoro výhradně uživá, více však proto, že jest látkou kalorimetrickou normálni, dle nǐž jest definována empirická jednotka tepelná, kalorie. Ještě v prvé polovici stoleti 19 -tého mělo se za to, že jeji teplo specifické je stálé; kalorie odpovídala zahřáti o jeden stupeŭ v kterékoli poloze temperaturni. Avšak již pronikalo poznání, že tato poloha temperaturní přece není lhostejná; ale míněni sobě odporovala; někteři přírodozpytci udávali, že teplo specifické vody s teplotou klesá, jiní, že stoupá.

Podrobné práce o této otázce podnikl Regnault, a to methodou směšovací. Vypočital na základě svých měření pro teplo specifické pravé vzorec

$$
c_{t}=1+0.00004 t+0.0000009 t^{2}
$$

platný v intervallu velmi značném, totiž 17° až 190° dle teploměru vzduchového. Dle vzorce tohoto stoupalo by teplo specifické vody stále a poněkud urychleně.

Nové práce o téže otázce začaly v letech 1870 , a bylo v nich pokračováno od velmi četných badatelủ až do dob nejnovějšich. Ukazovalo se, že změna tepla specifického u vody není dokonce tak jednoduchou, jak z pozorování Regnaultových bylo odvozeno. Teplo specifické vody mezi 0° a 100° neroste stále se stoupajici teplotou, také neklesá stále; objevuje se minimum a snad maximum. Teplo specifické od nullové teploty počinajíc, klesá až k hodnotě minimálni, pak zase stoupá, dle některých pozorovatelủ až k hodnotě maximálni, kteréž dostoupi krátce před 100°, načě̆ zase do 100° klesá; jiní pozorovatelé však tohoto maxima neznamenali.

Vůbec ukazuje se, že výsledky, jichž došli jednotliví pozorovatelé i v dobách nejnovějsich, vespolek méně souhlasí, než by se vzhledem k obvyklé fysikální přesnosti očekávalo. Jest z toho patrno, že úkol, o který se jedná, jest velmi obtižný.

Aby bylo usnadněno výsledky, jež se za nejspolehlivější pokládaji*), rychle přehlédnouti a jiĉ̣ vzájemný souhlas posouditi, jest zde uvedena tabulka a proveden diagramm (obr. 50.) obsahující hodnoty, jež dle teploměru vodikového v intervallu 0° až 100° obdrželi E. Ludin (1900) a H. T. Barnes (1900); k tomu jsou připojeny výsledky, jež v intervallu menším $\left(0^{\prime \prime} \ldots 30^{\circ}\right)$ obdrželi H. A. Roxland (1880) a Bartoli a Stracciati (1893). Minimum naležli všichni tito pozorovatelé, ale v různých polohách. Maximum nalezl Ludin, nikoli však Barnes; výsledky obou, s počátku dosti pěknĕ souhlasicí, rozcházeji se od 20° značně. Ke srovnáni jsou též připojeny starši hodnoty Regnaultovy (1850), jež obdržel dle teploměru vzduchového.

V diagranımu, jenz̃ jest ve smẽru por̃adnic úmyslnẽ zvêtšen, jsou vytaz̃eny jen kriivky pro vẏledky, jez̃ ubdrželi Regnault (R), Ludin (L) a Barnes (B). Výsledky obou dalsích pozorovatelû, Rowlanda (\cdot) jakoz̀ i Barto-

[^52]liho a Stracciatiho (จ), jsou jen body naznačeny, aby se obrazec nekomplikoval. Pozorováni jsou všechna přepočtena na jednotku Maxwellovu; proto všechny křivky se protínají v bodu $t=15^{0} \mathrm{v}$ ose úseček. Uváděti komplikované interpolačni formule, jimiž pozorovatelé hledéli své výsledky shrnouti a vyrovnati, nemá vs̃eobecného zảjnu żádného. Formule ty jsou ohsaz̃eny na pr̂. v tabulkách Landolt-Börnsteinových, pag. 393, 1905. Cisla v tabulkách uvedená jsou již dle téchto interpolačnich formuli vzhledem k chybám pozorovacím - při určitém usporadảní pokusném - vyrovnána.

Specifické teplo vody.

t	Regnault (1850)	Rowland (1880)	Bartoli a Stracciati (1893)	Ludin (1900)	Barnes (1900)
-5					1.0155
0	0.9992		1.0070	$1 \cdot 0051$	1.0091
5	0.9994	1.0054	1.0041	$1 \cdot 0027$	$1 \cdot 0050$
10	0.9997	$1 \cdot 0019$	1.0017	1.0010	1.0020
15	1.0000	1.0000	1.0000	1.0000	1.0000
20	1.0004	0.9979	0.9994	0.9994	0.9987
25	$1 \cdot 0008$		1.0000	0.9993	0.9978
30	1.0012		1.0016	0.9996	0.9973
35	$1 \cdot 0017$			1.0003	$0 \cdot 9971$
40	1.0029			1.0013	0.9971
45	$1 \cdot 0028$			$1 \cdot 0024$	0.9973
50	1.0034			1.0037	0.9977
55	$1 \cdot 0041$			1.0051	0.9982
60	$1 \cdot 0048$			$1 \cdot 0065$	0.9988
65	$1 \cdot 0056$			$1 \cdot 0079$	0.9994
70	$1 \cdot 0064$			$1 \cdot 0092$	1.0001
75	$1 \cdot 0072$			1.0104	1.0007
80	$1 \cdot 0081$			1.0113	1.0014
85	$1 \cdot 0091$			1.0119	$1 \cdot 0021$
90	$1 \cdot 0101$			1.0121	1.0028
95	1.0111			1.0120	1.0034
100	1.0122			1.0113	$1 \cdot 0043$

Otázka, jak souvisí specifické teplo vody s teplotou, není tedy ještě - vzhledem k rúznostem nahoře vytčeným - definitivně rozřešena. Spolehlivější hodnoty lze udati jen do teploty

Specifickẻ teplo vody, jak je pro rǔzné teploty určili Regnault (R), Ludin (L), Barness (B), Rowland (*), Bartoli a Stracciati (\odot).
asi 30°. F. Kohlrausch pokládá za pravděpodobné v jednotce Maxwellově ($c_{15}=1$) hodnoty následující:

Pravděpodobné hodnoty pro specif. teplo vody c_{t} od 0° do 30°.

t	c_{t}	t	c_{t}
0	1.007	15	1.0000
5	1.0044	20	0.9988
10	1.0017	25	0.9985
15	1.0000	30	0.9986

Pro teploty vyšši bude nutno práce dosavadní doplniti. Vzhledem k nejistotě, jež zde dosud trvá, jest také průměrná kalorie od 0° do 100° ve svém poměru ke kalorii Maxwellově dosud jen přibližně určena, jak o tom (výše) již bylo referováno.

§ 64. Všeobecné poznảmky o methodách kalorimetrických.

VĚechny methody kalorimetrické dávají pro dané těleso teplo specifické průměrné, platící pro ten intervall temperaturní, v němž kalorimetricky bylo pracováno.

Když by se z tohoto specif. tepla prủměrného mělo odvoditi pravé, bylo by nutno měřeni opakovati a při tom tento intervall vhoduě měniti. Každé měření v intervallu $t \ldots t^{\prime}$ dává výsledek C, pro kterýž platí relace dříve již odvozená

$$
C=C_{0}+\frac{1}{2} a\left(t^{\prime}+t\right)+\frac{1}{3} b\left(t^{\prime 2}+t^{\prime} t+t^{2}\right)
$$

Z několika (nejméně tři) měření takových vypočitaly by se konstanty C_{0}, a, b, jimiž by pak teplo specifické pravé při teplotě t bylo určeno rovnici

$$
C_{t}=C_{0}+a t+b t^{2}
$$

Odvozením rovnice této jest pak úkol pro dané těleso zakončen.
Některých method kalorimetrických lze užívati pro tělesa všech skupenství, alespon̆ pokud se týče základní myšlenky; úprava neb uspořádání pokusu různí se však dle skupenství. Jiných method lze užívati jen pro tělesa určitého skupenství. Vzhledem k tomu doporučuje se výklad těchto method vůbec rozděliti dle skupenství daných těles. Některé z těchto method jsou relativní; dávají teplo specifické daného tělesa v poměru k teplu specifickému tělesa jiného, na př. vody. V tom případě vstupujii obě tato tepla specifická do rovnic jakožto prủměrná. Jiné methody, zejména elektrické, jsou absolutni.

Tělesa pevná.

§ 65. Kalorimetr na směšování.

Methoda směšovaci jest methodou relativni. Specifické teplo C daného tělesa pevného srovnává se s teplem specifickým c kapaliny, zpravidla vody. Tato jest ve zvláštní nádobě, v tak zvaném kalorimetru. Nejprve vykonají se práce přípravné. Vážením stanoví se hmota M daného tělesa, potom hmota kalorimetru prázdného (tara), plného (brutto), z čehož se vypočítá hmota m vody (netto). Potom se v přístroji vhodně upraveném zahřeje dané těleso na teplotu t_{2} dostatečně vysokou, zatím co voda v kalorimetru má teplotu t_{1} nizkou. Vlastní pokus záleží
pak•v tom, že se těleso zahřáté vnoří do vody chladné, a že se určí společná teplota τ, na které se obě ustáli.

Výměnu tepla při tomto směšování obdržíme z veličin platných
pro těleso
a vodu

$$
\begin{gathered}
M, C, t_{2} \\
m, c, t_{1} \mid
\end{gathered}
$$

následujicími výrazy, sobě rovnými; z těch znači prvý teplo,

Obr. 51.
Pristroj Regnaultûv k určováni tepla specifickèho methodou smèsovaci.
jež těleso ochlazením vydalo a druhý teplo, jež voda zahřátím přijala:
z čehož

$$
M C\left(t_{2}-\tau\right)=m c\left(\tau-t_{1}\right)
$$

$$
\frac{C}{c}=\frac{m}{M} \cdot \frac{\tau-t_{1}}{t_{2}-\tau}
$$

Pro vodu jest prủměrné specifické teplo v intervallu $t_{1} \ldots \tau$ známé. Mủžeme pak počítati specifické teplo C daného tělesa rovně̌̌ prủměrné v intervallu temperaturnim $\tau \ldots t_{2}$.

Podrobnosti v uspořádání pokusu týkaji se jednak přístroje zahřívacího, jednak kalorimetru. Vhodné přistroje k zahřívání (po případě též k ochlazování) tělesa sestrojili Regnault, F. Neumann, v novějši době W. F. Luginin, L. Pfaundler a j. Za přiklad uvedme jednoduchý přistroj Regnaultův, znázorněný
v obr. 51 . Těleso K s teploměrem T vkládá se do lázně vzduchové v dutině válce $A B$, který jest obklopen horkou vodou nebo mrazivou směsí. Lázen̆ vodní se promíchává míchačkou mnpq. Tím, že se teplota lázně vodní po případě mrazivé směsi mèní, obdrží se průměrné teplo specifické pro rủzné intervally temperaturní. Obr. 52. (na levo) ukazuje zahřivaci přístroj L. Pfaundlerivv, v laboratořích dosti uživanỵ́. Prostor, v němž

Obr. 52.
Pr̂istroj Pfaundlerûv ke stanovení tepla specifickeho methodou smêsoraci.
jest těleso a teploměr, vytápí se vodni parou, která cirkuluje přiklopem a vstupujic do kondensatoru vodou chlazeného kapalní a stéká zpět do nádoby s vodou.
L. Pfaundler (nymí professor fysiky ve Styrském Hradci) sestrojil apparát tak, jak je v obr. 59. znázomẻn, s tím umyslem, aby moz̃no bylo pracovati libovolně dlouho, a voda aby se nevyvařila. Proto pripojil k pristroji zahřívacimu kondensator. (Srovnej obr. 7.) To jest rozhodna vy̌hoda prístroje. Vedle toho chtêl, aby prostor, v nẻmž jest têleso, byl se ř̌ech
stran parou vytápẽn, aby zadna jeho c̉ást se nestẙkala se vzduchem obyčejné teploty, jako jest tomu na pr. u prístroje Regnaultova obr. 51. Proto nechal páru cirkulovati téż olvory v prỉklopu. který jest dutý. Pŕiklop ten musí by̌ti velmi dobře přibroušen k dolejşi nadobê, aby dobře a tẻsnẻ usedl, a otvory musí presné na sebe přiléhati ; jinak jest obava, ze pára vnikne do prostoru, v nẻmž jest téleso a pokryje jeho povrch. Proto také, kdyz̃ již teploty se ustálily a pozorovatel chce tẻleso prenésti do kalorimetru, musi topení zastaviti, aby při zdvihnuti přiklopu pára nevyrazila otvory a neprisíla na têleso; utvorila by se vistva vodni, která by se téź prenesla do kalorimetru, coz by při značném specif, teple vody bylo zdrojem chyby. V obr. 52. jest jakožto téleso volena żelezná koule s háckem, na drátku (s držadlem dřevěným) zavéseenả, jež se klade do prostoru vyhřivacîho na spiralu kovovou. Celý prístroj zahirivaci je médēný, hor̃ejsî jeho stêna s otvory a príklop na ni tésnẻ zabroušený jest z mosazi. Mezi zahřívacím pristrojem a kalorimetrem je stẻna drevẽnai, dvojitá, k tepelné ochranẽ kalorimetru.

Místo parami vodními lze topiti též parami jiných kapalin*) při bodu varu (na př. methylalkoholu, anilinu a j.).

Když těleso se zahřálo na teplotu lázně, přenese se do kalorimetru. Jeho zařizení objasňnjí obr. 51. (na levo) a ještě lépe obr. 52. (na pravo). Bývá to nádoba válcovitá z tenkého mosazného plechu, zlacená. Staví se na korkovou podložku do širší podobné válcovité nádoby, ze silnějšího plechu mosazného, rovně̌̌ zlacené. Dobře jest pak tuto vložiti ještě do válcovité nádoby z plechu zinkového, se stěnami dvojitými, jež jsou vyplněny vodou. Uvnitř kalorimetru jest mosazný přístroj k promícháváni vody, který jest na stativu montován a který pozorovatel opodál kalorimetru uvádi v pohyb nahoru a dolů provázkem. Do vody zasahá velmi jemný, tak zvaný kalorimetrický teploměr, kterým lze zejména rozdily temperaturni určiti velmi citlivě. Celek je postaven na stojan ve výšce pošinovatelný s trojnožkou.

Když se těleso na teplotu t_{2} zahřáté vnoří do vody teploty t_{1}, zahřívá se výměnou tepla voda, ale takẻ kalorimetr sám, i míchačka. K tepelné kapacitě, kterou má voda sama, přistupuje tu tepelná kapacita kalorimetru s michačkou, tak že se věc má tak, jako by bylo v kalorimetru vice vody.

[^53]Budiž μ hmota kalorimetru (incl. míchačky), γ specifické teplo materiálu, z něhož kalorimetr (incl. míchačka) je pracován. Součin $\mu \gamma$ značí pak tepelnou kapacitu čili množství vody tepelně aequivalentní; nazývá se proto hodnotou vodní. Má býti malou, jen jako korrekce; odtud předpis, aby se kalorimetr (incl. míchačka) pracoval z plechu tenkého, tak aby μ bylo poměrně skrovné. Doplněná rovnice methody kalorimetrické zní tudiž
tak že jest

$$
M C\left(t_{2}-\tau\right)=(m c+\mu \gamma)\left(\tau-t_{1}\right)
$$

$$
C=\frac{m c+\mu_{\gamma}}{M} \cdot \frac{\tau-t_{1}}{t_{2}-\tau} .
$$

Je-li, jak to obyčejně bývá, kalorimetr (i míchačka) z plechu mosazného, jest $\gamma=0.093$. Jinak bývají kalorimetry též platinové, nebo stříbrné a uvnitř zlacené, nebo mosazné, niklované a t. d. Podobně i míchačky. Podložky i příklopy (na zamezení vypařováni) bývají ebonitové.

Prísnẽ vzato zahřivá se téż teploměr. Tedy i jeho vodní hodnotu dluz̃no jako korrekci vzíti v počet. Mûãe se urçiti pokusem zvláštním; ale postači, kdyz̃ se vypoćitá, a to z objemu v. Má totiz̀ $1 \mathrm{~cm}^{3}$ rtuti hodnotu vodni $13.6 \cdot 0.033=0.45$, a nảhodou téż $1 \mathrm{~cm}^{3}$ skla vodni hodnotu $2 \cdot 5 \cdot 0 \cdot 19=0 \cdot 47$, tedy obě látky průměrnê $0 \cdot 46$. Má-li tedy teploměr, pokud do vody zasahá, objem v, jest jeho vodni hodnota $0 \cdot 46$. v. Objem v urči se vážením ; teploměr se vnoří do vody na vahách vyvážené a urči se prirůstek na váze vnorením teplomẽru vznikajici. Jinak lze objemı v určiti téż pomoci úzké kalibrované mensury.

Dle toho jest nutno ve vzorci nahore uvedeném hmotu m vody v kalorimetru zvêtşiti jeştě také o vodni hodnotu teploměru, klásti tedy za m vẙraz

$$
m+0.093 \mu+0.46 v
$$

Kdyby se určovalo teplo specifické drobných kouskú nęjakého têlesa, jez̃ by byly v košićcku mosazném, bylo by nutno do " vpocitati téż hmotu tohoto kosičku.

Při této pr̂ilez̃itosti budiž upozorněno na otázku, ke které již v § q. bylo poukázáno. Tepelná kapacita teploméru má na všechna mêreni teplomẻrnả jakýsi trebas obyçejnẽ velmi malý, ale jinak mêřitelný vliv. Když, chtējice určiti teplotu na pr̃. néjaké zahrááté kapaliny, vložíme do ni teplomêr, tedy se kapalina ponékud ochladi a teplota, kterou teplome̊r udává, není teplotou kapaliny, jak původnê byla, nýbrż poněkud menši, jak se udá dle pravidel methody směšovaci. Tento účinek teploměru samého mizí jen tehda, je-li kapacita teploměru velmi malá oproti kapacitě kapaliny, jejiz̃ teplotu jsme měrili.

Velmi nepatrnou kapacitu maji thermoc̃lánky; proto se také jich uz̃ivini prî pracich kalorimetrickẏch doporuc̃uje. Zdả se však, że ještê lépe
se osvédçi uživání elektrickỷch teplomérủ odporovỷch. Ve zprávách nejnovéjsich o vêdecké činnosti ve fysikảlnẻ technickém rîsském ústavu v Charlottenburkı oznamuje se, że bylo při pracich kalorimetricky̌ch užíváno s úspěchem odporového teplomẻru platinového, při némž byl platinové drátek o délce 50 cm a tlousstce jen 0.1 mm zataven do tenkého křemenového obalu a do závitủ těsnẻ k sobẻ přiléhajicich stoc̃en. Gelỷ teplomér zaujimal prostor velmi malý, tak že byl pro manipulaci velmi kompendiosním. Teninky obal křemenový osvẻdčil se pro isolaci velmi dobre. U jiného modellu mêl drát délku 3 m , tlouštku $1 / 4 \mathrm{~mm}$ a byl stočen do spirál širšich. Místo drátu platinového byl zkonšen téz̃ niklovy̌. Zmény bodu nullorého u všech têchto odporovẙch teploměrŭ nejevily se žảdné. Zajímavým jest pokus uz̃ívati téż rtuti v tenkỷch trubičkảch křemenových k účelủm teploměrným na zảkladé změny odporové, zajímavým proto, ponévadž rtứ jest pro realisaci odporových normalií (Ohmu) téź látkou všeobecnẽ uz̃ivanou. Změny odporové souvisí steplotou, a dle nich obdrži se „teploměr rtutovỹ", - jenz̃ se téź s normálním plynovým srovná a k němu pfipoji - o němž se tvrdi, že není tak individuálným ve svých zvlástnostech jako obyčejný „teplomèr rtutový" na roztaz̃nost. Ovšem by zulástnosti tohoto teploniêru také odpadly, kdyby místo skla obyčejného se użivalo skla kremenového. Všechny zde jmenované teploméry odporové dodala firma W. C. Heraeus v Hanavé.

Kalorimetr jest na svém vnějšim povrchu zlacen, aby byl hladký a lesklý, čímž se umenšuji změny tepelné, vznikajíci vyzařováním. Ochranný účel před vnějšími zdroji tepelnými má též nádobka z plechu zinkového, naplněná vodou. Přes to vše nelze výměnám tepelným mezi vodou v kalorimetru a mezi okolim se ubrániti, zejména, je-li těleso dané málo tepelně vodivým, tak že pokus déle trvá. Vhodnou volbou začátečni teploty t_{1} vzhledem k teplotě ϑ okolního vzduchu lze tyto výměny kompensovati. O konečné teplotě τ orientuje předběžný pokue. Pak volí se t_{1} tak, aby bylo $\vartheta-t_{1}=\tau-\vartheta$, t. j. aby začáteční teplota v kalorimetru byla právě o tolik niže proti teplotě okolniho vzduchu, o kolik teplota konečná vypadne výše. Pokud teplota vody stoupá z t_{1} na ϑ, přijímá voda z okolí teplo, ale vydává je zase, když teplota stoupá z ϑ na τ. Ovšem že časové stoupání teploty $\mathrm{z} \vartheta$ na τ trvá déle než $\mathrm{z} t_{1}$ na ϑ, kde v první chvili teplota stoupá dosti prudce. Proto udává tak zvané pravidlo Rumfordovo, aby bylo $\vartheta-t_{1}=2(\tau-\vartheta)$, čímž by lépe podmínkám kompensace bylo vyhověno. Lépe jest však, jde-li o přesnost největší, aby se effekt tepelné výměny mezi vodou v kalorimetru a okolním vzduchem přímo studoval předběžným pozorováním a to jak teplot tak i doby. K tomu cíli voli se začátečni teplota t_{1} tak nizko, aby i teplota konečná τ byla nižší nežli teplota vzduchu. Voda v kalorimetru tedy teplo
z okoli v celém prúběhu pokusu přijímá. Předběžným pozorováním teplot ve vzduchu a v kalorimetru v časových intervallech pravidelných, na př. v každé minutě, hledi se vystihnouti, jaký jest přirůstek teploty v kalorimetru pro každou minutu a pro každý stupeň rozdílu $t_{1}-\vartheta$. To jest koefficient onoho effektu tepelné výměny. Když se pak těleso vnoří, určí se, oč teplota v kalorimetru po dobu trvání pokusu byla primérně pod teplotou vzduchu; počet stupňů této difference a počet minut, po jaký pokus trval. násobi se oním koefficientem a obdrží se tak korrekce, kterouž od teploty pozorované τ nutno odečísti. Methody ještě přesnější, jež také hledi ke ztrátám tepelným, jež vypařováním vody vznikaji, náležejí do fysiky praktické.

Radikálni návrh čini (1905) Th. W. Richards, L. J. Henderson, Jg. S. Forbes. V okoli kalorimetru má se teplota právé tak měniti, jako se mění v kalorimetru; tím by ovšem veškeré korrekce odpadly, jez̃to by ztrát tepelny̌ch v kalorimetru nebylo. Oné podmínky se má dosáhnouti proudem teplé vody, nebo proudem elektrickým anebo reakci chemickou (tepelnou) v okolní lâzni vodní zavedenou právé tak, jako se provádí v kalorimetru samém.

§ 66. Kalorimetr ledový.

Táni ledu je spojeno se spotřebou tepla. Každý gramm ledu teploty nullové, má-li roztáti v gramm vody stejué teploty, vy̆̌aduje určitý počet - okrouhle 80 - kalorii, což jest jeho teplo skupenslié. Je-li toto známo, lze z množstvi ledu, jež při nějakém processu tepelném roztálo, počítati množstvi tepla při tom spotřebovaného. Tuto methodu zual již J. Black; užival ji též ke stanovení tepla specifického C pevných těles zpủsobem, kterýž měl povahu improvisace. Těleso hmoty M zahřál na teplotu t dostatečně vysokou a vložil do kusu ledu vhodně prohloubeného (obr. 53.). Těleso zchladivši se na teplotu nullovou, vydalo $M C t$ kalorii; tímto teplem roztálo m grammủ ledu ve vodu, což znamená spotǐebu tepla $80 m$ kalorii. Process tepelný jest tedy vyjádřen relaci

$$
M C t=80 m
$$

ze kteréž lze C počitati.
Zpûsob, jakým J. Black experimentoval, vyznačuje se velikou jednoduchostí - nevyžaduje žádny̌ch přistrojû - a dával by také výsledky dobré, kdyby led byl úplně kompaktni. Obyçejnẽ míva však uvnit̛́ malẻ trhliny nebo dutiny, do nichž pak voda zatêká; tím vznikaji chyby, kteréz̃
jen tehda ustupuji ponẻkud v pozadi, když se pracuje s limotami M velmi znaçnými.

Methodu Blackovu zdokonalili Lavoisier a Laplace*), sestrojivše zvláštni kalorimetr ledový, jehož původní zařizení znázorňuje obr. 54. Jsou to dvě sobě v úpravě podobné nádoby plechové; do větší z nich $a a$ jest zasazena menší $b b$, kteráž jest vlastním kalorimetrem ledovým, obsahujícím čistý tlučenỷ led. Těleso zahřáté vkládá se bử přímo do tohoto ledu nebo raději do drátěného košičku, kolem něhož jest led rozložen.

Blackűv kalorimetr ledoxy,

Voda, tánim ledu vznikající, stéká do prostoru c a vypouští se dole u kalorimetru kohoutem. Aby však led netál účinkem tepla vnějšiho, vyplní se prostor mezi vnějši a vnitřní nádobou též ledem, a také př̌klop pokryje se vrstvou ledu, tak aby timto ledem ochranným led v kalorimetru se udržoval na stalé teplotě nullové. Voda, jež uniká táním ledu v prostoru mezi obě̌ma nádobami, vypoušti se kohoutem zvláštním (v obrazci na levo ústicim) a nemá jinak pro pokus významu žádného.

[^54]Lpravou, kterouż kalorimetru ledovému dali Lavoisier a Laplace, ziskala methoda na své vnějši repraesentaci, ale nikoli na své presnosti. Nebof i zde zatéká voda do mezer mezi jednotlivé kusy ledu, se kterých sice mưže odtékati, ale na nichž se dıží v množství měnlivém; proto se také chyba tím vznikající neodstraní, ani když se konaji me̛reni differenční, açkoli se umenší. Lze tudiz̃ i zde očekávati výsledky ponêkud presnějsì jen, když se pracuje s velkými hmotami M. Vloz̃i-li se na pî. do kalorimetru koule méděná hmoty $1 / 2 \mathrm{~kg}$, zahřátá na 100 stupǔú, uvoini se ochlazenim koule na 0° pri specif. teple médi $0 \cdot 09$ mnoz̃stri tepla $500.100 .0 \cdot 09=4500$ kalorii. Vyteče tudiž vody $4500: 80=56 \frac{1}{4}$ grammủ. Tedy i při této značnějsi hmoté nutno zaručiti množstvi vody vyteklé na ${ }^{1 / 2}$ grammu, aby výsledek byl správný alespoñ na jedno procento.

Zlepšení velmi podstatného dostalo se kalorimetru ledovému úpravou, kterouž mu dal R. Bunsen.*) Základní myšlenkou jeho kalorimetru jest, stanoviti množstvi m rozpuštěného ledu nikoli přimo, váz̆ením, nýbrž nepřimo, ze změny objemové. Má totiž

1 gramm vody 0^{0} objem $1 \cdot 00012 \mathrm{~cm}^{3}$,,
1 gramm ledu 0^{0} objem $1 \cdot 09082 \mathrm{~cm}^{3}$,
tak že rozdil specif. objemủ čini $.0 .09070 \mathrm{~cm}^{3}$.
Máme-li tedy při teplotě nullové směs vody a ledu, kteráž zaujme určitý objem, zmenši se objem tento pokaždé o $0.09070 \mathrm{~cm}^{3}$, když se v oné směsi 1 gramm ledu rozpusti. Pozorujeme-li tudiž, že se objem zmenšil o $v \mathrm{~cm}^{3}$, znamená to, že se rozpustilo m grammủ ledu, jež vypočteme ze vzorce

$$
m=\frac{v}{0.09070}
$$

čili

$$
m=11 \cdot 03 v .
$$

Dosadime-li tento výraz do rovnice odrozené pro Blackur kalorimetr ledový
obdržíme

$$
M C t=80 \mathrm{~m} .
$$

$$
M C t=882 v
$$

jakožto rovnici platnou pro ledový kalorimetr Bunsenur.

[^55]Císelná data zde uvedenả, dle R. Bunsena, prijimá téź F. Kohlrousch ve svẻ Prakt. Fysice 1905. Nová data pr̛̉inási Véstnik fysikální společnosti francouzské (Société Française de physique). No 239, pag. 5, 1906. M. A. Leduc nalezl pro specifickou hmotu ledu 0° ćislo 0.9176 (Bunsen 0.91674), tudiž specificky̆ objem ledu 0° císlo 1.0898 (Bunsen 1.09082). Rozdil objemů specifických pro led a vodu byl by tedy 0.0897 (Bunsen

Obr. 55.
Ledovỳ kalorimetr Bunsenûv.
0.0907). Mimo to určil Leduc skupenské teplo ledu na $97 \cdot 2$ cal $_{15}$ (Bunsen $80 \cdot 0$. Dle novy̌ch têchto dat bylo by

$$
m=\frac{v}{0.0897}
$$

çili

$$
m=11.15 v
$$

a vzorec pro kalorimetr by zne̊l

$$
M O t=883 v
$$

Změna jest skrovná; vẽtši čislo $11 \cdot 15$ se kompensuje menšim $79 \cdot 2$.
Úpravu kalorimetru Bunsenova znázorňuje schematicky obr. 55. Celý přístroj jest skleněný, rozměrů malỷch, v souhlase stim, že jest určen - právě naopak než kalorimetr
(obr. 54.), který upravili Lavoisier a Laplace - jen pro malá množství příslušných látek. Tyto vkládají se do malé tenkostěnné trubice $P J$, jež jest nahoře vtavená do širši $W W$, kteráž se dole zužuje v trubičku $Q Q$ dvakráte pravoúhle ohnutou. Do této jest u F zabroušena nálevka s kohoutem h a postranní trubičkou, do niž zase je zabroušena trubička R kalibrovaná (v obrazci zkráceně kreslená). V této trubičce mají se pozorovati změny objemové.

K cíli tomu dlužno především apparát k pozorování připraviti. Část h, R se vyjme, do $Q Q$ se nalévá čistá destillovaná voda a vpraví se obrácením přistroje a vypouštěním vzduchu do prostoru $W W$. Aby se vzduch také z vody a od stěn vypudil, vyvaří se voda, při čemž konec trubičky $Q Q$ se vnoří do čisté destillované vody. Přístroj jest pak celý naplněn vodou. Pak se postavi do své vlastni polohy, a do trubičky $Q Q$ se naleje tolik rtuti, aby celá dolejší část trubičky byla rtuti naplněna. Konečně se z trubičky $Q Q$ voda, která zbyla, vyssaje, sklo vysuši, doleje se rtuti až do vrchu, vloží se nálevka h, a pusti se kohoutem rtut, až ji do trubičky R vnikne vhodné množstvi. Ale definitivní úpravu dlužno provésti teprve až se ustálí teplota, jak má býti. Proto se celý přístroj vloží do prostranné, čistým ledem vyplněné nádoby S, jejižto duté stěny A jsou bud také obyčejným ledem nebo vhodným isolatorem tepelným vyplněny. Aby pak voda v okolí trubičky PJ částečně zmrzla, naleje se do trubičky něco alkoholu, a do tohoto se vnoři užší trubička s mrazivou směsí, na př. sněhu a kuchyňské soli nebo sněhu a chlorkalcia, kteroužto směs možno obnovovati. Tím se vytvoři kolem trubičky obal čistého, průhledného ledu. Pak se alkohol odssaje, prostor $P J$ uzavře zátkou, a upraví se definitivně množství rtuti v nálevce h a v kalibrované trubičce R.

Jakmile se jednou přístroj tímto způsobem připraví, lze jím provádéti pozorováni mnohá velmi jednoduše. Když se na př. za účelem stanoveni tepla specifického do trubičky PJ vhodi kousky pevného tělesa na teplotu t zahřátého, roztaje teplem $M C t$ něco ledu, při čemž na trubičce D lze sledovati, jak se rtut ponenáhlu vtahuje dovnitř na důkaz, že následkem táni ledu nastalo zmenšeni objemové.

V podrobnostech ukazuji práce s kalorimetrem Bunsenovým obtiže dosti četné. Nesuáz největši způsobuje udržení celého přistroje na teplotě nullové zcela konstantni. Tepelná isolace tajicím snèhem není zcela dostatečnou. A. Bertini (1905)

Dr. v. Strouhal : Thermika.
doporučuje vložiti kalorimetr nikoli do ledu, nýbrž do nádoby s vodou, a tuto teprve obložiti tajícím ledem neb snèhem. V nejnovější době provedl mnohá přesná měření tímto kalorimetrem B. May Clarke*) a upravil pokus ve způsobu z obr. 56. patrném. Kalorimetr obalený bavlnou, jakožto látkou tepelně velmi dobře isolující, byl vložen do evakuované nádoby Dewarovy $D D$, kteráž byla též bavlnou obložena a vsazena do skleněné nádoby širši, obklopené čistým, jemně skrabaným ledem

Obr. 56.
Ledovy kalorimetr v ủpravé, kterou mu dal May Clarke.
v dřevěné nádobě $A A$, kteráz̆ ještě byla obklopena hrubšim ledem ve větši dřevěné nádobě $A^{\prime} A^{\prime}$. Korkový přiklop $K K$ skleněných části byl paraffinem zalit a tím hermeticky uzavřen. Tímto zpủsobem bylo spiše možno, jak autor udává, kalorimetr ve stavu konstantní teploty na delši dobu udržeti, ponévadž isolace byla mnohonásobnou.

Jiné obtíže činí rtut v trubičce objemoměrné následkem účinkủ kapillárních. Proto se dosáhne spolehlivějších výsledkủ, když se trubička obyčejná (téměř kapillární), nekalibrovaná, nechá vnořiti do nádobky skleněné, v níž jest odvážena rtut. Při zmenšení objemovém vssaje se rtut do trubičky, tak že ji něco v nádobce ubude, což se vážením zjistí; z mnoz̆ství p této rtuti, jež do trubičky vnikla, lze zmenšeni objemu v vypočísti, $k d y \check{z}$ se p dělí specif. bmotou s rtuti pro tu teplotu platnou, kterou rtut právě má. V tom smyslu upravil také B. May Clarke (obr. 56.) svủj přístroj s úplným úspěchem. Abychom se o tom orientovali, jak citlivě lze při tomto vážení rtuti měřiti. ssypočtěme množství rtuti x, které se vssaje při tepelné produkei jedné kalorie. Máme tu na př. při nullové teplotě rtuti vztah

$$
882 \cdot \frac{x}{13 \cdot 596}=1
$$

z čehož

$$
x=0.01541
$$

tedy $15 \cdot 41$ milligrammů rtuti na každou kalorii. Setinu kalorie lze tedy ještě velmi dobře zaručiti.

Methoda kalorimetru ledového jest tak dalece absolutni, že se ji určuje teplo specifické nikoli v poměru k jinému teplu specifickému, nýbrž přímo, ovšem na základě tepla skupenského ledu.

§ 67. Kalorimetr parni.

Methoda kalorimetru parniho jest v jistém smyslu protějškem k methodě kalorimetru ledového. U kalorimetru ledového má těleso teplotu vysokou t (obyčejně blizce 100°) a zchladí se na teplotu nizkou 0°; při tom teplo vydává a teplem tim zkapalni m grammů ledu, jež spotřebuji 80 m kalorii. U kalorimetru parniho má naopak těleso teplotu obyčejnou t_{0} a zahřeje se na vysokou teplotu t (blizce 100°); při tom teplo přijímá, a teplo to se ziskává zkapalněnim m grammů vodní 100 -stupňové páry, čímž se uvolní $539 m$ kalorii. Tam značí 80 kalorii skupenské teplo ledu (při teplotě 0°); zde podobně 539 kalorii skupenské teplo vodní páry (při teplotě 100°), t. j. teplo, kterẙm se 1 gramm vody 100 -stupñové přeměni na 1 gramm 100 -stupn̆ové páry; při opačné přeměně se totéž teplo získává.

Vzhledem k této podobnosti jsou i základní rovniice analogické. Tam jsme měli

$$
M C\left(t-t_{0}\right)=80 \mathrm{~m}
$$

při čemž bylo $t_{0}=0$. Zde máme

$$
M C\left(t-t_{0}\right)=539 m
$$

$\mathrm{kdež}$ jest t_{0} teplota obyčejná, t teplota páry, velmi blízká 100°.

Obr. 57.
Kalorimetr parni, v původni üpravè, kterou mu dal R. Bunsen.
Obr. 57. ukazuje schematicky uspořádání pokusu, jaké mu dal R. Bunsen (1887). Z kotliku A žene se (drátěným diafragmatem) vodni pára do komory B, jež se konicky zužuje v otvor o,
kudy pára vychází. Aby neproudila přímo vzhůru proti vahám, jichž jedna miska jest právě nad otvorem o, ssaje se postranní trubici r do širšiho komínu*), plamenem vyhřívaného, aby zde vznikl ostrý aspirační proud vzduchu a páry. Na vahách visí tenký drátek platinový jdouci otvorem o do komory parní; zde jest na něm zavěšen drátěný platinový košíček, pod nimž jest ještě malá mistička z platinové folie. Do košičku vkládá se tèleso, jehož teplo specifické se má určiti. Před pokusem odváži se těleso samo a pak s košičkem a urči jeho teplota t_{0}, na to se rychle pára vpustí do komory parní.

Těleso se zahřívá na teplotu t páry, ale zároven̆ na sobĕ kondensuje vodní páru v kapky; ona malá mistička platinová má zabrániti, aby kapky neodpadly. Košiček s tělesem ukáže tedy přirůstek na váze, který se stanoví, když temperatura se ustálila. Od něho nutno - dle známého tepla specifického platiny - odečísti, mnoho-li kondensované vody připadá na platinové součástky; co zbude, jest váha m vody, jež tělesem samým Z vodni páry se kondensovala.

Methoda jest zajímavá svou antithesi k methodě kalorimetru ledového, ale methodou laboratorní není; vyžaduje veliké kritičnosti a opatrnosti, kterou ovšem experimentátor tak zkušeny̌, jako Bunsen, mél, tak že mohl obdržeti výsledky dobré, kterou však povšechně předpokládati nelze. V podrobnostech nutno poukázati na pủvodni pojednání Bunsenovo ve Wied. Ann. 31, pag 1, 1887, z něhoz̃ jest prijat téz̃ obr. 57. Bunsen y predmluvê poukazuje na to, že prioritu o nalezení methody má J. Joly y Dublinẽ (prof. geologie a mineralogie, *1857), jenž práci svou uvetejnil 1886, tedy ponêkud dríve. Roku 1890 uz̃ival kalorimetru parního K. Wirtz v Darmstadtu, jehoz̃ pŕistroj, účelně zjednodušený, byl z ćásti skleněny̌. tak ze bylo lze pokus okem sledovati a kontrolovati. Kalorimetr se osvédéil téz ke stanovení vypafovacího tepla kapalin, jichž bod varu jest nižsí nezz 100°.

Methoda kalorimetru parniho jest v témže smyslu absolutní jako kalorimetru ledového. Spočívajíc na skupenském teple vodni páry, kteréž dlužno znáti, dává teplo specifické daného tělesa přímo.

§ 68. Kalorimetr na chladnutí.

Methoda založená na chladnutí těles jest opět methodou relativni. Specifická tepla C_{1}, C_{2} dvou látek srovnávají se dle doby Θ_{1}, Θ_{2}, za kterou se v okolnostech jinak souhlasných ochladí a to se stejné vyšsí teploty t^{\prime} na stejnou nižší t. Jsou-li

[^56]M_{1}, M_{2} hmoty obou těles, činí tepelná ztráta
u jednoho tělesa $\quad M_{1} C_{1}\left(t^{\prime}-t\right) \ldots$ za Θ_{1} sekund,
u druhého tělesa $M_{2} C_{2}\left(t^{\prime}-t\right) \ldots$ za Θ_{2} sekund.
Když tedy okolnosti, za nichž chladnutí se děje, úplně jsou stejné, a když rozdil temperaturní $t^{\prime}-t$ jest malý, lze za to miti, že tepelná ztráta na jednu sekundu přepočtená jest u obou stejnou. To dává základni rovnici této methody
$$
\left.\frac{M_{1} C_{1}\left(t^{\prime}\right.}{\Theta_{1}}-t\right)=\frac{M_{2} C_{2}\left(t^{\prime}-t\right)}{\Theta_{2}}
$$
z niž plyne
$$
M_{1} C_{1}: M_{2} C_{2}=\Theta_{1}: \Theta_{2} .
$$

Tepelné kapacity jsou tudiž dobám úměrny.
Methody této, kterouž v roce 1796 navrhl

Obr. 58.
Ralorimetr Regnaultûv na chladnuti
têles. Tobiáś Mayer, užívali Dulong a Petit a zejména Regnault, kterýž ji propracoval kriticky. Jeho přistroj jest znázorněn v obr. 58.

Tělesa pulverisovaná anebo v kouscích velmi malých vkládaji se do střibrné, na vněǰ̌ím povrchu cylindrické nádobky v, do nî̌̌ zasahá citlivý teploměr, jehož stupnice vyčnívá ve značné délce z nádobky ven. Tato nádobka jest vložena do širokého, uvnitř černého kovového válce, ktery̌ž vně jest obklopen tajicím sněhem neb ledem anebo vodou konstantní teploty. Postranní trubicí r dá se evakuovati. Před pokusem se nádobka $v \mathrm{~s}$ tělesem zahřeje (v lázni vzduchové) na vyšši teplotu a vloži se -pak do kovového válce. Na to se vyčerpá vzduch, aby vyzařování tepla se dálo v prostoru (téměř) vzduchoprázdném. a pozoruje se pak v pravidelných časových intervallech, jak teploty ubývá. Pozorování se graficky znázorni. Podobně se postupuje u tělesa druhého (na př. vody). Z obou diagrammů vyberon se pak doby odpovídající stejným rozdilûm temperaturnim.
Kapacity $M_{1} C_{1}$ a $M_{2} C_{2}$ nutno v hořejši rovnici zvěť̌iti o kapacitu $\mu \gamma$ - vodni hodnotu - nádobky stříbrné, jejiž hmota jest μ a specifické teplo γ. Počítá se tedy dle rovnice

$$
\left(M_{1} C_{1}+\mu \gamma\right):\left(\boldsymbol{M}_{2} C_{2}+\mu \gamma\right)=\Theta_{1}: \Theta_{2} .
$$

Methoda chladnuti hodi se za laboratorni zcela dobře a múże býti prováděna prostředky jednoduchými, evakuace vzduchu múže odpadnouti; nebơ úplnẻho vakua nelze dociliti, a vzduch zředěný škodi neméně nez̃ obyčejný. Ale methoda dává často výsledky málo príznivé, jakoz̃ Regnault ukảzal. Je-li totiž látka tepelnẻ málo vodivou, můz̃e teplota, kterou teplomẽr udává, býti rozdilnnou od teploty, jaká jest blîze stên nádobky. Není také jednostejno, zdali látka pulverisovaná jest v nádobce vice nebo méné stlačena. Konečně vadi ztráty tepelné, jez̃ vznikají vedením vzduchu,

Sem náleži též pozorování, které každý experimentátor má příležitost činiti, když ukazuje rozžhaveni drátû mezi dvěma svorkami napiatých elektrickým proudem. Obyčejně se k tomu uživá drátu platinového a železného. Při rozžhavení se dráty vlastni vahou, následkem tepelné roztažnosti, prohýbaji; jakmile se proud přeruši, chladnou dráty, a ono prohnuti jde zpět. Mají-li oba dráty alespoň přibližně stejnou hmotu, na př. má-li při stejné délce drát platinový v průměru 0.25 mm , železný 0.40 mm , jak to obyčejně bývá, a jsou-li oba zahřáty do jasně červeného žáru, lze velmi pěkně pozorovati, jak prohnutí u drátu platinového rychleji zahřátím vzniká a rychleji chladnutím jde zpět než u drátu železného, následkem toho, že specifické teplo platiny (0.03) jest více než třikráte menší než železa ($0 \cdot 11$).

§. 69. Výsledky; úvahy všeobecné; vlivy vedlejši.

Methodami právě popsanými bylo od četných badatelů stanoveno teplo specifické rozmanitých látek pevných a získán zpủsobem tim obsáhlý material číselný, kterýž jest obsažen v tabulkách fysikálních. Jest přirozeno, že již záhy bylo pátráno po tom. zdali by se v té veliké rozmanitosti číselné nedaly vystihnouti nějaké zákonitosti, jimiž by se v číslech těch zjednal snadnějši přehled. Avšak dlužno doznati, že se dosud nepodařilo - a sotva se také v budoucnosti podaří - nalézti o teple specifickém zákony jednoduché, jež by se skutečnosti plně souhlasily. Důvod toho jest ve věci samé. v podstatě specifického tepla, kteréž, ač jednoduše definováno, ve svém významu nikterak jednoduchým neni. Jest dobře o této věci již napřed se orientovati, aby pak mnohé nesrovnalosti, o nichž v následujících výkladech bude jednáno, nezdály se podivnými.

Mějmež 1 gramm nějaké látky pevné při teplotě t; chceme ji zahřáti c jeden stupen̆ na teplotu $t+1$; k tomu, pravime, jest třeba C kalorii. Dle této definice by se zdálo, že toto teplo
se spotřebuje výhradně ke zvýšení teploty. Avšak těleso se současně roztahuje; molekuly jeho vzdaluji se prủměrně vice od sebe; při tom překonávají síly kohaese, jimiž molekuly na sebe jsou vázány, t. j. vykonává se práce vnitřní. Současně však těleso, roztahujíc se, překonává tlak vnější, atmosférický, a vykonává se práce vnějs̉i. Mechanická theorie tepla vykládá, jak později seznáme, vyšši teplotu větši energii pohybu molekulového, kterýž současně pủsobí zvětšení disgregace, t. j. prûměrné vzdálenosti molekulové a tím zvýšeni energie polohy vykonanou praci vnitřní i prací vnější.

Početni rozvaha ukazuje, že práce vnějši jest poměrně velice malá, tak že ji možno zanedbávati. Zůstává pak zvýs̉ení teploty a práce vnitr̃ń.

Práci vnějsisi určime následovně: Dáno-li têleso hmoty M (v grammech), jehoz̃ specifická hmota jest $S\left(\frac{g}{\mathrm{~cm}^{3}}\right)$, jest $\frac{M}{S}\left(\mathrm{~cm}^{3}\right)$ jeho objem. Je-li a koefficient roztažnosti objemové, zvětşi se zahrátim o 1° tento objem o e $\frac{M}{S}$ $\left(\mathrm{cm}^{3}\right)$. Pủsobi-li na kaz̀dou jednotku povrchovou $\left(\mathrm{cm}^{2}\right)$ tlak $p\left(\frac{d y n a}{\mathrm{~cm}^{2}}\right)$, obdrz̈íme rykonanou práci vnéjşi jako souc̃in re $\frac{M}{S} p(d y m a . c m)$. Chceme-li míti čísla přehlednějsí, prepočitáme výsledek na jednotku Joule $=$ megadyna . dm, dêlice 10^{7}; obdrz̈íme tedy e $\frac{M}{S} p \cdot 10^{-7}$ (Joule). Pone̊vadz̃ pak Joule $=0.239$ granmkalorie, obdržime teplo této práce aequivalentní výrazem

$$
0 \cdot 239 \cdot 10^{-\tau} \cdot a \frac{M}{S} p
$$

Celả spotřeba tepla v grammkaloriich jest vsak

$M C$.

Dle toho teplo, oné vnějsi práci aequivalentni, činíz cellového tepla poměrnou čảist, jez̃ jest dána vẏrazem

$$
0.239 \cdot 10^{-7} \cdot \alpha \frac{M}{S} p: M C=0.239 \cdot 10^{-i} \frac{\alpha p}{S C}
$$

Tlakem p bývá obyčejný tlak atmosférický, tudiz̃ mẻnlivý. Přijmeme-li pro výpocéet tlak normálni ($76 \mathrm{~cm} \mathrm{Hg} 0^{0}, g^{*}$), jest *)

$$
p=1013210 d y n .
$$

Vychází pak pro onu çảst celkové spotřeby tepelné výraz

$$
0.239 \cdot 0 \cdot 1013 \frac{\alpha}{S C}=0.0242 \frac{a}{S C}
$$

Pro střibro jest na pr̂.

$$
r=0.000019, \quad S=10.5, \quad C=0.055
$$

Výpočet dává cislo 0.00000080.
Kdỳz tedy stríbro zahříváme, prì cemž se roztahuje a překonávajic (normální) tlak atmosférickỳ vykonává práci vnéjsî. obnási teplo této práci aequivalentni ménẽ nez̃ milliontou část celkového tepla, které tudĩ̀ se skoro celé spotřebuje na zuýseni teploty a na práci vnitroni.

Pro tu část tepla, kterou se zyysi jen teplota. byla navrżena zulástni jména, jednak spravé teplo specifickéc (Rankine), jednak stepelná kapacitas (Clausius). Dluz̃̃o přiznati, že pro výklady theoretickè jest vģhodno pro ono teplo miti nêjaké pojmenováni zvlástni. Avsak závadou velikou jest, że se onẽch navrženy̌ch jmen téz̃ uz̃ivà ve vy̌znamu zcela jinẻm. ktery̌z z vẏkladủ předeslých jest patrnŷ. čimz̃ mohou vzniknouti nedorozumènf závaz̃ná. Jestif pravé teplo specifické, velićina dřive C, označená, teplo, kterým se gramm látky zahr̛eje z t na $t+1$, event. príslušny differenciální kvocient. Tepelná kapacita (čili vodní hodnota) jest souçin MC, vztahujief se k nểjakému têlesu danému jako celku. (§ 62.)

Jinak jest z této orientačń úvahy patrno, ze o teple specifickém jen potud lze oćekávati jednodušsich zâkonủ. pokud by práce rnitroní u rủznỵch látek nebyla valnê rozdélnou.

Tělesa pevná mohou tlakem (kompressi, kováním a pod.) anebo jinými účinky, jako u oceli kalením, napouštěním, bẏti uvedena v různý stav mechanický, který ovšem také na vlastnosti tepelné, tedy zde na teplo specifické má vliv. Celkem se ukazuje, že většim zhuštěnim nějakého tělesa jeho teplo specifické se umenši. Avšak ńčinek tento jest poměrně malỷ. Větši změny pozoruji se, když se tělesa vyskytuji v rủzných stavech allotropních. Přiklad význačný podává uhlik. Jak Regnault nalezl, jest teplo specifické uhli dřevěného 0.241. uhli plynového $0 \cdot 204$, grafitu přirozeného $0 \cdot 202$, diamantu $0 \cdot 147$. Pro siru krystallisovanou nalezl $0 \cdot 1776$, pro roztavenou hned po taveni $0 \cdot 1844$. po dvou měsícich $0 \cdot 1803$ a po dvou letech již jen $0 \cdot 1764$. Rozdily podobné ukazuji též jiné látky, jež jsou bud krystallické neb amorfní; u selenu máme čisla 0.0840 a 0.0953 , u arsenu čísla 0.0830 a 0.0758 , tedy rozdílná ve smyslu opačném. Sklo dle složení svého má též různé teplo specifické.

[^57]
§ 70. Zảvislost na teplotě.

Teplo specifické pravé C_{t}, při teplotě t, jest na teplotě závislé. Tuto závislost vyjadřujeme empirickým vzorcem kvadratickým

$$
C_{t}=C_{0}+a t+b t^{2}
$$

kterýž u těles pevných vystači. Práce kalorimetrické dávají vsak teplo specifické C priměrné, pro intervall temperaturní $t_{1} \ldots t_{2}$, kteréž s konstantami pravého tepla specifického souvisí vztahem (§ 61.)

$$
C=C_{0}+\frac{1}{2} a\left(t_{1}+t_{2}\right)+\frac{1}{3} b\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right)
$$

Pracuje-li se kalorimetrem ledovým, kde se têleso zahr̛ãté na t schladí na 0°, obdrži se prūmérné teplo specifické v intervallu $0 \ldots t$, pro které tudiz̀ platí vztah

$$
C=C_{0}+\frac{1}{2} a t+\frac{1}{3} b t^{2}
$$

Dle toho jest nutno, aby byla provedena co možná četná méřeni průmérného tepla specifického C pro rozmanité intervally tepelné; tim se ziskả řada rovnic, v nichž C, t_{1} a t_{2} jsou čiselně zuámy, tak že lze konstanty C_{0}, a, b počitati. Žádoucno jest, aby platnost číselného výrazu pro $C_{\text {, by }}$ babezpečena pro temperaturni rozsah co největši, hlavně směrem k teplotám vyšsim - možno-li až do blizkosti bodu taveni - a ovšem také směrem k teplotám nižsim.
V tomto rozsahu jest však úkol dosud řešen v připadech velmi vzácných, jenom u některých kovủ a to jen pro teploty nad nullou; u jiných jest sice závislost tepla specifického na teplotě též studována, avšak jen pro některé intervally tepelné, často do teplot, jež jsou od bodu taveni značně vzdáleny. Zde zbývá ještě vykonati úkol obsáhlẏ, kterýž, když by se měl provesti soustavně a co možná úplně, vyžadoval by při velikém jočtu rozmanitých látek pili a práci ohromnou.

Obtiz̃e takovéto práce jsou jednak experimentálni, jednak vêcné. Jde-li o teploty nad 500°, pr̛i nichz̃ zac̃iná jižz̃áar, jest obtižno tuto teplotu stejnomẻrnẽ realisovati a spolehlivẽ me̛rriti; uživá se nyni elektrických peci ve spojení se vhodnými pyrometry. Vêtši obtiži jest zabraniti, aby žárem nevznikly u daného tęlesa změ̌ny povrchové, zejména oxydací.

Největši interess poskytuji kovy. Jedná-li se o tepelné intervally poměrně malé, na pì. ne vice než 200° nad nullou, ukazuje se, že tepla specifického přibývá s teplotou úměrně; vystači se tudiž s výrazem lineárním

$$
C_{t}=C_{0}+a t
$$

Tak nalezl Em. Bède (1856) následujicí vztahy:
pro železo

$$
C_{t}=0.1053+0.000071 t
$$

měđ
$C_{t}=0.0910+0.000023 t$
zinek
cin
antimon
, $=0.0860+0.000044 t$
olovo
$C_{1}=0.0460+0.000021 t$
$C_{t}=0.0286+0.000019 t$.
Podobné jednoduché stoupáni tepla specifického jevi, jak Violle (1877, resp. 1878) nalezl, též platina a palladium, a to až k teplotám 1177° resp. 1265°, tedy dosti vysokým. Příslušné vzorce jsou:

$$
\begin{array}{ll}
\text { pro platinu } & C_{t}=0.0317+0.000012 t \\
\text { pro palladium } & C_{t}=0.0582+0.000020 t
\end{array}
$$

Iridium souhlasi s platinou; zlato má teplo specifické 0.0323 ; jest význačno tím, že na teplotě téměř nezávisi, jsouc konstantní.

Jde-li se však k teplotám vyššim. nestači povšechně vzorec lineární, nýbrž nutno uživati vzorce kvadratického

$$
C_{t}=C_{0}+a t+b t^{2}
$$

Za přiklad budiž uveden vzorec, který u střibra nalezl Pionchon (1886) v intervallu $0^{\circ} \ldots 907^{\circ}$, tedy bezmála až k bodu tavení; obdržel
pro střibro $\quad C_{t}=0.05758+0.0000088 t+0.000000018 t^{2}$.
Někdy však ani takovéto vzorce nestači, aby se jimi ovládal temperaturni intervall velmi značný; nutno pak tento intervall rozděliti a pro jednotlivé jeho části příslušné vzorce počítati.

Zvláštní interess poskytuje přednị magnetickỷ materiál, totiž železo. Pionchon nalezl pro tento kov následujici vzorce:

$$
\begin{aligned}
& \text { pro intervall } 0^{\circ} \ldots 660^{\circ} \\
& C_{t}=0.11012+0.0000506333 t+0.000000164 t^{2} \\
& \quad \text { pro intervall } 660^{\circ} \ldots 720^{\circ} \\
& C_{t}=0.57803-0.00287196 t+0.000003585 t^{2} \\
& \quad \text { pro intervall } 720^{\circ} \ldots 1000^{\circ} \\
& C_{t}=0.218 \quad \text { pro intervall } 1050^{\circ} \ldots 1200^{\circ} \\
& C_{t}=0.19587 .
\end{aligned}
$$

Dle toho stoupá teplo specifické železa velmi značně ; při 0° jest $0 \cdot 1101$, při 100° již $0 \cdot 1168$, při 500° však $0 \cdot 1762$, tedy o $60^{\%} \%$ větši než při 0°. Pro 600° dává prvni vzorec hodnotu 0200 ; pro 700° však druhý vzorec hodnotu nápadně velikou, 0.324 , která rapidně zase klesá na hodnotu $0 \cdot 218$, jež v intervallu $720^{\prime \prime} \ldots 1000^{\circ}$ zůstává stálou. To by poukazovalo k nějakým podstatným změnám povahy chemické, jež by při teplotách kolem 700° vznikaly. Jest pozoruhodno, že v téže asi temperaturní poloze magnetisace železa přestává. Zvláštnosti podobné ukazuje též nikl a kobalt.

Přiklad, kdy od jisté teploty počinajíc podobně jako u železa teplo specifické zủstává konstantnim, poskytuje křemen. Pro tento fysikálně rovněž dủležitý materiál nalezl Pionchon (1888)

$$
\begin{gathered}
\text { pro intervall } 0^{0} \ldots 400^{0} \\
C_{t}=0.1737+0.000394 t-0.000000027 t^{2}
\end{gathered}
$$

Stoupáni pokračuje tedy vždy mirněji a mírněji, až od 400° do 1200° obdrží se hodnota $0 \cdot 305$, jež zủstává konstantní.

Velmi značné změny tepla specifického s teplotou ukazuji bor, křemík a uhlik (grafit, diamant). Tyto změny studoval podrobně $H . F$. Weber*) a nalezl výsledky v následujícich tabulkách obsažené. Sloupec prvý udává teplotu t, druhý pravé teplo specifické C_{t}, třetí prủměrné stoupáni tohoto tepla specifického při vzrůstu teploty o 1°.

Bor								Silicium			
t	C_{t}	ΔC_{t} pro 1^{0}	t	C_{t}	ΔC_{t} pro 1^{0}						
$-39 \cdot 6$	$0 \cdot 1965$		$-39 \cdot 8$	$0 \cdot 1360$							
$26 \cdot 6$	$0 \cdot 2382$	$0 \cdot 000706$	$21 \cdot 6$	$0 \cdot 1697$	$0 \cdot 000550$						
$76 \cdot 7$	$0 \cdot 2737$	708	$57 \cdot 1$	$0 \cdot 1833$	386						
$125 \cdot 8$	$0 \cdot 3069$	676	$86 \cdot 0$	$0 \cdot 1901$	235						
$177 \cdot 2$	$0 \cdot 3378$	601	$128 \cdot 7$	$0 \cdot 1964$	148						
$233 \cdot 2$	$0 \cdot 3663$	508	$184 \cdot 3$	$0 \cdot 2011$	085						
červený	0.50		$232 \cdot 4$	$0 \cdot 2029$	078						
žár											

[^58]| Uhlík (diamant) | | | Uhlik (grafit) | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| t | C_{t} | $\begin{aligned} & \Delta C_{t} \\ & \text { pro } 1^{\circ} \end{aligned}$ | t | C_{t} | $\begin{gathered} \Delta C_{t} \\ \text { pro } 1^{\circ} \end{gathered}$ |
| -50.5 | 0.0635 | | -503 | $0 \cdot 1138$ | |
| -10.6 | $0 \cdot 0955$ | 0.000802 | -10.7 | $0 \cdot 1437$ | 0.000749 |
| $10 \cdot 7$ | $0 \cdot 1128$ | 812 | $10 \cdot 8$ | $0 \cdot 1604$ | 777 |
| $33 \cdot 4$ | $0 \cdot 1318$ | 837 | $61 \cdot 3$ | $0 \cdot 1990$ | 764 |
| $58 \cdot 3$ | $0 \cdot 1532$ | 859 | 1385 | 0.2542 | 715 |
| 85.5 | 01765 | 856 | 2016 | $0 \cdot 2966$ | 672 |
| 140.0 | 0.2218 | 831 | 249.3 | $0 \cdot 3250$ | 596 |
| 206.1 | 0.2733 | 779 | $641 \cdot 9$ | 0.4454 | - |
| $247 \cdot 0$ | $0 \cdot 3026$ | 771 | 822.0 | 0.4539 | 047 |
| $606 \cdot 7$ | 0.4408 | - | $977 \cdot 9$ | 0.4607 | 047 |
| 806.5 | 0.4489 | 042 | | | |
| 985.0 | 0.4589 | 054 | | | |

Dle číselného materiálu v těchto tabulkách obsaženého provedeno jest (v obr. 59.) grafické znázorněni, ze kterého závislost tepla specifického na teplotě daleko lépe než z tabulek a snáze lze přehlédnouti.

Diagramm poskytuje mnohé strảnky zajímavé. Obẻ̉ křivky pro diamant a grafit stoupaji s počátku témẻ̉ rovnomèrnẽ, pak vz̀dy mínẽji a mírnêji a v blízkosti 1000° mají stoupání velmi malé, jdouce jizz témễ̃ s osou temperaturni rovnobẽz̃nẻ. Při tom jsou s počatku dosti daleko od sebe, ale v prûběhu dalsím sbliz̃uji se, az̃ skoro koinciduji. Hodnota 0.47 tepla specifickêho jest nad 1000° témẻř společná a limitni. Ještě význačnéjší jest krivka pro silicium. Stoupá s počatku dosti prudce, ale jiz̀ kolem 20° mirnéji a mírněji a má pak již nad 200 průběh s osou temperaturni bezmảla rovnoběžny̆, tak že lze hodnotu 0.21 pokládati za limitni. Křivka pro bor vミ̌ak v tom rozsahu, jak pozorováni jsou dána, má stoupání dosti značné jestẻ i nad 200°, tak že zde o hodnotè limitni, pokud grafické znázorněni sahá, mluviti nelze. Pojmenováni , "imitni" neni zde mínéno ve smyslu mathematickém, jez̃to by predpokládalo dûkaz, ze taková limita vskutku existuje. Má tím jenom by̌ti naznačeno, że v přislušné poloze temperaturni se C_{t} jizz málo měni. Proto také v následujicín pišeme $C_{t i m}$ a nikoli lem C, aby timto označením nevzniklo nedorozumẽni.

Změny tepla specifického s teplotou isou tedy u prvků jmenovaných velmi značné. Pro uhlik jako diamant máme okrouhle na př.
pro uhlik jako grafit

$$
\begin{aligned}
& C_{600}=7 \cdot C_{-60} \\
& C_{600}=4 \cdot C_{-50}
\end{aligned}
$$

a společná limitni hodnota nad 1000° jest taxativně

$$
\text { pro uhlík } \ldots C_{\text {tios }}=0.47
$$

Křemik jeví změny menši, ale přece obnášeji na př. od - 40° do 240° asi 50%. Limitní hodnota nad 300° jest taxativně

$$
\text { pro křemík . . . } C_{l i m}=0 \cdot 21
$$

Co se boru týče, jsou změny velmi značné již v tom malém

Obr, 59.
Jak se s teplotou mẽni specifické teplo boru (B), silicia (Si), diamantu (D) a gratitu (G) dle pozorovàni, jez̃ provedl H. F. Weber.
temperaturním intervallu, pro který pozorování plati; od - 40° do 240° činí změna 100%. Limitni hodnota se zde, nad 200°, ještě nejevi, poněkud ji naznačuje výsledek, 0.50, který byl obdržen pro červený žár, tak že by bylo taxativně

$$
\text { pro bor } \ldots C_{l i m}=0.50
$$

Jakožto přiklad dalši budiž uvedeno beryllium (Be, též glycium, poněvadž soli tohoto kovu chutnaji sladce), kov, kterỷ náleží do skupiny magnesia, zinku, kadmia a rtuti. Jeho teplo specifické určili Nilson a Pettersson (1880) a nalezli

$$
\begin{aligned}
& \text { v intervallu } 0^{\circ} \ldots 100^{\circ} \text { prủměrné specif. teplo } 0.4246 \\
& n \quad n \quad 0^{\circ} \ldots 300^{\circ} \quad n
\end{aligned}
$$

Tato čisla již poukazuji k tomu, že pravé teplo specifické C_{t}, s teplotou také roste velmi značně. Položime-li za základ relaci linearni

$$
C_{t}=C_{0}+a t
$$

plati pro průměrné teplo specif. relace (§ 61.)

$$
C=C_{0}+\frac{1}{2} a t
$$

K určeni konstant C_{0} a $\frac{a}{2}$ máme pak čiselně

$$
\begin{aligned}
& 0 \cdot 4246=C_{0}+\frac{a}{2} \cdot 100 \\
& 0.5060=C_{0}+\frac{a}{2} \cdot 300
\end{aligned}
$$

z čehož vypočitajíce snadno C_{0} a a, obdržime pro pravé teplo specifické

$$
C_{t}=0.3839+0.000814 t
$$

Koefficient stoupání pravého tepla specif. s teplotou jest tedy tak veliký jako u diamantu. Zdali toto stoupání pokračuje až do blizkosti bodu taveni beryllia (kolem 900°) anebo zdali což jest dle analogii jiných pravděpodobnějši - v dalším průběhu se umenšuje, to dle dosavadních málo četných pozorováni rozhodnouti nelze.

Uvedli jsme zde jen nẻkteré priklady k objasnẻní otázek, o nẻž se jednalo. Zúmyslnè volili jsme údaje pro teplo specifické pravé a nikoli prủměrné, ponèvadz̃ v pravém teple specifickém účinek teploty se jevínejzז̌etelněji, kdez̃to v prúměrném se poněkud zastirá. Tabulky fysikální mívaji ovšem data hlavnẽ o teple specifickém průměrném, jako na př. tabulky Landolt-Börnsteinovy, coz̃ pro uz̃ívání praktické múže by̌ti vẙhodné.

V poslední době uveřejnil novou práci Dr. Norb. Stuicler**) o účinku teploty na specifické teplo železa, molybdénu, manganu, magnesia. vismutu a olova. Úkol řeši se tu rovnicemi i tabellárně, a to pro specif. teplo pravé a prủměrné s udánim intervallu, pro kterýž jednotlivé rovnice plati. Zejména jsou zajimavá data prozzelezo; pro teploty nad 500° vycházeji tu hodnoty značně vyšši, než jak udavá Pionchon; na př. pro 525°, $575^{\circ} .625^{\circ}$ hodnoty $0 \cdot 216,0 \cdot 245,0 \cdot 268$, kdežto nahoře pro 600° byla uvedena hodnota $0 \cdot 200$. Tím by onen náhlý vzestup, který Pionchon nalezl, se jevil značně zmirněným, a ve změnách by se ukazovala větši pravidelnost. Bohužel, že pozorováni Dra. Stückera se právè zastavuji před tím intervallem tepelným $\left(650^{\circ}-750^{\circ}\right)$, který dle Pionchona poskytuje nápadně veliké maximum, jež pak náhle se zase umenšuje na hodnotu téměr̆ konstantni.

[^59]Pozoruhodno jest, že prvek germanium (Ge, $\alpha=725$) má teplo specifické, jež s teplotou s počátku roste až do maxima (0.077) asi při 100° a pak klesá.

§ 71. Zảkon Dulong-Petitův.

Roku 1819 uveřejnili*) Pierre Dulong a Alexis Petit společnou práci, ve kteréz̆ stanovili specifické teplo některých pevných prvků, zejména kovú $(S, F e, N i, C u, Z n, A g, S n, P t$, $A u, P b, B i)$; srovnávajice pak výsledky s atomovými vahami těchto prvků. shledali, že součin tepla specifického C a váhy atomové a jest (téměř) konstantnim, t. j.

$$
a C=\text { const }
$$

Zakon tento zkoušel později zejména Regnault a po něm mnozí jiní. Ukázalo se, že se celkem pro prvky skupenstvi pevného osvědčuje, ale že se též ukazuji u některých značné odchylky. Součin ce nazývá se teplem atomovým; udává, mnoho-li kalorii k zahřáti svému o 1^{0} spotřebuje gramm-atom látky. Formulujice tudiž zákon Dulong-Petitủv pravime: Teplo atomové prvkiu skupenství pevného jest konstantni.

Aby se dalo posouditi, jak přesně dle nỵnějšiho stavu věci zákon tento se osvědčuje, jest v následujicí tabulce pro četné látky sestaveno, jaká jest váha atomová, teplo specifické a součin obou.

Jak viděti, hodnoty součinu aC kolisaji v mezich 5.79 až 668 ; střed obou těchto hoduot extremnich $6 \cdot 23$ jest blizek celkové prủměrné hodnotě všech čisel 621. Dle toho pišeme číselně

$$
\alpha C=6 \cdot 2
$$

K tabellárnimu sestaveni vedle uvedenému dluz̃no připojiti nêkleré poznamky. Váhy atomové a jsou uvedeny tak, jak se dle usneseni internacionålni kommisse pro vahy atomové nyni všeobecnẻ prijimaji, totiz̃ pro $O=16$ (nikoli $H=1$). Teplo specifické jest udano pro teplotu 18°, tak jak je dle cetných výsledkú jednotlivých prijímá jakoẑto pravdè nejpodobnéjsíi F. Kohlruusch (ve své fysice praktické nejnovéjsi vydáni). Jenom

[^60]pro Li a Na jsou pïjaty hodnoty z tabulek Landolt-Bürnsteinových, odhaduuté pro 18°. Stredni hodnota $6 \cdot 2$ souçinu aC vychazzi menši, než jak se obycejne udavi, totiz 6.4, ale nenf pochybnosti, że dle nynexisho stam vẏsledkû ćiselných jest hodnota 6-2 pravdè podobnéjsín. Dulong a Petit obdrzeli hodnotu blizce 3 , a to proto, ponévadz̀ tehda za re brâny byly nikoli vihy atomové v nyne̛jzím slova smyslu. nỵbrz̃ císla aequivalentni.

Zákon Dulong-Petitův v tabellárním sestaveni.

Prvek		ε	C_{18}	$« C^{\prime}$
Lithium	Li	$7 \cdot 08$	0.94	6.61
Natrium . .	$N a$	23.05	$0 \cdot 29$	$6 \cdot 68$
Magnesium . .	Mg	24.36	025	6.09
Aluminium . .	Al	$27 \cdot 1$	$0 \cdot 214$	580
Mangan . .	$M n$	55.0	$0 \cdot 12$	6.60
Železo .	Fe	55.9	$0 \cdot 105$	5.87
Nikl.	Ni	$58 \cdot 7$	$0 \cdot 106$	622
Kobalt	Co	59.0	$0 \cdot 11$	6.49
Měd.	Cu	$63 \cdot 6$	0.091	5.79
Zinek .	$Z n$	$65 \cdot 4$	0092	6.02
Rhodium . . .	$R h$	103	0.058	$5 \cdot 97$
Palladiumı . .	$P d$	1065	0.058	$6 \cdot 18$
Stříloro . . .	$A g$	107.93	0055	5.94
Kadmium . . .	Cd	112.4	0055	$6 \cdot 18$
Cin	Sn	$119 \cdot 0$	0.052	$6 \cdot 19$
Antimon	Sb	$120 \cdot 2$	0050	6.01
Tantal . . .	Ta	183	0.036	6.59
Platina .	Pt	1948	0.032	623
Zlato . . .	Au	197.2	0.031	$6 \cdot 11$
Thallium . .	$T l$	$204 \cdot 1$	0.032	6.53
Olovo	Pl	206.9	0.031	6.41
Vismut	$B i$	208.5	0.029	6.05
Prûměr	$6 \cdot 21$

Některé pevné provky ukazuji však od zákona DulongPetitova odchylky velice značné. Jsou to beryllium, bor, uhlik a křemik, tedy právě ty prvky, o nichž v předešlém § 70. obširněji bylo jednáno. Jak značné tyto odchylky jsou, ukáže se, $\mathrm{když} \mathrm{z}$ dat číselných tam uvedených interpolaci (čiselnou neb
grafickou) určíme C pro 18^{0} a když, vypišice z tabulek přislušné váhy atomové α, utvoříme součiny αC. Obdržime:

Prvek		α	$C_{1 s}$	αC
Beryllium	$B e$	91	$0 \cdot 399$	$3 \cdot 64$
Bor . .	Bo	11.0	0.232	$2 \cdot 55$
Diamant	C	$12 \cdot 0$	0.119	1.43
Grafit .	C	$12 \cdot 0$	$0 \cdot 166$	1.99
Křemik	Si	28.4	$0 \cdot 168$	4.77

Odchylky od hořejšiho prủměru 62 jsou tedy vskutku velmi značné, zejména u diamantu a grafitu. Avšak právĕ tyto prvky jevi velmi značné stoupání tepla specifického s teplotou; následkem toho v jiné poloze temperaturni byly by ony odchylky značně menši. Kdybychom pak v počet přijali ty hodnoty, jež jsme v předešlém §70. jako limitní naznačili, obdrželi bychom:

Prvek	a	$C_{\text {lom }}$	$a C$	
Bor	Bo	11.0	0.5	5.5
Uhlík	C	12.0	0.47	$5 \cdot 6$
Křemík.	Si	28.4	0.21	60

Beryllium by pro teplotu 300° dle lineárni relace v předešlém § 70. uvedené dávalo

$$
a=9.1 \quad C=0.63 \quad u C=5.7
$$

Tyto hodnoty jsou pak průměrné hodnotě $\alpha C=6 \cdot 2$ ovšem značně bližši. V novějši době (1896) nalezli Moissan a Gautier pro čistý bor při 400° hodnotu $c C^{\prime}=6.4$.

Dle všeho toho nutno oproti zákonu Dulong-Petitovu zaujmouti toto stanovisko. Součin αC jest závislý na teplotě, poněvadž teplo specifické C s teplotou souvisi. Souhlasné hodnoty tohoto součinu dlužno jen v té poloze temperaturni očekávati, kde změny tepla specifického s teplotou jsou již jen mirné. U velké většiny prvkủ jest tomu tak při teplotách obyčejnýcb, a v tom smyslu lze pak teplo atomové za konstantní
pokládati. Vskutku U. A. Behn (* 1868 , nyní ve Frankfurtě n. M.), jenž v poslední době (1898 a 1900) závislost součinu aC na teplotě přímo zkoumal, nalezl u velké většiny prvků, že v mezich temperaturních -200° až $+100^{\circ}$ změny součinu αC jdou jen do těch differenci, jakéž v onom tabellárnim sestaveni při 18° mezi jednotlivými prvky se již ukazovaly; ovšem pak sončin $a C$ od -200° do $+100^{\circ}$ stoupá, na př. při olovu od 6.0 do 6.4 , při platině od 5.4 do 6.3 a t. d., jakož dle výkladu předcházejiciho § 70. jinak očekávati nelze, avšak stoupání jest mirné.

Obr. 60.
Pokus Tyndallǔv o teple specifickèm.
V nejnovějši době sestavil Alb. Wigand*) kriticky veškerá dosavadni data o účinku teploty na teplo specifické prvkủ pevných a nakreslil diagramm velmi pončný, který však pro poměrně velké jeho rozměry zde reprodukovati nelze. Dle theorie Richarzovy jest účinek zahřátí na teplo specifické u těch prvkủ pevných větši, při nichž prủměrná vzdálenost atomová jest menši. Poněvadž pak odlehlost atomová zahřátim roste, stává se při vyššich teplotách teplo specifické pro proky pevné stálejšim, tak že zákon Dulong-Petitủv se spíše osvědčuje.

Rûznosti tepla specifického u některých kovů ukázal Tyndall pěkným pokusem v obr. 60. znázorněným. Pět kouli stejného objemu (na př. $20.6 \mathrm{~cm}^{3}$), ale rủzného materiálu (železo, měd, cin, olovo, vismut), nastrčí se na železný hvězdovitý držák a vloži se do lázně vodní, kdež se zahřeji až do varu vody na 100°. Na to se z lázně vytáhnou, rychle na pijavý papír položi, aby malé kapky vody se vyssály, a pak se z držáku (krátkým otočením) spustí na desku paraffinovou vhodné tlouštky

[^61]$\left(1^{1 / 2} \mathrm{~cm}\right)$. Ihned jest pozorovati, jak koule do paraffinn zapadaji; některé z nich (železná, měděná) záhy propadnou, jiné (cinová) zapadnou do polovice, ale již skrze paraffin nepropadnou, ostatní konečně (olověná, vismutová) jen málo se do paraffinu vnoři. Tim jest naznačeno, že se uvolni ochlazováním kouli na teplotu sině různé množství tepla.

Pro prímỳ vztah k teplu specifickému bylo by vẙhodné. miti koule stejné vaihy, ale také stejného vnéjisiho objemu, aby stejné hluboko do do paraffinu zapadajice, rozponstcly stejné množstri paraffinm; toho by se dalo dociliti, kdyby koule byly více ménč duté. Jinak nutno s pokusem spojiti počet, t. j. pro danỳ objem, na pr. $V=206 \mathrm{~cm}^{3}$ stanoxiti, mnoho-li kalorii tyto koule vydaly pri ochlazeni ze $100^{\prime \prime}$ na teplotu sínč. na pĩ. 20°, tedy propočtati výraz VSC $(100-20)$. kdez jest S lmota speeitickii a O prómérné teplo specifické r intervallu $100^{\circ} \ldots 20^{\circ}$. Poćet divai vívledky misledujici :

Ċíselná data pro pokus Tyndallův.

Kov		α	S	C	$\operatorname{VSC}(100-20)$
Zelezo .	Fe	55.9	$7 \cdot 8$	$0 \cdot 116$	1491
Mad.	Cu	$63 \cdot 6$	$8 \cdot 9$	0.094	1379
Cion	Sn	$119 \cdot 0$	7.3	$0 \cdot 056$	674
Olovo .	Pb	206.9	113	0.031	577
Vismut	Bi	208.5	$9 \cdot 8$	0.030	485

Koule médéná jsouc lépe tepelné vodivou, propadne drive nez̃ żeleznà. aç vydavá kalorii ménẽ. Nékterf. modifikujice experiment, dosazuji kovové vilce na misto koulf, a nechaji válee zapadati do paraffinové decky rertikalné postavené.

Pro teplo specifické na jednotku oljcmu vzlahorané (nebo i na stejny̆ objem vûbec) uz̄ívaji mnozí názvu steplo relationíe. nảzvu zbytećného a nevhodného, ponévadž slovo relativní - vždy uz̄ivané oproti sloru ahsolutni - znaci vztah neb pome̛r k jiné veličiné sourodé.

§ 72. Zảkon Neumannův.

Co jest váha atomová a u prokủ, to jest analogicky váha molekulová μ u sloučenin; dle toho maji též součiny eCC a μC výzuam analogický jakožto teplo atomové a molekulové, udávajice, kolik kalorii k zahřáti o 1 stupeň vyžadují gramm-atom a gramm-molekula. Zakon Dulong-Petitův z roku 1819 stanovil teplo atomové jakožto (přibližně) stálé. Podobnỷ zákon vyslovil
roku $1831 F$. E. Neumann*) o teple molekulovém. U sloučenin složeni souhlasného jest teplo molekulové stálé. U sloučenin o většim počtu n atomủ jest teplo molekulové větši. Kdyby stálost tepla atomového trvala i ve sloučeninách skupenství pevného. platila by relace

$$
\mu C=n \cdot 6 \stackrel{2}{2}
$$

Zákon tento zkoumal zejména Regnault, jenž pro velmi četné sloučeniny skupenství pevnélo určil teplo specifické a pak výsledky dle jednotlivých typû těchto sloučenin srovnával. V následujicich tabulkách, dle takovýchto typů uspořádaných, jsou sestaveny hodnoty C tepla specifického, jak je Regnault obdržel, k nim jsou připojeny váhy molekulové μ, jak se nyní dle usneseni internacionálniho komitétu pro váhy atomové dle $O=16$ vseobecně přijimají a konečně jest (nově) počitáno teplo molekulové μC, jakož i prủměrné jeho hodnoty, jednotlivým těm typủm pevných slončenin přislušné.

Číselná data pro zákon Neumannúv.

Typus: RO.

Kysličnik		C	${ }^{\mu}$	${ }^{\prime} \mathrm{C}$
hořečnatý	MgO	0.24394	40:36	$9 \cdot 84$
manganaty	MnO	$0 \cdot 15701$	71.0	$11 \cdot 15$
nikelnaty	NiO	$0 \cdot 15880$	74.7	$11 \cdot 86$
mědnaty	CuO	$0 \cdot 14201$	$79 \cdot 6$	$11 \cdot 30$
zinečnaty	ZnO	$0 \cdot 12480$	$81 \cdot 4$	$10 \cdot 16$
rtufnaty .	HgO	$0 \cdot 05179$	216.0	$11 \cdot 19$
olovnatý	Pbo	0.05119	$222 \cdot 9$	11.39
		Prủměr		$10 \cdot 98$

5) Franz Ernst Netumanu (1798-1895), vynikajici mineralog a fysik, professor na universitẽ v Krälovei, kdez̃ se roku 1826 habilitoval a kdez̃ takẻ po celỹ svůj żivot pûsobil jako professor honorarius, dosáhnuv vzácnẻho vêku 97 let. Přislus̃né pojednåni (Ueber die specif. Wärme verschiedener Mineralien) vysilo v Pogg. Ann. 23, pag. 32, 1831.

Typus: RO_{2}.

Kysličník		C	μ	$\mu \mathrm{C}$
titaničitý . . cíničitý	$\begin{gathered} \mathrm{TiO}_{2} \\ \mathrm{SnO} \end{gathered}$	$\begin{aligned} & 0 \cdot 17032 \\ & 0 \cdot 09326 \end{aligned}$	$\begin{array}{r} 80 \cdot 1 \\ 151 \cdot 0 \end{array}$	$\begin{aligned} & 13.64 \\ & 14 \cdot 08 \end{aligned}$
		Prủměr		$13 \cdot 86$

Typus: RO_{3}.

Kysličnik		C	u	$\mu \mathrm{C}$
molybdenový wolframový	MoO_{3}	0.13240	$144 \cdot 0$	$19 \cdot 07$
WO_{3}	$\overline{0.07983}$	$232 \cdot 0$	$18 \cdot 52$	

Typus: $\mathrm{R}_{2} \mathrm{O}_{3}$.

Kysličnik		C	μ	μC
chromitý . .	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$0 \cdot 17960$	$152 \cdot 2$	$27 \cdot 34$
železitý . . .	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$0 \cdot 17000$	$159 \cdot 8$	$27 \cdot 17$
arsénový . .	$\mathrm{As}_{2} \mathrm{O}_{3}$	$0 \cdot 12768$	$198 \cdot 0$	$25 \cdot 28$
antimonový .	$\mathrm{Sb}_{2} \mathrm{O}_{3}$	$0 \cdot 09009$	$288 \cdot 4$	$25 \cdot 98$
vismutový.	$\mathrm{Bi}_{2} \mathrm{O}_{3}$	$0 \cdot 06053$	$465 \cdot 0$	$28 \cdot 15$

Typus: RS.

Sirnik		C	μ	μC	
železnatý . .	FeS	0.13570	87.96	11.94	
nikelnatý . .	NiS	0.12813	90.76	11.63	
kobaltnatý	.	CoS	0.12512	91.06	11.39
zinečnatý . .	ZnS	0.12303	97.46	11.99	
cinatý...	SnS	0.08365	151.06	12.64	
rtutnatý	..	HgS	0.05117	232.06	11.87
olovnatý	.	PbS	0.05086	238.96	$12 \cdot 15$

Typus: RS_{2}.

Disulfid		C	"	$\mu \mathrm{C}$
železa (pyrit) molybdenu cinu (sirnik ciničitý)	$\begin{gathered} F e S_{2} \\ M o S_{2} \\ S n S_{2} \end{gathered}$	$\begin{aligned} & 0 \cdot 13009 \\ & 0 \cdot 10670 \\ & 0 \cdot 11932 \end{aligned}$	$\begin{aligned} & 120 \cdot 02 \\ & 160 \cdot 12 \\ & 183 \cdot 12 \end{aligned}$	$\begin{aligned} & 15 \cdot 61 \\ & 17.09 \\ & 21.85 \end{aligned}$
		Prủměr		$18 \cdot 18$

Typus: RCl.

Chlorid		C	4	μC
$\begin{aligned} & \text { mědičnatý } \\ & \text { rtutičnatý . . } \\ & \text { draselnatý } \\ & \text { lithnatý . . . } \\ & \text { sodnatý . . . } \\ & \text { střibrnatý . . } \end{aligned}$	CuCl	$0 \cdot 13827$	99.50	$13 \cdot 70$
	HgCl	$0 \cdot 05205$	235.45	12.26
	KCl	0.17295	$74 \cdot 60$	12.90
	LiCl	$0 \cdot 28331$	$42 \cdot 48$	12.03
	NaCl	$0 \cdot 21401$	58.50	12.52
	AgCl	0.09109	$143 \cdot 38$	13.06
		Prủměr		12.75

Typus: RCl_{2}.

Chlorid		C	μ	$\mu \mathrm{C}$
hořečnatý . .vápenatýstrontnatýbarnatý . .zinečnatý . .cínatýrtutnatý . . .olovnatýmanganatý	MgCl_{2}	0.19460	95.26	18.54
	CaCl_{2}	$0 \cdot 16420$	111.0	18.23
	SrCl_{2}	$0 \cdot 11990$	158.5	19.00
	BaCl_{2}	$0 \cdot 08957$	$208 \cdot 3$	18.66
	ZnCl_{2}	$0 \cdot 13618$	136.3	18.56
	$\mathrm{SnCl} \mathrm{S}_{2}$	$0 \cdot 10161$	189.9	$19 \cdot 30$
	HgCl_{2}	0.06889	$270 \cdot 9$	18.66
	PbCl_{2}	0.06641	$277 \cdot 8$	18.45
	MnCl_{2}	$0 \cdot 14250$	125.9	17.94
		Prủměr		18.59

Typus: RJ.

| Jodid | | C | μ | $u C$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| mědičnatý . . | CuJ | 0.06869 | 190.45 | 13.08 |
| rtutičnatý . . | HgJ | 0.03949 | 326.85 | 12.91 |
| sodnatý . . . | NaJ | 0.08683 | 149.90 | 13.02 |
| draselnatý . | KJ | 0.08191 | 166.00 | 13.60 |
| střibrnatý . . | AgJ | 0.06159 | 234.78 | 14.46 |
| | | $\overline{\text { Prùměr }}$ | | 13.41 |
| | | | | |

Typus: RJ_{2}.

Jodid		C	μ	$\mu \mathrm{C}$
rtutnaty olovnatý	$\begin{gathered} \mathrm{HgJ}_{2} \\ \mathrm{PbJ}_{2} \end{gathered}$	$\begin{aligned} & 0.04197 \\ & 0.04267 \end{aligned}$	$\begin{aligned} & 453 \cdot 7 \\ & 460 \cdot 6 \end{aligned}$	$\begin{aligned} & 19 \cdot 04 \\ & 19 \cdot 65 \end{aligned}$
		Průměr		$19 \cdot 35$

Typus: RNO_{3}.

Dusič̌nan		C	μ	${ }_{\mu} C$
```draselnatý sodnatý střibrnatý.```	$\mathrm{KNO}_{3}$	$0 \cdot 23875$	$101 \cdot 19$	24-16
	$\mathrm{NaNO}_{3}$	$0 \cdot 27821$	85.09	$23 \cdot 67$
	$\mathrm{AgNO}_{3}$	$0 \cdot 14352$	169.97	24.39
		Průměr		24.07

Typus: $\mathrm{RN}_{2} \mathrm{O}_{6}$.

Dusičǔan		C	${ }^{\mu}$	${ }_{\mu} \mathrm{C}$
```olovnatý barnatý . strontnatý```	$\mathrm{PbN}_{2} \mathrm{O}_{6}$	0.01100	330.98	36.41
	$\mathrm{BaN}_{2} \mathrm{O}_{6}$	$0 \cdot 15228$	$261 \cdot 48$	$39 \cdot 82$
	$\operatorname{Sr} \mathrm{N}_{2} \mathrm{O}_{8}$	0.1810	211.68	38.31
		Průměr		38.18

Typus: RSO_{4}.

Siran		C	${ }^{\mu}$	${ }^{\prime} C$
olovnatý barnatý strontnaty vápenatý hořečnatý	PbSO_{4}	0.08723	302.96	26.43
	BaSO_{4}	$0 \cdot 11285$	$233 \cdot 46$	26.35
	SrSO_{4}	$0 \cdot 14279$	183.66	$26 \cdot 21$
	CaSO_{4}	$0 \cdot 19656$	$136 \cdot 16$	26.76
	MgSO_{4}	$0 \cdot 22159$	$120 \cdot 42$	26.69
		Prúměr		2649

Typus: $\mathrm{R}_{2} \mathrm{SO}_{4}$.

Siran		C	$!$	μC
draselnatý	.	$K_{2} \mathrm{SO}_{4}$	$0 \cdot 19010$	$174 \cdot 36$
sodnatỳ ...	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$0 \cdot 23115$	$142 \cdot 16$	$33 \cdot 15$

Typus: RCO_{3}

Uhličitan		C	μ	$\mu \mathrm{C}$
barnatý . . .	BaCO_{3}	$0 \cdot 11033$	$197 \cdot 4$	$21 \cdot 79$
stroncianit .	SrCO_{3}	$0 \cdot 14483$	$147 \cdot 6$	$21 \cdot 38$
vápenec. . .	CaCO_{3}	$0 \cdot 20858$	$100 \cdot 1$	$20 \cdot 88$
arragonit . .	CaCO_{3}	$0 \cdot 20850$	$100 \cdot 1$	$20 \cdot 87$
bilý mramor	CaCO_{3}	$0 \cdot 21585$	$100 \cdot 1$	$21 \cdot 61$
sedý mramor	CaCO_{3}	$0 \cdot 20989$	$100 \cdot 1$	$21 \cdot 01$
křida	CaCO_{3}	$0 \cdot 21485$	$100 \cdot 1$	$21 \cdot 51$
と̌eleznatý . .	FeCO_{3}	$0 \cdot 19345$	$115 \cdot 9$	$22 \cdot 42$

Typus: $\mathrm{R}_{2} \mathrm{CO}_{3}$.

Uhličitan		C	μ	${ }^{\prime} C$
```draselnatý . sodnatý . . . rubidia . . ```	$\begin{aligned} & \mathrm{K}_{2} \mathrm{CO}_{3} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3} \\ & \mathrm{Rb}_{2} \mathrm{CO}_{3} \end{aligned}$	$0 \cdot 21623$	$138 \cdot 3$	29.91
		$0 \cdot 27275$	106.1	$28 \cdot 94$
		$0 \cdot 123$	$230 \cdot 8$	$28 \cdot 39$
		Průměr		29.08

$$
-202-
$$

Tabulky právě uvedené obsahuji materiál, jenž sice vzhledem k velikému počtu rozmanitých sloučenin chemických - jest relativně jen skrovný, ale přece dostatečný, abychom mohli o zákonu Neumannově sobě učiniti úsudek.

Srovnáváme-li předevšim teplo molekulové jednotlivỷch látek pro určitý typus, na př. chloridû neb siranủ aneb uhličitanů atd., pozorujeme vesměs shodu dobrou, jistě neméně dobrou než v zákonu Dulong-Petitově. Dle toho lze připustiti, že stálost tepla molekulového u sloučenin souhlasných se osvědčuje velmi dobře. Když však z průměrných hodnot a z počtu $n$ všech atomů, jež jsou ve slončeninách rủzných typủ obsaženy, počitáme prủměrné teplo atomové, tedy hodnotu $\frac{\mu C}{n}$, vycházeji čisla někdy dosti souhlasná s hodnotou 62 , jak ji dává zákon Dulong-Petitův, někdy však značně menši. Výsledky pro jednotlivé typy jsou sestaveny v tabulce následujicí.

Teplo atomové v zákonu Neumannově.

Sloučeniny	Formy	Teplo molekulové	Násobek atomového tepla	$\begin{aligned} & \text { Teplo } \\ & \text { a tomové } \end{aligned}$
Kysličníky	RO	10.98	2. $5 \%$	55
, .	$\mathrm{RO}_{2}$	13.86	3. 46	$4 \cdot 6$
" .	$\mathrm{RO}_{3}$	18.80	4. 477	$4 \cdot 7$
" .	$\mathrm{R}_{2} \mathrm{O}_{3}$	26.78	5. $5 \cdot 4$	$5 \cdot 4$
Sirniky	RS	11.94	2. 6.0	60
,	$R S_{2}$	18.18	3. $6 \cdot 1$	$6 \cdot 1$
Chloridy kovů	RCl	12.75	2. 6.4	$6 \cdot 4$
	$\mathrm{RCl}_{2}$	18.59	3. $6 \cdot 2$	6.2
Jodidy kovů .	$R \cdot J$	13.41	2. 67	6.7
$\Rightarrow \quad \pi$.	$R J_{2}$	$19 \cdot 35$	3. 6.5	6.5
Dusičǐany .	$\mathrm{RNO}_{3}$	24.07	5. 48	$4 \cdot 8$
"	$R \mathrm{~N}_{2} \mathrm{O}_{6}$	$38 \cdot 18$	9 . $4 \cdot 2$	$4 \cdot 2$
Sírany	$\mathrm{RSO}_{4}$	26.49	6. $4 \cdot 4$	$4 \cdot 4$
*	$\mathrm{R}_{2} \mathrm{SO}_{4}$	33.00	7. $4 \cdot 7$	$4 \cdot 7$
Uhličitany .	$\mathrm{RCO}_{3}$	21.43	5. $4 \cdot 3$	$4 \cdot 3$
	$\mathrm{P}_{2} \mathrm{CO}_{3}$	29.08	6. $4 \cdot 8$	$4 \cdot 8$
		Průměr		$5 \cdot 33$

Prủměrná hodnota 5.33 tepla atomového, jak ve smyslu zákona Neumannova vycházi z tepla molekulového, jest tedy značně menši. než hodnota 6.2 ze zákona Dulong-Petitova plynouci.

Mužeme tudiž závěrečný úsudek shrnouti slovy: Vztah zákona Neumannova

$$
\mu C=\mathrm{const}
$$

osvědčuje se dobře pro sloučeniny pevné určitého typu; neosvědčuje se však vztah

$$
\text { const }=n \cdot 6 \cdot 2
$$

ježto na misto 6.2 vycházi povšechně hodnota menši.

## § 73. Zảkon Joule-Koppův.

Neshodu právě vytčenou hleděl Joule (1844) a po něm Kopp (1864) odstraniti takovou všeobecnějši interpretaci tepla molekulového $\mu C$, kteráž, nevylučujíc v jednotlivých případech platnost zákona Neumannova, hledi pro případy odchylné, jež jsou častěǰ̌si, nalézti vysvětleni. Vzhledem $k$ některým velmi značným odchylkám od zákona Dulong-Petitova upoušti se vủbec od představy, že by teplo atomové pevných prvků bylo stálým; připoušti se jen, že jest pro muohé proky souhlasným, ale jinak že jest každému prvku určité atomové teplo vlastním. Tim padá zákon Dulong-Petitův o stálosti tepla atomového. Každý prvek má své vlastni teplo atomové; ve sloučeninách však vstupuje toto teplo jakožto veličina additivní, podobně jako váha atomová. Teplo molekulové jest dle toho summou tepel atomových právě tak, jako váha molekulová jest summou vah atomových. To jest podstata zákona Joule-Koppora. Je-li tedy v nějaké sloučenině obsaženo
od prvku 1 atomû $n_{1}$ o váze atomové $r_{1}$ a specif. teplu $C_{1}$,
jest
aneb symbolicky

$$
\begin{gathered}
\mu=\sum_{1}^{k} n_{k} \ell_{k}, \\
\mu C=\sum_{1}^{k} n_{k} \varepsilon_{k} C_{k}
\end{gathered}
$$

Jde pak o to, stanoviti atomové teplo jeduotlivých prvkủ tak, aby molekulové teplo pevných sloučenin přisluš̃ou addici tepel atomových vypočtené souhlasilo s teplem molekulovým, jak je dávaji skutečná pozorovảní.

Ziakon o additivnosti tepel atomorych nyslovil (1844) promi J. Joule *), avsak kdo zaikon ten propracoral jak cetnỳmi poknsy tak i pristusnỳmi vỳpoćty, byl $H$. Kopp ${ }^{* *}$ ). Tỳz prijal pro celou radu prikù atomové teple $6 \cdot 4$ : jsou to proky $A g, A l, A s, A u, B a, B i, B r, C a, C d, C l, C o, C r$, $\mathrm{Cu}, \mathrm{Fe}, \mathrm{Hg}, \mathrm{Jn}, \mathrm{Jr}, \mathrm{J} . \mathrm{K}, \mathrm{Li}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{N}, \mathrm{Na}, \mathrm{Ni}, \mathrm{Os}, \mathrm{Pb}$,
 urçiti atomové teplo prrkŭ $B, C, F, H, O, P, S, S i$, (nepocitajic ty proky, jez̃ tehda znamy nehyly, jako $A$, C's, He. Ne. Ra, $U, X$ ). Tyto neznámé urçl Kopp z onoho prúmérného tepla molekulového jednotlivých typú sloučenin, a to na zãkladé zaikona Joule-ova, napied prijatého. Tak na pr. atomové teplo kysliku $O$ ve sloučeninách pernȳch z onéch prümérnych êisel, jež jsme v predeslém ss sestavili pro oxydy typu $R O, R O_{2}, R O_{3}$, $R_{2} O_{3}$. Odecteme-li pro radikal $R$ dle nynçjilio stavu vè ci hodnotu $6 .{ }^{2}$ (Kopp 6.4), obdrżime pro $O$ dle typu

$R O$	$10 \cdot 98-6 \cdot 9$	$O=4 \cdot 78$
$R O_{2} \ldots 13 \cdot 86-6 \cdot 9$	$=7 \cdot 66,: 2$	$0=3 \cdot 83$
$R O_{3} \ldots 18 \cdot 80-6 \cdot 2=12 \cdot 60.3$	$0=4 \cdot 20$	
$R_{4} O_{3} \cdots 26 \cdot 78-19 \cdot 4$	$=14 \cdot 38 .: 3$	$O=4 \cdot 79$
Prủmér	$O=4 \cdot 40$	

Kopp prijal (dle $6 \cdot 4$ ) hodnotu pro $0,4.0$. Podobnẏm postupem urçil Kopp pro nisledujici proky teplo atomové.

$B \ldots \cdot \cdot 7$	$O \ldots 4 \cdot 0$
$C \ldots 1 \cdot 8$	$P \ldots 5 \cdot 4$
$F \ldots 5 \cdot 0$	$S \ldots 5 \cdot 4$
$H \ldots 2 \cdot 4$	$S i \ldots 3 \cdot 8$.

Jakmile zpúsobem naznačeným tepla atomová pro všechny proky byla doplnẻna a to na základẽ znamých tepel molekulovy̌ch některych typů slouçenin dle zảkona Joule-ova napred prijatého, bylo lze pro jiné typy slouçenin teplo molekulové napred rypocisti.

Jest pravda, ze v neẻterẏch pŕpadech je shoda prekrapujici. Tak na pr̂. u chloridủ, typu $R C l_{2}$ i typu $R_{2} C_{3}$; avšak to jsou sloučeniny, které také dobre vyhovuji zaikonu Neumannovu. Anebo na pĩ. chlorečũan draselnatẏ $\mathrm{KClO}_{3}$. Výpočet dávi, dle Koppa,

[^62]
Teplo molekulové póitané
\[

$$
\begin{array}{cc}
24-8: 122 \cdot 6= & 0.202 \\
\text { (Regnault) } & 0209 \\
\text { (Kopp) } & 0 \cdot 194 .
\end{array}
$$
\]

Ale y jinǧch pripadech jsou zase odchylky velike. Zejména u vodika. Pro perný vodik nalezeno v nejnovejisi dobs teplo atomove velmi blizce 60 . dobrém souhlasu se zaikonem Dulong-Petitorym. Kopp nalezl -23. Za to dobre souhlasi vysledek vypocteny pro krystallickon vodn $H_{\mathrm{a}} \mathrm{O}$ v jednotlivych solich obsaženou. (na pr̂. u mmohy̌ch siranū). pro niz̀ vychaizi specifické teplo blizce 0.5 r souhlasu velmi dobrém s primy m urexim.

Zákonu Joule-Koppově lze dáti formulaci, kteroǔ̆ additivnost tepelná, jež jest jeho podstatou, ještě lépe vynikne. Znači totiž $e C, u C$ tepelnou kapacitu gramm-atomn a gramm-molekuly. Lze tudiž řici: Kapacita gramm-molekuly pevných sloučenin jest součtem kapacit gramm-atomú v ni zastoupených.

## § 74. Zákon o slitinách.

Zákon Joule-Koppûv ve formulaci právě uvedené osvědčuje se velmi dobře u slitin, a to ve významn jestě všeobecnějšim: nebot kovy lze slévati nejen $v$ určitých poměrech, daných vahami atomovými, jako u chemických sloučenin, nýbrž i v poměrech libovolných.

Slejeme-li $M_{1}$ grammû kovu I. a specit. teple $C_{1}$

$$
\begin{array}{lcccc}
\text { a } M_{2} & \pi & \text { II. } & = & - \\
\text { obdržíme }\left(M_{1}+M_{2}\right) & \text { slitiny } & n & \Rightarrow & C .
\end{array}
$$

Dle zakona o additivnosti tepelných kapacit mame ihned

$$
\left(M_{1}+M_{2}\right) C=M_{1} C_{1}+M_{2} C_{2}
$$

čili

$$
C=\frac{M_{1}}{M_{1}+M_{2}} C_{1}+\frac{M_{2}}{M_{1}+M_{2}} C_{2}
$$

Klademe-li stručně

$$
\begin{gathered}
\frac{M_{1}}{M_{1}+M_{2}}=x, \quad \frac{M_{2}}{M_{1}+M_{2}}=y \\
x+y=1
\end{gathered}
$$

tak že
znači koefficienty $x, y$ (na pǐ. v procentech) poměrné zastoupeni obon kovů ve slitině. Máme pak jednoduše

$$
C=x C_{1}+y C_{2}
$$

t. j. ke specif. teplu slitiny přispivá každỵ kov svým teplem specifickým dle svého poměrného zastoupení.

V grafickém znázorněni (obr. 61.) vynikne pravidlo ještě lépe. Naneseme-li na délku 1 (libovolnou) 100 dilců (procent), a na začátku (0) teplo specif. $C_{1}$ a na konci (100) teplo specif. $C_{a}$ a spojíme-li konce pořadnic $C_{1}$ a $C_{2}$ přimkou, udává pořadníce $C$ vatyčená $v$ odlehlosti $y$ od nullového bodu (čili $x$ od bodu 100) ihned teplo specifické slitiny.


Obr. 61.
Specifickẻ teplo slitin.

Zákon o slitinách poznal již Regnault a dokázal jeho platnost na některých slitinách. Obr. 61. kreslen jest pro slitiny olova ( $C_{1}=0.031$ ) a cinu ( $C_{2}=0.052$ ). Kdybychom kovy tyto slévali dle poměru vah atomových, utvořice slitinu PbSn , bylo by

$$
\begin{aligned}
& x=\frac{206 \cdot 9}{206 \cdot 9+119 \cdot 0}=0.635 \text { čili } 635 \% \\
& y=\frac{119 \cdot 0}{206 \cdot 9+119 \cdot 0}=0.365 \quad, \quad 365 \%
\end{aligned}
$$

Počtem vychází (viz též obrazec)

$$
C=0.635 .0 .031+0.365 .0 .052=0.0387
$$

Regnault nalezl

$$
C=0.0407
$$

Při většim počtu slévaných kovû jest všeobecněji
kdež jest

$$
C=x C_{1}+y C_{2}+z C_{3}+\ldots
$$

$$
x+y+z+\ldots=1
$$

Velmi zajimavou applikaci tohoto zakona o slitinách nalezl Winkelmann *) pro rozmanité druhy skel. Souçistly rủzny̌ch skel a jich tepla specificka jsou následujici:

ZnO	$0 \cdot 1248$	BuO	$0 \cdot 06728$
$\mathrm{B}_{2} \mathrm{O}_{3}$	$0 \cdot 2374$	$\mathrm{MH}_{2} \mathrm{O}_{3}$	0-1661
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.2074	$\mathrm{NeH}_{2} \mathrm{O}$	02674
$\mathrm{SiO}_{\mathrm{a}}$	$0 \cdot 1913$	$K_{2} \mathrm{O}$	$0 \cdot 1860$
$\mathrm{As}_{2} \mathrm{O}_{5}$	$0 \cdot 1276$	$L_{2} \mathrm{O}$	0.5497
PbO	$0 \cdot 05118$	CaO	0.1903
MgO	0-2439	$\mathrm{Pb}_{2} \mathrm{O}_{5}$	0-1902

Urc̈i-li se pro urçitý druh skla zastoupenf jednotlivych téchto látek v procentech ( $x, y, z, \ldots$ ), lze dle vzoru pro slitiny uredeného teplo specifické skla poc̃́tati. Na pr̃. pro normálni sklo teplomẽrné (Jenské, tovirni značka $16^{\text {iII }}$ ).


Rozdil mezi pozorováním a výpoćtem jest tedy vskutku maly̆. Winkelmann vyšetioval podobné 18 druhtu rîzných skel, a jen ve drou prípadech byla odchylka mezi pozorovainím a poctem vétsí než 1 procento, jinak v 16 ti pripadech mensi. Souvislost mezi specif. hmotou jevila se jen v hlavním rysu: pîi vési specifické hmoté jest teplo specifické mensí (srovnej \& 69.), ale ukazovaly se téz od tohoto pravidla znaenéjsi vijimky.

Podobnỳ zákon jako o slitinách platí téz o amalgamech.

## § 75. Jak se uživá výsledků kalorimetrických k účelům thermometrickým a chemickým.

V oddilu o thermometrii, v § 23., bylo již o kalorimetrickém měření teploty jednáno. Měření toto zakládá se na rovnici pro methodu směšovaci

$$
M C\left(t_{2}-\tau\right)=m c\left(\tau-t_{1}\right)
$$

*) Adolf Winkelmann (* 1848), nyni prof. na univ. Jenské. Přislus̃né po-
jednáni (Specir. Wärmen versch. Glaser) viz Wied. Ann. 49, pag. 401, 1893.

Jsou-li v této rovnici veličiny kalorimetrické známy, lze z ní počitati jednu z veličin thermometrických, totiž $t_{\mathrm{q}}$, teplotu, na kterou tĕleso $M$ bylo zahřáto, poněvadž teploty $t_{1}$ a $\tau$ lze přímo odečisti. Při tom dlužno jinak šetřiti všech kalorimetrických pravidel, pro methodu směšovací platnẏch. Zejména dlužno do $m$ započisti mimo hmotu vody v kalorimetru též vodní hodnoty kalorimetru, michačky i teploměru. Pr̆i tom značí $C$ střední teplo specifické v intervallu $t_{2} \ldots \tau$. Methody se uživá hlavně kstanoveni teplot $t_{\alpha}$ velmi vysokẏch. K tomn účelu voli se vhodně za těleso pevné platina (platinové válečky nebo malé koule), poněvadž jeji teplo specifické se s teplotou měni málo a pravidelně. Méně dobře hodilo by se k cili tomu železo, jehož teplo specifické při vyššich teplotách se měni nepravidelně. Spíše pak ještě nikl. Kalorimetru dlužno dáti formu takovou, aby vystřikování vody při vhozeni rozžhaveného tělesa bylo zamezeno. Užívá-li se vždy téhož válečkı, na př. platinového, lze také voliti vždy stejné množstvi vody stejně temperované, načež moz̆no výpočet teploty $t_{2}$ usnadniti tabulkami napřed vypočitanými. Anebo se múže k teploměru kalorimetrickému připojiti pošinovatelná stupnice, která dle pozorované teploty $\tau$ ihned udá teplotu $t_{2}$. Přístroje takto zařizené zovou se pyrometry vodní.

Pozoruhodno jest, že lze methody této použiti též ke stanoveni teplot $t_{2}$ velmi nizkých.

Závažným zdrojem chyb jest vypařováni kapaliny kalorimetrické, jehožto účinek dlužno zvlášf vyšetřiti.

Dalšiho užiti připouštěji výsledky a zákony kalorimetrické při otázkách chemických, jež se týkají bud vah atomových nebo molekulových. Jakožto přiklad takové applikace uvádí Chucolson následujíci. Pro chlorid india přijímala se dřive formule $I n C l_{\underline{g}}, \mathrm{z}$ niž plynula atomová váha $I n=76$. Tato se však nehodila do periodického systému; proto Mendélějev přijal formuli $\mathrm{InCl}_{3}$, z nǐ̌ vycházela váha atomová $\mathrm{In}=114$. Správ nost této volby byla potvrzena teplem specifickým india, pro kteréž nalezeno $C=0.057$. Počitá-li se atomové teplo c $C$, vyjde pro $\varepsilon=76$ hodnota 43 , pro $\alpha=114$ hodnota 65 , jež se daleko lépe shoduje s atomovým teplem zákona Dulong-Petitova Zajimavo jest poznamenati, že také jiná methoda fysikálni potvrdila správnost váhy atomové 114 , totiž methoda transparence latek paprsky X-ovými. Že tato prostupnost je funkce váhy atomové, bylo dokázáno krátce po objeveni paprskủ X-ových
pracemi. jež v Praze vykonali (roku 1896) prof. Karel Kruis, Dr. Vlad. Novák a Dr. O. Šulc. Stejnou práci podnikl L. Benoist roku 1901, tedy o 5 let později, a stanovil na základě grafického znázornění pro indium váhu atomovou 113.4 (nikoli 76) *).

Budtež ještě uvedeny př̌iklady velikého tepla specifického u těles pevných. Největši má pevný vodik, totiž 6 (Dewar). Velké teplo maji ebonit 0.339 , korek 0.485 a palmové dřevo 0.419 (Zinger a Ščegljajev).

## Kapaliny.

## § 76. Ủprava method kalorimetrických pro kapaliny.

Methody kalorimetrické, jež jsme seznali při stanoveni tepla specifického těles pevných, lze snadno tak upraviti, aby možno bylo použiti jich též ke stanoveni specifického tepla kapalin. Třeba jen kapaliny, jež nemají určitého tvaru, đáti do vhodných nádobek, jichž kalorimetrický učinek dlužno zvlášt uvésti v počet.

Při methodě směšovaci může touto nádobkou býti kalorimetr sám. Uživá se pak tělesa pevného, jehož teplo specifické prủměrné jest známo. Základni rovnice methody směšovaci (§ 64.)

$$
M C\left(t_{2}-\tau\right)=(m c+\mu \gamma)\left(\tau-t_{1}\right)
$$

má platnost i v tomto případě, jenom že pokládáme naopak $C$ za známé a počitáme $c$. Jest tudiž

$$
c=C \frac{M}{m} \cdot \frac{t_{2}-\tau}{\tau-t_{1}}-\gamma \frac{\mu}{m}
$$

Je-li dáno kapaliny jen málo, dá se do malé tenkostěnné baňky skleněné, zahřeje se a vnoři se do kalorimetra vodního, tak jako se to děje u těles pevných: vodní hodnotu skleněné baňky dlužno ovšem vzíti v počet. Baňka může míti formu velkého teploměru.

Když se takováto baňka $s$ delší trubičkou naplni rtutí a když se vypudi vzduch a trubička zataví, vznikne prístroj. velkému teploměru úplně podobný, kterého lze velmi pohodlné

[^63]uživati $k$ relativním měřením tepla specifického u kapalin. Na trubičce může býti dělení libovolné, ba postači, když jsou tam ve vhodné poloze jen naznačeny dvě čárky $m, m^{\prime}$ jako indexy. Tak jest upraven přístroj (obr. 62.), který se nazývá kalorifer. (Andrews, Marignac, Pfaundler.)

V lázni rtufové zahřeje se kalorifer, až rtut vystoupi nad značku $m^{\prime}$. Pak se z lázně vytáhne,


Obr. 62. čeká se, až rtuf chladnouc dojde značky $m^{\prime}$, vloží se do kalorimetru, v němž jest voda nebo jiná kapalina, a čeká se, až rtuf rychle chladnouc klesne ke značce $m$, načež se vytáhne ven. Značka $m^{\prime}$ odpovídá teplotě rtuti asi $100^{\circ}$, značka $m$ asi $25^{\circ}$.

Jest patrno, že při této manipulaci kalorifer odevzdá vždy totéž množstvi tepelné. Je-li v kalorimetru jednou voda o hmotě $m$, teple specifickém $c$ a začáteční teplotě $t$, jež stoupne na $\tau$, po druhé jiná kapalina o hmotě $m^{\prime}$, teple specifickém $c^{\prime}$ a začáteční teplotě $t^{\prime}$, jež stoupne na $\tau^{\prime}$, a je-li $\mu \gamma$ kapacita kalorimetru s michačkou (event. incl. teploměru), jest množství tepla kaloriferem odevzdaného

Kalorifer, jak

$$
\begin{array}{cccc}
\text { při 1. pokusu } & \ldots & (m c+\mu \gamma)(\tau-t), \\
\eta & 2 . & \# & \cdots \\
& \left(m^{\prime} c^{\prime}+\mu \gamma\right)\left(\tau^{\prime}-t^{\prime}\right) .
\end{array}
$$

jej udal Z rovnosti tepla jednoho i druhého plyne

Andrews.

$$
\frac{m^{\prime} c^{\prime}+\mu \gamma}{m c+\mu \gamma}=\frac{\tau-t}{\tau^{\prime}-t^{\prime}},
$$

z čehož lze počítati $c^{\prime}$, je-li známo $c$.
V okamžiku, když se horký kalorifer vloz̆i do kapaliny v kalorimetru, stáhne se náhlým ochlazením nádobka skleněnả kaloriferu, čímz̃ rtư prudce vystoupí nad značku $m^{\prime}$. (Srovnej $\$ 30$.) Kdyby při tom uvázla v ampulle nad značkou, nutno ji sklepati dolủ. Vhodné rozměry kaloriferu navrhuje L. Pfaundler; nádobka má průměr 44 mm , obsáhne rtuti 606 grammủ; mezi značkami $m$ a $m^{\prime}$ jest 6.8 grammu rtuti. Přistroj udal Andrews (1845) a to se značkou jen hořejši; mẻl se nechávati v kalorimetru, až by se dosáhlo vyrovnání teplot, coz̃ ovs̃em poněkud déle trvả. Zavedením druhé značky se pokus zkrátí. Název „kalorifer" zavedl *) Hirn (1870). Přístroj zdokonalil L. Pfaundler, jenż také v novêjś dobé **) ukȧzal, jak lze od-
*) Kombinuje se v nẽm latinské slovo calor, -is teplo s reckým qę̣由 přinásím.
**) Wied. Ann. 67, pag. 439, 1899.
 V prípadẻ tomto má totiz kalorifer, když se právé z kapaliny vyjme, různý objem. Když je závérečni teplota vysši, jest objem vétši, tak že rtut̂, klesnouc az̀ ke znaçce $m$, jest ochlazena méné a tudiźz vydala téz̃ méné tepla.

Vedle methody směšovací lze pro kapaliny zcela dobře použiti methody kalorimetru ledového, zejména Bunsenova a konečně též methody ochlazování.

## § 77. Kalorimetry elektrické.

Kaloriferem přivádíme ve dvou po sobě následujících pokusech dvěma kapalinám stejné množstvi tepla, jež jest určeno. stejnými výrazy:

$$
\left(m c+\mu_{\gamma}\right)(\tau-t)=\left(m^{\prime} c^{\prime}+\mu_{\gamma}\right)\left(\tau^{\prime}-t^{\prime}\right)
$$

Teplo můžeme však kapalinám přiváděti též elektrickým proudem. Kalorimetr k tomuto účelu zařizený nazývá se elelitrickým. Od obyčejného rozeznává se jenom tím, že uvnitř obsahuje spirálu ze vhodného drátu vinutou a připiatou ke dvěma silnějším drátům přívodním, jež končí svorkami. Je-li r odpor spirály, e potenciální rozdíl na svorkách, $I$ intensita proudu, jest práce elektrická za každou jednotku času (sekundu) dána součinem $e I$ (Voltampère) nebo též $r^{2} I$ (Watt), určujícím effekt pracovní daného proudu. Koefficientem $0 \cdot 239$ (§ 60.) přepočítáme tuto práci na gramm-kalorie. Pracuje-li tudiž proud po dobu $\Theta$ sekund, vznikne množství tepla $Q$, stanovené výrazem
čili

$$
Q=0.239 . e I \cdot \Theta
$$

$$
Q=0 \cdot 239 \cdot r^{2} I . \Theta
$$

Zahřeje-li se kapalina, jejíž tepelná kapacita jest $m c$, v kalorimetru o tepelné kapacitě $\mu \%, z$ teploty $t$ na $\tau$, vyjádří se teplo Q k tomu zahřátí spotřebované výrazem

$$
Q=(m c+\mu \gamma)(\tau-t)
$$

Když tedy jest do vedení proudového vepiat ampèremetr, udávající intensitu proudu $I$, a současně ve vedlejším spojeni ke kalorimetrické spirále připiat voltmetr, udávajicí rozdíl potenciální $e$, obdržíme

$$
(m c+\mu \gamma)(\tau-t)=0.239 \cdot e I \cdot \Theta
$$

jakožto základní rovnici této methody elektrické. Jest to methoda absolutní, poněvadž z veličin elektrických můžeme přímo počitati specifické teplo $c$ kapaliny.

Neni-li dána možnost veličiny elektrické e, $I$ měřiti, můžeme methodu elektrickou upraviti jako relativní, užívajíce dvou takových kalorimetrủ za sebou vepiatých se dvěma kapalinami, $z$ nichž jednou jest voda. Při tom jest nejjednodušším, aby byl odpor spirály v jednom i druhém kalorimetru stejný. V tomto připadě, poněvadž intensita proudu, při spojeni za sebou, jest za všech okolnosti stejná, vzniká v obou kalorimetrech proudem stejné množství tepelné $Q$, kteréž se jevi zahřátím obou kapalin i příslušných kalorimetrů. Máme pak rovnici

$$
\left(m c+\mu \gamma^{\prime}\right)(\tau-t)=\left(m^{\prime} c^{\prime}+\mu^{\prime} \gamma^{\prime}\right)\left(\tau^{\prime}-t^{\prime}\right)
$$

ze kteréž lze (podobně jako při methodě kaloriferem) počítati $c^{\prime}$, je-li c známo.

V podrobnostech dlužno při methodě elektrické absolutní i relativni pamatovati na některé zjevy vedlejši, jež na přesnost měřeni maji důležitý vliv. Při methodě relativní jsou spirály v kapalinách, s nimiž se zároven̆ oteplují; avšak odpor vodičủ kovových stoupá s teplotou. Děje-li se stoupání teploty v obou kapalinách rũzně, v jedné rychleji než ve druhé, jest odpor těchto spirál též rizný, a tudiž i teplo proudem vznikajicí. Základni podminka pokusu, stejnost tepla v obou kalorimetrech, není pak splněna. Obtiži této lze odpomoci, když se spirály voli $z$ takového materiálu, při němž jest odpor na teplotě téměř nezávislým. Tedy na pǐ. z konstantanu ( $60 \% \mathrm{Cu}$, $40 \% \mathrm{Ni}$ ) anebo ještě lépe z manganinu ( $84 \% \mathrm{Cu}, 12 \% \mathrm{Mn}, 4 \% \mathrm{Ni}$ ), který s mědi dává malý účinek thermoelektrický. Anebo se dle předběžného pokusu množstvi $m, m^{\prime}$ obou kapalin volí tak, aby, když jest téměǐ $t=t^{\prime}$, bylo přibližně $\tau=\tau^{\prime}$, tak že změna odporu v obou kalorimetrech jest pak stejnou. Jinak lze eventuální různost obou odporů přímo sledovati a určiti methodou Wheatstone-ova můstku a vziti pak v počet. Je-li na př. $r^{\prime}>r$, vznikne v druhém kalorimetru větší množství tepla v poměru $\frac{r^{\prime}}{r}$, kterẏžto poměr právě methoda Wheatstoneova mủstku přimo udává. Pracuje-li se absolutně, reaguje na stoupáni odporu i ampèremetri voltmetr; nutno pak pozorovati v pravidelných časových intervallech a vzíti v počet průměrné hodnoty pro e a $I$.

Jinou obtí̌̌ působi tepelný vliv okoli. Je-li o teplota sině, jest výhodno voliti teplotu $t$ menši než $\vartheta$ a zaříditi trvání pokusu tak, aby teplota $\tau$ závěrečná byla tolik nad teplotou $\vartheta$, jako byla počátečná pod touto teploton.

Konečně dlužno toho dbáti, aby kapalinou nevzniklo vedlejši spojeni proudu. U vody tato obava jest ovšem zbytečnou, jestit voda čistá téměř nevodičem proudu. Jinak záleží vše na dobré isolaci drátu. L. Pfaundler, jenž methodu elektrickou roku 1869 zavedl a od těch dob značně zdokonalil, odpomohl obtižím isolačním úplně tím zpủsobem, že vede proud spirálami skleněnými, jež jsou naplněny rtuti. Kdy̌̌ se pak dle předběžných pokusủ množství obou kapalin upraví tak, aby při stejné začáteční teplotě byla i konečná teplota u obou kapalin téměř stejná, a když se také odpory obou spirál stále kontroluji Wheatstone-ovým můstkem. dosáhne se veliké přesnosti, jak L. Pfaundler udává, větší, než jest přesnost odečteni temperaturnich. Užije-li se však thermočlánkû misto teploměrủ rtufových, lze pak celé relativní měřeni tepel specifických prevésti vesměs na veličiny elektrické, tedy na methody galvanometrické, jichž přesnost jest taková, jako přesnost váženi*).

## § 78. Výsledky.

Specifické teplo kapalin jest podobně jako těles pevných závislé na teplotě. Dlužno tedy i zde bud udávati specifické teplo prủměrné, pro určitý temperaturni intervall, anebo pravé, pro určitou teplotu. Jinak vyjadřuje se závislost na teplotě vzorci zcela analogickými jako u těles pevných. Zřidka jest vzorec jednoduchý, lineární, obyčejně kvadratický a i kubický, někdy s koefficienty též negativními, což poukazuje na to, že změna tepla specifického $s$ teplotou bývá někdy (jako na př. u anilinu) dosti nepravidelnou. Celkem teplo specifické u velké většiny kapalin s teplotou stoupá a to poněkud urychleně.

Tím pozoruhodnějši jest výjimečné postavení, jakéž v této příčině zaujímá rtut. Jak A. Winkelmann (1876) nalezl, klesá u rtuti teplo specifické se vzrůstající teplotou, a výsledek tento, zprvu překvapující, potvrdili Naccari (1888) a Milthaler (1889).

[^64]Středni hodnoty specifického tepla rtuti, odvozené z pozorování těchto tří badatelũ, jsou následujicí:

Specifické teplo rtuti, jak je určili Winkelmann, Naccari a Milthaler.

$t$	$C_{t}$	$t$	$C_{t}$
0	0.03	341	100
20	326	120	2503
40	312	140	241
60	298	160	228
80	284	180	214
100	269	200	200

Grafické zuázornění (jehož zde neuvádíme), dává přímku; ubýváni tepla specifického s teplotou děje se tedy lineárně a vyjádři se s přesností dostatečnou vzorcem

$$
C_{t}=0.03341-0.0000071 t .
$$

Střední hodnoty zde sestavené jsou přímo poćitány z dat, jez̃ jsou uvedena v tabulkách Landolt-Börnsteinových pag. 394, 1905. Vztahují se na teploměr vzduchový. Jednotlivě se výsledky od sebe odchyluji dosti značnẽ. Novější pozorování provedli Bartoli a Stracciati (1895) a Barness a Cooke (1902) a to dle teplomẽru vodikového, jenom zee v intervallu skrovném, $0^{\circ} \ldots 30^{\circ}$, resp. $0^{\circ} \ldots 85^{\circ}$. Jak se jejich výsledky pripojují k oněm starşim středním, objasñuje tabulka následujici:

Specifické teplo rtuti dle pozorování starších i novějších.

$t$	$C_{t}$	$C_{t}$	$C_{t}$
. ${ }^{\circ} \mathrm{C}$	Winkelmann Naccari a Milthaler	$\left\lvert\, \begin{gathered} \text { Bartoli } \\ \text { a Stracciati } \\ 1895 \end{gathered}\right.$	$\begin{gathered} \text { Barness } \\ \text { a Cook } \\ 1902 \end{gathered}$
0	0.03341	0.03358	0.03346
20	326	349	325
40	312		308
60	298		$\underline{294}$
80	284		284

Pozorovảní z roku 1895 ukazuji výsledky dosti značnẻ vẻtš̌í, avšak nejnovějši data, z roku 1902, souhlasí s tểmi, jež nahoře v tabulce jsou uvedena, velmi dobre.

Jinak lze povšechně říci, že změnou skupenství pevného v kapalné, táním nebo tavením, teplo specifické stoupne, někdy velmi značně. Příklady uvádi tabulka následující. Jsou v ní uvedeny některé (snadno tavitelné) kovy, některé nekovy a pak též známé sloučeniny.

Teplo specifické ve skupenství pevném a kapalném.

Lutka	Ve skupenstvi pevném		Ve skupenstrí kapalnėm		Rozdil	\%
	temp. intervall	$C$	temp.   intervall	C		
Rtut .	$-78 \ldots-40$	0.0319	0... 100	0.0331	0.0012	$3 \cdot 8$
Cin.	$0 . . .100$	0.0562	$250 \cdots 350$	0.0637	$0 \cdot 0075$	133
Vismut . .	.... 100	0.0308	$280 . .380$	0.0363	$0 \cdot 0055$	$179$
Olovo . .	o... 100	00314	$350 . .450$	0.0402	$0 \cdot 0088$	28.0
Brom . . .	$-8 \ldots-20$	0.0843	10... 48	0.1109	0.0266	$31^{\circ} 6$
Jod . . .	$0 . . .100$	0.0541	-	-.1082	0.0541	100
Fosfor	$10 \ldots 30$	0.1887	$50 . .100$	0.2120	0.0233	12.4
Fosfor . . Sira . . .	$\begin{array}{rrr}10 . . & 30 \\ 0 . . . & 100\end{array}$	0.2026	$120 . .150$	0.2340	0.0314	155
Voda .	pod $0^{\circ}$	0\%5020	0... 20	1.0000	0.4980	$99^{\circ}$
Chlorid váp. kryst.	pod $0^{\circ}$	0.3450	$33 \ldots 80$	0'5550	0\%2100	$60 \% 9$
$\begin{gathered} \text { Ledek } \\ \text { čilský . . } \end{gathered}$	o... 100	0.2782	$330 . .430$	0.4130	0.1348	$48 \cdot 5$
Ledek draseln.	o... 100	0.2388	$350 . .435$	0.3319	0.0931	$39^{\circ}$

Pozoruhodno jest velmi značné zvýšení tepla specifického tavením u ledu a jodu na hodnotu dvojnásobnou.

Data y této tabulce uvedená přijata jsou z Thermiky L. Pfaundlera r. 1898 ; zde pramen bližsi udán neni. Také v Thermice Dra. A. Winkelmanna (Handbuch der Physik III. 1906) jsou nêkterá souhlasná data uvedena bez udảní pramene. Soudic dle tabulek Landolt-Börnsteinových jsou to výsledky autorũ velmi různỵch. Nelze upriti, že v mnohých případech toto sestavení tabellární neuspokojuje. Aby úćinek taveni vynikl, mẻlo by vżdy hýti uvedeno praxé teplo specifickẻ $C_{t}$, jak jest pred bodem tavení a pak po bodu taveni, asi tak, jako jest tomu u ledu. Takto se však na př. n olova udává průměrné teplo specifické $0^{\circ} \ldots 100^{\circ}$, a potom prủmérné teplo specifické $350^{\circ} \ldots 450^{\circ}$, ač jest patrno, z̃e od $100^{\circ}$ do $330^{\circ}$
(bodu taveni) teplo specifické jeştě znaěně stoupá a podobné od $330^{\circ}$ do $450^{\circ}$; proto zmêna $28 \%$ nepřipadá jenom na účet zmẻny skupenství. Avšak dosavadní material pozorovací nestači, aby se způsobem naznačenỳm úcinek tavení dal zjistiti.

V novější době (1905) studoval $A$. Bernini zpủsobem právě vyžadovaným teplo specifické natria a kalia v okolí bodu tavení, t. j. $97.63^{\circ}$ pro natrium a $62.04^{\circ}$ pro kalium.

Ćíselné hodnoty jsou tyto :
Natrium

$$
\begin{array}{ll}
t=78 & \ldots \cdot 97 \cdot 63,
\end{array} \quad c=0.329 .1 . \quad c=0.333 .
$$

Kalium

$$
\begin{array}{lll}
t=56.5 \ldots & 62 \cdot 04, & c=0 \cdot 198 \\
t=62 \cdot 04 \ldots & 78 & \quad .
\end{array}
$$

Účinek taveni jest tedy u natria velmi malý, u kalia značnějši.
Zákon Neumannův a Joule-Koppův se u kapalin osvědčuje ještě méně než u těles pevných. Některé zákonitosti o teple molekulovém nalezeny u homologických a isomerních sloučenin organických. Buđtež uvedeny jen některé přiklady *). Alkoholy (nasycené) maji všeobecnou formuli $C_{n} H_{2 a+1} \cdot O H$. Stanovme pro ně teplo specifické $C$ a počítejme dle váhy molekulové $\mu$ teplo molekulové $\mu C$. Když stoupne $n$ o jedničku, vstoupi do sloučeniny pokaždé skupina $C H_{a}$, a přírủstek tepla molekulového činí (průměrně) $9 \cdot 69$. Podobně kyseliny mastné mají všeobecnou formuli $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$. Stanovme opět pro ně teplo specifické $C$ a počitejme dle váhy molekulové $\mu$ teplo molekulové $\mu C$. Ukazuje se zjev podobný. Stoupne-li $n$ o jedničku, vstoupí do sloučeniny pokaždé skupina další $\mathrm{CH}_{2}$, a přírůstek tepla molekulového činí (prûměrně) 8.38 . Ale tento přírủstek jest jiný než v přikladu předešlém, ač skupina $\mathrm{CH}_{2}$ jest tu i tam stejnou. Pozoruhodné pravidelnosti objevil $R$. Schiff *) pro estery těchto kyselin mastných, jež mají při téže teplotě teplo specifické stejné.
*) M. A. v. Reis, Wied. Ann. 13, pag. 447, 1881.
${ }^{* *}$ ) Lieb. Ann. 234, pag. 300, 1886.

## § 79. Specifické teplo kapalných směsí a roztoků.

Specifické teplo kapalných směsi lze někdy vypočísti dle pravidla směšovacího, podobně jako u slitin (§ 73.), ze vzorce

$$
C=x C_{1}+y C_{2}
$$

kdež čísla $x, y$ udávají procentuální zastoupení jednotlivých kapalin ve směsi, dle váhy, tak že jest

$$
\begin{gathered}
x=\frac{M_{1}}{M_{1}+M_{2}} \quad y=\frac{M_{2}}{M_{1}+\overline{M_{2}}} \\
x+y=1
\end{gathered}
$$

Zpủsob tento osvědčuje se na pĭ. u směsí chloroformu a sirouhliku, nebo chloroformu a benzinu, nebo sirouhliku a benzinu. Naproti tomu u směsí alkoholických, u kyselin a roztokủ solí výpočet takto provedený se skutečností nesouhlasí. Zajímavým toho dokladem jsou smèsi alkoholu aethylnatého s chloroformem nebo vodou. Následující tabulka udává výsledky, jakéž z pozorování i výpočtu obdržel Schüller (1869). Tabulka prvá vychází od chloroformu ( $C_{1}=0.2337$ ) a postupuje k alkoholu ( $C_{a}=0.602$ ), tabulka druhá vychází od vody $\left(C_{1}=1\right)$ a postupuje též k alkoholn ( $C_{2}=0.602$ ).

Specifické teplo směsí chloroformu s alkoholem aethylnatým.

$y$	$C$   pozorované	$C^{*}$   vypočtené	$\frac{C}{C^{*}}$
0	0.2337	0.2337	1.000
16.75	0.3348	0.2962	1.130
28.77	0.3919	0.3410	1.150
33.92	0.4130	0.4002	1.147
39.78	0.4315	0.3821	1.129
47.00	0.4539	0.4090	1.110
56.46	0.4841	0.4443	1.090
72.80	0.5331	0.5052	1.055
100	0.602	0.602	1.000

Specifické teplo směsí vody s alkoholem aethylnatým.

$y$	$C$   pozorované	$C^{*}$   vypočtené	$C$   $C^{*}$
0.0	1.0000	1.0000	1.000
14.90	1.0391	0.9424	$1 \cdot 103$
20.00	1.0456	0.9227	1.133
22.56	1.0436	0.9128	1.143
28.56	1.0354	0.8896	1.164
35.22	1.0076	0.8638	1.167
44.35	0.9610	0.8285	1.160
49.46	0.9162	0.8103	1.131
49.93	0.9096	0.8061	1.128
54.09	0.8826	0.7909	1.116
54.45	0.8793	0.7895	1.114
58.17	0.8590	0.7751	1.108
73.90	0.7771	0.7172	1.077
83.00	0.7168	0.6817	1.052
100	0.6020	0.6020	1.000



Specifické teplo směsi chloroformu s alkoholem aethylnatẏm a vody s alkoholem aethylnatým.

Daleko lépe než takovýmto tabellárním sestavením objasní se věc znázorněním grafickým (§73.). V obr. 63. přehlédneme ihned,
jak teplo specifické při nenáhlém přechodu od chloroformu k alkoholu, resp. od vody k alkoholu by se měnilo dle pravidla směšovaciho (podél přímky) a jak se měni skutečně. Hodnoty skutečné jsou vždy vyšší než vypočitané. Zejména jest pozoruhodno, že přidáváním alkoholu $k$ vodě se jeji teplo specifické značně zvyšuje až k maximu při $21 \%$, ačkoliv specif. teplo alkoholu jest značně menší než vody. Podobné výsledky nalezeny též u jiných alkoholů.

Neméně zajímavé jsou výsledky pro voduí roztoky solí. Také zde se u některých roztokủ osvědčuje pravidlo směšovaci, jako na př. u roztoků cukru, když se pro cukr (v roztoku) zavede specif. teplo 0.460 (Marignac). Ale v případech daleko četnějších shledává se, že teplo specifické skutečné jest od vypočteného odchylné, a to ve smyslu opačném než dříve, že jest menší než vypočtené. Vhodným k tomu přikladem jsou roztoky kuchyňské soli ve vodě. Následujíci tabulka udává výsledky, jak je obdržel Schüller (1879). Vycházi od vody $\left(C_{1}=1\right)$ a postupuje ke kuch. soli ( $C_{2}=0.214$ ).

Specifické teplo roztoků kuchyňské soli ve vodě.

$p$   $100+p$$=y$	$C$   pozorované	$C^{*}$   vypočtené	$C-C^{*}$	$C(100+p)$
$\frac{5}{100+5}=4.8 \%$	0.9306	0.9626	-0.0320	97.71
$\frac{10}{100+10}=9.1$	0.8909	0.9285	-0.0376	97.99
$\frac{20}{100+20}=16.7$	0.8304	0.8690	-0.0386	99.64
$\frac{30}{100+30}=23.1$	0.7897	0.8186	-0.0289	102.66
100	0.2140	0.2140	0.000	

Ještě lépe než tabellárni sestaveni poučuje o pråběhu specifického tepla znázornění grafické (obr. 64.). Z tohoto jest jediným pohledem patrno, že skutečné teplo specifické jest nejenom menší, než jak udává přímka jdouci (dle pravidla směšovacího) od pořadnice $C_{1}=1$ ku pořadnici $C_{2}=0 \cdot 214$, nýbrž v začátečním průběhu i menši, než jak udává přímka
jdouci k pořadnici nullové, tak že výsledek jest takový, jako by sủl vstupovala do roztoku s teplem specifickým, jež jest menší než nullové, tudiž negativním.


Obr. 64.
Specifické teplo roztokū kuchyñiské soli ve rodé.

Aby tato negativnost lépe vynikla, udáva Schüller koncentraci roztokú množstvím $p$ soli, jež připojil ku stálému mnoz̄stvi 100 vody; hmota roztoku jest pak $100+p$, jeho tepelná kapacita $C(100+p)$; vypadne-li, jak tabulka ukazuje, tato kapacita roztoku menši než 100, znamená to, ze kapacita roztoku vody, jež by pro sebe byla 100 , jest pûsobením soli umens̃ována; vskutku jest tomu tak, pokud roztok solný jest slaby̆. Procentuálné složeni roztoku, jak je vyžaduje grafické znázornẽni, vypoçitá se dle vzorce $y=\frac{p}{100+p}$. Krivku nelze vésti dále, ponévadz̄ roztok při koncentraci nad $25 \%$ se stáva nasyceným. Ale z vêtve zacãitečni bylo by lze souditi, že průbẻh krivky byl by vzhledem k přince dle pravidla sméṡovaciho vedené na negativní (dolejsí) jeji strané takový, jaký jest na př. u směsi chloroformu a alkoholu na strane positivni (horejsi).

Přiklad právě uvedený jest typický pro roztoky četných jiných solí a také pro roztoky kyselin, jako sirové, solné, dusičné a roztoky louhu, na př. draselnatého, sodnatého. Koncentrace udává se zde obyčejně dle gramm-molekul; na jednu gramm-molekulu soli o molekulové váze $\mu$ (dle 016 ) přichází $n$ gramm-molekul vody $H_{2} O$ o molekulové váze $18 \cdot 016$; roztok má pak váhu $\mu+n .18016$, tak že jest procentuálni koncentrace

$$
x=\frac{\mu}{\mu+n .18 \cdot 016}
$$

Kapacita roztoku jest

$$
C(\mu+n \cdot 18 \cdot 016)
$$

voda samotná v tomto roztoku má kapacitu
n. 18.016,
tudiž vstupuje sůl nebo kyselina nebo zásada do vodniho roztoku s kapacitou

$$
\delta=C(\mu+n .18 \cdot 016)-n .18 \cdot 016
$$

V tabulkách bývá toto $\delta$ udáno pro jednotlivá $n$. Je-li $n$ veliké, znamená to roztok silně zředěný; a právě pro tyto bývá $\delta$ negativni. Tak jest na př. pro roztoky dusičňanu sodnatého (ledku $\mathrm{NaNO}_{3}, \mu=85^{\circ} 09$ ) dle pozorování J. Thomsona (1871):

$$
\begin{array}{rrrcc}
\text { pro } n=200 & 100 & 50 & 25 & 10 \\
\delta=-7 & -9 & +4 & 11 \cdot 7 & 23 \cdot 8
\end{array}
$$

Z toho lze zase počitati $C$ dle vzorce

$$
C=\frac{\delta+n .18 \cdot 016}{\mu+n .18016}
$$

Provedouce výpočet*) specif. tepla $C$ a zároveň procentuální koncentrace $x$, obdržíme

$n=200$	100	50	25	10
$\delta=-7$	-9	+4	11.7	23.8
$C=0.975$	0.950	0.918	0.863	0.769
$x=2.31 \%$	$4.51 \%$	$8.63 \%$	$15.89 \%$	$32.1 \%$.

Grafického znázornění zde neuvádíme, poněvadž dává průběh zcela podobný tomu, jako jest v obr. 64. pro sůl kuchyňskou.

Byly učiněny pokusy teplo specifické u roztoků určiti počtem; příslušné vzorce (Mathias) osvědčuji se jen pro roztoky velmi zředěné, což jest pochopitelno, poněvadž v grafickém zuázornění příslušné křivky v začátečnim svém průběhu se sobě velmi podobaji. Vzhledem k tomu jich význam jest jen skrovný; proto jich zde neuvádíme.

[^65]
## Plyny.

## § 80. Základni definice; $C_{p}$ a $C_{v}$

Jednajíce o teple specifickém těles pevných naznačili jsme přičiny, jež působí, že jednoduchých zákonů o teple specifickém ani u těles pevných ani kapalných očekávati nelze. Teplo, jež tělesủm těmto přivádíme, spotřebuje se dílem na oteplení, dilem na práci vnitřní a vnější. Práce vnější jest nepatrná: za to práce vnitřní při značné soudržnosti těles pevných a také kapalných jest značná a dle povahy těles různá.

Vizme nyní, jak se věc utváří u plynủ. Tyto nemaji soudržnosti, než jen té, kterou stavojevná rovnice van der Waalsova naznačuje, která však proti rozpínavosti plynủ mizi. Tím práce vnitǐni jest nepatrná, tedy naopak než u těles pevných a kapalnẏch. Co se však práce vnějši týče, může tato při veliké roztažnosti a rozpínavosti plynủ státi se značnějši, ale může také vůbec odpadnouti, poněvadž roztahování plynu lze pevnými nádobami zameziti.

Předběžná úvaha tato vede k poznání, že u plynủ dlužno rozeznávati drojí teplo specifické. Stav plynu jest určen teplotou, tlakem (napětím) a objemem

$$
t, \quad p, \quad v .
$$

1. Zahřívajíce plyn můžeme udržovati objem $v$ stálým (změny isochorické). Teplo, kteréž v tomto případě 1 gramm plynu spotřebuje, aby se teplota o jeden stupeň zvýšila, zove se jeho teplem specifickým při stálém objemu, a označuje se

$$
C_{v}
$$

2. Anebo necháme při zahřívání plyn se roztahovati udržujíce tlak $p$ stálým (změny isobarické). Teplo, jež v tomto připadě 1 gramm plynu spotřebuje, aby jeho teplota o jeden stupeň stoupla, zove se jeho teplem specifickým při stálém tlaku, a označuje se

$$
C_{p}
$$

V prvém případě se veškerého tepla použije ke zvýšení teploty (za současného zvýšeni napětí). V druhém případě dlužno vedle zvýšení teploty též uhraditi práci vnější, kterou plyn vykonává, když při svém roztahování překonává tlak vnější; proto jest zde úhrnná spotřeba tepla větší, t. j.

$$
C_{p}>C_{v}
$$

Zajímavo jest, že rozdíl obou těchto tepel specifických na základě známých již zákonů o plynech lze napřed již určiti*).

## § 81. Hodnota rozdilu $C_{p}-C_{v}$.

Mějmež 1 gramm plynu ve válci, jehož průǔez budižk vůli jednoduchosti $1 \mathrm{~cm}^{2}$ (obr. 65.); pak značí $p$ tlak působici na tento průřez. Při teplotě $T$ (abs.) má plyn objem $v$. Teplem $C_{p}$ oteplí se plyn o $1^{\circ}$ a zároven̆ roztáhne se isobaricky na objem $v^{\prime}$. Vykonaná práce vnějši jest tedy

$$
\left(v^{\prime}-v\right) p=v^{\prime} p-v p
$$

Dle stavojevné rovnice plynu máme

$$
v^{\prime} p=R(T+1), \quad v p=R T
$$

Dosadíce obdržíme za práci vnějši jednoduše

$$
R
$$

a tato práce jest aequivalentní rozdilu

$$
C_{p}-C_{v}
$$

Misto aequivalence obdržíme rovnost, když přepočteme příslušným koefficientem $J$ teplo na práci. Tím obdržíme rovnici

$$
J\left(C_{p}-C_{v}\right)=R
$$

Číselná hodnota koefficientu $J$ závisí na volbě


Obr. 65. Rozdil specif. tepel $C_{p}-C_{v}$. jednotek, právě tak jako i čiselná hodnota konstanty $R$. V téže rovnici nutno ovšem pro obě tyto veličiny voliti stejné jednotky.

V § 50. vypočitali jsme číselně konstantu $R$ rovnice stavojevné a to pro jednotky gramm (hmota), $\mathrm{cm}^{3}$ (objem) a atmosféra theoretická (tlak). Obdrželi jsme

$$
R=82.02 \frac{m}{\mu}
$$

kdež jest $m$ hmota plynu v grammech, $\mu$ jeho hmota molekulová $(O=16)$. Nutno tudiž koefficient převodní $J$ vztahovati

[^66]na tu jednotku pracovni, která těmto jednotkám odpovidá. Sila jest tu dána tlakem jedné atmosféry*) vztahovaným na jednotku plochy $\mathrm{cm}^{2}$, což označujeme součinem ( $\mathrm{cm}^{2}$, atm.). Délka jest dána cm . Tedy práce součinem síly a dráhy, tudiž
$$
\left(\mathrm{cm}^{2} \cdot \text { atm. }\right) \cdot \mathrm{cm}
$$

Jest však (§50.)

$$
\begin{aligned}
\mathrm{cm}^{2} \cdot \mathrm{~atm} . & =1 \cdot 01321 \text { megadyna } \\
\left(\mathrm{cm}^{2} \cdot \mathrm{~atm} .\right) \mathrm{cm} & =0 \cdot 10321 \text { Joule } \\
\text { Joule } & =0 \cdot 239 \text { cal. },
\end{aligned}
$$

tudiž

$$
\left(\mathrm{cm}^{2} \cdot \mathrm{~atm} .\right) \mathrm{cm}=0.02422 \mathrm{cal} .
$$

anebo obráceně

$$
\mathrm{cal}=41 \cdot 25\left(\mathrm{~cm}^{2} \cdot \mathrm{~atm} \cdot\right) \cdot \mathrm{cm}
$$

tedy $v$ našem připadě

$$
J=41 \cdot 25
$$

k tomu, pro $m=1$,

$$
R=\frac{82 \cdot 02}{\mu}
$$

tudíž

$$
C_{p}^{\prime}-C_{v}=\frac{82 \cdot 02}{41 \cdot 25} \cdot \frac{1}{\mu}
$$

čili

$$
C_{p}-C_{v}=\frac{1.986}{\mu}
$$

Tuto závěrečnou rovnici možno psáti ještě ve formě

$$
\mu C_{P}-\mu C_{v}=1.986
$$

Součin $\mu C$ má význam tepla molekulového a udává spotřebu tepla při zahřátí gramm-molekuly plynu o jeden stupeň, a to jednou při konstantním tlaku, po druhé při konstantním objemu; pravi tedy naše rovnice, že v tomto druhém případě se spotřebuje tepla o 1.986 čili okrouhle o 2 kalorie méně. Tento výsledek, jehož jednoduchost překvapuje, platí pro všechny plyny. jež se řídí rovnicí stavojevnou

$$
p v=R T
$$

[^67]na které celý výpočet byl založen, tedy pro plyn ideálný a takové, jež jsou jemu blizké.

Jak tento výsledek theoretický se potvrzuje skutečným měřením, objasňují číselná data pro kyslík, dusík a vodik, jak zde následuji.
Kyslik

$$
\begin{aligned}
C_{p} ; \mu=32, \quad & =0.2175 \text { (Regnault) } \\
\frac{C_{p}}{C_{v}} & =1.398 \quad \text { (Lummer a Pringsheim) } \\
C_{v} & =0.1556 \\
C_{p}-C_{v} & =0.0619 \\
\mu\left(C_{p}-C_{v}\right) & =1.981
\end{aligned}
$$

Dusik
$N_{2} ; \mu=28.08$,

$$
\begin{aligned}
C_{p} & =0.2438 \text { (Regnault) } \\
\frac{C_{p}}{C_{v}} & =1.41 \quad(\text { Cazin }) \\
C_{v} & =0.1729 \\
C_{p}-C_{v} & =0.0709 \\
\mu\left(C_{p}-C_{v}\right) & =1.991
\end{aligned}
$$

Vodik

$$
\begin{aligned}
& H_{2} ; \mu=2.016, \quad C_{p} \\
&=3.400 \quad \text { (Regnault) } \\
& \frac{C_{p}}{C_{v}}=1.408 \quad \text { (Lummer a } \\
& C_{v}=2.415 \\
& C_{p}-C_{v}=0.985 \\
& \mu\left(C_{p}-C_{v}\right)=1.986 .
\end{aligned}
$$

U vodiku, jakožto plynu ideálnímu nejbližšiho, jest souhlas nejlepsí.

## § 82. Jak se stanovi teplo specifické $C_{p}$.

Methoda jest v podstatě své směšovací. Plyn zahřátý vede se za konstantního tlaku kalorimetrem vodním. Dle toho jest soustava trubic plynovodních složena ze dvou po sobě následujících částí; prvni v zahřívací lázni olejové, druhá v kalorimetru. Trubice jsou stočeny v četných spirálách, aby plyn se jednak v lázni zahř̌ivací, jednak v kalorimetru déle udržel; výhodno jest trubice vyplniti drobnými kousky kovovými, aby plyn při svém proudění se stýkal s velkou plochou kovovou, od nǐ̌ bud teplo přijímá, v lázni olejové, nebo již teplo odevzdává, ve vodě kalorimetru. Dr. v. Strouhal: Thermika.

Měři se objem plynu a vypočitá se jeho hmota dle hmoty specifické, stanovené tlakem a teplotou plynu. Velmi dủležito jest mě̌̌eni teplot. Především ovšem v kalorimetru samém. Pak hlavně a plynu, kde vstupuje do kalorimetru a kde vystupuje. Při tomto měřeni jest výhodno uživati thermočlánkủ. První udává, s jakou teplotou plyn vstoupí do té části plynovodu, která jest ve vodě kalorimetrické; druhý kontroluje, jak značně se plyn zchladil. Výpočty se dějí dle vzorců již dříve uvedených. Dủležité jsou zde však mnohé korrekce, vznikajíci zejména kovovým vedením tepla, totiž z lázně trubicemi plynovodními do kalorimetru; tento účinek nutno vyšetřiti pokusem zvláštním.

Uspořádání pokusu vyžaduje zařízení apparátového dosti složitého. Prvni pokusy př̌esné prováděli de la Roche a Berard počátkem století 19.; jejich práce dosáhla (1812) ceny Pařižské akademie. Později, v letech $1860 t y ́ c h$, prováděl měření tato ve velkém slohu a s velikou obezřelostí i dûkladnosti Regnault*), V novější době (1875) provedl četná měření E. Wiedemann**) a v nejnovější (1894-1897)S. Lussana***), jenž se zejména zabýval otázkou, jak dalece jest teplo specifické při stálém tlaku závislé na velikosti tlaku tohoto. Popisovati zde apparátové zařizení všech těchto badatelú mělo by zájem více jen historický; postači, když za přiklad uvedeme z novější doby zařizeni, jehož užíval E. Wiedemann. Jest znázorněno v obrazci 66. Plyn, jehož teplo specifické při stálém tlaku se má určiti, jest uzavřen v ballone kaučukovém $C$, který je umistěn ve skleněné nádobě $B$. 'Z něho se vytlačuje tlakem okolniho vzduchu, který jest mírně napiat přes tlak obyčejný a to jednoduchým zařizením hydrostatickým, totiž tlakem sloupce vody, která z Mariotte-ovy nádoby $D$, vysoko umístěné, vytéká trubicí $h$ do nádoby $A$ nižší, v níž voda stoupá a tlači vzduch před sebou do nádoby $B .0$ tlaku, kterým se pracuje, orientuji manometry $P$ a $P^{\prime}$. Plyn tlačí se do přistroje efg, kde se měří

[^68]jeho teplota, odtud do nádoby $H$ obsahujicí kyselinu sírovou (nebo rtuf), skrze kterou proudí v bublinách, jichž tempo orientuje o rychlosti prouděni; pak do nádoby $J$ s perličkami skleněnými, na nichž stopy kyseliny, jež by snad plyn s sebou strhl, se zachycuji, a odtud vstupuje konečně do přistroje zahřívacího $E$.


Obr. 66.
Apparát E. Wiedemannův ke stanoveni specifického tepla $C_{p}$ plynủ.

Při tom E. Wiedemann neužil spirál (jako Regnault), nýbrž jen jednoduchého válce měděného $F$ ( 11 cm délky a 4 cm průměru), který však vyplnil měděnými hoblinami, aby tak rychlému proudění plynu bránil a plyn dostatečnou dobu pod účinkem zahřívací lázně udržoval. Touto lázní jest buđ voda nebo tekutý paraffin; $R$ jest míchačka, $T$ teploměr.

Zahřátý plyn vstupuje do stříbrného kalorimetru $M$, postaveného na válci $K$ z kovového drátu. Kalorimetr jest malý; má výšku 5.5 cm , průměr 4.2 cm , tlouštka plechu jest jen 0.035 cm ;
jest v něm toliko 60 g vody. Kalorimetr s podstavcem jest umístěn uvnitř nádoby $L$ s dvojitými stěnami, mezi nimiž proudí voda $z$ nádoby $N$, aby kalorimetr byl chráněn před tepelným účinkem okolí.

Zařizeni kalorimetru jest znázorněno (v průǐezu) v obr. 66. na pravo nahoře při $M^{\prime}$. Uvnitř kalorimetru jsou tří stříbrné vertikálni trubič̌ky $\alpha, \beta, \gamma$ vẙšky 4.1 cm a prủměru 0.9 cm . Jsou všechny vyplněny střibrnými hoblinami a vespolek spojeny tak, aby plyn vstupoval dole do trubičky «, pak nahoře do $\dot{\beta}$, odtud dole do $\gamma$ a horem aby unikal ven trubičkou $p$. Teplota v kalorimetru se odčitá na jemném teploměru $t$; voda se promíchává míchačkou $r$.

Apparát Wiedemannûv má rozměry malé a proto hodi se dobře i pro účely laboratorni.

## § 83. Jak se stanovi teplo specifické $C_{v}$.

Stanoviti specifické teplo plynu při stálém objemu znamená uzavříti plyn do ballonu skleněného, kohoutem opatřeného, a stanoviti - na př. methodou směšovací - kapacitu ballonu naplněného plynem a pak kapacitu ballonu, z něhož byl plyn evakuací odstraněn. Rozdil obou měěení dal by kapacitu plynu samého. Avšak rozdíl tento jest oproti kapacitě ballonu tak nepatrný, že by byl téměř téhož ǐádu jako chyby pozorovací. A i kdyby se plyn $v$ ballonu velikým tlakem zhustil, tak že by jeho hmota byla značnějši, přece i pak by chyby pozorovací měly na výsledek veliký vliv; nebot, když se pozorování konají jedno po druhém, tedy v dobách různých, nelze očekávati, že by tyto chyby v differenci obou kapacit se vymýtily. Lepšiho výsledku lze však se naditi, když se obě kapacity srovnávaji současným měřením methodou differenciální. Pak jest třeba míti ballony dva, co možná stejné, jeden plný, druhý prázdný. K srovnávání jich tepelných kapacit hodi se dobře methoda kalorimetru parního. Dle této základní myšlenky 'provedl některá měření $J$. Joly*) v době novějši. Měl dva stejné ballony měděné, každý obsahu $158 \mathrm{~cm}^{3}$ a váhy $92 \cdot 2 \mathrm{~g}$. Zavěsil

[^69]je na jemných rovnoramenných vahách v prostoru, do něhož se vpouštěla pára $z$ vaříci vody; na ballonu plném se ji kondensovalo vice než na prázdném; rozdil se dal vážením přímo stanoviti a dle něho pak specif. teplo plynu $C_{v}$ počitati (\$66.). Joly užíval plynů (vzduch, $\mathrm{CO}, \mathrm{H}, \mathrm{CO}_{2}$ ) vice neb méně zhuštěných - až do 26 atm . - aby mohl vystihnouti eventuálni závislost tepla specifického na tlaku.

## § 84. Význam specifických tepel $C_{p}$ a $C_{v}$ při adiabatických změnách objemových.

Roztahuje-li se plyn, mění se jeho napětí. Toto roztahování může se však diti za dvou rủzných podminek, bud isothermicky, nebo adiabaticky. V prvém případě zachováváme teplotu plynu konstantní. Pak vystihuje změnu napětí zákon Boyle-Mariotte-úv

$$
p=\frac{\text { const }}{v}
$$

jenž vyjádřuje, že napětí touž měrou se umenšuje, jakou se objem zvětšuje *). Podmínka konstantní teploty může býti splněna tím zpủsobem, že nádoba, v níž jest plyn uzavřen, jest obklopena prostředím dostatečně rozsáhlým (vzduchem, vodou), jehož (neproměnnou) teplotu plyn přijímá. Plyn při svém roztahování vykonává práci, jež musí býti kryta aequivalentním množstvím tepla; a právě toto teplo dodává ono rozsáhlé prostředi ze svého velikého obsahu tepelného. Musí proto také ono roztahování pokračovati volně, aby výměna tepelná byla usnadněna. - Roztahuje-li se však plyn prudce, náhle, anebo je-li tepelně isolován, tak že stěnami nádoby nemủže teplo z vněǰ̌ka vnikati k plynu dovnitř a ovšem také ne z vnitř̌ka na venek**), pak plyn práci vykonanou hradi teplem vlastním, ochlazuje se. Proto klesá napětí prudčeji než dle zákona Boyle-Mariotte-ova, nikoli obráceně úměrně prostě objemu, nýbrž jakési $k$-té mocnosti ( $k>1$ ) tohoto objemu, tedy dle rovnice

$$
p=\frac{\text { Const }}{v^{k}} .
$$

[^70]Tato rovnice nazývá se Poissonovou*). Konstanta $k$ udává poměr obou tepel specifických u plynû,

$$
k=\frac{C_{p}}{C_{v}}
$$

a jest, jak již v § 81. bylo na přikladech uvedeno, u plynủ dokonalých velmi blizce $=1.4$.

Majíce rovnici Poissonovu odvoditi uvaz̃ujume takto: Roztáhne-li se plyn o dv, vykoná práci $p$. $d v$. Toto roztažení, je-li adiabatickým, má za následek klesnuti teploty o - dt (úcinek thermometrický) čili úbytek obsahu tepelného o $C_{v}$. $d t$ (účinek kalorimetricky̆). Přepočteme-li toto mnoz̄strí tepelné, jež jest oné práci aequivalentní, koefficientem Joule-ovẙm $J$ téz̃ na práci, obdržíme rovnost:

$$
p d v=-J C_{e} d t
$$

Pr̂i tom souvisi veliciny $p, v, t$ (resp. $T$ ) vespolek vzlahem, klerỳ vyjadřuje rovnice stavojerná

$$
p v=R T
$$

Jeji differenciaci obdrzzíme

$$
p d v+v d p=R d t
$$

kdez̄ klademe $d T=d t$, poněvadž se obẽ teploty liši o konstantu 273. Vylouc̃ice dêlením z obou uvedených rovnic $d t$ obdržime

$$
1+\frac{v d p}{p d v}=-\frac{R}{J C_{v}}
$$

Jest vak (

$$
R=J\left(C_{p}-C_{v}\right)
$$

Dosadíme-li, vyjde

$$
1+\frac{v d p}{p d v}=-\frac{C_{p}}{C_{\varepsilon}}+1
$$

cili

$$
C_{v} v d p+C_{p} p d v=0
$$

Zhývá jessté tuto rovnici integrovati. Klademe-li

$$
\frac{C_{p}}{C_{e}}=k
$$

måme

$$
\frac{d p}{p}+k \frac{d v}{v}=0
$$

[^71]Odtud integraci

$$
\begin{gathered}
\log p+i \log v=\text { const } \\
p v^{k}=\text { Const }
\end{gathered}
$$

coz̃ jest rovnice Poissonova.

$$
\text { § 85.. Hodnota poměru } \frac{C_{F}}{C_{e}}=k
$$

Je-li pro nějaký plyn konstanta $k$ experimentálně určena, jest možno pro plyn ten počtem určiti obě tepla specifická $C_{p}$ a $C_{v}$, ovšem jenom potud, pokud plyn ten se řidí stavojevnou rovnicí

$$
p v=R T
$$

Měli jsme totiž v § 80. relaci

$$
\begin{aligned}
& \text { 80. relacı } \\
& \qquad C_{p}-C_{v}=\frac{1 \cdot 986}{\mu}
\end{aligned}
$$

Je-li ještě znám pomèr

$$
\frac{C_{p}}{C_{v}}=k
$$

obdržíme

$$
\begin{aligned}
C_{p} & =\frac{1.986 \cdot k}{\mu(k-1)} \\
C_{v} & =\frac{1.986}{\mu(k-1)}
\end{aligned}
$$

Jedná-li se pak o plyn, u něhož nelze předpokládati, že pro něj jest v platnosti ona rovnice stavojevná, můžeme experimentálně určiti především $C_{P}(\S 81$.$) ; když pak lze ještě experimentálně$ stanoviti poměr $k$, lze $C_{v}$ vypočisti.

Čelné methody, dle nichž poměr $k$ lze stanoviti, jsou následující:

1. Methoda akustická. Rychlost $c$, s jakou se šírí zvuk nějakým plynem, jest dána vzorcem *)

$$
c=\sqrt{k \frac{p}{\sigma}}
$$

Je-li $\Delta$ hutnota plynu, jest

$$
\sigma=\Delta \cdot 0 \cdot 001276 \cdot 10^{-6} \frac{p}{1+\gamma t}
$$

kdež jest $p$ určeno v jednotce $\frac{d y n a}{c m^{2}}$ a $c \mathrm{v}$ jednotce $\frac{c m}{s e c}$. Odtud

[^72]plyne
$$
c=27995 \sqrt{\frac{k(1+\gamma t)}{\Delta}}
$$
anebo v přehlednější jednotce $\frac{m}{\mathrm{sec}}$
\[

$$
\begin{gathered}
c=280 \sqrt{\frac{k(1+\gamma t)}{4}}, \\
\gamma=0.00367 .
\end{gathered}
$$
\]

Rychlost $c$ lze však určiti direktně na př. methodou obrazcủ Kundtových*). Pak obdržime, řešice rovnici dle $k$, výraz

$$
k=\left(\frac{c}{280}\right)^{2} \frac{\Delta}{1+\gamma^{t}} .
$$

Pro volný vzduch nalezl na př. Regnault

$$
c=330 \cdot 7 \quad \text { při } t=0, \quad d=1 .
$$

Odtud by následovalo

$$
k=\left(\frac{330 \cdot 7}{280}\right)^{2}
$$

čili

$$
k=1.395
$$

2. Methoda Clément-Desormes-ova. Uživajice u plynủ objemových změn jednak isothermických jednak adiabatických, udali Clément a Desormes **) methodu, kterou lze velmi jednoduše určiti konstantu $k$ a to jenom měřením tlaku.

Pokusné zařizení objasǐuje schematicky obr. 67. Velký ballon (skleněný), opatřený kohoutem široce vrtaným, jest spojen postranní trubicí pod kohoutem umístěnou s manometrem, obsahujícím rtut nebo kyselinu sírovou. Nad kohoutem múže býti připojeno vedení $k$ vývěvě zředovací. Vizme především, jak se měření provede pro vzduch. Lze při tom rozeznávati trojí stadium:

1. Ballon se spoji s vývěvou, vzduch se poněkud zředí, pak se vyčká, až jeho teplota se vyrovná s teplotou vnějši, a určí se jeho napětí $p_{1}$.

[^73]2. Spojení s vývěvou se přeruší, a kohout se otočí na kratinkou dobu; tím okolní vzduch vrazí do ballonu, a napětí $p_{2}$ vzduchu v ballonu se rovná tlaku barometrickému.
3. Kohout se zavře a vyčká se, až teplota vzduchu v ballonu se vyrovná s teplotou okolní, a určí se opět jeho napětí $p_{3}$.

Z těchto tří pozorovaných napětí $p_{1}, p_{2}, p_{\mathrm{s}}$ lze vypočísti konstantu $k$ dle úvahy následující:


Obr. 67.
Jak se urči pomẽr $k=\frac{C_{p}}{C_{v}}$ methodou, kterou udali Clément a Desormes.
Ballon má objem $V$. Ty̌ž objem má vzduch v něm zředěný při stadiu 1. Napětí $p_{1}$ jest rovno tlaku atmosférickému zmenšenému o tlak, který odečteme na manometru, jenž udává zředění vzduchu. Když se kohout otočí, stlačí se vzduch na menší ${ }^{\text {objem } v} v$ a to adiabaticky, tak že se zahřeje. Jeho napětí $p_{\mathrm{a}}$, rovnající se tlaku atmosférickému, souvisí tudiž s předešlým $p_{1}$ dle rovnice Poissonovy

$$
p_{1} V^{k}=p_{2} v^{k} .
$$

Když se ve stadiu 3 . kohout uzavře a vyčká, až zahřátý vzduch v ballonu nabude opět teploty okolní, jevi se jeho napětí $p_{3}$ následkem ochlazení býti menším, než tlak barometrický o tolik, co manometr udává; toto napětí $p_{3}$ souvisí s původním ve stadiu

1. vzhledem $k$ stejné teplotě dle zákona Boyle-Mariotte-ova pro změny isothermické platného

$$
p_{1} V=p_{3} v
$$

Počítáme-li z obou rovnic poměr $\left(\frac{v}{V}\right)^{k}$, obdržime stejnost

$$
\left(\frac{p_{1}}{p_{3}}\right)^{k}=\frac{p_{1}}{p_{2}}
$$

z čehož

$$
k\left(\log p_{1}-\log p_{s}\right)=\log p_{1}-\log p_{2}
$$

čili

Pro účely přednášek, kde se nejedná o přesnost výsledku jako spiše o porozumění celého postupu pokusného, postačí uživati manometru vodniho, jenž je citlivějši než manometr se rtuti nebo kyselinou sirovou. Ovšem že pak vzduch v ballonu nemůže za suchý býti pokládán. Když se ve stadiu 1. vzduch vývěvou rychle zředí, vystoupí voda $v$ manometru na straně k ballonu (obr. 67.), udávajic stupeň onoho zředění; když se kohout rychle zavře, pozoruje se, jak voda zase klesá, což činí dojem jako by vedení nebylo někde vzduchotěsné, a jako by vzduch do ballonu nebo do manometru vnikal. Tomu však není tak. Vzduch při rychlém zředění, jež možno za adiabatické pokládati, se ochladil, pak se znenáhla zase ohřívá na teplotu okolí, a proto jeho napětí stoupá, a roda v manometru jde zpět. Po nějaké době se manometr ustáli; jest to znamením, že se teploty vyrovnaly. Pak se kohout rychle otevře a, jakmile manometr udá stejnost tlaku s okolním vzduchem. ihned zavře. Hned jest viděti, jak voda v manometru na téže straně, kde dřive klesala, zase stoupá, na dủkaz, že vzduch adiabatickou kompressí zahřátý opět přijímá teplotu okolního vzduchu. Aby prủběh zde vyličený se objevil, netřeba ani zředění značného; kvalitativně zûstává vše stejným i při zředění skrovném. Obtiž vzniká jen v okamžiku, kde kohout se otevře a kde se rychle má zase zavříti, tím, že voda v manometru kolem rovnovážné polohy oscilluje. Jest nutno tyto oscillace tlumiti, na př. tím, že se volný otvor manometrické trubice zahradi vatou. Ostatně i vzduchem, jenž vrazí do vnitř, vznikaji oscillace vzduchu v ballonu, jež mohou při značnějším zředění způsobiti, že vzduch, když se kohout zavře, nemá právě napětí okolního vzduchu.

Také mủže i v té krátké době, kdy kohout jest otevřen, vzniknouti poněkud tepelná výměna se vzduchem okolním. Na oba tyto moz̆né zdroje chyb nutno při přesném pozorováni pamatovati. Také by při měření přesném musily spojovací trubičky a manometr sám míti kalibr velmi nepatrný proti objemu ballonu. Než i v tom uspořádání, jak je obr. 67. znázorňuje, jest pokus pro účely přednášek velice poučný.

Výhodnějši jest, zejména jde-li o libovolný plyn, zaříditi pokus na zhušfování misto na zředováni, tedy ballon spojiti s vývěvou zhuštovací. Zpûsob experimentování i počítání jest týž. Ve stadiu 2. plyn po otočení kohoutu vybuchne na venek; ve stadiu 1. a 3. ukazuje manometr přetlak. Kapalinou manometrickou může býti rtuft, ač údaje jsou pak méně citlivé; lépe kyselina sírová; voda se pro přesné účely nehodí, poněvadž by se plyn stal vlhkým. Ještě lépe se osvědčilo uživání jemných manometrủ kovových, upravených po zpủsobu aneroidủ (Röntgen). Výhodno jest uživati ballonů kovových velké kapacity (Röntgen, 70 litrů) a zaručiti stálost teploty okolí lázní vodní. Přetlaky netřeba voliti značné, raději menši a přesně je určovati.

## 3. Methoda Lummer a Pringsheim-ova.

Když by bylo možná určiti teplotu na př. absolutní $T_{1}$ a $T_{2}$ plynu ve stadiu 1. a 2., pak by pozorování ve stadiu 3. mohlo odpadnouti. Nebot $k$ rovnici

$$
p_{1} V^{k}=p_{2} v^{k}
$$

přistoupily by dalši

$$
p_{1} V=R T_{1}, \quad p_{2} v=R T_{2}
$$

ze kterých vyloučenim veličin $V, v, R$ plyne

$$
\left(\frac{T_{1}}{T_{2}}\right)^{k}=\left(\frac{p_{1}}{p_{2}}\right)^{k-1}
$$

odkudž

$$
k=\frac{\log \frac{p_{1}}{p_{2}}}{\log \frac{p_{1}}{p_{2}}-\log \frac{T_{1}}{T_{2}}}
$$

Lummer a Pringsheim užívali velkého měděného ballonu o kapacitě 90 litrů, který byl vložen do lázně vodní. Teplotu $T_{2}$ určili zařizenim bolometrickým, totiž změnou galvanického odporu teninkého ( 0.0006 mm ) lístečku platinového, jenž byl uvnitř
ballonu zavěšen. Účinek tepelného záření tohoto proužku proti stěnám ballonu byl empiricky zjištěn a v počet jako korrekce uveden*).

## § 86. Výsledky.

U těles pevných a kapalných, pravili jsme (§ 68.), nelze očekávati jednoduchých zákonitostí o teple specifickém, poněvadž se nedá práce vnitřní ani odhadnouti, tím méně měřiti, tudiž také ne teplo jí aequivalentní od ostatního počtem odděliti. U plynủ má se však věc daleko jednodušeji; zde práce vnitǐní odpadává, anebo, přesněji řečeno, jest velmi nepatrná, tak že ustupuje do pozadí. Práce vnějši může pak při zachování konstantního objemu býti vyloučena. Proto jest teplo specifické $C_{k}$, ve smyslu Clausiově, tím teplem, jímž se způsobi jenom zvýšení teploty („pravá kapacita tepelná"). Ale i o teple specifickém $C_{p}$ lze jednoduché zákony očekávati, poněvadž práce vnější alespoň u plynů dokonalých jest pro všechny plyny stejnou. U těchto totiž koefficient roztažnosti dle zákona Gay-Lussacova nezávisí ani na teplotě ani na tlaku. V tomtéž smyslu mohli bychom očekávati, že také teplo specifické, $C_{p}$ i $C_{v}$, nezávisí ani na teplotě ani na tlaku, jsouc stejným v polohách temperaturních nižšich a vyššich a jsouc stejným též u plynů zředěných i zhuštěných.

Výsledky pozorovaci ${ }^{* *}$ ) potvrzuji nezávislost tepla specifického na teplotě alespoň u těch plynů, jež ideálnímu nejvíce se přibližují. Tak nalezl Regnault pro vzduch v intervallech temperaturních

$$
\begin{array}{lll}
t=-30^{\circ} \ldots 10^{\circ}, & C_{p}=0.2377 \\
t= & 0^{\circ} \ldots 100^{\circ}, & C_{p}=0.2374 \\
t= & 0^{\circ} \ldots 200^{\circ}, & C_{p}=0.2375
\end{array}
$$

Podobně pro vodik $H_{2}$

$$
\begin{array}{ll}
t=-28^{\circ} \ldots 9^{0}, & C_{p}=3.3996 \\
t=12^{\circ} 198^{\circ} & \\
C=3.4090
\end{array}
$$

*) Pokusy byly konány v riišskẻm fysikálnê-technickẻm ústavu v Charlottenburku podporou, kterou udélila Smithsonian Institution ve Washingtonu z fondu Hodgkinsova. Viz pojednáni ve Wied. Ann. 64, pag. 555. 1898.
**) Čiselná data jsou zde uvedena dle tabulek Landolt-Börnsteinovẏch pro rok 1905.

Méně dobře potvrzují pozorování nezávislost tepla specifického na tlaku; naopak ukazuji, že u plynủ zhuštěných jest teplo specifické větši. Tak nalezl na př. Lussana (1894) pro vodík $H_{2}$

$$
\begin{array}{ll}
p=1 \quad \mathrm{~atm} ., & C_{p}=3.4025 \\
p=30 \mathrm{~atm} ., & C_{p}=3.7882
\end{array}
$$

a pro kysličnik uhličitý $\mathrm{CO}_{2}$

$$
\begin{array}{ll}
p=1 \quad \mathrm{~atm} ., & C_{p}=0.2013 \\
p=30 \mathrm{~atm} ., & C_{p}=0.2670
\end{array}
$$

a podobně E. Wiedemann (1876) pro kysličník dusnatý $\mathrm{N}_{2} \mathrm{O}$

$$
\begin{array}{ll}
p=1 \quad \text { atm., } & C_{p}=0.2248 \\
p=30 \mathrm{~atm} ., & C_{p}=0.2779 .
\end{array}
$$

Dlužno tudǐž ke srovnání dalšimu voliti data o teple specifickém pro tlak obyčejný.

Zvláštni zájem budí otázka, jak dalece se u plynủ osvědčuji zákonitosti těm analogické, jež u těles pevných vyjádř̌ují zákony Dulong-Petitův a Neumannuiv, jednak o stálosti tepla atomového, jednak o jeho additivnosti v teple molekulovém. Zdálo by se nejvhodnějším tyto vztahy zkoušeti na teple specifickém $C_{v}$ při stálém objemu. Než vzhledem k tomu, že se zpravidla určuje direktně $C_{p}-\mathrm{z}$ čehoz̆ teprve indirelitne se počitá $C_{v}$ dle poměru $k$ obou tepel specifických - jeví se býti vhodnějším, tyto vztahy zkoušeti na $C_{P}$, tedy na teple specifickém při stálém tlaku.

Plynem jednoatomovým jest helium ( $H e$ ), neon ( $N e$ ), argon (A), krypton ( $K r$ ), xenon ( $X$ ); z par jsou jednoatomovými rtufové ( $H g$ ). Plyny, jež jinak za nejdokonalejší pokládáme, jako kyslík, dusik, vodik, mají složení molekulové $O_{2}, N_{2}, H_{2}$. U oněch plynů jednoatomových a u par rtufových můžeme mluviti o teple atomovém $\alpha C_{p}$; u plynů $O_{2}, N_{2}, H_{2}$ nutno stanoviti teplo molekulové $\mu C_{p}$ a z něho ve smyslu zákona Neumannova počítati teplo atomové jakožto $\frac{1}{2} \mu C_{p}$. Volme k výpočtu především výsledky, jež pro tyto plyny obdržel Regnault v intervallu tepelném (okrouhle) $0^{\circ}$. . $200^{\circ}$.
Kyslík $O_{2}$

$$
C_{p}=0.2175 \quad \mu=32 \quad \frac{1}{2} \mu C_{p}=3.48
$$

Dusík $N_{2}$

$$
C_{p}=0.2438 \quad \mu=28.08 \quad \frac{1}{2} \mu C_{p}=3.42
$$

Vodik $H_{2}$

$$
C_{p}=8.4090 \quad \mu=2.016 \quad \frac{\frac{1}{2} \mu C_{p}=3.44}{\text { Prûměr. }} \frac{3.45}{}
$$

Výsledky souhlasi zde dobře; teplo atomové, z molekulového vypočtené, jest $3 \cdot 45$. Číslo to jest menší než u těles pevných, přes to, že při $C_{p}$ se musí uhraditi též práce vnějši; patrně práce vnitřní u těles pevných vyžaduje tepla ve značném procentuálním mnoz̆ství.

Hledice k plynům složeným uvedme výsledky, jež obdržel Regnault (1862) pro kysličnik dusičitý (v intervallu $13^{\circ} \ldots 172^{\circ}$ ) a dusnatý (v intervallu $16^{\circ} \ldots 207^{\prime \prime}$ ) a E. Wiedemann (1876) pro kysličník uhelnatý (v intervallu $23^{\circ} \ldots 99^{\circ}$ );
Kysličník dusičitý NO

$$
C_{p}=0.2317 \quad \mu=30.04 \quad \frac{1}{2} \mu C_{p}=3.48
$$

Kysličnik dusnatý $\mathrm{N}_{2} \mathrm{O}$

$$
C_{p}=0.2262 \quad \mu=46.04 \quad \frac{1}{2} \mu C_{p}=3.47
$$

Kysličník uhelnatý CO

$$
C_{p}=0.2426 \quad \mu=28 \quad \frac{1}{2} \mu C_{p}=3 \cdot 40
$$

Průměrný výsledek $3 \cdot 45$ souhlasí úplně s výsledkem, jak jsme jej obdrželi u plynů jednoduchých, dvouatomových. Pro argon, plyn jednoatomový, máme dle Dittenbergera data následující ( $20^{\circ} \ldots 90^{\circ}$ ):
Argon $A$

$$
C_{p}=0.1233 \quad \alpha=39.9 \quad \alpha C_{p}=4.92
$$

což jest zase hodnota značně větši, než vychází z plynú jednoduchých dvojatomových. Pro ostatni plyny jednoatomové dosud data pro $C_{p}$ neexistují.

Zákon o směsich osvědčuje se na př. pro vzduch. V něm jest obsaženo okrouhle $21 \%$ ' $O_{2}$ a $79 \% N_{2}$. Z hořejšich dat bychom vypočetli

$$
\begin{aligned}
C_{p} & =0 \cdot 21 \cdot 0 \cdot 2175+0 \cdot 79 \cdot 0 \cdot 2438 \\
& =0 \cdot 2383
\end{aligned}
$$

Regnault nalezl 0.2375 a E. Wiedemann $0 \cdot 2389$, což jest opět shoda dobrá.

Dle toho by se zdálo, že additivnost tepla atomového v molekule se osvědčuje velmi dobře. Ale u jiných plynů výsledky souhlasi méně dobře. Tak na př. pro kysličnik uhličitý ( $\mathrm{CO}_{2}, \mu=44$ ) máme data dle Regnaulta, ze kterých počítáme teplo atomové takto:
Kysličnik uhličitý $\mathrm{CO}_{2}$

$$
\begin{array}{rrr}
t=-28^{\circ} \ldots 7^{0}, & C_{p}=0.1843, & \frac{1}{3} \mu C_{p}=2.70 \\
15^{\circ} \ldots 100^{\circ}, & n=0.2025, & n=2.94 \\
11^{\circ} \ldots 214^{\circ}, & n=0.2169, & n=3.18
\end{array}
$$

Podobně pro ammoniak $\left(\mathrm{NH}_{3}, \mu=17.06\right)$ z výsledkủ, jež obdržel E. Wiedemann:

Ammoniak $\mathrm{NH}_{3}$

$$
\begin{aligned}
& t=23^{\circ} \ldots 100^{\circ}, \quad C_{p}=0.5202, \quad \frac{1}{4} \mu C_{p}=2.22 \\
& 27^{\circ} \ldots 200^{\circ}, \quad „=0.5356, \quad \quad=2 \cdot 29 .
\end{aligned}
$$

V přikladech těchto jeví se především vliv teploty měrou značnou. Teplo atomové z molekulového vypočtené vycházi při tom značně menším než dříve, ale zvětšuje se poněkud se stoupajici teplotou. V tom byla by analogie $s$ látkami pevnými a zároveň souhlas s tím, že plyny výše zahřáté stávají se dokonalejšimi, t. j. ideálnímu bližšimi.

Odchylky ještě větší jeví se u plynủ, jež se snadno dají zkapalniti a u par; patrně, že zde přicházi k platnosti práce intramolekulová (Sohncke); nebot u par rtufových (Hg), jež jsou jednoatomové, nepozoruje se závislost tepla specifického na teplotě.

Kdyby povšechně platil u plynů zákon Neumannuv, mohli bychom psáti

$$
\mu C_{p}=n \cdot 3 \cdot 45
$$

kdež jest 3.45 teplo atomové, nahoře vypočtené. Jest však

$$
\begin{aligned}
C_{p}-C_{v} & =\frac{1.986}{\mu} \\
\frac{C_{p}}{C_{v}} & =k
\end{aligned}
$$

Z těchto vztahů by se vypočetlo:

$$
\begin{aligned}
\mu C_{v} & =n 3.45-1.986 \\
k & =\frac{3.45}{3.45-\frac{1.986}{n}}
\end{aligned}
$$

Zejména charakteristickou jest konstanta $k$. Obdržíme číselně:

pro $n=1$	$k=2 \cdot 36$
$\Rightarrow n=2$	$k=1 \cdot 40$
$\Rightarrow n=3$	$k=1 \cdot 24$
$\Rightarrow n=4$	$k=1 \cdot 17$
$\Rightarrow n=5$	$k=1.13$.

Skutečná pozorování souhlasi s tímto výpočtem v některých případech velmi dobře, ale v jiných jeví se odchylky značné. Pro argon (A) nalezl Niemeyer $k=1.667\left(0^{\circ} \ldots 100^{\circ}\right)$, pro páry rtutové, jednoatomové, $(H g)$ nalezli Kundt a Warburg (1876) $k=1.666\left(275^{\circ} \ldots 356^{\circ}\right)$, což jsou hodnoty oproti výpočtu malé, -avšem při teplotě poměrně skrovné. To souvisi s tím, že teplo atomové pro argon, jak nahoře jest uvedeno, vycházi značně větší než $3 \cdot 45$, totiž 4.92 . Hodnota $k=1 \frac{2}{3}$ pro plyny jednoatomové jest theoretickými dủvody opřena. Pro plyny dvouatomové (od kterých hodnota 3.45 tepla atomového byla odvozena) jest souhlas velmi dobrý. Tak nalezli Lummer a Pringsheim (1898) pro $O_{2} k=1.398$, pro $H_{2} k=1.408$, pro vzduch $k=1.402$, vesměs při teplotách obyčejných. Podobně Leduc (1898) pro CO $k=1.401$ při $100^{\circ}$, Strecker (1882) pro $\mathrm{HCl} k=1 \cdot 40$, pro HBr $k=1.44$, pro $H J k=1.40$ vesměs při $100^{\circ}$. Co se plynů třiatomových týče, nalezli Lummer a Pringsheim (1898) pro $\mathrm{CO}_{2}$ $k=1.30$ při teplotě obyčejné, Leduc (1898) pro $N_{2} O \quad{ }_{k}=1.32$ při $100^{\circ}$, Natanson (1885) pro $\mathrm{NO}_{2} k=1 \cdot 31$, což vše s hodnotou $k=1 \cdot 24$ dosti dobře souhlasí. U plynů struktury složitější ukazuje se sice $k$ býti menším a menším, čím jest počet $n$ atomů $v$ molekulu sdružených větší, ale souhlas číselný jest méně dobrý; čísla jsou větši než udává výpočet. Vzhledem k velikému počtu rozmanitých plynủ dlužno tudiž usouditi, že jednoduché zákonitosti se osvěděují jen u plynů málo četných a to hlavně těch, jež i jinak ideálnímu plynu - jak jej ex definitione si vytvořujeme - nejvíce se přibližaji.

## IV. <br> Změna skupenství.

## § 87 . Ủvahy všeobecné.

V oddílu předešlém sledovali jsme souvislost mezi tepelným obsahem a teplotou těles daných, při čemž jsme předpokládali, že tato tělesa setrvávají ve skupenství určitém, jsouce bud' pevná nebo kapalná nebo plynná. V oddílu, který nyní začináme, budeme studovati právě přechody ze skupenství jednoho do druhého, bud ve směru vzestupném, od skupenství nižŠího k vyššímu, anebo sestupném. Toto označování skupenství jest obrazné právě tak, jako označování teploty, jakožto nižší a vyšši. Zoveme tedy analogicky skupenství kapalné vyšším než pevné, plynné vyšším než kapalné, v souhlase s tím, že při stálém zvyšování teploty nějakého tělesa skupenství jeho v tomto pořádku po sobě následují.

Přechod ze skupenství pevného v kapalné označujeme jakožto tání neb tavení, přechod opačný jakožto tuhnutí. Přechod ze skupenstvi kapalného v plynné jakožto vypařování (evaporaci), po případě var; přechod opačný jakožto kapalnění (kondensaci). Zpravidla bývaji tyto přechody velmi určité a význačné, jako na př. tavení cínu, olova, vypařování alkoholu, aetheru a t. d. Mnohdy zase bývá přechod nenáhlý; tak u skla, jež jsouc zahříváno měkne, čímž skupenství kapalné jest s pevným v nenáhlé souvislosti. Podobná kontinuita pozoruje se též - ovšem za poměrů mimořádných - při přechodu kapalin v plyny neb naopak. Někdy tělesa pevná mění se přímo v páry a naopak páry se srážejí přímo v tělesa pevná. Pochody takové označujeme jakožto sublimování. Tak sublimuje na př̀. jod*), kysličnik arsenový, stužený kysličník uhličitý a j.

[^74]Všechny takovéto úkazy dlužno studovati jednak thermometricky, t. j. vzhledem k teploté, při niž přechod se děje, jednak kalorimetricky, t. j. vzhledem k mnoz̆ství tepelnému, jakéhož přeměna vyžaduje. V tomto oddílu přihližíme podrobněji ke stránce thermometrické, v oddilu pak následujicím ke stránce kalorimetrické. Zachováváme zde při výkladu týž postup, který jsme zavedli jednajíce o změnách objemu.

## Tavení a tuhnutí.

## § 88. Bod tavení; skupenské teplo taveni.

Mějmež nějakou látku pevnou a to v určitém množstvi jednoho grammu. Zahříváme-li, stoupá teplota a s ní, dle specifického tepla $C$, obsah tepelný. Předpokládejme pro jednodu-


Obr. 68.
Taveni têles, jak se jevi thermometricky i kalorimetricky.
chost, že toto teplo specifické jest konstantní, na teplotě nezávislé. Přibývání obsahu tepelného s teplotou, na př. počinajíc od teploty nullové, jest pak rovnoměrné. Graficky jest znázorněno přímkou OA (obr. 68.).

Dostoupíli teplota určité výše $\Theta$, pozorujeme, že těleso pevné, jež dosud mělo určitý tvar, počíná se rozplývati, roztékati; řikáme, že taje, že se taví; mění své skupenstvi, přecházejíc z pevného v kapalné. Při tom pozorujeme, že teplota,
i když dále zahříváme, zůstává na oné výši $\theta$, při niž změna skupenství začala. Obsah tepelný stoupá dále, ale nejeví se ve zvýšené teplotě, nýbrž v uvolnění kohaese částeček hmotných. Přírůstek obsahu tepelného jest v grafickém znázorněni dán přímkou $A A^{\prime}$ k ose temperaturní kolmou. Teprve, když se změna skupenstvi úplně provedla, stoupá opět teplota a s ni obsah tepelný dle specifického tepla $C^{\prime}$, jež přísluší tělesu již zkapalněnému a jež zpravidla bývá větší než $C$. Je-li též na teplotě nezávislé, jest dalši stoupání obsahu tepelného s teplotou opět rovnoměrné. Graficky jest dano přímkou $A^{\prime} K$ od osy temperaturni proti $O A$ poněkud více odchýlenou.

Teplotu $\Theta$ zoveme bodem tavení. Teplo $\varrho\left(=A A^{\prime}\right.$ obr. 68.), kterým se jeden gramm látky pevné zkapalní, zoveme teplem skupenským taveni (jinak též teplem utajeným, latentním).

Následujicí tabulka udává pro četné fysikálně dủležité látky body tavení v pořádku vzestupném, od nejniže položených až k nejvyšším. Toto uspořádání bylo voleno, aby vynikla veliká rozmanitost, kteráă jest v bodech tavení, a zároven̆ aby se vyznačily látky, jež v přiçcině této jsou na obou extremních koncích, t. j. při teplotách tavení velmi nizkých a velmi vysokých.

Bod tavení $\Theta$ různých látek.

Látka	Složení	$\Theta^{0}$
Vodík	$\mathrm{H}_{2}$	- 259
Kyslik . . . . .	$\mathrm{O}_{2}$	- 227
Fluor . . . . . . . .	$F_{2}$	- 223
Dusík . . . . . . . .	$N_{2}$	- 211
Kysličnik uhelnatý . . .	CO	- 207
Argon . . . . . . . . .	A	- 188
Krypton . . . . . . . .	$K r$	- 169
Kysličník dusičitý.	NO	- 167
Xenon . . . . . . .	$X$	- 140
Aether aethylnaty . .	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	$-118$
Chlorovodik . . .	ClH	- 113
Sirouhlik	$C S_{2}$	- 113
Alkohol aethylnaty .	$\mathrm{Ca}_{2} \mathrm{H}_{5} . \mathrm{OH}$	- 107
Kysličník dusnatý	$\mathrm{N}_{2} \mathrm{O}$	- 103
Chlor .	$\mathrm{Cl}_{2}$	- 102


Látka	Složení	$\Theta^{0}$
Alkohol methylnatý	$\mathrm{CH}_{3}$. OH	- 97.8
Benzol aethylnatý . . .	$\mathrm{C}_{6} H_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{5}$	- 92.8
Toluol . . . . . . .	$\mathrm{C}_{6} \mathrm{H}_{5} . \mathrm{CH}_{3}$	- 92.4
Sirovodik . . . . .	$\mathrm{SH}_{2}$	- 85
Ammoniak . . . . . . .	$\mathrm{NH}_{3}$	- 78
Kysličník siřičity . .	$\mathrm{SO}_{2}$	- 76
Chloroform . . . .	$\mathrm{CHCl}_{3}$	- 70
Kysličník uhličitý . .	$\mathrm{CO}_{2}$	- 57
Rtut . . . . . . .	Hg	- 38.8
Glycerin . . . . . .	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$	- 20
Anilin . . . . . . .	$\mathrm{C}_{6} \mathrm{H}_{5} . \mathrm{NH}_{2}$	- 8
Voda . . . . .	$\mathrm{H}_{2} \mathrm{O}$	0
Benzol . .	$\mathrm{C}_{6} \mathrm{H}_{6}$	$5 \cdot 5$
Fosfor . . . . . . .	$P$	44
Vosk žlutý . . . .	.	61
Vosk bílý . . . . . .	.	67
Kalium . . . . .	$K$	$62 \cdot 4$
Natrium . . . . . .	Na	$97 \cdot 6$
Sira . . . . . . . .	$S$	114
Selen . . . . . .	Se	217
Cin . . . . . . . .	Sn	232
Vismut . . . . .	Bi	269
Kadmium . . . .	$C d$	321
Olovo . . . . .	Pb	327
Ledek sodnatý . . . . .	$\mathrm{NaNO}_{3}$	(310)
Ledek draselnatý . . . .	$\mathrm{KNO}_{3}$	340
Zinek . . . . . . . .	Zn	419
Magnesium . . . . .	$M g$	630
Antimon . . . . .	Sb	630
Aluminium . . .	Al	(657)
Chlorid draselnatý . .	KCl	760
Chlorid sodnatý . . . .	NaCl	790
Střibro . . . . . . .	Ag	961
Zlato . . . . .	$A u$	1066
Měd . . . . .	Cu	1084
Mangan . . . . . .	Mn	1245
Nikl . . . . . .	Ni	1470


Látka			Složení
Palladium . . . . . . . . .	$P d$	$\Theta^{0}$	
Kobalt . . . . . . . . .	$C o$	1560	
Křemen . . . . . . . . . .	Si	$(1600)$	
Platina . . . . . . . .	$P t$	1700	
Rhodium . . . . . . .	$R h$	1770	
Iridium . . . . . . . . . .	$I r$	1850	
Tantal . . . . . . . . .	$T a$	2200	
			2200

Jednotlivá data pro bod tavení nęjaké látky, jak jsou sestavena ve fysikálních tabulkách na pf. Landolt-Börnsteinových, liší se od sebe nêkdy dosti značně dle pozorovatelủ a dle doby, v níz pozorování byla vykonána. Věc jest pochopitelná, kdyz̃ se uváží, že přimišeniny třebas nahodilé a v množství malém mají na bod tavení vliv dosti značný. Data, jak zde v tabulce jsou uvedena, prijímá $F$. Kohlrausch ve své Prakt. fysice za pravdẽ nejpodobnējsi. Císla do závorek vloz̃ená jsou méné jista. Ưdaje pro K a Na jsou ty, jak je nejnovēji nalezl A. Bernini (N. Cim. (5) 10, 1905). Pro teplo skupenské latek těchto udává v gramm-kaloriích $13 \cdot 61$ a 17.75 . Platinu a palladium vyšetrovali W. Nernst a H. v. Wartenberg*) a nalezli $1745^{\circ}$ a $1541^{\circ}$. Nejnovéji urçili $L$. Holborn a S. Valentiner**) tyto body taveni na $1789^{\circ}$ a $1582^{\circ}$. V tabulce prijaty hodnoty střední, zaokrouhlené na $1770^{\circ}$ a $1560^{\circ}$. Pro zlato obdrželi Ḣolborn a Day (1901) bod tavení $1064^{\circ}$ nověji pak Jacquerod a Perrot (1904) dle teploměru dusíkového $1067^{\circ}$. V tabulce prijata středni hodnota obou těchto nejnovéjsich pozorovami. Data novéjsí o aethyl- a methyl-alkoholu, aethylbenzolu a toluolu udal L. Fr. Guttmam (1905), a praví, ze jsou vzhledem k ćistotẽ substance přesná na ${ }^{1} / 2^{0}$ až $1^{0}$.

Srovnáváme-li bod taveni a koefficient roztažnosti objemové, omezujice se na prvky skupenství pevného, shledáváme povšechně, že vyšši bod tavení odpovidá menšímu koefficientu roztažnosti. Na tento vztah upozornil ponejprv roku 1878 anglický chemik Th. Carnelley (1852-1890), jenž nalezl, že, čím vyšši bod taveni, tím menši jest koefficient roztažnosti objemové; z povšechné souvislosti vymýkají se prvky arsen, antimon, vismut, tellur a cin, jež tvoří pro sebe skupinu zvláštní, uvnitř kteréž opět podobný vztah platí. V novějši době jednali o téže otázce J. v. Panayeff (1905) a H. F. Wiebe (1906). V následující tabulce jsou sestaveny prvky pevné dle stoupajícího bodu ta-

[^75]vení $\Theta$ a příslušného koefficientu objemové roztažnosti $\alpha$ tak, jak čísla ta udává $H$. F. Wiebe *). Vyjádříme-li teplotu tavení absolutně $T$, vychází dosti dobře relace
$$
\alpha T=\text { const. }
$$
ovšem jenom v hlavním rysu.
Vztah mezi bodem tavení pevných prvků a jich koefficientem roztažnosti objemové.

Prvek	$\begin{gathered} \text { Bod tavení } \\ \Theta \\ \text { temperatura } \\ \text { obyčejná } \end{gathered}$	Bod taveni $T$ temperatura absolutní	Koefficient c. $10^{6}$ roztaz̃nosti objemové	${ }^{\text {a }}$
Indium	155	428	$137 \cdot 7$	0.059
Selen	217	490	$113 \cdot 7$	56
Thallium	300	573	$94 \cdot 2$	54
Kadmium	322	595	$93 \cdot 0$	55
Olovo .	327	600	88.5	53
Zinek	419	692	$87 \cdot 3$	60
Aluminium	657	930	$72 \cdot 0$	67
Stříbro	961	1234	$58 \cdot 2$	72
Zlato	1063	1336	43.5	58
Měd	1084	1357	$51 \cdot 0$	69
Železo .	1300	1573	36.9	58
Nikl	1484	1757	$38 \cdot 7$	68
Kobalt	1500	1773	$37 \cdot 2$	66
Palladium .	1587	1860	$35 \cdot 7$	66
Platina .	1780	2053	$27 \cdot 3$	56
Ruthenium	1800	2073	$30 \cdot 0$	62
Rhodium	2000	2273	$25 \cdot 8$	59
Iridium	2200	2473	$21 \cdot 3$	53
Osmium . . .	2500	2773	$20 \cdot 4$	57
				$0 \cdot 0604$

Průměrně jest tedy

$$
a T=0.0604
$$

[^76]Tato konstanta rovná se, jak $H$. F. Wiebe upozorñuje, velmi blizce druhé odmocninẽ z koefficientu $\gamma$ pro roztaz̄nost plynû
tak že by platil vztah

$$
0 \cdot 0604=\sqrt{0.00367}
$$

$$
\alpha T=\sqrt{\gamma}
$$

relace snad nahodilá, ale svou jednoduchostí zajisté pozoruhodná, jez̃ alespoñ v hlavním rysu dosti dobře se osvẽděuje.

Jinak jest pravdě podobno, že teplota, při níž prvky se tavi, jest periodickou funkeí jich váhy atomové. Závislost tato jest ostatně pravdě podobnou pro všechny vlastnosti fysikální.

Dodati dlužno, že některé prvky se dosud nepodařilo roztaviti ani žárem největším, kterýž dosud lze realisovati, totiž v oblouku elektrickém; jsou to uhlik, bor, wolfram a molybdén.

## § 89. Bod tavení u slitin a smèsi.

Sléváme-li dva kovy, I a II v procentuálním poměru $x: y$ (tak že jest $x+y=1$ ) a je-li (obr. 69.) $\Theta_{1}=A^{\prime} A$ a


Obr. 69.
Bod taveni pro slitinu dvou kovũ v schematickẻ závislosti na procentuálním sloz̃ení.
$\Theta_{2}=B^{\prime} B$ bod tavení (tuhnuti) kovu prvého a druhého, očekávali bychom dle analogie tepla specifického (§ 74.), že bod tavení (tuhnuti) $\Theta$ pro slitinu při stoupajícím $y$ přechází od hodnoty $A^{\prime} A$ k hodnotě $B^{\prime} B$ podél přímky $A B$.

Analogie tato se však osvědčuje velice zřídka, a i tu jen přibližně. Obr. 70. vyznačnje na př. slitiny platiny a zlata (Erhard a Schertel 1879). Přechod od bodu $A\left(P t \ldots 1775^{\circ}\right)$ k bodu $B\left(A u \ldots 1075^{\circ}\right)$ děje se vskutku podél křivky, jež jen velice málo sestupuje pod přímku $A B$, jsouc k ose úseček velmi mírně konvexní.

Zpravidla odchyluje se však křivka $A B$ od přímky $A B$ daleko více. Někdy bývá křivka celá nad přímkou, jindy, a to častěji, pod přímkou. Při tom se ukazuje někdy pro bod tuhnutí $\Theta$ v prvém případě maximum, $\mathbf{v}$ druhém minimum. Takovéto význačné hodnoty poukazuji ke slitině zvláště charakteristické. Mnohdy to bývá určitá chemická sloučenina, jež se dá rystihnouti chemickou formuli. Ale často jde jen o slitinu určitého složení, kteréž formuli chemickou vystihnouti nelze; nazýváme pak slitinu takovouto eutelktickou*). Při tom bývaji minima velmi ostrá, křivka jeví diskontinuitu s hrotem vice méně ostrým, jenž jest jakoby průsekem dvou křivek různých. Pravidel všeobecně platných zde neni; úkol dlužno studovati individuálně, pro slitiny každých dvou


Obr. 71.
Slitiny zlata a stribra. komponent zvlášt. Uvedeme přiklady, především takové, jež vynikají svou jednoduchostí.

Obr. 71. vyznačuje slitiny zlata a střibra (Roberts Austen a Kirke Rose 1903). Křivka $A u$ ...Ag leži cele nad přimkou, nejevic žádného maxima. Zde tedy neexistuje žádná slitina zvláš̌t charakteristická.

Podobně chovaji se slitiny antimonu a vismutu (Roland Gosselin 1896, obr. 72.), střibra a kadmia (Gautier 1896, obr. 73.), niklu a mědi (Gautier 1896, obr. 74.), ač zde v prûbĕhu křivek

[^77]se ukazuji malé diskontinuity, k slitinám určitého složení poukaznjící, jež z každého obrazce dobře lze udati. Také slitiny střibra a olova ukazuji celkově podobný prủběh (Heycock a Neville 1897, obr. 75.), jen že zde, když se k olovu přidává střibro, s počátku kǐivka poněkud klesá k ostrému minimu, jež se ukazuje při $3 \%$ střibra a $97 \%$ olova a dává bod tuhnuti nejmenši, $303^{\circ}$; ale pak se křivka zvedne a jde bez dalšiho význačného průběhu $k$ bodu tavení stříbra. Také nejznáměǰ̌i slitiny, totiž mědi a zinku (mosaz), mědi a cínu (bronz) ukazují průběh celkově dosti podobný, ač v některých podrobnostech odchylný.

Uvedme nyni některé přiklady, kdy kǐivka $A B$ sestupuje s obou stran pod přímku $A B$ a ukazuje ostré ninimum, jež stanovi slitinu eutektickou vesmyslu nahoře uvedeném. Obr. 76. vyznačuje sli tiny střibra a mědi (Heycock a Neville 1897), ostré minimum $778^{\circ}$ bodu tavení jeví slitina $28 \%$ Cu a $72 \%$ Ag. Zcela


Obr. 72.
Slitiny antimonu a vismutu.


Obr. 73.
Slitiny stribra a kadmia.


Obr. 74.
Slitiny niklu a mědi. podobný průběh ukazuje obr. 77. pro slitiny mědi a zlata (Roberts Austen a Kirke Rose 1900); ostré minimum $905^{\circ}$ bodu tavení jevi slitina $82 \%$ $A u$ a $18 \%$ Cu. Rovně̌̌ podobný prûběh ukazuje obr. 78. pro známé slitiny olova a cínu (Roberts Austen 1897); ostré mini-


Slitiny str̃ibra a olova.


jako by se skládala ze tří křivek různých
Zajímavý průběh, vyznačený minimem i maximem, ukazuje obr. 82. pro slitiny niklu a cínu (Gautier 1896); ostré mini-
mum $180^{\circ}$ bodu tavení má slitina $67 \%$ Sn a $33 \% \mathrm{~Pb}$, tedy dvou dílů cínu a jednoho dílu olova. Slitiny této užívá se k pájení kovů jakožto měkké pájky klempířské. Podobně obr. 79. pro slitiny aluminia a zinku (Heycock a Neville 1897); ostré minimum $381^{\circ}$ bodu tavení má slitina $95 \% \mathrm{Zn}$ a $5 \%$ Al. Podobně obr. 80. pro slitiny olova a antimonu (Roland Gosselin 1896); ostré minimum $228^{\circ}$ bodu taveni má slitina $13 \% \mathrm{Sb}$ a $87 \% \mathrm{~Pb}$. Ve všech těchto případech snižuje se tedy bod tavení kovu jednoho účinkem přimíšeného kovu druhého až k minimu, jež charakterisuje slitinu eutektickou.

Složitějši a velmi zajímavý prủběh ukazuje obr. 81. pro slitiny natria a kalia (Kurnaliov 1901) ; ostré a hluboké minimum - $12.5^{0}$ jeví slitina $77 \cdot 2 \% \mathrm{~K}$ a $22.8 \% \mathrm{Na}$; ale vedle toho jest dříve ještě význačný bod tuhnutí $6.88^{0}$ při slitině $53.0 \% K$ a $47.0 \%$ $N a$. Křivka činí dojem.
mum $1190^{\circ}$ bodu tuhnuti ukazuje slitina $33 \cdot 3 \%$ Sn a $66.7 \% \mathrm{Ni}$; vedle toho ukazuje význačné maximum $1310^{\circ}$ bodu tavení slitina $57.5 \%$ Sn a $42.5 \% \mathrm{Ni}$, jež jest chemickou sloučeninou $\mathrm{Ni}_{3} \mathrm{Sn}_{2}$.

Vskutku jest, dle atomových vah 58.7 a $119 \cdot 0$ nikla a cínu, ve sloučenině této obsaženo niklu $176 \cdot 1$ : (176.1 $+238 \cdot 0)=0.425$, tedy $42 \cdot 5 \%$. Průběh velmi podobný jeví slitiny aluminia a cínu (znázorněný v témže obr. 82).

V případech takových, kde se tvoři chemické sloučeniny, jest pochopitelno, že se věc komplikuje, poněvadž se pak jedná netoliko o slitiny daných kovů, nýbrž též o směsi těchto slitin a oněch sloučenin. Tak jest tomu na př. u slitin zlata a aluminia, kde se tvoří sloučeniny $A u_{4} A l, A u_{2} A l, A u A l_{2}$, podobně u aluminia a mědi, kde se tvoří sloučeniny $\mathrm{Cu}_{3} \mathrm{Al}$ a $\mathrm{CuAl} l_{2}$ atd. Přislušná křivka pro bod tavení $\Theta$ jevi se pak býti jako slo-


Obr. 79.
Slitiny aluminia a zinku.


Obr. 80.
Slitiny olova a antimonu. ženou z několika kǐivek se protinajících. Ještě větší komplikace nastávají, kde bud̉ kovy slévané nebo jich sloučeniny doznávají ve slitinách chemické přeměny, allotropie, modifikace. V širším významu vznikají poměry podobné u fysikálních směsí vůbec, zejména u směsí látek krystallisovaných. Všeobecných výsledků zde uvésti nelze a nutno tudiž každý případ studovati zvlášt pro sebe.


Obr. 81.
Slitiny natria a kalia.


Obr. 82.
Slitiny niklu, resp aluminia a cinu.

C'íselná data zde uve. dená o bodech tuhnutí resp. taveni pro jednotlivé komponenty ve slitiné zastoupené se mnohdy neshodují s tẻmi, jez̆ jsou udảna v § předesterm. Jsou prijata tak, jak je pozorovatelé slitin svého času nalezli. Że jest velmi nesnadno o nêjakých definitivnich hodnotách pro body taveni nebo tuhnuti mluviti, ukazuje príklad platiny a palladia, v predeşlém § uvedený, kde i výsledky z dob nejnovéjsích se dosti značnè od sebe odchylují.

Literatura tohoto predmétu jest dosti rozsáhlá. Mnohé připady jsou obsaženy ve fysikálnich tabulkách Lan-dolt-Börnsteinovych 1905, z nichž také obrazce zde uvedené jsou vyniaty. Sem náleži téz obširné (anglické) pojednání o slitinách (Sir Roberts Austen a A.Stansfield), jež v preekladu francouzském při pr̂ilez̃itosti, kdy byl (v r. 1900) mezinárodní sjezd fysikú y l'ařiži, prinesly Zprávy tomuto sjezdu predloz̃ené. (Rapports présentés au Congrès internat. de physique réuni à Paris 1900, I, pag. 363, 1900. Vysly tři svazky a çtvitý razu formálnîho.)

Sléváním vhodných kovŭ lze obdržeti slitiny, jichž body tavení jsou značně snižené, až por $100^{\circ}$. Vhodným přikladem jsou slitiny, jež udali Rose, Darcet, Wood a Lipowitz; jich složeni se udává poněkud rûzně; následující tabulka obsahuje čisla, jak je určil W. Spring, a přislušné chemické formule.

Slitiny o nízkých bodech tavení (W. Spring).

		$\begin{aligned} & \text { Rose } \\ & { }_{B i_{7}} S n_{6} P b_{4} \end{aligned}$	$\begin{gathered} \text { Darcet } \\ B_{i 1} i_{13}{S n_{10} P l_{8}}^{2} \end{gathered}$	$\begin{gathered} \text { Wood } \\ \mathrm{Bi}_{4} \mathrm{PbSO}_{2} \mathrm{Cd} \end{gathered}$	$\begin{gathered} \text { Lipowitz } \\ B i_{11} P b_{6} S n_{3} C d_{4} \end{gathered}$
Vismut	(269)	48.90\%	$49.05 \%$	$55.74 \%$	49.98\%
Cin	(232)	23.55	21.20	13.73	12.76
Olovo	(327)	27.55	29.75	13.73	26.88
Kadmium	(321)	-	-	16.80	10.38
$\Theta \ldots$	$\cdots$	$90 \cdot 3^{\circ}$	$90^{\circ} \ldots 95^{\circ}$	$65^{\circ} \ldots 70^{\circ}$	$80^{\circ} \ldots 85^{\circ}$

Dle vah atomových nyní platných bylo by procentuální sloz̃ení těchto slitin poněkud jiné. Tak na pr̂. obsahovala by slitina Roseho dle formule $\mathrm{Bi}_{7} \mathrm{Sn}_{6} \mathrm{~Pb}_{4}$ poc̃́taná $48.6 \% \mathrm{Bi}, 23.8 \% \mathrm{Sn}, 27.6 \% \mathrm{~Pb}$. Tabulky LandoltBörnsteinovy udávaji ješté jiné složení takovy̌chto slitin. Nejnižsí bod tavení (tuhnuti) totiž $65.5^{\prime \prime}$ má slitina $50.1 \% \mathrm{Bi}, 14 \% \% \mathrm{Sn}, \quad 24.9 \% \mathrm{~Pb}$ a $10 \cdot 8 \% \mathrm{Cd}$, jejíz hmota specifická jest $9 \cdot 685$.

Slitiny jsou objekty pro práce fysikalní svou rozmanitostí témễ nevyčerpatelné; také se nyní mnoho o slitinách pracuje; zejména jsou zajimavy metallografické publikace ústavu pro anorganickou chemii v Göttinkảch, uveřejñované v nēm. Casopise pro anorganickou chemii.

## § 90. Přechlazeni kapalin.

Způsob, jak skupenství kapalné zpět přechází v pevné ujimáním tepla, jest zpravidla souměrný se způsobem, jak skupenství pevné přechází v kapalné přiváděním tepla. Tuto souměrnost znázorňuje obr. 83. v témže způsobu jako obr. 68. provedený. Když se kapalina ochladí až k teplotě $\Theta$, začíná tuhnouti a ztuhne úplně, ujme-li se každému grammu kapaliny teplo skupenské; teplota $\Theta$, jakožto teplota tuhnuti, je při tom stationární, a klesá teprve, když celá kapalina ztuhla. V tomto smyslu jest bod tuhnutí identický s bodem tavení.

Může však se státi, že se kapalina ochladi pod bod tavení $\Theta$, na př. na teplotu $\Theta^{\prime}$ neb $\Theta^{\prime \prime}$ (obr. 83.), a že tuhnuti nenastane. Pravíme, že se kapalina přechladila. Jakmile pak přece tuhnutí nastane, uvolní se teplo skupenské, a následkem toho teplota stoupne, při čemž se bod tavení bud dostihne (jako na př. při obr. 83. při $\Theta^{\prime}$ ) nebo již nedostihne (na př. při $\Theta^{\prime \prime}$ ) dle toho, jak značně kapalina byla přechlazena. V prvém připadě může se státi, že teplo skupenské jestě zůstane z části v nadbytku, následkem čehož část kapaliny při tuhnuti zůstane kapalnou.

Úkaz přechlazení kapalin, velmi zajímavý, byl pozorován ponejprv u vody. Jest však rázu všeobecného; přechladiti se dá kapalina každá, a to, je-li bud v naprostém klidu, anebo v prudkém pohybu.


Obr. 83.
Souměrnost kapalněni a tuhnuti a význam přechlazeni kapalin.
Fahrenheit byl proý, jenž pozoroval, že se čistá voda, je-li úplně v klidu, ochladí až na $-5^{0}$ i na $-10^{\circ} F$ a že nemrzne. Přechlazeni se podaři za příznivých poměrủ až na $-13^{\circ} \mathrm{C}$, ano i ještě niže. Hlavní věcí jest, aby voda byla úplně čistou, vyvařenou, a chránila se před prachem, kterýž by do ní ze vzduchu mohl vniknouti. Může se voda pokrýti vrstvou oleje, anebo se může baňka po vyvaření vody a vypuzení vzduchu uzavříti čistou vatou, kterou se vzduch zase do baňky vnikající filtruje, anebo se baňka po vyvaření vody a vypuzení vzdüchu zataví, předpokládajíc, že vydrží tlak vzduchu. Vhodné jest do baňky vložiti hned teploměr, aby se teplota vody stále mohla pozorovati. Tak vznikají rozmanité přístroje, účelủm přednášek slonžící, z nichy̌ nejvhodnějši jest znázorněn v obr. 84 . Malá nádebka na vodu jest přitavena přímo k nádobee teploměrné, kterou obaluje; vodou se naplní pomoci malé trubičky dolejší, která se pak po vyvaření vody zatavi. Přístroj jednou zřizený je stále $k$ pokusu pohotově. Voda se přechladí ponenáhlu vhodnou mrazivou směsí; dobře jest však touto směsí chladiti alkohol a tínto teprve vodu, aby nechladla přiliš rychle. Zatřepáním vody nastává mrznuti; utvoří se tříšt ledová, která přistroji neuškodi. Když však voda v ochlazeném alkoholu zmrzne, což se děje více kompaktně, mủže se státi, že se
nádobka roztrhne a tím přístroj poškodi. Dufour přechladil až na - $20^{\circ}$ malé kuličky vodní, kteréž se vznášely ve směsi chloroformu a mandlového oleje, jež měla touž hustotu jako voda. Touto methodou lze i jiné látky přechladiti, na př. siru v roztoku chloridu zinečnatého ( $\mathrm{ZnCl}_{2}$ ), která zủstává i při $50^{\circ}$ kapalnou, ač se taví při $114^{\circ}$.

Látkami pro experimentátora velmi vděěnými, při nichž možno přechlazení ukázati velmi pěkně a snadno, jsou některé soli, zejména sirnatan sodnatý (natrium hyposulfurosum, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+5 \mathrm{H}_{2} \mathrm{O}$ ), octan sodnatý (natrium aceticum, $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ ) a siran sodnatý, sůl Glauberova (natrium sulfuricum, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}+10 \mathrm{H}_{2} \mathrm{O}$ ). Soli se nasypou každá do baňky, vatou uzavřené, a tyto baňky se vloži do lázně horké (vaříci) vody. Soli se roztaví ve vlastni krystallické vodě, při teplotách $48^{\circ}, 59^{\circ}$ a $34^{\circ}$; jest však nutno zahřívati nad tyto teploty, aby nezůstaly malé krystallky neroztavené. Když se pak zahřiváni přeruší a baǔky ve vodě znenáhla chladnoucí se nechají státi, přechladí se snadno a velmi značně, sirnatan sodnatý na př. až i na $10^{\circ}$. Když se pak do takové přechlazené tekutiny vhodi zrnko příslušného krystallu, vzbudí se od místa, kam dopadlo, krystallisace, která rychle na všechny strany postupuje. Při tom se skupenské teplo vybaví, a teplota látky stoupne.

Velmi krásně lze úkaz ten studovati v projekci, vertikálním apparátem projekčnim. Na polní čočku tohoto apparátu položi se kulaté skličko, kteréž jest na kraji obtočeno proužkem tuhého papíru*). Na toto naleje se $z$ ban̆ky něco oné přechlazené kapaliny. Dobře jest skličko nahřáti nad anen lihovym, aby krystallisace nezačala při Teplomèr kpredotyku kapaliny s chladným sklem. Mnohdy udrži chlazeni vody. se kapalina, zejména, je-li mírně přechlazena, na skličku dlouhou dobu. Pak vhozením malého krystallku anebo otřesením začne krystallisace na povrchu. Průběh jeji lze na

[^78]projekěni stěně studovati velice krásně. Sirnatan sodnatý krystallisuje v monoklinických deštičkách, kteréž plavou na kapalině, octan sodnatý v prismatických sloupečkách, Glauberova sůl pak v monoklinických jehlách, kteréž se od mista, kde krystallisace začne, radiálně šiři. Pozorovati tuto krystallisaci, to očividné vzrůstáni krystallů, jak v pravidelných směrech pokračuje a se širǐi, poskytuje neobyčejný půvab a zájem.

Jakožto jiné vhodné látky uvádí Chwolson betol $\left(C_{6} H_{4}(\mathrm{OH}) \mathrm{COO} . C_{10} H_{7}\right)$, který se taví při $95^{\circ}$, piperin $\left(C_{17} H_{19} \mathrm{NO}_{3}\right)$, který se tavi při $129^{\circ}$ a krystallisuje v monoklinických hranolech a j. -

Když se utvoř̌i směs přechlazeného sirnatanu a octanu sodnatého, mohou se vytvořiti krystally octanu v kapalném sirnatanu, který přechlazeným zůstane. Pak lze v projekci ještě lépe pozorovati, jak vzrůstaji prismatické sloupečky octanu v prostředi kapalném.

Rychlost, s jakou v kapalině přechlazené krystallisace pokračuje, závisí na stupni tohoto přechlazeni. Gerner (1882) nalezl, že jest tomuto stupni obráceně úměrnou. Tammann *) (1897) však ukázal, že rychlost tato sice s počátku se stoupajícím přechlazením stoupá, avšak vždy mírněji, pak se stává stationární, a pak zase klesá. Jsou-li kapaliny velmi značně přechlazeny a následkem toho hustými, mủže ona rychlost klesnouti na míru velmi skrovnou. Prủbĕh krystallisace závisí však též na krystallisačni mohutnosti látky samé.

S otázkou přechlazeni kapalin souvisí též zajímavý názor, jaký vyslovil Tammann o podstatě skupenstvi pevného a kapalného. Ve skupenství kapalném (a ovšem i plynném) jest uspořádání nejmenšich částeček hmotných zcela nepravidelné; vlastnosti látek maji v tomto stavu povahu jenom skalární. Když kapalina krystallisuje, seřađují se tyto částečky pravidẹlně do určitých směrú, čímž mnohé vlastnosti látky nabudou povahy velitorové. Změna je zde tudiž podstatná; krystally jsou látkami pevnými v praegnantním slova smyslu. Jinak jest tomu u látek amorfnich, jako jest železo, sklo a j. Cástečky látek těchto zủstávaji i při chladnutí v onom uspor̆ádáni nepravidelném, neurčitém; látka kapalná se přechladí, stává se při tom hustší, tužši, až konečně ztvrdne a jest, jak řikáme, pev-
*) Gustav Tammann, *1861, od r. 1903 ř. prof. anorg. chemie na universitē v Gōttinkách.
nou. Tento přechod jevi kontinuitu; není zde žádného určitého bodu tuhnutí ani tepla skupenského, ale právě proto není tento stav v témže smyslu pevným jako u krystallû.

Analogon přechlazeni kapalin bylo by přehřátí látek pevných. Zjev takový pozoroval Barus*) u naftalinu ( $C_{10} H_{8}$ ), kterýž krystallisuje v lupenech charakteristicky zapáchajicich, ve vodě nerozpustných, ale rozpustných na př. v horkém alkoholu, aetheru a j. Normálni bod taveni jest $80^{\circ}$.

## § 91. Změna objemu při taveni

Tělesa pevná, tavíce se, mění svůj objem; zpravidla se roztahují, výjimkou stahuji. Způsob této změny jest individuálni. Mnohdy děje se změna při teplotě tavení náhle, jindy se již před teplotou tavení roztažnost urychluje, jako by se zvětšení objemu připravovalo. Nękdy se jeví též nepravidelnosti poukazujicí ke změnám vniterným látky dané.

Zdali změny objemové při tavení nebo při tuhnutí nastávaji a jakého zpủsobu jsou, můžeme rychle a snadno rozhodnouti, když ve zkumavee látku roztavíme a pak pozorujeme, jak se vodorovný povrch změní při tuhnuti. Obyčejně se stane konkávním, jako na př. velmi značně u síry, zřidka konvexním, jako na př. a vismutu. Jest patrno, že v prvém případě se při tuhnutí objem zmenšuje, v druhém zvětšaje. Úkazy takové pozoroval již v r. 1726. Réaumur.

Změny objemové při taveni určují se obyčejně methodou dilatometrickou. K tomu účelu upravi se dilatometr na rozebírání tak, aby bylo možno těleso pevné dovnitř vložiti a pak dilatometr vhodnou kapalinou doplniti. Roztažnost této kapaliny, jakož i dilatometru samého musí ovšem býti před tím vyšetřena. Pak se dilatometr zahřívá v lázni na př. olejové a pozoruje se, jak objem kapalinou indikovaný se mění s teplotou, zejména v blízkosti teploty, při níž těleso pevné se tavi. Touto methodou pracoval zejména $H$. Kopp (1855), jeň̆ změny objemové při tavení četných látek


Obr. 8 5. studoval. Jeho dilatometr jest znázorněn v obr. 85. val H. Kopp.

[^79]V nejnovější době (1905) užil $A$. Hess*) s úspěchem též methody hydrostatické. Některé z jeho výsledkủ jsou v následujícim výkladu za přiklad uvedeny.

Jedná-li se o studium individuální, doporučuje se užívati bud̉ tabellárního sestavení anebo ještě lépe znázornění grafického, jež jediným pohledem celou otázku objasňuje. Za úsečku u takových diagrammů volíme i zde teplotu, za pořadnici pak nejlépe specifický objem.

1. Pojednejme nejprve o případech, kdy těleso při tavení svůj objem zmenšuje. V popředi stojí voda, jejiž ob-


Obr. 86.
Jak se mẽní objem tajiciho ledu a objem vody zahřivané. jemové změny při tání ledu vznikající mají v přírodě význam veliký. Diagramm změn těchto jest proveden v obrazci 86. Zmenšení objemu, když led taje, čini okrouhle jedenáctinu toho objemu, který má voda nullstupřová; je tedy velmi značné. Specifická hmota ledu při $0^{0}$ jest $0.917 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$, specifický objem tudiž $1.090 \frac{\mathrm{~cm}^{3}}{\mathrm{~g}}$. Poněvaď̌ pak změna objemu vody od $4^{0}$ do $0^{0}$ čini jen $0.00013 \frac{\mathrm{~cm}^{3}}{\mathrm{~g}}$, múžeme říci, že voda při $0^{6} \mathrm{mrz}$ nouc, svůj objem zvětší o $9 \cdot 0 \%$.

Specifická hmota ledu $0^{0}$ udává se různẽ. Kopp nalezl 0.908, Plücker a Geissler 0.9158, Brunner 0.918, Bunsen 0.9167, Dufour 0.9178 . V novéjミ̌i době nalezli Nichols (1899) 0.9161 (led umêlý), 0.9181 (led prirozený), Barness (1901) 0.9166 (led fī̃̄ný), Vincent (1902) 0.9160 (led umêly̆), M. A. Leduc (1906) 0.9176. Na základê všech texchto a zejména novéjsích mérení jevi se býti hodnota 0.9170 nahỡe udaná pravdế nejpodobnéjsí. Dle toho led, plovoucí na vodé, vnơí

[^80]se do vody $0^{0}$ objemem $v$, jenž k celému objemu $V$ jest v pomẽru (Mechanika § 302, 1901)
$$
\frac{v}{V}=\frac{0.9170-0.0012}{0.9999-0.0012}=\frac{0.9158}{0.9987}=0.917
$$
zapadne tedy do vody $91.7 \%$ celého objemu, zbytek pak $8.3 \%$ vyčnívá do vzduchu.

Roztahování vody při mrznutí lze demonstrovati pěkným a effektním pokusem přednáškovým, totiž roztržením železné bomby. K pokusu se hodí bomby lité v prủměru vnějším 7 cm , vnitřním 4 cm , o stěnách 1.5 cm silných, které lze dobrým šroubem uzavříti. Před přednáškou vložíi se bomba na led, aby se ochladila, a připraví se ledová voda. Když se pokus má provésti, naleje se ledová voda do bomby, vloží se dovnitř kousek ledu, bomba se šroubem těsně uzavře a vloží na drátku do dřevěné (nebo plechové) nádoby, v níž se připraví mrazivá směs, z ledu a kuchyňské soli. Nádoba se přikryje vikem. Během přednášky nastane roztržení, jež se ohlásí dosti silným výbuchem. Trhánískal mrazem. t. j. vodou, která do skulin vniká a pak mrznouc se roztahuje, jest zjev zcela podobný.

Jako led chová se


Obr. 87.
Jak se měni objem vismutu při taveni též vismut. Příslušný diagramm jest proveden v obr. 87. a to dle pozorování, jež vykonal A. Hess (1905). Úsečkou jest opět teplota, pořadnici objem specifický. Koefficient roztažnosti činí před tavením $\approx=0.000148$, po tavení $a^{\prime}=0.000264$. Specifický objem se při tavení umenši o 0.0037, což činí $3.5 \%$ toho objemu, který má vismut před tavením.

Když by se diagramm pro vismut (obr. 87.) mêl srovnávati s diagrammem pro led (obr. 86.), pak nutno upozorniti, že męrítko pro zmẽny specifického objemu jest u vismutu desetkráte vétší nez̃ u ledu.

Otázka, zdali snad také vismut, když jest roztavený, jeví ještě nějaké minimum objemové, podobně jako voda, není dosud rozřešena.

Pokus roztrhnouti železnou nádobu lze provésti ve zpúsobu analogickém též vismutem (J. Tyndall).

Uvedli jsme zde o vismutu čísla nejnovêjsího data. Starší pozorování udávají vy̌sledky zejména v koefficientech roztažnosti znac̃nẽ odchylné, jakoz̃ ukazují priklady následujicí.

Koefficienty objemové roztažnosti a změna objemu pro vismut před tavením a po tavení.

$10^{6} \cdot \alpha$	$10^{6} \cdot \alpha^{\prime}$	$\Delta v \%$	
40	120	$-3 \cdot 3$	Omodei a Vicentini 1887
41	44	-3	Lüdeking 1888
148	264	-35	Hess 1905

Také jiní pozorovatelé udávají zmẽ̃nu objenu ponêkud menši, na př. Toepler - $3 \cdot 3$ (1894). Specifickou hmotu vismutu udávaji Omodei a Vicentini 9.787 prí $0^{\circ}, 9.673$ pred tavením a 10.004 po tavení, jez̃ se děje prii $271^{\circ}$ dle teplomẽru vzduchového.

Z dalšich kovů dlužno ještě uvésti żelezo, kteréž se při tavení o $5.5 \%$ svého objemu, který má před tavenim. smrštuje (Th. Wrighton). U litiny jest změna objemu menší; modely brávají se v rozměrech $0 \frac{1}{96}$ většich než má vyjiti předmĕt ulitý.

Udává se (na př. O. Chwolson), že také antimon se při tavení smrštuje. Avšak M. Toepler nalezl změnu positivní, t. j. zvětšení objemu o $1 \cdot 4 \%$. Naproti tomu jest pochopitelno, že některé slitiny vismutu a antimonu se smrštuji, poněvadž se u nich jeví vliv vismutu. Arons nalezl, že také ledek draselnatý $\mathrm{KNO}_{3}$ při tavení se smrštuje.
2. Jak již řečeno, pravidlem jest, že látky při tavení svůj objem zvětšuji. Úkaz sám studován byl od velmi četných badatelû více méně podrobně, dosud však málo soustavně. Ze starších pozorování vynikají ta, jež v letech 1855 provedl $H$. Kopp*). Z dob novějšich budtež jmenovány práce, jež provedl E. Wiedemann (1883), M. Toepler**) (1894) a A. Hess (1905).
${ }^{*}$ ) Lieb. Ann. Max Toepler, ${ }^{*}$ 1870, žãk E. Wiedemannûv, (syn A. Toeplera, * 1836, jenz̃ sestrojil prvni elektriku influenčni). Viz Wied. Ann. d. Ph. 53, pag. 375, 1894.

Z výsledků, jež poslední z badatelủ zde jmenovaných obdržel, budtež uvedeny následující.

Diagramm obr. 88. ukazuje roztažnost fosforu při taveni. Přiklad tento vyznačuje se svou typickou pravidelností a jednoduchosti. Roztažnost před i po taveni jest lineární, změna specif. objemu čini $0.5755-0.5564=0.0191$ čili $3.4 \%$ toho objemu, jenž byl před tavením.

Neméně pravidelný prúběh ukazuje při tavení cin, jak diagrammem v obr. 89. jest znázorněno. Roz-


Obr. 88.
Jak se mèni objem fosforu při tavení. tažnost před tavením jest (téměř) pravidelná ( $\alpha=0.000136$ ), po tavení rovněž ale značně větší ( $a^{\prime}=0.000345$ ), změna specif. objemu činí $0.1471-0.1433$ $=0.0038$ čili $2 \cdot 6 \%$ toho objemu, jenž byl před tavenim.

Jakožto přiklad těles, při nichž blízkost taveni se jeví roztažností značně urychlenou, slouží kyselina stearová, hmota bilá, krystallická ( $C_{18} H_{3 n} O_{2}$, specif. hmota 0.94). Bod taveni (obr. 90.) není zcela určitý*), leži mezi $48^{\circ} \ldots 53^{\circ}$; jak A. Hess podotýká, mohla by přičina toho býti v tom, že praeparát nebyl zcela čistý. Podobně chová se síra, amidodiphe-


Obr. 89.
Jak se méní objem cinu prí taveni. nyl $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NH}_{2}\right)$, u nichž však bod tavení vystupuje určitěji.

Soustavně o dané otázce pracovali italští badatelé $G$. Vicentini a $D$. Omodei (1887). Také způsob, jak úkol řešili, t. j. jakými

[^81]

Obr. 90.
Jak se mẽní objem kyseliny stearové při taveni.
veličinami přemènu skupenstvi vystihli, se velice zamlouvá. Stanovili totiž pro každou látku jeji specif. hmotu $D_{0}$ při teplotě $0^{\circ}$ jakožto normální*), pak při bodu taveni $\tau$ jednak ve skupenství pevném $D_{\tau}$, jednak v kapalném $D_{\tau}^{\prime} ; \mathrm{z}$ toho pak vypočetli změnu objemu $\Delta$ v procentech toho objemu, který měla látka právě před tavením. Vedle toho určili oba koefficienty objemové roztažnosti, e před tavením, $\alpha^{\prime}$ po tavení, jakož i poměr obou $\frac{a^{\prime}}{\alpha}$. Výsledky jejich obsahuje tabulka následujíci**), uspořádaná dle vzestupujiciho bodu taveni. Teploty jsou přepočteny na teploměr vzduchový.

Změny objemové při tavení.

Látka	$\tau$	$D_{0}$	$D_{\tau}$	$D_{\tau}^{\prime}$	$\Delta$ $\%$	$10^{6} . . c$	$10^{6} . e^{t}$	$\frac{a^{\prime}}{c}$
Hg	$-38 \cdot 9$	13.5960	14.193	$13 \cdot 690$	$3 \cdot 67$	-	179	-
$P$	$44 \cdot 4$	1.83676	$1 \cdot 80654$	1.74529	35	376	520	1.4
$K$	$62 \cdot 1$	$0 \cdot 8624$	$0 \cdot 8514$	$0 \cdot 8298$	$2 \cdot 6$	250	299	$1 \cdot 2$
$N a$	$97 \cdot 6$	0.9724	$0 \cdot 9519$	0.9287	$2 \cdot 5$	216	278	$1 \cdot 3$
$S$	113	$2 \cdot 0748$	-	1.8114	-	354	482	$1 \cdot 4$
Sn	226.5	7•3006	$7 \cdot 1835$	6.988	2.80	69	114	1.7
Cd	318	$8 \cdot 6681$	$8 \cdot 3665$	7.989	4.72	95	170	1.8
Pb	325	11.359	11.005	10.645	$3 \cdot 39$	88	129	1.5

[^82]Procentuální změny objemové u látek zde prozkoumaných pohybují se $v$ mezích dosti úzkých, totiž $2 \cdot 5$ až $4 \cdot 7$, síru vyjímajic. Zde totiž jest předběžné roztahování velmi značné. Pravidlo Carnelley-ovo o vztahu mezi koefficientem roztažnosti a bodem tavení se osvědčuje méně dobře. Koefficienty roztažnosti ve stavu tekutém jsou prủměrně o polovičku větší.

V tom však činí vismut vy̌jimku, u něhoz̃ by dle dat od týchž autorú zjednaných a dříve již v tabulce uvedenẏch poměr $\frac{c^{\prime}}{\alpha}$ byl $3 \cdot 0$, tedy značně vẻtşi. Oproti tomu je však pozoruhodno, že nová data též nahoře uvedená, jež nalezl $A$. Hess, dávaji $\frac{a^{\prime}}{{ }^{\prime}}=\frac{264}{148}=1 \cdot 8$, coz̃ lépe souhlasi s hodnotami ostatními. Nebylo by nemoz̃no, z̃e oni autorové nêjakou nahodilostí pro vismut obdrželi koefficienty chybné.
G. Vicentini a $D$. Omodei vyšetřovali též podrobně slitiny olova a cínu a shledali, že změny objemové při tavení jsou u nich menši než u jednotlivých kovů v nich obsažených.

## § 92. Účinek tlaku.

Bod taveni mění se tlakem, a to ve smyslu dvojím. Ston-pá-li tlak, zvyšuje se bod tavení, když se těleso při taveni roztahuje, snižuje se však, když se těleso při tavení stahuje. Případ prvý, jak již dříve řečeno, jest pravidlem, druhý výjimkou. Tento účinek tlakový vyplývá z úvah theoretických a potvrzuje se skutečným pozorováním. Jest též pochopitelný, když se uváží, že stoupajícím tlakem objem tělesa se zmenšuje. Když se tedy objem při taveni také zmenšuje, působí tlak ve smyslu tavení, kteréž proto nastává již dřive, t. j. při teplotě nižší; pakli se objem při tavení zvětšnuje, působí tlak proti tavení, kteréž se tudiž opozdí, t. j. nastává až při teplotě vyšši. V prvém případě může těleso, které ještě kapalným není, tlakem samým zkapalněti, jako na př. led; v druhém případě může těleso, již kapalné, tlakem ztuhnouti, jako na pǐ. síra. Vždycky působí tlak k udržení toho skupenstvi, při němž jest objem menši.

Také teplo skupenské tavení se mění tlakem. Dle způsobu, jak se toto teplo definuje, jest v něm obsažen též aequivalent příslušné vnější práce, kterou těleso při tavení bud̉ produkuje nebo konsumuje. Že práce tato dle většího nebo menšiho tlaku se mění, jest patrno.

Zájem největší budila daná otázka při ledu. Theoreticky Ize ze změny objemu při táni vypočisti, oč se bod tání sniží, když se tlak o jednu atmosféru zvýši. Sniženi toto obnáši $-0.00753^{\circ}$, činí tudiž $-1^{0}$, když tlak o 132.8 atmosfér stoupne. Theoretický tento výsledek byl zkoušen též pokusem. W. Thomson (lord Kelvin) zkoušel v piezometru, jenž byl naplněn vodou a ledem, jakou teplotu jevi led při tlaku stále stoupajícim. Tlak měřil manometrem vzduchovým, teplotu velmi citlivým aetherovým teploměrem, jeň̌ byl silnostěnnou podélnou nádobkou ze skla chráněn před účinkem tlaku. W. Thomson postupoval až ke tlaku 16.8 atmosfér a nalezl změnu bodu tání $-0.00812^{\circ}$ na jednu atmosféru. Dewar postupoval až k velmi značnému tlaku 700 atmosfér a nalezl změnu $-0.0072^{\circ}$. Naopak Gossens zmenšoval tlak a shledal, že při tlaku $5 \mathrm{~mm}\left(\begin{array}{ll}\left.H g 0^{\circ}\right)\end{array}\right.$ led taje již při $+0.0066^{\circ}$. Mousson experimentoval kvalitativně a ukázal, že při tlaku na 13.000 atmosfér odhadnutém led při $-18^{\circ}$ byl tekutým. V novějsi době ( $1897-1900$ ) zabýval se Tammann podrobněji otázkou, jak u ledu bod táni závisi na tlaku.

Dle toho lze počitati, za jakých podminek by se pokus roztrženi żelezné bomby mrazem nezđařil. Bomba musila by vydržeti tlak, za kterêho voda prii - $21^{\circ}$, coz̃ jest teplota oné mrazivè smési, zûstává jestê kapalnou. Teplota taní snizizi se o $1^{\circ}$ tlakem 133 atmosfér, tudiž - ać-li extrapolace je prípustnou - o $21^{\circ}$ tlakem 2800 atmosfér. Kdyby stẽny bomby tak byly silné, że by tento tlak vydržely, pak by ovšem pokus, takovou bombu mrazem roztrhnouti, se nezdaril.

Zajímavý pokus udal James Th. Bottomley*). Přes veliký kus tajiciho ledu umístěného na vhodném stolku (obr. 91.) položi se ocelový drát tlouštky na př. $\frac{1}{4} \mathrm{~mm}$ a zatiží se na obou koncich závažím na př. 10 kg . Pozoruje se, jak drát vniká vždy hlouběji do ledu, tento přeřezávaje, na důkaz, že pod ním led taje, při čemž však za drátem voda hned zase zamrzá. Proto, když konečně drát přeřizne celý kus ledu, zůstává led přece zceleným. Vysvětlení spočivá na tom, že bod táni se tlakem sniži. Pod drátem, značně zatiženým, jest tlak (na jednotku povrchu přepočtený) velmi veliký; bod tání je tedy snižen pod nullu, a proto při vyšši, nullové teplotě okolí led taje. Teplo skupenské ujímá se však drátem, který teplo dobře
*) prof. fysiky na universitẽ v Glasgowě, narozen 1845. Při ûpravè pokusu obrazcem znázornēné nevadi voda tânim ledu (v sini obyčejné teploty) vznikajici, stékajic do sirokẻ dolejミi nádoby.
vede, samé vodě táním vznikajicí, která tudiž zase hned mrzne. Kdyby se misto drátu vzala šnủra, jež teplo nevede, pak pokus se nezdaři. Kdyby se pokus dál na pĭ. venku při teplotě značně pod nullou, tedy by rovněž onoho prủběhu neměl.

Na témže základě spočívá plasticita tajíciho sněhu neb ledu. Jest známo, že tající snih již tlakem rukou lze formovati, nikoli však snih teploty nízké, který jest sypký a který i při stlačeni sypkým zûstává. Jednotlivé kusy tajiciho ledu spojuji se vespolek již mírným tlakem; malým hydraulickým lisem lze ve formách dřevěných $z$ drobných kouskủ tajíciho ledu stlačenim obdržeti kompaktní tvary, na př. koule, válce. Tento úkaz tání ledu tlakem a opětného zmrznutí označujeme jakožto regelaci*).

Jest známo, že ledovce v létẽ tají na svém povrchu, při teplotẽ


Obr. 91.
Pokus Bottomley-uิv. nullové; uvnitř̌ však, kde vahou ledu samého je tlak značný, zjistili Ed. Hagenbach a Forel (1887) teplotu pod nullou **).

Jak již řečeno, tělesa velkou většinou pří tavení svůj objem zvěť̌uji ; proto tlakem bod tavení se zvýsí. Je-li známo, jak se zvýši objem specifický, lze zvýšeni bodu taveni stanoviti theoreticky a pak kontrolovati pokusem. Práce o této otázce byly konány poměrně málo četně a málo soustavně. V novější době nalezl na př. Ang. Battelli (1887) pro přetlak jedné atmosféry zvýšení bodu tavení o 0.028 při paraffina, 0.035 při naftalinu, 0.0039 při slitině Lippowitzově, 0.0026 při slitině Woodově a j. S výpočtem theoretickým souhlasí tyto výsledky velmi dobře. Otázku, jak zvýšeni bodu taveni pokračuje, když tlak stále roste, zkoumal C. Barus (1891 a 1892) při naftalinu. Jeho výsledky jsou tyto:

$$
\begin{array}{lrrrr}
p=1, & 80, & 277, & 567, & 1435 \mathrm{~atm} \\
\Theta=79 \cdot 2, & 83, & 90, & 100, & 130^{\circ} \mathrm{C}
\end{array}
$$

[^83]${ }^{* *}$ ) C. R. 105, pag. 859, 1887.

Touž látku studoval Mack (1898) a nalezl tyto výsledky: $p=150, \quad 675, \quad 1045, \quad 1500, \quad 1775, \quad 2140 \mathrm{~atm}$. $\Theta=86 \cdot 4,103 \cdot 6,115 \cdot 25,130 \cdot 25,139 \cdot 45,150 \cdot 6^{\circ} \mathrm{C}$.
Grafické znázorněni obou výsledkû (jehož zde neuvádíme) dává dobrý souhlas. Toto zuázorněni však zároveň ukazuje, že čára, grafickou interpolaci jednotlivými body $(p, \Theta)$ vedená, není přímkou, nýbry̌̌ křivkou, k ose úseček (tlaku $p$ ) konkávní. Nemění se tedy bod tavení $\Theta$ s tlakem stále vzrůstajícím úměrně, nýbrž volněji a volněji. Benoit Damien, jenž (v r. 1891) pokusy Battelli-ho opakoval až k tlakủm 200 atmosfér, došel výsledku podobného; proto položil výpočtủm za zảklad empirickou formuli pro změnu $\Delta \Theta$ bodu taveni s tlakem $p$

$$
\Delta \Theta=a(p-1)-b(p-1)^{2}
$$

a vypočital pro některé látky organické konstanty $a, b$. Tak jest na př.

	$a$	$b$
pro paraffin	0.029776	0.0000523
$"$ vosk	0.020523	0.0000130
7 naftalin	0.035840	0.0000155

atd.
Kdybychom formuli Damienovu pokládali za více než formuli interpolační, tedy za přirodni zákon, u něhož jest též extrapolace přípustnou, vycházelo by z ní, že pro určitý tlak zvýšení $\Delta \Theta$ jest maximum, odtud že se zase zvy̌šení $\Delta \Theta$ ponenáhlu zmenšnje, až při určitém tlaku vủbec mizi, načež při tlaku ještě dále stoupajicím by $A \Theta$ změnilo znameni, t. j. bod taveni by se snižil. Patrně jest

$$
\begin{aligned}
& \Delta \Theta=0 \quad \text { při } p-1=0 \text { neb } \frac{a}{b} \\
& \Delta \Theta=\text { max. při } p-1=\frac{1}{2} \frac{a}{b}
\end{aligned}
$$

Pro naftalin by na př. vycházelo

$$
\begin{aligned}
& \Delta \Theta=0 \quad \text { při } p-1=0 \text { nebo } 2312 \mathrm{~atm} . \\
& \Delta \Theta=\text { max. při } p-1=1156 \mathrm{~atm} .
\end{aligned}
$$

Tento dûsledek formule Damienovy byl s několika stran popírán (na př. Damerliac 1897, Heydweiller 1898). Že číselně jeho formule pro extrapolaci naprosto nestači, ukazuje se nejlépe při naftalinu. Dle jeho čiselných dat pro a a $b$ vychází
$\Delta \Theta=0$ při $p=2313 \mathrm{~atm}$., jak nahoře vypočteno. Ale Mack pozoroval při tlaku onomu blizkém, totiž 2140 atm., bod tavení $150 \cdot 6^{\circ}$, tedy velmi vysoký a ještě stoupajicí. Z toho však, že číselného souhlasu zde není, ještě nenásleduje, že by dủsledek o maximu změny $\Delta \Theta$ a pak následujícím obratu v účinku tlakovém byl nesprávným.

V nejnovější době zabýval se stejným problémem Tammann a shledal, že pro celou řadu látek bod tavení $\Theta$ s tlakem $p$ souvisí relací

$$
\Theta=c+a p-b p^{2}
$$

ze které následuje totéž, co již pro naftalin bylo řečeno. Pro tuto látku nalezl čiselně

$$
\Theta=79.95+0.0366 p-0.0000016 p^{2}
$$

ze které by následovalo*)

$$
\Theta \text { maximum }=261^{\circ} \text { při } p=11.500 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}
$$

což ovšem vede k číslûm daleko větším než je udává vzorec Damienův.

Pro fosfor nalezl

$$
\Theta=43.93+0.0280 p-0.000001 p^{2}
$$

a z toho

$$
\Theta \text { maximum }=251^{\circ} \quad \text { při } \quad p=144000 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}
$$

Přesvědčivější však než tyto přiklady, při kterých přece jen extrapolace jde velmi daleko, jest okolnost, kterou při ledu konstatoval Tammann skutečným pozorováním, že totiž účinek tlaku, kterým se zde bod tání snižuje, při tlacích velmi značných se obráti, a že dalším stoupáním tlaku se bod tání zase zvyšuje. Z jeho velmi pečlivých a zajímavých prací vychází přesvědčivě na jevo, že látky zkoumané při tlacích velmi vysokých se mění, že vznikaji nové modifikace látek povahy chemické, že polymorfismus látek za teplot velmi nizkých a při tlacích velmi vysokých je zjev dosti častý a že zejména i led ukazuje tři modifikace, I, II, III. Při modifikaci III bod tání s tlakem zase stoupá. Objevením těchto modifikací nabývá pak celá otázka rázu úplně změněného.

[^84]
## § 93 . Bod mrazu u roztoků.

Bod mrazu nějaké kapaliny, na př. vody, sniži se, když se do ní přidá něco látky, jež se v ni rozpoušti. Mějmež $M$ grammû rozpustidla, $m$ grammů látky rozpuštěné. Všeobecně sniži se bod mrazu tím více, čím je vice látky rozpuštěné, t. j. $m$ větši, a čím je méně rozpustidla, t. j. $M$ menší; tedy dle poměra $\frac{m}{M}$.

Přepočitejme množství $m$ dle známé molekulové váhy $\mu$ na gramm-molekuly, jichž počet $n$ jest

$$
m: \mu=n
$$

Dále volme pro $M$ určité množství, na př. 1000 grammû. Počet $n$ gramm-molekul rozpuštěných v 1000 grammech daného rozpustidla určuje molekulovou koncentraci roztoku.

Znači-li $\tau$ sniženi bodu mrazu, pak plati zákon

$$
\tau=r \cdot n
$$

t. j. sníženi bodu mrazu jest úměrno molekulové loncentraci roztoku (Rüdorff, de Coppet, Raoult).

Konstanta $r$, nezávislá na povaze látky rozpuštěné, charakterisuje rozpustidlo. Z úvahy e práci osmotické při rozpouštění latek odvodil van $t$ ' Hoff relaci

$$
r=0.00198 \cdot \frac{T^{2}}{\varphi}
$$

kdež jest $T=273+\Theta$ absolutni teplota bodu mrazu pro rozpustidlo a o teplo skupenské mrznutí v gramm-kaloriich.


Jako priklad provedume malý počet následujici.
Do litru vody dáme 50 grammú cukru. Molekulová váha cukru $\mathrm{C}_{12} \mathrm{H}_{29} \mathrm{O}_{11}$ jest (okrouhle) 342. V granm-molekulách činí tedy 50 grammú cukru jen

$$
50: 342=0 \cdot 146
$$

tedy asi půl druhé desetiny gramm-molekuly. Lze tedy očekávati snižení bodu mrazu vody o

$$
\tau=1 \cdot 85 \cdot 0 \cdot 146=0.27^{\circ}
$$

Z rovnic

$$
\tau=r \cdot n, \quad n=\frac{m}{\mu}
$$

jest možno, když se vážením urči $m$ a pozorováním $\tau$, počítati naopak $\mu$, tedy váhu molekulovou. Kdyby v předešlém přikladě, jak to bývá, snižení bodu mrazu se pozorovalo, tedy by se zase naopak dala molekulová váha $\mu$ vypočisti. Při tom není třeba, aby bylo právě $M=1000$; je-li jakékoli, nalezne se počtem snadno, mnoho-li grammû látky na 1000 grammủ vody připadá.

Dlužno však poznamenati, že zákon právě uvedený neplatí pro elektrolyty. U vodnich roztoků elektrolytů (kyselin, zásad, soli) jest skutečné sníženi bodu mrazu $\tau^{*}$ větší než dle uvedeného vzorce počítané $\tau$, což poukazuje k tomu, že jest v roztoku číslo $n$ větši, t. j., že molekuly se dissociuji (Arrhenius). V případě, že by složitá molekula se dissociovala ve dvě jednodušší, byl by poměr $\frac{\tau^{*}}{\tau}=2$ čili $\frac{\tau^{*}}{\tau}-1=1$, při ponenáhlé dissociaci by se hodnota tato měnila v mezich $0 \ldots 1$, tak že by výraz $\frac{\tau^{*}}{\tau}-1$ udával stupeň dissociace. Podobně při dissociaci v $k$ jednoduššich molekul (neb atomú) bylo by $\frac{\tau^{*}}{\tau}=k$, tudǐ̌z $\frac{\tau^{*}}{\tau}-1=k-1$ a výraz $\frac{1}{k-1}\left(\frac{\tau^{*}}{\tau}-1\right)$ by při postupujúcí dissociaci probíhal hodnotami mezi 0 a 1 a udával by rovněž stupeň dissociace.

Při pracích tohoto druhu záleží velmi mnoho na nejpřesnějším určení malých temperaturnich differencí $\tau$. K tomu cíli sestrojil Beclimann zvláštní přístroje, účelně zařizené, o nichž jednati obšírněji náleži do fysiky praktické.

## Vypařování a kapalnění.

## § 94. Úkazy zảkladni.

Kapalina, neni-li se všech stran uzavřena tělesem pevným (na př. sklem) nebo kapalným (na př. olejem, v němž se vznáší, nebo jímž jest v nádobě skleněné pokryta), mění vždy své skupenstvi, přecházejic v páry. Povrch, kterým hraniči bử s nějakým plynem (vzduchem) nebo s prostorem prázdným, zoveme volným; na povrchu takovém se vypařuje.

Vypařování do vzduchu mủžeme přímo zjistiti (pokusem přednáškovým), když na misku vah*) položíme plochou nádobu s kapalinou (na př. vodou, alkoholem, aetherem) a vyvážíme; za krátkou dobu pozorujeme, jak se rovnováha mění na dûkaz, že kapaliny na misce ubývá. V kapalině samé není při tom pozorovati změn žádných; vypařování děje se jen na volném povrchu. Když se však kapalina naleje do (vysoké) kádinky a plamenem ze spoda zahřívá, lze pozorovati, že při stoupajicí teplotě vypařování se urychluje až přechází ve var, charakterisovaný zvláštním klokotavým pohybem kapaliny. Bublinky páry tvoři se totiž i na stěnách, zejména na dně, kde se plamenem kapalina zahřívá, odkudž vystupujíce výše až na povrch uvádějí celou kapalinu v onen význačný pohyb. Mủže se tudiž změna skupenství kapalného v plynné diti bử vypařováním nebo varem.

Aby podstata těchto zjevú jakož i jich podmínky byly všestranně vyšetř̌eny a vystiženy, jest výhodno podrobnější studium začíti na případě zvláštním, jednoduššim, kdy vypařování kapaliny se děje do prostoru jinak prázdného, do vakua, a pak teprve přejíti $k$ připadu všeobecnějšímu, méně jednoduchému, kdy vypařování se děje do prostoru, v němž se již jiný plyn nebo jiná pára nalézá.

## § 95.0 parách nasycených.

K základním pokusủm o vypařováni kapalin do vakua užíváme výhodně apparátu (obr. 92.), jak byl upraven k demonstrování zákona Mariotte-ova**), s dlouhou a širokou skle..

[^85]něnou trubici, nahoře v prostrannou nádobu se rozšiřujicí, k niž náleži několik trubic, 1 m dlouhých, 1 cm v průměru, jež jsou na jednom konci otevřené, na druhém pak mají dobře zabroušené kohouty. Ona široká trubice a částečně i hořejši její nádoba naplní se rtuti.

Otevrouce kohout vnořime jednu z trubic (č. 1.) do rtuti; vzduch uniká; když rtut jest již nad kohoutem, uzavřeme trubici a vytáhneme; s počátku rtut vystupuje, později na určité výši stane, a nad rtutí se utvoři vakuum Torricelliho. Trubici pak na stativu upevnime; máme improvisovaný barometr. Opakujeme pokus druhou trubici (č. 2.) a opět upevníme na stativu; rtut vystoupi do výše stejné. Na to nalejeme do prostoru nad kohoutem něco vy vařené vody, kterou pak z části, opatrně kohout otevrouce a hned zase zavrouce, vpustime do vakua. Voda se ustáli v malém sloupečku na rtuti; zároveň se však prostor dříve prázdný naplní parami vodnimi v takovém množství, jaké prostor ten vůbec může obsáhnouti. Pravíme pak, že jest parami nasycen, saturován ${ }^{*}$ ) a nazýváme páry samé též nasycené,


Obr. 92.
Jak se demonstruje napēti nasycených par. saturované**).

[^86]Že prostor, před tím prázdný, jest vskutku naplněn parami vodními, toho dủkazem jest klesnuti hladiny rtutové v trubici 2. o výšku E cm (obr. 92.). Páry vodní, prostor nade rtutí vyplňující, mají určité napěti (expansi), jehož měrou jest právě sloupeček rtufový výsky $E \mathrm{~cm}^{*}$ ). Při tomto napětí maji ony vodní páry též určitou hmotu specifickou $S \frac{g}{\mathrm{~cm}^{3}}$; v každém kub. centimetru prostoru jest obsaženo $S$ grammủ vodní páry.

Jest velmi důležito konstatovati, že napětí $E$ a tudíž i hmota specifická $S$ se nemění, když prostor nade rtutí se zvětší neb zmenší. Pokus lze provésti vnořením trubice do rtuti nebo vytažením, pokud délka stačí, ze rtuti. Když se prostor zvětšuje, vypaří se ze zásoby vodního sloupečku nové množstvi par, ale na každý $\mathrm{cm}^{3}$ jich připadá totéž množství $S$ grammů; naopak, když se prostor zmenšuje, promění sẹ část par zase ve vodu, ale množství par $S$ na každý $\mathrm{cm}^{3}$ připadající se neměni. Také napětí $E$ zủstává nezměněno**). Nezávisí tudiž obě tyto veličiny $E$ a $S$ na velikosti prostoru parami nasyceného. Naproti tomu závisí podstatně na teplotě $t$. Když tato stoupá, stoupá též $E$ i $S$ a to vždy rychleji a rychleji. Při obyčejné teplotě $\left(20^{\circ}\right)$ činí $E$ jen 1.7 cm , při $50^{\circ}$ již 9.2 cm , a při $100^{\circ}$ již 76.0 cm .

Podobně můžeme experimentovati též jinými kapalinami, jako na př. alkoholem aethylnatým, sirouhlikem, aetherem aethylnatým a j. Obdržíme výsledky kvalitativně stejné, kvantitativně ovšem rozdilné.

Kapaliny právẽ jmenované nelze dobře vpouštěti shora kohoutem do vakua, poněvadz̃ rozpouştȩji tuky, jimiž kohout byyvá natřen, a kohoūt pak dobře nedrži. Proto jest lépe voliti trubici na jednom konci úplně zatavenou, a kapalinu vpouštěti zdola. Jde-li jen o experiment přednáškový, naplní se trubice rtutí, a na konci doplni se malým množstvím přislušné kapaliny. Pak se trubice palcem uzavfie, obrátí a vsadí do rtuti; kapalina vystoupí nade rtut, a když se palec odtáhne a rtuf klesne, vypaří se a naplni svými parami prostor Torricelliho. Při tomto způsobu experimentování

[^87]nelze ovšem zabrániti, aby také něco vzduchu - jenz̃ byl v kapalině absorbován, anebo zůstal na stěnách trubice v malých bublinkách - nevnikl do vakua. Jde-li tedy o výsledky presnêjsí, naplnují se předevšim trubice rtutí za soućasného evakuování, coz̃ jest pohodlné a bezpec̃né*). Potom se trubice nahne a vloz̃í dolejškem do vany rtưové, a pŕíslušná kapalina se $v$ malém množství do rtuti předestilluje, ovšem tak, aby páry této kapaliny, jez̃ se v lázni vodní zahr̛iviva, vzduch úplně vypudily. Sbírka trubic takto plnèny̌ch, při nichž jedna obsahuje též vakuum barometrické, další pak na pr̃. vodu, alkohol aethylnatý, sirouhlik, aether aethylnatý, jez̃ jsou všechny ve spolec̃né nádobẽ se rtutí (obr. 93.), hodi se velmi dobře


Obr. 93.
Jak se ukazuje napěti nasycených par pr̂i teploté obyčejné.


Obr. 94
Jak se ukazuje, że napesti nasycených par stoupá s teplotou.
k experimentování i kvantitativnému a tvoři cennou cást sbirek fysikálních. Jedna z nich, naplnẻná parami sirouhliku, jest nahore zpét ohnutá a rozsirujue se v kouli. Když se pod tuto podloži porculánová miska se sněhem nebo mrazivou smẽsí, ukaže se napětí pár této nízké teplotẽ přislus̃né. Na stativu jsou umístẽna též měřitka a po případè i teploměry, k pozorování kvantitativnému, jak pro účely přednásek úplnẻ stač̃.

Aby se názorně (pokusem přednáškovým) ukázalo, jak napětí nasycených par s teplotou stoupá, vloži se řada trubic, způsobem právě popsaným naplněných, na př. pro vakuum,

[^88]Dr. v. Strouhal: Thermika.
alkohol aethylnatý, sirouhlik a aether aethylnatý do lázně vodní ve vysoké válcovité a prostranné nádobě skleněné (obr. 94.), která má dole dvoji tubulus; do tohoto je zasazena spirálovitě stočená trubice mosazná, kterou se prohání vodní pára z vody v kotliku se vařící. Tim se lázen̆ vodní ponenáhlu zahřívá. Pozoruje se na teploměra, jak stoupá teplota a zároveň jak stoupaji difference $E$, jimiž se měří napětí jednotlivých nasycených par*). Číselně ukazuje toto stoupáni pro kapaliny právè jmenované tabulka, obsahující výsledky, jež obdrželi pro vodu Regnault (a přepočetl Wiebe na teploměr vodikový), pro alkohol a aether Ramsay a Young, pro benzol a sirouhlik Regnault.

Napětí ( $E \mathrm{~cm}$ ) par nasycených $\mathbf{v}$ závislosti na teplotě.

$t$   $C$	Voda   $H_{2} O$	Alkohol   aethylnatý   $C_{2} H_{6} O$	Benzol   $C_{6} H_{6}$	Sirouhlik   $C S_{2}$	Aether   aethylnaty̌   $C_{4} H_{10} O$
-20	$0 \cdot 096$	$0 \cdot 534$	$0 \cdot 579$	$4 \cdot 730$	$6 \cdot 299$
-10	$0 \cdot 216$	$0 \cdot 647$	$1 \cdot 292$	$7 \cdot 944$	$11 \cdot 181$
0	$0 \cdot 458$	$1 \cdot 224$	$2 \cdot 531$	$12 \cdot 791$	$18 \cdot 490$
10	$0 \cdot 92$	$2 \cdot 38$	$4 \cdot 53$	$19 \cdot 85$	$29 \cdot 18$
20	$1 \cdot 74$	$4 \cdot 40$	$7 \cdot 57$	$29 \cdot 80$	$44 \cdot 24$
30	$3 \cdot 16$	$7 \cdot 81$	$12 \cdot 02$	$43 \cdot 46$	$64 \cdot 79$
40	$5 \cdot 50$	$13 \cdot 34$	$18 \cdot 36$	$61 \cdot 75$	$92 \cdot 12$
50	$9 \cdot 22$	$21 \cdot 98$	$27 \cdot 14$	$85 \cdot 71$	$127 \cdot 61$
60	$14 \cdot 92$	$35 \cdot 02$	$39 \cdot 01$	$116 \cdot 45$	$172 \cdot 81$
70	$23 \cdot 38$	$54 \cdot 09$	$54 \cdot 74$	$15 \cdot \cdot 21$	$229 \cdot 39$
80	$35 \cdot 55$	$81 \cdot 19$	$75 \cdot 19$	$203 \cdot 25$	$299 \cdot 14$
90	$52 \cdot 60$	$118 \cdot 65$	$101 \cdot 28$	$261 \cdot 91$	$383 \cdot 97$
100	$76 \cdot 00$	$169 \cdot 2$	$134 \cdot 01$	$332 \cdot 52$	$485 \cdot 90$
110	$107 \cdot 54$	$236 \cdot 0$	$174 \cdot 41$	$416 \cdot 4$	$607 \cdot 04$
120	$149 \cdot 13$	$322 \cdot 3$	$223 \cdot 54$	$514 \cdot 9$	$749 \cdot 57$
130	$203 \cdot 03$	$432 \cdot 0$	$282 \cdot 44$	$629 \cdot 2$	$915 \cdot 74$
140	$271 \cdot 76$	$566 \cdot 6$	$352 \cdot 07$	$760 \cdot 4$	$1107 \cdot 82$
150	$358 \cdot 12$	$732 \cdot 6$	$433 \cdot 37$	$909 \cdot 6$	$1328 \cdot 1$
160	$465 \cdot 16$	$936 \cdot 6$	$527 \cdot 14$		$1578 \cdot 8$
170	$596 \cdot 17$	$1185 \cdot 6$	$634 \cdot 07$		$1862 \cdot 2$
180	$754 \cdot 64$	$1476 \cdot 3$			$2180 \cdot 4$
190	$944 \cdot 27$	$1817 \cdot 8$			$2535 \cdot 5$
200	$1168 \cdot 90$	$2216 \cdot 4$			

*) V differencích têchto vylouči se vnéjs̄i tlak sloupce vodniho, který zpâsobuje, že rtuf ve všech trubicich vystoupí výŠe v oné lázni vodni nez̃ ve vzduchu. Je-li výska nádoby asi 1 m , činí toto stoupnutí $\frac{1}{10}$ atmosféry, tedy asi $7 \frac{1}{2} \mathrm{~cm}$.

Na základě této tabulky jest v mezích $0^{\circ} \ldots 100^{\circ}$ proveden*)


Obr. 95.
Napêti nasycených par vody, alkoholu, sirouhliku a aetheru v cm sloupce rtufovêho $0^{\circ}$.
diagramm v obr. 95. . z něhož ještě lépe jest patrno, jak napěti $E$ roste s teplotou $t$ urychleně.

## § 96. 0 parách přehřátých.

Křivky, v diagrammu 95. obsažené, jimiž se pro rozmanité kapaliny vyjadřuje napěti $E$ nasycených par v závislosti na teplotě $t$, maji všechny celkově stejný ráz, lišice se hlavně svou polohou v poli temperaturním. Každý bod $M$ neb $M$ takové křivky (obr. 96.) znázorňuje určitý stav páry nasycené, stanovený jednoznačně souřadnicemi ( $t, E$ ) nebo ( $t^{\prime}, E^{\prime}$ ). Naproti tomu každý bod $N$ ležící mezi křivkou a osou temperaturni znázorňuje též určitý stav páry, který však


Obr. 96.
Jak lze přejiti od par nasycenẏch k přehr̄átým a to postupem bud isothermickým, nebo isochorickým.

[^89]je charakterisován tím, že př̌islušné napětí e jest menší než napěti $E$, jež by při téže teplotě $t$ měla pára nasycená. Nazýváme páru tu přehřátou. Vskutku, soudic dle napěti $e$, kiteré pára má, jest jeji teplota $t$ vyšsí než teplota $\tau$, kterou by při témže napětí měla, kdyby byla nasycenou. Odtud, vzhledem ke vztahu $t>\tau$ ono pojmenováni páry preȟráaté. Zároveň jest však patrno, že stav par přehřátých poskytuje daleko větší rozmanitost než par nasycených. Zde danou teplotou $t$ jest stanoveno jediné určité napětí $E$; ale tam je možným rozmanité napětí $e$, tudiž i rozmanité difference $t-\tau$, dle čehož se pára jeví býti více neb méně přehřátou. Geometricky řečeno, soustava bodủ $M$ dává křivku, jakožto útvar jednorozměrný, soustava bodủ $N$ však část roviny, jakožto útvaru dvojrozměrného.

Vizme nyní, jakým postupem múžeme, majíce páry nasycené, obdržeti přehřáté. Stane se tak bưo isothermickiy, při téže teplotě zvětšováním objemu, nebo isochoricky, při témže objemu zvyšováním teploty.

Kdybychom při uspořádání pokusu v obr. 92. znázorněného, trubici 2, v niž jsou páry nasycené v kontaktu s kapalinou, ponenáhlu ze rtuti vytahovali a tím objem par zvětšovali, vypařovala by se kapalina dále, a konečně se vypaří poslední kapka; až dotud jsou páry nasycené; napěti $E$ se nemění. Kdybychom však ještě dále objem zvětšovali, mohl by zvětšený objem nové množství par obsáhnouti - ale není již příslušná kapalina v zásobě. Proto nebude již prostor parami nasycen a tudiž i páry nebudou nasycené, nýbrž přehřáté, což se ukaže tím, že napětí $E$ se začne umenšovati až na $e$, tím více, čím více, možno-li, ještě objem zvětšujeme. V diagrammu (obr. 96.) jeví se tento postup tím. že od bodu $M$ sestupujeme k bodu $N$ při téže teplotě $t$, t . j . ve směru k ose temperaturni kolmém.

Zde jsme experimentovali při stálé teplotě a měnili objem. Múžeme postupovati opačně, při stálém objemu měniti teplotu. Kdyby okolní vzduch, v němž se trubice 2 nalézá, se zahříval, vypařovala by se kapalina, a napětí páry by stoupalo. Konečně by se (při teplotě $t^{\prime}$ ) vypařila kapka poslední; až dotad byly páry nasycené; napěti stoupalo podél křivky od $M$ až $\mathrm{k} M^{\prime}$. Kdyby však teplota vzduchu dále ještě se zvyšovala, a kdybychom vhodným vnơ̌ením trubice do rtuti objem, který pára nasycená v poslední chvili zaujala, udržovali stálým, ukázalo by se, že napětí páry sice stoupá, ale daleko mirněji. V grafi-
ckém znázorněni jevilo by se stoupání od bodu $M^{\prime}$, jenž teplotě $t^{\prime}$ a napětí $E^{\prime}$ přisluší, nikoli dále ještě podél křivky, nýbrž podél přímky $M^{\prime} N^{\prime}$; pára, jsouc osamocena, bez kontaktu s kapalinou, rozpínala by se při stoupajicí teplotě (téměř) rovnoměrně, tak jako plyny dle zákona Gay-Lussac-ova.

Múžeme však oba zde uvedené způsoby kombinovati, můžeme současně objem zvětšovati a teplotu zvyšovati. V grafickém znázorněni kombinovaný tento zpúsob by znamenal přechod od bodu $M$ křivky k nějakému bodu $N_{1}$ mezi křivkou a osou temperaturní, a to podél čáry $M N_{1}$, jež se bliže určí zpúsobem, jak se současně obě proměnné veličiny, objem a teplota, měnily.

## § 97. Páry přehřáté v nejširšim slova smyslu.

Ve výkladech dosavadních volili jsme za přiklad páry látek takových, jež za obyčejných poměrủ atmosférických jsou kapalnými, t. j. jichž nasycené páry za těch teplot, kteréž u nás jsou obvyklé, maji napětí menši než jedné atmosféry. Tak tomu jest u vody, alkoholu, benzolu, sirouhliku, aetheru, zde až do teploty $35^{n}$, kteráž u nás jen za mimořádných poměrủ meteorologických bývá poněkud překročena.

Mủžeme však zkoumati též látky takové, jichž nasycené páry mají za našich obyčejných poměrủ atmosférických napětí větši než jedné atmosféry a které tudiž jsou kapalnými jen za poměrů mimořádných. Takovými známými látkami jsou na př. kysličnik siřičitý, ammoniak a kysličnik uhličitý. Napětí $E$ nasycených par pro látky tyto jsou sestavena v tabulce, jež následuje, a to jednak (jako dřive) dle výšky sloupce rtutového ( $\mathrm{cm}, 0^{\circ} \mathrm{Hg}$ ), jednak té̌̌ v atmosférách. Ke srovnání jsou připojeny též výsledky platné pro páry aetheru aethylnatého, jak je nalezli Ramsay a Young 1887.

Tabulky Landolt-Börnsteinovy (1905) obsahuji o látkách zde jmenovaných pozorování, jez̃ provedli Faraday (1845), Regnault (1862), Cailletet (1878), Pictet (1885), Blümcke (1888) a o $\mathrm{CO}_{2}$ zejména Villard a Jarry (1895) a Villard (1897). Ve své Praktické fysice (1905) kombinuje F. Kohlrausch vẙsledky tẽchto badatelû v tabulku, která i zde jest prijata; data tam schízejici jsou zde grafickou interpolací pripojena; mimo to jsou expanse tam v cm (resp. mm ) $H g 0^{0}$ udané zde prepočteny na atmosféry, čimz̃ naby̌váme é̛sel přehlednéjsich.

Napětí $E(\mathrm{~cm}, \mathrm{~atm})$ par nasycených v závislosti na teplotě.

$t$	Kysliěnik   siřičitý $\mathrm{SO}_{2}$		$\underset{\mathrm{NH}_{3}}{\text { Ammoniak }}$		Kysliěnik   uhličity $\mathrm{CO}_{2}$		Aether aethylnatý$\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{2} \mathrm{O}$	
${ }^{\circ} \mathrm{C}$	$\mathrm{cmHg} 0^{\circ}$	atm.	$\mathrm{cmHg} 0^{\circ}$	atm.	$\mathrm{cm} \mathrm{Hg} 0^{\circ}$	atm .	$\mathrm{cmHg}^{\circ}{ }^{\circ}$	atm.
- 100					13	0.17		
- 90					31	0.41		
- 80					67	$0 \cdot 88$		
- 70					150	$1 \times 97$		
- 60					290	3.82		
- 50					517	6.80		-
- 40					780	10\%26		
- 30	28	$0 \cdot 37$	87	$1 \cdot 14$	1100	14.50		
- 20	47	0.62	139	1.83	1510	1990	$6 \cdot 3$	0.08
- 10	76	1'00	214	2.82	2020	26.60	11.2	$0 \cdot 15$
$\bigcirc$	115	1'51	318	$4 \cdot 19$	2650	$34 \cdot 9$	18.5	0.24
10	179	2.35	457	6.02	3460	455	$29^{\prime 2}$	0.38
20	251	3.30	639	8.41	4200	55.3	$44 \cdot 2$	$0 \cdot 58$
30	350	$4 \cdot 60$	870	$11^{-45}$	5380	$70 \cdot 8$	$64 \cdot 8$	0.85
40	470	6.18	1160	15:26			$92^{\circ} \mathrm{I}$	$1 \cdot 21$
							127.6	1.68
60	810	10'91	1950	$25 \cdot 65$			$172 \cdot 8$	$2 \cdot 27$
							229.4	3.02
80	1370	14.32	3080	$40 \cdot 53$			$299{ }^{\circ} \mathrm{I}$	3.94
							384.0	$5 \cdot 05$
100	2120	2790	4660	6132			485.9	639
							607\%	7.99
120	3160	$4 \mathrm{I} \cdot 58$					$749 \cdot 6$	$9 \cdot 86$
							9157	12.05
I 40	4560	60:00					11078	14.58

Lépe než tabellárně přehlédneme výsledky v obou diagrammech obr. 97. a obr. 98., jež jsou dle uvedeného číselného materiảlu provedeny. Diagramm 97. jest rýsován v témže měřítku jako obr. 95 .; z tohoto obrazce jest zde opakována křivka pro aether aethylnatý a přípojena křivka pro benzol, jež tam byla vynechána*). Diagramm 98 . jest ve smyslu pořadnic $7 \cdot 6$ kráte zmenšen a proveden v atmosférách; ke srovnáni $s$ diagrammy předešlými jest připojena křivka pro aether aethylnatý. Jak z diagrammu

[^90]jasně viděti, není v celkovém prủběhu křivek rozdílu značného; jenom poloha v poli temperaturním jest u různých látek různá,


Napêti nasycených par benzolu, aetheru, kysliẽniku sirỉčitẻho, ammoniaku a kysličniku uhličitého v cm sloupce rtufovẻho $0^{\circ}$.
a právě tim vznikají rozdíly - patrně nikoli podstatné - v tom, zdali látka za našich obyčejných poměrů meteorologických jest


Napētí nasycených par aetheru, kysličniku siricicitẻho, ammoniaku a kysliěníku uhličitého v atmosfërách.
kapalnou čili nic. Tak ${ }_{2} n a$ př. kysličník siřičitý jest za poměrú našich plynem; ale z diagrammu jest ihned patrno, že by byl kapa-
linou, kterou bychom v uzavřených lahvičkách mohli chovati, jako chováme aether, alkohol a pod., kdybychom žili v krajinách polárních, kde obvyklé teploty jsou $-40^{\circ}$ až $-10^{\circ}$; až do $-10^{\circ}$ jest totiž napětí jeho nasycených par menši než tlak atmosférický. Kdyby teplota stoupla nad $-10^{\circ}$, stalo by se věť̌ím, zátka lahvičky by se vyrazila, kapalný kysličnik by se vařil a unikl jako pára do vzduchu. Podobnou úvahu bychom mohli učiniti o ammoniaku nebo kysličníku uhličitém. Máme-li tedy v otevřené nádobě skleněné kysličník uhličitý při teplotě $20^{\circ}$, rovná se jeho napětí tlaku atmosférickému a jest tudiž jeho stav znázorněn bodem $N^{\prime}$, kterýž v diagrammu obr. 98.


Napētí nasycených par vodiku, dusiku, kysliku, methanu, kysliẽniku dusičitẻho, aethylenu a acetylenu v atmosférách.
má za souřadnice teplotu $20^{\circ}$ a tlak 1 atm . Obdobně bychom mohli míti v otevřené nádobě skleněné páry aetherové při $60^{\circ}$, jichž napětí by se rovnalo též tlaku atmosférickému a jichž stav byl by znázorněn bodem $N^{\prime \prime}$ o souřadnicich $60^{\circ}$ a 1 atm . Oba body, $N^{\prime}$ i $N^{\prime \prime}$, jsou od příslušných křivek vzdáleny, páry jsou tedy přehřáté, avšak bod $N^{\prime}$ jest daleko více vzdálen od své příslušné křivky než $N^{\prime \prime}$, t. j., páry kysličníku uhličitého byly by daleko více přehřátými než páry aetheru.

O parách značně přehřátých platí zákony Boyle-Mariotte-ủv a Gay-Lussac-ův, a to tím přesněji, čím vice jsou přehřátými, t. j., čím jsou vzdáleněǰ̌í od poměrủ př̌echodních. Zákony tyto jsme odvodili svého času pro plyny dokonalé, jako jsou vodik,
dusik, kyslik, vzduch a j. Seznáváme nyní, proč právě tyto plyny zoveme dokonalými. Mûžeme je též pokládati za páry, ale ovšem velmi přehřáté, jichž stav za obyčejných poměrủ atmosférických bychom též znázornili bodem $N$ přislušného diagrammu; avšak bod tento byl by velice vzdálen od těch křivek, jimiž bylo by znázorněno napěti par nasycených pro ony jmenované látky. V jakých polohách temperaturních tyto křivky se nalézají, jest patrno z diagrammu obr. 99., ktery̌ž obsahuje křivky pro vodik, dusik, kyslík, methan, kysličník dusičitý, aethylen a acetylen a jest rýsován dle tabulek, jež jsou zde přípojeny ").

Napětí nasycených par vodíku, dusiku a kyslíku při různých teplotách.

Vodik $\mathrm{H}_{2}$			Dusik $\mathrm{N}_{2}$			Kyslik $\mathrm{O}_{2}$		
$t$	cm Hg	atm.	$t$	cm Hg	atm.	$t$	$\mathrm{cm} \mathrm{Hg}^{\text {Hg }}$	atm .
-259	60	0.08	- 210	$9^{\circ}$	0.12	$-194$	19.8	$0 \cdot 26$
$-258$	11.4	$0 \cdot 15$	- 205	20.6	$0 \cdot 27$	-191	29.8	$0 \cdot 39$
$-257$	17.2	$0 \cdot 23$	- 202	$30 \cdot 8$	0.41	-189	$38 \cdot$	0.50
-256	$25^{\circ}$	033	-200	435	$0 \cdot 57$	$-187$	$48 \cdot 4$	0.64
- 255	$35^{\circ}$	$0 \cdot 46$	- 198	566	0.75	$-185$	60:8	$0 \cdot 80$
$-254$	$47 \%$	0.62	-197	635	0.84	$-184$	68*	0.89
$-253$	$65^{\circ}$	0.86	-196	72.0	0.95	$-183$	$74 \cdot 8$	$0 \cdot 98$
			- 195	80	105	- 180	100	132
			$-190$	137	1.80	-170	247	$3 \cdot 25$
			$-185$	217	286	$-160$	474	$6 \cdot 24$
			$-180$	329	4.33	$-150$	834	10.97
			$-170$	672	8.84	$-140$	1570	20.66
			-160	1220	16.05	$-130$	2520	$33 \cdot 16$
			$-150$	2000	$26 \cdot 32$	-120	3800	50.00

Tabulka pro vodik, dusik a kyslik obsahuje výsledky, jez̃ obdrželi Travers a Jaquerod $\left(H_{2}, 1902\right)$, Fischer a Alt $\left(N_{2}, 1902\right)$, Estreicher a Olszewski $\left(O_{2}, 1895\right)$, v úpravé, kterou ji dal F . Kohlrausch ve své Prakt. fysice (1905). Výsledky pro methan (Olszewski 1885), kysličník dusičitý (Olszewski 1885), aethylen (Villard 1897) a acetylen (Villard 1895) vyñaty jsou z tabulek Landolt-Börnsteinových (1905). Křivka pro acetylen má témệ̆ touz̃ polohu jako pro kysličnik uhličitý.

[^91]Napětí nasycených par methanu, kysličníku dusičitého, aethylenu a acetylenu při různých teplotách.

Methan $\mathrm{CH}_{4}$		Kysliěnik dusičity̌ No		$\begin{gathered} \text { Aethylen } \\ C_{2} H_{4} \end{gathered}$		$\begin{gathered} \text { Acetylen } \\ \mathrm{C}_{2} \mathrm{H}_{2} \end{gathered}$	
$t$	atm.	$t$	atm.	$t$	atm.	$t$	atm.
- 201'5	0.066	- 16-\%	0.182	- 104	10	$-81$	1.25
-1838	- 105	- $138{ }^{\circ}$	$5 \cdot 4$	- 85	2.85	$-70$	$2 \cdot 22$
- 153.8	$2 \cdot 24$	-1290	10.6	- 80	355	$-60$	3.55
-138.5	6.2	- 119\%	20\%	- 60	75	$-50$	53
- 126.8	110	- $1100^{\circ}$	31.6	- 40	14.3	-40	77
- 1106	21.4	- $105^{\circ}$	$4 \mathrm{I}^{\circ}$	- 30	18\%	$-23 \cdot 8$	$13: 2$
- 103.8	26.3	-1009	49.9	-	$40 \cdot 2$	$\bigcirc$	26.05
- 93.3	$40 \%$	- 973	57.8	6	46.1	$5 \cdot 8$	$30 \cdot 3$
833 -854	$49^{\circ}$			$95$	49.5	115	$34 \cdot 8$
				9.9	50.1	$15^{\circ} \mathrm{O}$	37.9
						20.2	$42 \cdot 8$

Diagramm obr. 99. dluz̃no pokládati za pokračování diagrammu obr. 98. smęrem $k$ teplotám nejnižšim. $Z$ celkovêho doplnẽní dobře vy chází, co jizz bylo podotčeno, że prủběh všech křivek jest dosti souhlasný a że se rozeznávaji jen svou polohou v poli temperaturním, jsouce v polohách nižsích strmẻjṧ.

Z výkladu dosavadniho jest patrno, že se stanoviska vědeckého není zásadniho rozdilu mezi parou přehřátou a plynem; nanejvýš mohli bychom předpokládati, nazývajice páru plynem, že jest značně přehřătou. Obecný způsob mluvy užívá názvu páry pro látky takové, jež za našich obyčejných poměrủ atmosférických jsou kapalnými, jako látky, o nichž jsme jednali v § 95., naproti tomu o všech jiných látkách uživá slova plyn. V tom smyslu mlavime i ve fysice o parách vodních, i když jsou sebe více přehřáté; naproti tomu kysličnik siřičitý zoveme vždy plynem, i kdyby byl blizkým kondensaci. Jest patrno, že tomuto zpủsobu lze činiti výtku nahodilosti a neurčitosti O jiném kriteriu, dle něhož lze plyny a páry vědecky přesněji od sebe rozlišovati, pojednáme později.

## § 98.0 směsi par různých kapalin.

V úvahách dosavadních jsme předpokládali, že se v daném prostoru nalézá pára jenom jediné kapaliny. Múžžeme však do prostoru takového dáti ještě kapalinu druhou, jejiž pára se jako druhá komponenta vedle páry kapaliny prvé v prostoru
tom rozšiři. Vzniká pak otázka, jaké napětí a jaké složení bude jeviti směs těchto komponent.

Zde dlužno rozeznávati tři hlavní případy.

1. Obě kapaliny se vespolek nemísí, jsouce vzájemně indifferentni, jako na pǐ. voda a sirouhlik $\left(C S_{2}\right)$, voda a benzol $\left(C_{6} H_{6}\right)$, voda a tetrachlorid uhliku $\left(\mathrm{CCl}_{4}\right)$. U těchto kapalin shledal Regnault, že napětí výsledné se rovná součtu napětí jednotlivých.

Pro účely přednásek objasni se tento prípad, když se do barometrické trubice (\$95.) predestilluje nejprve nêco vody a pak sirouhliku. Nad rtuti usadi se tēžzi sirouhlik niže a odlisuje se zretelnou plochou hraničnou od lehčí vody, jež vystoupí vẏše. Summace napětí pro směs obou par vynikne srovnáváním s obẻma trubicemi, jež obsahují jen vodu a jen sirouhlik, velmi dobre. Trubice stouto smẽsí pripoji se tudĩ̃ vhodnẽ ke sbírce trubic v obr. 93. Bêhem doby sirouhlik se ponêkud zabarví žluté vyloučenou sírou.

Případ zde vyznačený přichází vlastně již k platnosti, když se napěti nasycených par studuje ve vakuu Torricelli-ho. Nebof toto tak zvané vakuum obsahuje již nasycené páry rtufové. Vlastně tedy ve vakuu nejsou jen nasycené páry těch kterých kapalin, nýbrž jich směs s parami rtutovými. Poněvaď̌ se pak rtuf s oněmi kapalinami nemísí, tedy tu plati zákon summační; pozorujeme, přisně vzato, summu dvou komponent. Z těch však za obyčejných poměrủ jest jedna komponenta, totiž napětí par rtufových, tak nepatrná, že proti druhé úplně mizí; proto také mohla ve výkladech dosavadních býti úplně ignorována. Číselně objasňuje tuto věc následující tabulka, jež udává napěti nasycených par rtufových pro teploty nad $0^{\circ}$ až do $850^{\circ}$.

Napětí nasycených par rtufových při různé teplotě.

$t$	E	$t$	$E$	$t$	$E$
${ }^{0} \mathrm{C}$	cm	${ }^{0} \mathrm{C}$	cm	${ }^{0} \mathrm{C}$	cm
0	$0 \cdot 00004$	200	$1 \cdot 76$	400	154
20	$0 \cdot 00015$	220	$3 \cdot 34$	450	323
40	0.0006	240	$5 \cdot 7$	500	608
60	$0 \cdot 0021$	260	$9 \cdot 7$	550	1050
80	0.009	280	$15 \cdot 6$	600	1690
100	0.028	300	$24 \cdot 4$	650	2600
120	0.075	320	$37 \cdot 1$	700	3800
140	$0 \cdot 18$	340	54.8	750	5500
160	$0 \cdot 42$	360	$79 \cdot 1$	800	7700
180	0.89	380	111.0	850	10400

Tabulky Landolt-Börnsteinovy obsahuji pozorovảní, jež provedl Regnault (1862), Hertz (1882), Ramsay a Young (1886) a j Vysledky jsou vzájemné dosti odchylné. Tak na př. pro teplotu $0^{\circ}$ nalézá Regnault 0.002 cm , Hertz jen 0.00002 cm , podobnẽ pro teploty vysoké na pr̃. $500^{\circ}$, Regnault 652.0 cm , Ramsay a Young 543.5 cm . Vysledky v tabulce zde uvedené jsou ty, jak je prijijimá F. Kohlrausch ve své Prakt. fysice; jsou to výsledky stredni, odvozené z pozorovaní kombinovanỷch; jsou uvedeny jen na málo míst vzhledem ke značným rúznostem pozorování jednotlivých.
2. Případ, kdy kapaliny se vespolek vủbec nemísí, jest jako extremní velmi jednoduchý. Mủže však kapalina jedna mísiti se $s$ druhou, ale jen $v$ množstvi omezeném, jako na př. aether aethylnatý s vodou. Volme i zde jednoduše případ extremní, kdy totiž jedna kapalina jest druhou nasycena, kdy na př. voda pojala tolik aetheru, mno-


Obr. 100.
Napêtí nasycených par pro smẽs vody a methylalkoholu. ho-li vůbec možno, nebo naopak, aether tolik vody, mnoho-li k nasycení třeba. Pak jest napětí výsledné rovno, dle Regnaulta, komponentě větši, při čemž jest jednostejno, zdali jde o vodu nasycenou aetherem nebo aether nasycený vodou. Jiné přiklady jsou voda a isobutylalkohol (Konowalow), voda a fenol, voda a anilin, alkohol a toluol (Lehfeldt).

Obtížnějši jest úkol vyšetřiti složení, jaké má směs obou par. Poněvadž množství jedné kapaliny, kteréž druhá může obsáhnouti, s teplotou stoupá, dlužno onen úkol studovati v závislosti na teplotě v každém jednotlivém případě zvlášt.
3. Připad nejsložitějši jest ten, kdy kapalina jedna se mísí $s$ druhou v poměrech libovolných; nebot zde vystupuje jakožto nový rozhodujicí faktor vzájemná koncentrace, t. j. procentuální zastoupení $x$ a $y$ jedné a druhé kapaliny ve směsi $(x+y$ $=1$ ). Očekávali bychom dle jiných analogii, že napětí výsledné $E$ bude se skládati z napětí jednotlivých $E_{1}$ a $E_{\mathrm{q}}$ dle poměrného zastoupeni, že bude veličinou additivni, dle vzorce

$$
E=x E_{1}+y E_{2}
$$

$V$ grafickém znázornění dál by se přechod od $E_{1}$ ku $E_{q}$ dle přimky. (Analogie viz u slitin, na př. § 74. nebo § 88.) V některých případech jest tomu tak, alespoň přibližně; ve většině případû ukazuji se však od tohoto jednoduchého zákona odchylky značné. Otázku tuto studoval podrobně $D$. Konowalow*) užívaje methody statické. Výsledky, jichž došel, lze nejlépe přehlédnouti znázorněním grafickým. Příslušné diagrammy ukazuji troji typus; pro každý uvádíme zde jen jediný př̌iklad.

1. Některé směsi, jako na př. voda a methylalkohol (obr. 100.), řídí se zákonem nahoře vytčeným alespoň přibližně; přislušné křivky, isothermy, mají téměř prúběh přímky, ktevá při nižších teplotách zůstává poněkud výše, a při vyšších niže. Směs vody a aethylalkoholu jeví průběh podobný (obr. 101.) alespoň při teplotách nižších; ale při vyššich vystupuje křivka značně nad onu přímku. Také směsi vody s kyselinou octovou a propionovou jeví typus prvý.

## 2. Jiné směsi, jako na



Obr. 101.
Napēti nasycených par pro směs vody a aethylalkoholu.


Obr. 102.
Napěti nasycených par pro směs vody a propylalkoholu.

[^92]př. voda a propylalkohol (obr. 102.) ukazují křivky, které v celém průběhu leží značně nad onou přímkou, majíce pro


Obr. 103.
Napēti nasycených par pro smês vody s butylalkoholem.


Obr. 104.
Napětí nasycených par pro smés vody s kyselinou mravenči. určitou koncentraci (asi $75 \%$ alkoholu) maximum. Podobně chová se směs vody s butylalkoholem, (obr. 103.) u nǐ̌ ve střední části křivky jest napětí konstantni, jako u směsi vody s aetherem. U směsi vody a kyseliny máselné neni maximum tak určité, ale typus je stejný.
3. Konečně jsou směsi, při nichž naopak křivky v celém svém průběhu jsou pod onou přimkou, ukazujíce minimum, jako na př. směs vody s ky selinou mravenči (obr. 104.) při koncentraci asi $70 \%$ kyseliny.

Směs, kteréž přísluší bud maximum nebo minimum napětí, má při teplotě příslušné totéž složení jako její páry.

Diagrammy, jež obsahuje pủvodní práce Konowalowa, jsou rýsovảny ve směru pořadnic (napextí) v mérítku nesrozumitelném; výska 760 mm sloupce rtưového jest znảzorněna délkou $46 \frac{1}{2} \mathrm{~mm}$. A v tomto zvláśtnim mêrítku, kteréž vzniklo nējakým omylem prí reprodukci, preşly nekriticky do všech jiných učebnic. Diagrammy nas̉e jsou dle pûvodnich pozorování Konowalowy̌ch rýsovâny, ale měrítko ve smęru pởadnic jest dle centimetrú srozumitelné upraveno.

Doplňkem k diagrammủm Konowalowým jest diagramm obr. 105., znázorňujici, jak u jednotlivých komponent ke smě-


Napěti nasycených par methylalkoholu ( $A$ ), aethylalkoholu ( $B$ ), propylalkoholu (C) a butylalkoholu (D) v závislosti na teplotē.
sím užitých se napětí nasycených par s teplotou mění. V tomto smyslu druži se k diagrammu obr. 95.

## § 99. Zákon Daltonův.

Případ první, o němž v předešlém odstavci bylo jednáno, mủžeme rozšiřiti a stndovati, jak se páry šírí do prostoru, v němž jest již nějaký plyn, na př. vzduch. Dáme-li do prostoru takového něco kapaliny, vypařuje se méně rychle než do prostoru prázdného; vzduch jest tu mechanickou překážkou. Páry
diffunduji znenáhla do vzduchu a to tak dlouho, až prostor jest jimi nasycen; ale napětí par těchto jest takové, jaké by bylo ve vakuu. Ve výsledku není tedy rozdilu žádného; vzduch se chová oproti parám tak, jako prázdný prostor. Poznání toto učinil prvý J. Dalton*), a dle něho označujeme je zákonem Daltonovým.

Před ním již, jak E. Mach podoty̌ká, učinil podobné poznáni H. B. Saussure (1783); zabyvaje se pracemi hygrometrickỳmi pozoroval, ze maximálni množství vodní páry, které do prostoru plynem již vyplněného mưz̃é vniknouti, nezávisí ani na povaze tohoto plynu, ani na jeho hustotě, ny̆brž jen na teplotẽ. Tím bỵl jižz zákon Daltonũv naznačen. Nicménẻ jasnou, všeobeenou formulaci podal teprve J. Dalton, slovy: . . . and consequently (the particles) arrange themselves just the same as in a void space.

O zakonu Daltonově, pokud se ty̌ce plynů, a o jeho mathematické formulaci bylo již v Mechanice (pag. 653, 1901) jednáno. Ve smési rûznỵch plynû, jež chemicky na sebe nepúsobí, jest úhrnný tlak smési roven součtu partiálnich tlakủ plynû jednotlivy̌ch. V nauce o teple hledi se prí zákonu Daltonové hlavnê k parám nasyceny̌m; páry přehřaté, jak víme, lze pokládati za plyny ve smyslu, jaky jizz nahore ( $\$ 96$.) byl vyloz̃en.

Zákon Daltonúv byl pokusy muohostranně zkoumán. První pozorování činil Dalton sám (1802) a po něm Henry**) (1805 a 1806), Gay-Lussac (1815) a Magnus (1836). Obširné a dûkladné práce podnikl o zákonu tom Regnault. Roku 1845 zkoumal napěti nasycených vodních par v dusiku, a tu již nalezl malé odchylky; toto napětí jevilo se o něco málo ( $2 \%$ ) menším než ve vakuu. Později (1862) zkoumal podobně páry aetheru, sirouhliku, benzolu v suchém vzduchu a nalezl odchylky větší (až $5.8 \%$ ) v témže smyslu. Regnault soudil, že zákon Daltonǔv jest theoreticky správným, ale že při pozorování rušivě pủsobí skleněné stěny trubice, v niž se ony páry tvoří; tyto stěny, jsouce hygroskopické, kondensuji něco těch par, ubirajice je z prostoru daného, kterýž proto parami úplně nasycen neni. Ve vakuu tento vliv stěn nevadí, poněvadž se páry náhradou rychle tvoři. Pozdějšimi pracemi (zejména Wüllnerovými a Gro-

[^93]trianovými 1880) objeveny jiné anomalie, ve smyslu jakési přesycenosti par, jichž napětí se za některých okolností (ve vzduchu i ve vakuu) jevilo větším než normální. Až dotud pracováno při málo rozdilných teplotách a tlacich. Andrews (1876) zkoumal zákon Daltonủv při velkém tlaku a dokázal, že za takových, v jistém smyslu mimořádných poměrů zákon Daltonův neplatí. Tak na př. čistý kysličník uhličitý, při teplotě $7 \cdot 6^{\circ} \mathrm{C}$, zkapalní tlakem 42.5 atmosfér. Když se však smíchaji dle objemu 3 díly kysličníku uhličitého a 4 dily dusiku, nezkapalní kysličník při téže teplotě ani tlakem 284 atmosfér. Ze svých pozorování usoudil Andrews, že zúkon Daltoniv pro značně komprimované směsi plynii neplatí. V novějši době provedl četné a pečlivé práce o zákonu Daltonově kníže B. Golicyn*), zkoumaje páry chloraethylu, aethylaetheru, acetonu a sirouhliku.

[^94]Vzhledem k methodické zajimavosti a názornosti jeho zpúsobu pozorování budiž zde z jeho práce podán referát poněkud obširnějši. Methoda, kteréz̃ užíval, byla differenciální, jsouc založena na té základní myslence, aby tlak nasycených par dané kapaliny ve vakuu pûsubil proti tlaku par téže kapaliny v prostoru, v nẻmz̃ je téż vzduch. Kdyby zákon Daltonův byl správný, vymýtil by se v differenci té tlak nasycených par a zunstal by tlak vzduchu. Tento tlak lze $z$ teploty vzduchu počitati, kdyz jest množství vzduchu známo. Ukáže-li se však, že tlak pozorovany jest jiný, na pr̂. mensí nez̃ tlak vypočitaný, jest to dúkazem, že zákon Daltonův přesné neplatí, ze na př. tlak par ve vzduchu jest poněkud menši nez̃ ve vakuu Golicyn uz̃íval dvou spoijitých skleněných nádob, jez̄ na koncích byly zataveny; prii jedné z nich (v obr. 106. čís. 1.) byla obẻ ramena stejná, podlouhlá a úzká, při druhé (v obr. 106. čis. 2.) bylo jedno rameno hruškovité rozšiŕeno. Jinak byla vz̃dy v rameni na pravo kapalina a její páry ve vzduchu, na levo pak ve vakuu. Aby vzduch na levo byl odstranén, byla kapalina před zatavením pečlivê vyvarèna, tak zè její páry vzduch vypudily

Podle drívéjšich pozorováni, zejména Regnaultových, dalo se očekávati, że napêti par ve vzduchu se bude jeviti poněkud mensím nez̄ ve vakuu. Regnault vysvětloval odchylku účinkem stěn. Jest patrno, že v trubici č́s. 1., úzké a podlouhlé, by se účinek stẽn musil jeviti značněji, nez̃ v trubici cis. $2 .$, kde jest nádobka krátká a značně rozšírená. Také diffuse par do yzduchu jest v trubici čís. 1. znesnadněna, v trubici č́s. 2. vさ̌ak snadná.

Trubice byly vkládány do prostoru, kterým proudily páry vařici se kapaliny (vody, aethylalkoholu, methylalkoholu) ; úpravu pokusu znázornuje dostatečně obr. 106. Páry, do nichž se přístroje 1. a 2. vkládaly, neunikaly na venek, nýbrž byly kondensovány a kapalina stékala do hlavního reservoiru zpět*). Výsledkem povšechným pozorováni Golicynových bylo potvrzeni zákona Daltonova pro páry vodní, aethylaetherové i chloraethylové. Ĺcinek stěn ve smyslu Regnaultově osvědčil se zejména u par vodních.

## § 100. 0 varu kapalin.

Na základě zákona Daltonova můžeme výsledky, jež jsme seznali pro vypařování kapalin do vakua, přenésti též na připad obyčejnějši, kdy vypařováni se děje do vzduchu. Kapalina jsouc v nádobě, na př. ve skleněné kádince, vypařuje se na svém volném povrchu, a to při teplotě každé; vypařování trvá tak dlouho, až vzduchový prostor nad kapalinou parami této kapaliny se nasytí. Kdybychom tedy na pǐ. kádinku s aetherem přikryli skleněným zvonem, zastavilo by se další vypařování aetheru, jakmile by páry v prostoru tomto dosáhly napětí, jež při dané teplotě jest největšim možným. Je-li však nádoba otevřená, rozptylují se páry aetherové do volné atmosféry a aether vypaři se úplně. Podobně i každá jiná kapalina, vodu vyjímajic. Vodní páry jsou totiž vždy ve vzduchu; i může se

[^95]státi, že vzduch jest jimi při dané teplotě nasycen, tak že pak voda na povrchu volném dále se nevypařuje.

Avšak jiný úkaz nastane, když kádinku s vodou zdola zahříváme, na př. plamenem Bunsenova hořáku. K pokusu volime vhodně kádinku vysokou, průměru menšiho. Teplota vody stoupá, a když po nějaké době dostoupí míné výše, pozorujeme, jak vypařování na povrchu začíná se rozhojňovati, a zároveň, jak na stěnách kádinky a zejména na dně se ukazují malé bublinky vzduchové. Při dalšim stoupání teploty počínají bublinky ty odlučovati se ode dna a vystupovati $k$ povrchu vody v množství znenáhla rostoucím; jest slyšeti zvláštní šumot, který přecházi ve zněni způsobované malými bublinkami páry, kteréž se dole na dně, kde je teplota o něco vyšši, počinaji tvořiti a vystupujíce do vyššich, poněkud chladnějšich vrstev, zase splaskuji, poněvadž se kondensuji. Znění toto signalisuje, že var je blízký. Konečně přestává, bublinky páry vystupuji až na povrch, tvoři se v množstvi značném, stávají se většími a zpủsobují živý, kolotavý pohyb kapaliny na povrchu, odkudž se páry v hojném množstvi rozptylují do vzduchu. Pravíme, že se voda vaři. Teplota zatím dostoupila určité výše, bodu varu, a dále již nestoupá; teplo, jež přivádime, spotřebuje se ku přeměně skupenství kapalného v plynné; každý gramm vody spotřebuje určité teplo, tak zvané skupenské, aby se proměnil v gramm páry pr̈i bodu varu.

S pokusem tímto spojíme pouc̃ný pokus jiný. Připravíme zvláštní plavač (obr. 107.), dutou kouli, jez̃ nahor̃e má tyčinku a dole je zatižena malou kouli massivni, aby plavala stabilnẻ. Rozméry a hmota tohoto přistroje, kterỷ je celý mosazný a niklovaný, jsou voleny tak, aby na vodě obyčejné teploty právé ještě plaval. Když se voda začiná zahrívati, klesá plavač, na dûkaz, że voda se stává řidši. Za chvili se vsak plavaç zase zvedne; nebof bublinky vzduchové, $z$ vody vystupujíci, zachycuji se téz̃ na plavači a zvedají ho. Vytáhne-li se z vody, rozptýli se bublinky a plavač do vody spuštěný klesne az̃ ke dnu. Ale za chvili se opêt zvedne bublinkami vzduchovými, coz̃ se opakuje. Pr̄i tom lze i dosti značnou roztažnost vody, až do varu zahřáté, pozorovati. $V$ kádince, jez̃ s počátku nebyla plna, jde voda az̃ na kraj.

Bublinky vodní páry, vznikajíce na dně kádinky, překonávaji svým napětim tlak na ně působicí, který jest $z$ části tlakem hydrostatickým, totiž vodního sloupce v kádince samé, hlavně však tlakem atmosférickým na povrch vody působicim.

Poněvadž obyčejný tlak atmosférický jest takový jako hydrostatický tlak vodního sloupce 10 metrủ vysokého, jest patrno, že hlavně ten rozhoduje; proto se o tlaku hydrostatickém vody v nádobě mluvívá jen v připadech mimořádných, kdy jest značnějši. Pravíme tedy, že var vody nastává, když napěti bublinek parních se rovná tlaku atmosférickému. Tím jest teplota varu určena.

Avšak tlak atmosférický nebývá stejný, tudiž také ne bod varu vody. Je-li tlak normálním $\left(76 \mathrm{~cm} \mathrm{Hg} 0^{\circ}, g^{*}\right)$, závádíme teplotu varu „ex definitione " jakožto $100^{\circ}$; jest to teplota identická (mimořádné připady vyjímajíc) s teplotou, kterou mají nasycené vodní páry o napětí jedné atmosféry. Je-li tlak vzduchu menší, nastává var již dříve, je-li větší, později, t. j. zde při teplotě vyšší, tam při teplotě nižší. Jak viděti, můžeme teplotu varu ihned dle tlaku stanoviti, když známe křivku, kterou se udává napětí nasycených par vodních v závislosti na teplotě.

Co tuto uvedeno pro vodu, plati mutatis mutandis pro kapaliny jiné zcela podobně. Obr. 95. udává napětí nasycených par vody, alkoholu, sirouhlíku a aetheru v závislosti na teplotě. Vedeme-li v diagrammu v odlehlosti 76 cm přímku rovnoběžně s osou temperaturni, obdržíme průseky, určitým teplotám příslušné, jimiž se udává bod varu. V diagrammu jsou to teploty $100^{\circ}, 78^{\circ}, 46^{\circ}, 34^{\circ}$. Vidíme však jasně, že se v teplotách těchto ihned stane změna, když ona rovnoběžná přímka se vede vỷše nebo niže, t. j., když se tlak zvýši nebo snižíi.

Z úvah těchto vychází, že var kapalin jest úkaz nahodilý, že mủže nastati při teplotě jakékoli, ovšem v jistých mezich. Jest však pravidlem předpokládati normálni tlak jedné atmosféry $\left(76 H g 0^{\circ}, g^{*}\right)$ a pro tento tlak udávati body varu kapalin; tím stávají se pak tyto údaje určitými.

Z diagrammu 97. mûz̃eme ihned udati, že se var̂í kyslic̃nik siřičitý při $-10^{\circ}$, ammoniak při $-33^{\circ}$, kysličnik uhličitỹ prii - $78^{0}$ (bod sublimační), za tlaku jedné atmosféry. Kdyby však byl tlak dvojnásobný, byla by tato čisla, jak z diagrammu 98. patrno, $+0 \cdot 6,-18^{\circ},-70^{\circ}$. Bod varu nějaké kapaliny nemá tudíz zádného absolutniho významu. Že se na př, voda můz̃e var̛iti také při teplotảch nízky̌ch, je-li jen malý tlak, lze ukázati bử pomoci yývěvy, anebo pohodlnêji pokusem v obr. 108. znázorněným. Do bañky dole kulaté (nikoli ploché), dá se voda (pro úćely prednásek zbarvená indigokarminem); bañka se uzavře korkem, který má uprostřed malŷ otvor, k jehož uzavření je pohotové zátka skleněná. Voda se plamenem Bunsenova hoååku uvede do varu; malým otvorem v korku unikají páry,
jez̃ vypuzují téźž všechen vzduch. Je-h toho dosaženo, uzavře se otvor onou zátkou skleněnou, plamen se soućasnẻ zatảhne, bañka se otocí a ponor̂́ hrdlem do vody. V této poloze jsou v ban̆ce nad vodou pouze nasycené páry vodní, jichž tlak normuje var. Vzduch skrze vodu nemủże do bañky vniknouti, ani kdyby snad korek vzduchotěsně neuzaviral. Pokus ukazuje, že voda se var̆i stále; zejména, kdyz̀ se na bañku leje chladná voda, nastávȧ velmi prudký var. Ale i když teplota se umenšila na teplotu sínê, trvá dảle var, kdỳ̀ chladíme bañku ledem nebo smési mrazivou. Přicházíme tak $k$ výsledku zvláštnímu, ze voda - za téchto okolnosti se vaři tỉm prudčeji, čím vice ji chladíme.


Obr. 108.
Var vody prii nizkẻ teplotê.

Následujici tabulka obsahuje bod varu rủzných kapalin, v pořádku vzestupném, pro normálni tlak jedné atmosféry. Změníli se tlak o 1 cm Hg O , změní se bod varu okrouhle o $0 \cdot 4^{0}$ až $0 \cdot 6^{0}$ (u látek [kovů] vroucích při teplotách nad $500^{\circ}$ o $0 \cdot 8^{0}$ až $1 \cdot 2^{\circ}$ ). Přesněji udáno (pro některé známé kapaliny), činí změna 0.37 u methylalkoholu, 0.34 u aethylalkoholu, 0.37 u vody, 0.41 u sirouhliku, 0.43 u benzolu, 0.51 u anilinu, 0.74 u rtati, a t. d. (Srovnej § 6. b.)

Bod varu $\vartheta$ různých látek prì tlaku jedné atmosféry.

$\mathrm{Látka}$	Složení	$\vartheta$
Helium	He	- 267
Vodik .	$\mathrm{H}_{2}$	- 253
Dusik	$\mathrm{N}_{2}$	- 195
Kysličník uhelnatý. .	CO	- 190
Fluor .	$F$	- 187
Argon .	A	- 186
Kyslík	$\mathrm{O}_{2}$	- 182
Methan	$\mathrm{CH}_{4}$	- 164


Látka	Složeni	$\theta$
Kysličnik dusičitý . . .	NO	- 154
Krypton . . . . . . .	$K r$	- 152
Ozon . .	$\mathrm{O}_{3}$	- 119
Xenon	$X$	- 109
Aethylen	$\mathrm{C}_{2} \mathrm{H}_{4}$	- 105
Kysličnik dusnatý . .	$\mathrm{Na}_{\mathrm{a}} \mathrm{O}$	- 89
Fosforovodik .	$\mathrm{PH}_{3}$	- 85
Kysličník uhličitý	$\mathrm{CO}_{2}$	- 80
Sirovodik . . . . .	$\mathrm{SH}_{\mathrm{a}}$	- 617
Ammoniak . . . .	$\mathrm{NH}_{3}$	- 38.5
Chlor . . . . . . .	$\mathrm{Cl}_{2}$	- 33.6
Kysličník siřičitý .	$\mathrm{SO}_{2}$	- 10.1
Aether aethylnatý	$\mathrm{C}_{2} \mathrm{H}_{5}$. O. $\mathrm{C}_{2} \mathrm{H}_{5}$	345
Bromid aethylnaty . . .	$\mathrm{CH}_{3} . \mathrm{CH}_{2} \mathrm{Br}$	38
Jodid methylnatý . .	$\mathrm{CH}_{3} \mathrm{~J}$	43
Sirouhlik . . .	$\mathrm{CS}_{2}$	46.2
Aceton	$\mathrm{CH}_{3} . \mathrm{CO} . \mathrm{CH}_{3}$	56.7
Octan methylnaty	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O} . \mathrm{OCH}_{3}$	$57 \cdot 2$
Chloroform . .	$\mathrm{CHCl}_{3}$	$61 \cdot 2$
Methylalkohol	$\mathrm{CH}_{3}$. OH	65
Jodid aethylnatý.	$\mathrm{C}_{2} \mathrm{H}_{5} . J$	73
Octan aethylnatý.	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O} . O \mathrm{C}_{2} \mathrm{H}_{5}$	$77 \cdot 1$
Aethylalkohol . . .	$\mathrm{C}_{2} \mathrm{H}_{5} . O H$	$78 \cdot 3$
Benzol . . . . .	$\mathrm{C}_{6} \mathrm{H}_{6}$	$80 \cdot 3$
Voda . . . . . .	$O H_{\text {a }}$	$100 \cdot 0$
Kyselina mravenčí . .	HCOOH	101
Toluol.	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{3}$	$110 \cdot 8$
Kyselina octová	$\mathrm{CH}_{3} . \mathrm{COOH}$	118
Amylalkohol .	$\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OH}$	130
Xylol .	$\mathrm{C}_{5} \mathrm{H}_{10}$	138.5
Octan amylnaty	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O} . O \mathrm{C}_{5} \mathrm{H}_{11}$	140
Phenol .	$\mathrm{C}_{6} \mathrm{H}_{5} . O H$	183
Anilin . . . . . .	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}$	$184 \cdot 2$
Benzol methylnaty . .	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} . \mathrm{OCH}_{3}$	199
Nitrobenzol . . . . .	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2}$	210
Benzoan aethylnatý . .	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO} . \mathrm{O} \cdot \mathrm{C}_{2} \mathrm{H}_{5}$	213


Látka	Složení	$\vartheta$
Naphtalin . . . . .	$\mathrm{C}_{10} \mathrm{H}_{8}$	218
Benzoan amylnaty . .	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{5} \mathrm{H}_{11}$	260
Glycerin . . . . . . . .	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	290
Benzophenon . . . .	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO} \cdot \mathrm{C}_{6} \mathrm{H}_{5}$	306
Rtut.	Hg	$357 \cdot 3$
Kyselina stearová . . .	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	370
Sira.	$S$	445
Selen .	Se	690
Kadmium	Cd	778
Zinek . . . . . . . .	$Z n$	918

Data hojnẽjši jsou obsažena v tabulkách Landolt-Börnsteinovỷch, pag. $255-292$; zde vybrány jen kapaliny nejznámểsí a takové, jichz̃ páry mohou dávati lázně o teplotẻ konstantní.

## § 101. Přehřáté kapaliny.

Popisujice v př̌edešlém odstavci var vody ličili jsme úkaz tak, že kapalina i nasycené páry na povrchu do okoli vystupujíci mají stejnou teplotu tlakem podminěnou a přislušnou nasyceným parám, jichž napětí se tomnto tlaku rovná. Za obyčejných poměrủ možno vše to připustiti. Bublinky páry pojí se při svém vzniku na četné bublinky vzduchu, ktery̌̌̌ jest jednak ve vodě absorbovaný, jednak se drží na stěnách a na dně nádoby. Čím jest těchto bublinek více, tím klidnější jest var; bublinky páry tvoří se v množství hojném a jsou při tom malé. Proto se voda vaří klidněji v nádobkách na př. hliněnẏch se stěnami drsnými, na nichž se bublinky ve větším počtu drží, méně snadno v kovových a nejméně skleněných, jichž stěny jsou hladké. Chceme-li, aby i tu byl var klidný, házime na dno drobné předměty, jež na svém povrchu mnoho vzduchu zhuštují, drobný pisek, kousky uhlí, nejlépe malé odpadky čisté platiny (plišky nebo drátky); že pak tyto napomáhaji klidnému varu jenom vzduchem, který lne k jich povrchu, vysvítá z toho, že platinový drát žilianý jest bez účinku.

Když úmyslně bublinky vzduchové odloučíme, nastává úkaz nový; var stává se neklidným, prudkým, a kapalina se přehřeje.

Úkaz tento lze studovati nejlépe při varu vody v kádinkách skleněných, jež se před tím horkou kyselinou dusičnou nebo sírovou pečlivě vyčistí a pak čistou vodou vypláchnou. Když se do nich potom naleje čistá destillovaná voda, vaři se s počátku dosti kliduě, poněvadž voda má vzduch absorbovaný. Když se však vyvařením tento vzduch (z veliké části) vypudi, a když se voda nechá schladnouti a pak opět do varu uvádi, pozoruje se, že bubliny páry ode dna se odtrhuji po chvilkách prudce, náhle, a když sè zkoumá teplota vody, ukazuje se býti o něco (až $6^{0}$ ) vyšší, nežli tlaku atmosférickému přisluši; pravíme, že voda jest přehřáta.

Dá-li se taková dobře vyvařená voda pod recipient vývěvy a nechá-li se mírně ochladiti, ukáže se přehřáti v jiné formě, kdy̌̌ se vzduch znenáhla vyčerpává a tlak umenšuje. Voda taková se totiž nevaří, i když by se dle tlaku zbývajíciho již vařiti měla, tak že jeji teplota oproti teplotě varu, tomuto tlaku př̌islušné, až o $20^{\circ}$ múže býti vyšší (Dufour).

Přehřátí vody mủže za zvláštních poměrủ býti ještě daleko větši. De Luc vyvařil vodu pečlivě v trubičce skleněné a podařilo se mu přehřáti ji až na $130^{\circ}$. Krebs přehřál vodu až na $200^{\circ}$. Grove vyslovil větu, že by voda, když by byla naprosto čistou (i bez plynû), vůbec do varu se uvésti nedala. („Vodu čistou neviděl nikdo se vařiti.")

Přehřăti kapalinu podaří se zejména tehda, když jest v malých kapkách v jiné horké kapalině suspendována. Dufour pozoroval, že kapky vody, suspendované ve směsi oleje lněného a silice hřebićčkové, i při $178^{\circ}$ zủstávají kapalnými.

Pozoruhodný názor pronesl Tomlinson. Nikoli bublinky vzduchove usnadñuji tvỡení se bublinek páry, nýbrž cástečky prachové, jez̄ v oněch bublinkách se nalézaji. Bublinky vzduchu naprosto čistého jsou neúčinné, Proto by ono čisténí skleněné kádinky kyselinou dusičnou nebo sírovou anebo koncentrovaným louhem draselnatým mělo ten smysl, že by se tím veskeré stopy têlisek prachových na skle usazených znižily.

Přehřátí nevztahuje se však na páry. I když se vaří kapalina přehřátá, zủstává teplota par z ní vystupujícich taková, jakáž přísluší vnějšimu tlaku danému (Rudberg a Marcet). Odtud dủležité pravidlo, při kontrole bodu varu vkládati teploměr nikoli do vody, nýbrž do vodních par (§ 6.).

## § 102. Stav sféroidálni.

Rozežhavime-li plamenem hořáku Bunsenova mističku na př. měděnou, železnou nebo (nejlépe) platinovou do červeného žáru a spouštíme-li pak, žár plamenem udržujíce, z pipetty na žhavá mista pozvolna kapky vody (nebo alkoholu, aetheru, na mističku železnou nebo platinovou též rtuti), pozorujeme, že kapky dopadnouce nepromění se rychle v páry, jak bychom snad dle vysoké teploty mističky očekávali, nýbrž zůstávaj kapkami, spojuji se v kapku větši a větši, která je sféricky zaoblená a sploštěná a která ukazuje živý kolotavý pohyb, zejména na krajích, přijimajíc často pěkné hvězdovitě ohraničené formy. Při tom je viděti, že na místech, kde právě kapka spočivá. je mistička chladnější, nejevíc žáru červeného, ale přece zase tak horkou, že jeji teplota daleko převyšuje teplotu, při nǐ̌̌̌ kapalina se vaří. Odtáhneme li plamen, tak že pak teplota mističky rychle klesá, pozorujeme, že nějakou chvíli kapka ještě ve své podobě a svém pohybu trvá, ale pak náhle vy buchne*), proměnic se prudce v páru - až na malý zbytek kapaliny, který se vypaři volněji.

Ukaz zde popsaný zpozoroval prvý Eller ${ }^{* *}$ ) v roce 1746 , dủkladněji pak vyšetřoval Leidenfrost ${ }^{* * *}$ ) (o 10 let později); dle něho se často úkaz ten označuje jakožto Leidenfrostủv. Z pozdějších velmi četných badatelủ, kteří se zajimavým zjevem tim zabývali, budiž zejména uveden Boutigny $\dagger$ ) (v drahé polovici století 19tého), jenž zavedl pojmenováni „stav sféroidálni" a pak ruský fysik (technolog) Mik. Hesehus (* 1845), z německých mladšich badatelů zejména Jan Stark (*1874).
${ }^{\text {* }}$ ) Toto vybuchnuti upominá na možnost, że by explose u parnich kotlú mohly nêkdy têż podobné vznikati. Że lze způsobiti experimentem explosi takovou z malého, korkem uzavřeného kotliku, který se napred rozežhaví, pak čảstečnẽ vodou naplni (jež se vytvorí slëroidálnê) a nechả ochladnouti, o tom není pochybnosti.
** Fan Theodor Eller (1689-1760), têlesný lêkar̂ kräle Bedřicha Velikẻho Pojednání, v némz̃ je proni zmínka o zjevu tak zvaném Leidenfrostové, má nảzev: Sur les éléments ou premiers principes des corps (Mẻm. Berlin 1746).
***) Fan Leidenfrost (1715-1794), Med. Dr., byl vojenským lêkar̃em a pozdēji professorem fak. lêk. na (tehdejsí) universitê v Duisburku. Zjev dle nêho zvaný popsal v pojednáni: De aquae communis nonnullis qualitatibus Tractatus (vyslo v Duisburk u 1756).
†) P. M. Boutigny ( $\uparrow$ 1884), lêkárnik; studie své o stavu sfêroidâlnim popsal v ne̊kolika pojednánich, jez̃ vyşla v rûzny̆ch letech, čelné z nich v Comptes Rendus v Pařizi (21. 1845, 31, a 50. 1850 a $1860,90.1880$ ).

Pokus lze rozmanitým zpûsobem modifikovati a učiniti frappantnějšim. Aether, který kapeme na horkou vodu, jeví stav sféroidálni. Kapalný kysličnik siřičitý, jenž se vaří při $10^{\circ}$, udržuje se ve stavu sféroidálním na rozežhavené platině (Boutigny). Jeho teplota je přes to tak nizká, že kapka vody do něho vpuštěná ihned mrzne. V rozežhaveném tygliku měděném nebo platinovém lze udržeti směs pevného kysličníku uhličitého s aetherem, při čemž teplota zủstává tak nizkou (kolem - $80^{\circ}$ ), že rtut, v malém tygliku měděném do oné směsi vložená, rychle mrzue (Faraday).

Pékný pokus tento pripousti jesté dalsi modifikace. Do rtuti se zapustí a nechá zamrznouti żelezný drát. Pomoci tohoto lze z tygliku onu zmrzlou rtut vylahnouti; postaći tyglik vložiti na okamžik do vody. Když se pak ona zmrzla rtuf na drátku vloz̃i pfímo do chladné vody, zaċne po chvili se taviti - ale tavic se mả teplotu kolem - $40^{\circ}$, tedy značné nižzi nez̃ jest bod mrazu vody. Proto kapky rtuti tvorice se maji kolem sebe obal ledový a padajice zanechávají ve vodê roubícky ledové za sebou *).

Sféroidální stav vysvětluje se tím, že není přímého kontaktu mezi hladkým žhavým kovem a kapalinou; mezi oběma jest vrstva páry, která kapku nadnáši a která - jako špatný vodič tepla - nepřipouští značnějšiho zahřátí kapaliny, jež ostatně též vlastnim vypařováním se ochlazuje. Tato vrstva páry jako špatný vodič elektřiny bráni také proudu, když se anodou do kapky zapuštěnou zavádí k mističce jakožto kathodě, že neprocházi (Poggendorff). Neni-li přímého doteku kapaliny s mističkou, není též adhaese, a proto vytvoří se kapka kulatě, právě tak, jako na př. kapka rtuti na skle. Živé, viřivé pohyby kapky, zejména na okraji, vznikají především proto, že páry ze spoda kapky procdi na venek; že tyto páry se tvoř̌i, a to dosti rychle, je viděti na tom, že objem kapky se umenšnje. Mimo to jest u kapky také napěti povrchové na dolejši (teplejši) vrstvě menši než na hořejší (chladnějši), tak že i proto vzniká přímé prouděni kapaliny ze spoda radiálně na venek.

Sféroidální stav jeví se zvláště pèkně u kapek tekutého vzduchu na vodě neb na jiných kapalinách (Dewar). Na vodě viř̌i kapky vzduchu velmi živě a zpúsobuji nad sebou oblaky kondensované vodní páry. Ješté živěji viří na povrchu chloridu uhličnatého ( $\mathrm{COl}_{4}$, tetrachloridu uhliku), kapalině, jež vře již

[^96]při $76^{\circ}$; kapky zde běhaji na povrchu způsobujíce značnou kondensaci vodních par, jež táhnou se za nimi jako ohony vlasatic. Na kyselině sírové koncentrované, jež vře teprve pr̆i $338^{\circ}$, pohybují se kapky vzduchu volně, neviŕíce a nekondensujice žádných par vodních.

Stav sféroidální lze též obráceně studovati, když se rozežhavená malá koule, na př. platinová, vloži do kapaliny. Uvádi se též, že lze prsty vložiti na několik okamžikủ do roztaveného kovu nějakého (olova, bronze, litiny) beze škody; vrstva páry na vlhké ruce chrání před přímým dotekem žhavého kovu.

## § 103. Bod varu roztoků a směsi kapalných.

Bod varu nějaké kapaliny, na př. vody, zyýy̌í se, když se do ni přidá něco látky, jež se v ní rozpoušti. Mějmež $M$ grammú rozpustidla, $m$ grammư látky rozpuštěné. Všeobecně zvy̌ši se bod varu tím více, čím jest $m$ větši nebo $M$ menší, tedy dle poměru $\frac{m}{M}$.

Přepočitejme množství $m$ dle známé molekulové váhy $\mu$ na gramm-molekuly, jichž počet $n$ jest

$$
m: \mu=n .
$$

Dále volme pro $M$ určité množství, na př. 1000 grammů. Počet $n$ gramm-molekul v tomto množství rozpuštěných stanoví molelutovou koncentraci roztoku. Značí-li $\tau$ zvýšení bodu varu, pak jest v platnosti zákon

$$
\tau=s \cdot n
$$

t. j. zvýšeni bodu varu jest úmërno molekulové koncentraci roztoku (Raoult 1886).

Konstanta $s$, nezávislá na povaze látky rozpuštěné, cha. rakterisuje látku rozpouštějici. Z úvahy o práci osmotické při rozpouštěni látek odvodil van't Hoff relaci

$$
s=0.00198 \frac{T^{2}}{\sigma}
$$

kdež jest $T=273+\vartheta$ absolutní teplota bodu varu pro rozpustidlo a $\sigma$ teplo skupenské vypařování. Dle vzorce tohoto můžeme konstantu $s$ pro některé kapaliny počitati a pak výsledek srov-
návati s hodnotou ( $s$ ), jak se nalezla skutečným pozorovánim. Obdržíme výsledky *) následující:

	$\theta$	$\sigma$	$s$	(s)
pro vodu	$100 \cdot 0$	539	0.511	0.52
n benzol. . .	$80 \cdot 3$	$94 \cdot 4$	$2 \cdot 62$	$2 \cdot 7$
, chloroform . .	$61 \cdot 2$	58	3.81	$3 \cdot 6$
n alkohol . . .	$78 \cdot 3$	202	1.21	$1 \cdot 16$
n aether . . .	345	90	2.08	$2 \cdot 1$

Souhlas mezi výpočtem $s$ a pozorovánim (s) jest dobrý.
Dle toho, kdybychom podobně, jako uvedeno v $£ 92 ., \mathrm{v}$ litru vody rozpustili 50 grammú cukru, zvýşil by se bod varu o

$$
\tau=0.52 \cdot 0 \cdot 146=0.08^{\circ}
$$

Srovnávajice účinek rozpuštěných solí, jak se jeví na bod varu a na bod mrazu rozpustidla (§ 92.), poznáváme úplnou analogii. Proto také všechny podrobnosti, jak byly uvedeny o bodu mrazu, zejména o stanoveni váhy molekulové, mají platnost i zde. Rovněž i to, co řečeno o dissociaci elektrolytû. Také zde záleži na velmi přesném určeni malých temperaturnich differencí $\tau$, ke kterémǔ̌ cíli Beckmann sestrojil zvláštni účelné přístroje.

ZvẏŠení bodu varu u roztokủ souvisí se snĩzením napétí par. Máme-li rozpustidlo, jehoz̃ páry maji napẻti e cm, a pridáme-li nẽco látky, jež sama nejeví żádného napêti par, sniži se napêtí roztoku o \& cm ; i jest v platnosti relace

$$
\frac{\varepsilon}{e}=\frac{n}{N+n}
$$

Zde znamená $N$ počet gramm-molekul rozpustidla, $n$ poc̃et gramm-molekul látky rozpustě̃né. Obė tato čísla vypočitáme zpūsobem již uvedeným, dêlice vảhu absolutní vahou molekulovou. Zákon má platnost jen pro roztoky ž̌eděnẻ. U elektrolytû z dủvodủ již uvedených ukazuji se odchylky. (Raoult 1887.)

Otázku, jak se utváří bod varu u směsi kapalin, kteréž se mísí v poměrech libovolných, dlužno studovati v souvislosti $s$ otázkou, jaké výsledné napětí jevi páry takovéto směsi. Rozeznávali jsme (§ 98.) trojí typus. Napětí výsledné par jest -

[^97]alespoň přibližně - rovno střednímu, nebo jest větši, ukazujíc maximum, nebo menší, ukazujíc minimum. Kapaliny typu prvého nemají při určitém tlaku žádného stálého bodu varu, nebof koncentrace směsi se měni; kapalina většího napěti destillací ponenáhlu přechází a menšího napětí zůstává zpět. U typu druhého existuje konstantní, minimální bod varu, kterýž přísluší té význačné koncentraci, jež má napětí maximální. Když se libovolná směs tohoto typu za konstantniho tlaku destilluje, bliži se prvý destillát oné koncentraci význačné, zbytek pak se od ni vzdaluje. Proto, když se prvý destillát opět a opět destilluje, obdrží se směs, kteráž má onu koncentraci význačnou, tudiž bod varu stálý a minimální. Zbývajicí pak směs oddaluje se od maxima při pokračujicí destillaci v témže smyslu vždy více, až obdržíme kapalinu, která leží na téže straně maxima jako homogenní směs pủvodně daná. Konečně u typu třetího existuje podobně konstantní, maximální bod varu, odpovídající té význačné koncentraci, která má napětí minimální. Při destillaci takovéto libovolné směsi za stálého tlaku děje se pochod podobný jako u typu druhého, ale v opačném smyslu. Zde nikoli destillát, nýbrž zbytek blízí se ponenáhlu oné význačné koncentraci, která má bod varu maximální. Destillát pak, když se nově a nově destilluje, bliží se kapalině homogenní, ležicí na téže straně minima, na které ležela směs původně daná.

Jedná-li se o směsi takových kapalin, které se mísí jen v poměrech omezených, do nasyceni, a tvoři vrstvy, jest bod varu stálý a menši než bod varu jednotlivých součástí. U tří kapalin takových bod varu již konstantním není.

## § 104. 0 methodảch, jimiž se určuje napětí par nasycených.

Ve výkladech předcházejících užívali jsme často výsledků, jež pro napětí nasycených par byly zjednány, ale nevykládali jsme obšírněji, jakým způsobem různi badatelé tyto výsledky obdrželi. Vzhledem k tomu budiž zde podán přehled method*), dle nichž bylo pracováno.

[^98]Rozeznáváme hlavni methody tři : Statickou, dynamickou a isothermickou.

1. Při methodě statické měříme napěti nasycených par přímo, obyčejně výškou sloupce rtutového, na rtut nallstupňovou redukovaného, a to při teplotě, kterou vhodně volime. Mĕřeni samo mủže se diti dvojím zpúsobem: bử v souvislosti s tlakem vzduchovým (methoda barometrická), nebo s vyloučením tlaku vzduchového (methoda manometrická). Při zpủsobu prvnim (barometrickém) vpravíme kapalinu do vakua Torricelliho a určíme, o mnoho-li se tlak vzduchu zmenšil. Tímto zpủsobem bylo napěti nasycených par demonstrováno v $\S 9$.̃., jak při teplotě obyčejné (obr. 92.). tak i při teplotě vyšši (obr. 94.). Û́pravy této lze užiti ovšem jenom, pokud napěti par jest menši než tlak vzduchu. Při zpủsobu druhém (manometrickém) upraví se dvouramenný barometr tak, aby v rameni kratším, kde jinak pǔsobí vzduch, byla kapalina. Tato se vyvaří, vzduch se vypudi, a pak se rameno zataví. Zbývá zde tedy jen kapalina a jeji páry; v lázni rủzné teploty udává pak sloupec rtutový přimo tlak páry nasycené. Úprava jest tedy podobna té, o níž bylo psáno v § 99. (Pokusy Golicynovy.) Jde-li o účely vědecké, nutno zařiditi přistroje přislušné tak, aby teplota jak par, tak i sloupcủ rtufových se dala dobře stanoviti.
2. Při methodĕ dynamické určujeme bod varu kapaliny, tudiž teplotu, při níž nasycené páry mají napětí rovnajici se tlaku vzduchu anebo tlaku libovolně zvětšenému nebo zmenšenému.

Zde při methodě dynamické jest pára v pohybu, tam, při methodě statické, byla v klidu. Přes tento rozdil vedou obě methody k výsledkủm souhlasným, ač-li kapaliny jsou zcela čisté*). Methoda dynamická, čili, jak se též někdy zove, embulliometrická **), vyznačuje se oproti statické větší extensitou. Kapalina nalézá se v kotli, do něhož zasahá teploměr plynový (vodikový nebo dusíkový); tímto měří se teplota páry, jež při varu uniká a kondensuje se chladnou vodou v kapalinu, která stéká do kotle zpět. Tlak se reguluje vhodným zhuštěním nebo

[^99]zředěním vzduchu a musí ovšem přesně býti manometrem měřen.

Obou uvedených method užival zejména Regnault, jenž také pojmenování statická a dynamická zavedl.
3. Při methodě isothermické sleduje se, jak stoupá tlak při kompressi par přehřatých za stálé teploty, a hledi se přesně stanoviti ten tlak, který při postupující kompressi jeví se konečně býti stationárnim. To jest znameni, že páry se staly nasycenými; jich napěti není již závislé na objemu, nýbř̌ jen na teplotě, při niž postupujíci kompresse se dála. Když se stoupání tlaku a současné umenšováni objemu znázorní graficky, obdrži se přibližně (dle zákona Boyle-Mariotte-ova) větev rovnoosé hyperboly, která v blizkosti kondensace se od tvaru hyperbolického začiná vždy vice odchylovati, až přejde v přimku rovnoběžnou s osou objemu. Pro pary nasycené určaji se tedy touto methodou všechny tři koordináty, teplota, napěti, objem (tudíž ze známého množství páry též objem specifický). Methodou isothermickou pracovali zejména v Anglii Ramsay a Young, v Italii Battelli.

## § 105. Napěti nasycených par vodnich.

Významem svým nejdủležitějšími jsou páry vodní. Napěti těchto par určoval s velikou přesností zejména Regnault, methodou dilem statickou, dilem dynamickou; prvé užíval pro teploty nižŠi (od - $32^{\circ}$ počínajíc), druhé pro teploty vyšši (do $230^{\circ}$ ). V intervallu $-20^{\circ} \ldots+110^{\circ}$ pracoval též Magnus. V novějši době (1892) pokračovali v pracích těchto Cailletet a Colardeau, Ramsay a Young a konečně Battelli, kteři postoupili k teplotám ještě vyšším (až téměř k tak zvané kritické teplotě $365^{\circ}$ ). Battelli užival methody isothermické. Pozorováni Regnaultova, jež zpracoval v nověǰ̌̌i době (1881) Broch a (1893) Wiebe, opravil Thiesen a Scheel, kteři zejména hodnotu základai, pro teplotu nullovou, přesněji stanovili; konečně bylo nutno přepočísti veškeré výsledky na teploměr plynový (vodikový) jakožto normálni.

Následující tabulky udávaji výsledky všech těchto praci. Základni tabulkou jest ta, která napětí nasycených vodnich par udává od teploty $0^{\circ}$ do $100^{\circ}$ a do $120^{\circ}$. K ní se připojuje, směrem k teplotám nǐ̌̌̌ím, tabulka, jež udává toto napětí pro
teploty negativní bud nad ledem nebo nad přechlazenou vodou. Směrem pak $k$ teplotám vyšším připojuje se tabulka, v niž jest napětí udáno v centimetrech nullstupňové rtuti, ale také jest přepočteno na jednotiku přehlednějši, totiž atmosféru (theoretickou, $76 \mathrm{~cm} \mathrm{Hg} 0^{0}, g^{*}$ ).

Napětí nasycených vodních par nad ledem.

\[

\]

Napětí nasycených vodních par nad (přechlazenou) vodou.

$t$	cm	${ }_{0}$	cm	$t$	E cm	${ }_{0}$	$\begin{gathered} E \\ c m \end{gathered}$
$-20$	0.0960	$-15$	$0 \cdot 1451$	$-10$	$0 \cdot 2159$	-5	$0 \cdot 3167$
$-19$	1044	$-14$	1573	- 9	2335	-4	3413
$-18$	1135	$-13$	1705	-8	2521	$-3$	3677
$-17$	1233	-12	1846	- 7	2722	-2	3958
$-16$	1338	$-11$	1997	- 6	2937	$-1$	4258
$-15$	1451	$-10$	2159	$-5$	3167	-0	$0 \cdot 4579$

Napětí nasycených vodních par při teplotách středních.

$t$   $0_{0}$	$E$   $c m$	$t$   0	$E$   $c m$	$t$   0	$E$   $c m$	$t$   0	$E$   $c m$
0	$0 \cdot 458$	30	$3 \cdot 156$	60	$14 \cdot 921$	90	$52 \cdot 600$
1	$0 \cdot 492$	31	$3 \cdot 342$	61	$15 \cdot 6 \cdot 29$	91	$54 \cdot 627$
2	$0 \cdot 529$	32	$3 \cdot 537$	62	$16 \cdot 365$	92	$56 \cdot 719$
3	$0 \cdot 568$	33	$3 \cdot 743$	63	$17 \cdot 130$	93	$58 \cdot 877$
4	$0 \cdot 609$	34	$3 \cdot 959$	64	$17 \cdot 925$	94	$61 \cdot 104$
5	$0 \cdot 653$	35	$4 \cdot 185$	65	$18 \cdot 751$	95	$63 \cdot 401$
6	$0 \cdot 700$	36	$4 \cdot 423$	66	$19 \cdot 609$	96	$65 \cdot 769$
7	$0 \cdot 749$	37	$4 \cdot 673$	67	$20 \cdot 499$	97	$68 \cdot 211$
8	$0 \cdot 802$	38	$4 \cdot 935$	68	$21 \cdot 424$	98	$70 \cdot 729$
9	$0 \cdot 858$	39	$5 \cdot 209$	69	$22 \cdot 384$	99	$73 \cdot 324$
10	$0 \cdot 918$	40	$5 \cdot 497$	70	$23 \cdot 379$	100	$76 \cdot 000$
11	$0 \cdot 981$	41	$5 \cdot 798$	71	$24 \cdot 411$	101	$78 \cdot 76$
12	$1 \cdot 048$	42	$6 \cdot 113$	72	$25 \cdot 482$	102	$81 \cdot 60$
13	$1 \cdot 119$	43	$6 \cdot 443$	73	$26 \cdot 591$	103	$84 \cdot 53$
14	$1 \cdot 194$	44	$6 \cdot 789$	74	$27 \cdot 741$	104	$87 \cdot 54$
15	$1 \cdot 273$	45	$7 \cdot 150$	75	$28 \cdot 932$	105	$90 \cdot 64$
16	$1 \cdot 357$	46	$7 \cdot 528$	76	$30 \cdot 165$	106	$93 \cdot 83$
17	$1 \cdot 445$	47	$7 \cdot 923$	77	$31 \cdot 442$	107	$97 \cdot 11$
18	$1 \cdot 538$	48	$8 \cdot 336$	78	$32 \cdot 764$	108	$100 \cdot 49$
19	$1 \cdot 637$	49	$8 \cdot 767$	79	$34 \cdot 132$	109	$103 \cdot 96$
20	$1 \cdot 741$	50	$9 \cdot 217$	80	$35 \cdot 547$	110	$107 \cdot 54$
21	$1 \cdot 850$	51	$9 \cdot 687$	81	$37 \cdot 011$	111	$111 \cdot 21$
22	$1 \cdot 966$	52	$10 \cdot 177$	82	$38 \cdot 525$	112	$114 \cdot 98$
23	$2 \cdot 088$	53	$10 \cdot 688$	83	$40 \cdot 090$	113	$118 \cdot 86$
24	$2 \cdot 218$	54	$11 \cdot 221$	84	$41 \cdot 708$	114	$122 \cdot 84$
25	$2 \cdot 355$	55	$11 \cdot 777$	85	$43 \cdot 379$	115	$126 \cdot 94$
26	$2 \cdot 499$	56	$12 \cdot 356$	86	$45 \cdot 107$	116	$131 \cdot 15$
27	$2 \cdot 651$	57	$12 \cdot 959$	87	$46 \cdot 891$	117	$135 \cdot 47$
28	$2 \cdot 810$	58	$13 \cdot 587$	88	$48 \cdot 733$	118	$139 \cdot 90$
29	$2 \cdot 979$	59	$14 \cdot 241$	89	$50 \cdot 636$	119	$144 \cdot 45$

Napětí nasycených par vodních při teplotách vysokých.

$t$	$\mathrm{cm} \mathrm{Hg} 0^{\circ}$	atm	$t$	$\mathrm{cmHg} 0^{\circ}$	atm	$t$	$\mathrm{cm} \mathrm{Hg} 0^{\circ}$	atm
100	76.0	1.0000	200	1162.5	$15 \cdot 296$	300	6762	88.978
110	$108 \cdot 3$	$1 \cdot 425$	210	1427.6	$18 \cdot 784$	310	7750	$101 \cdot 97$
120	1503	1.978	220	$1737 \cdot 9$	$22 \cdot 867$	320	8834	116-24
130	2043	2688	230	$2077 \cdot 8$	$27 \cdot 340$	330	10022	$131 \cdot 87$
140	272.5	3.586	240	2516.7	$33 \cdot 115$	340	11383	$149 \cdot 78$
150	$357 \cdot 8$	$4 \cdot 708$	250	2995.1	39-409	350	12692	167.00
160	463.4	6.097	260	3576.1	47.055	360	14187	186.67
170	591.9	7.788	270	4336.8	57.064			
180	749.5	9.862	280	$5059 \cdot 7$	66.575			
190	$937 \cdot 9$	$12 \cdot 341$	290	$5866 \cdot 6$	77-193			

Na základě těchto čiselných výsledkủ proveden jest v obr. 109. diagramm, jímž se velmi poučně znázorňuje, jak napětí nasycených vodních par (v̀ atmosférách) v intervallu $100^{\circ} \ldots 340^{\circ}$ urychleně stoupá (od 1 do $1 \check{0} 0$ atmosfér). V levé části diagrammu jest toto napětí (v atmosférách) pro intervall $100^{\circ} \ldots 200^{\circ}$ ještě znázorněno v rozměru desetkráte většim (od 1 do $15 \cdot 3$ atmosfér).

Výsledky pro vyšsí teploty, jež obdrželi jednotlivi badatelé, nejsou pri nejvyssich teplotách dosti souhlasné. Zde prijaty výsledky, jak je obdržel A. Battelli (1892); têmto dána prednost, ponêvadž mají nejvêtsí extensitu jdouce az̃ do $360^{\circ}$, a jsou téz̃ vztahovány na teplomér plynovẏ. V tabulkách Landolt-Börnsteinových pag. 129, 1905 jest přehlednẽ sestaveno, jak se vespolek lisî čísla, jez̃ obdrželi Regnault, Ramsay a Young, Battelli.

## § 106. Vzorce mathematické pro napětí nasycených par, zejména vodních, v závislosti na teplotè.

Diagrammy pro napětí nasycených par podávají křivky, v celkovém prủběhu dosti souhlasné, jichž typickým obrazem jest křivka v diagrammu obr. 109. pro napětí par vodních. Jest žádoucno, aby každá taková křivka byla též mathematicky vyjádřena, t. j., aby zjednána byla rovnice křivky té v souřadnicích $p$ (napětí) a $t$ (teplota), a to bud ve formě

$$
\begin{aligned}
p & =f(t) \\
t & =F(p) .
\end{aligned}
$$

nebo

Zjednati rovnice takové jest již proto důležito, aby, když se maji pozorování zpracovati, na místě interpolace grafické nastoupila interpolace početní, což jest možná, když se konstanty rovnice takové methodou nejmenšich čtverců $z$ daných pozorováni vypočitají.


Jak stoupá napêti nasycenẏch par vodnich s teplotou.
Hledíme-li však na úkol tento se stanoviska mathematického, jest ihned patrno, že úloha jest velice neurčitou. Jedná se o kř̌ivku, která jeví stoupání urychlené. Nejedná se však o křivku v celém jejím rozsahu, nýbrž jen v poměrně malé části, totiž v tom intervallu, ve kterém pozorování jsou obsažena. Avšak v malém rozsahu jeví četné typy křivek souhlas velmi dobrý. Stačí poukázati na známý přiklad, že dráhy, v nichž se pohybují vlasatice v okolí perihelia, rovněž tak za elliptické jako za hyperbolické nebo parabolické pokládati lze. Co pak se týče křivek tvaru takového, jako v obr. 109., jevi takový průběh mnohé křivky algebraické a také křivky exponenciální. Úvahou touto stává se pochopitelno, že úkol, závislost napětí nasycených par na teplotě mathematicky vyjádřiti, byl
řešen zpủsoby velice rozmanitými. Existuje celé množství formulí, kteréž dlužno jen za interpolační pokládati, a kteréž ve skrovném tom intervallu, v němž pozorování jsou obsažena, vespolek dobře souhlasí. Rozdíly, někdy velmi značné, ukázaly by se při extrapolaci, kdyby se přislušné křivky dle formuli rýsovaly přes intervall pozorovací, k teplotám velmi vysokým a velmi nizkým, což by ovšem mělo význam jen mathematický, nikoli fysikálni. Jen v tom připadě, když má formule taková základ theoretický, tak že by mohla vyjadřovati přirodní zákon, stává se zajímavou; jinak vykonala svou povinnost, jakmile na jejím základě pozorování bylo zpracováno tak, aby mohlo tabellárně býti vyjádřeno. Rešení tabellární jest pro praxi jediné pohodlné.

Vzhledem $k$ tomu, co zde řečeno, omezíme se jenom na uvedení některých formuli interpolačnich, jež jsou typické.

První formuli takovou udal již Dalton (1801), jenž pokládal křivku pro napětí nasycených par za exponenciálni, jejiž rovnice by byla

$$
p=p_{0} e^{m t} .
$$

Regnault ukázal, že formule tato nestači. Modifikací jeji byla ta, kterou podal Roche (1830), totiž

$$
p=p_{0} e^{\frac{a z}{u+c z}}
$$

kdež jest $x$ bud̉ $=t$, nebo $t-100$, všeobecně $t-t_{0}$, tak že $p_{0}$ značí tlak při té teplotě $t_{\mathrm{o}}$, od niž začínáme zvy̌šení teploty počítati (na př. $t_{0}=100^{\circ}$ ). Při logarithmickém počitání hodí se lépe logarithmy obyčejné než přirozené, tak že by se ve formuli mohlo též hned psáti 10 misto e.

Záhy byly též udány formule algebraické. Th. Young (1807) navrhl rovnici

$$
p=(a+b t)^{m}
$$

anebo v jiné formě

$$
p=\left(\frac{a+t}{\beta}\right)^{m}
$$

Sem, náleží též rovnice, kteréž pro vodní páry užili Arago a Dulong (1830), totiž

$$
p=[1+0.7153(t-100)]^{5}
$$

kteráž se osvědčuje spiše pro vyšší teploty než pro nižší.

Mezi algebraické náleží též některé formule z dob nověj. ších. Tak klade Broch (1881)
kdež jest

$$
p=a \frac{b+c t+d t^{2}+e t^{3}+f t^{4}}{1+\gamma t}
$$

$$
\gamma=0.003668 .
$$

Rovněž náleži sem formule, kteréž užil A. Jarolímek (1882),

$$
t=a+b \dot{\mathfrak{V}} \bar{p}+\frac{c}{p}
$$

a pro páry vodni

$$
t=8+97 \sqrt[4]{p}-\frac{5}{p}
$$

nebo též

$$
t=3+100 \sqrt[4]{p}-\frac{3}{p}
$$

Prvá z posledních dvou číselných rovnic podává velmi dobré výsledky až do $p=28 \mathrm{~atm}$.; druhá se hodi pro vyšší tlaky lépe. A. Jarolímek *) udává též pro páry jiných kapalin číselné formule podobné **). V novějjsí pak době (1906) upravil pro páry vodní následující vzorce číselně, dle badatelú zde jmenovaných: Tredgold

$$
p=\left(\frac{75+t}{175}\right)^{6}
$$

$$
t=175 \sqrt[6]{p}-75
$$

Coriolis

$$
p=\left(\frac{53 \cdot 25+t}{153 \cdot 25}\right), \quad t=153 \cdot 25 \cdot p^{\frac{1}{5 \cdot 355}}-53 \cdot 25
$$

Dulong

$$
p=\left(\frac{39 \cdot 8+t}{139 \cdot 8}\right)^{5}, \quad t=139 \cdot 8 \cdot \sqrt[5]{p}-39 \cdot 8
$$

Jarolimek

$$
p=\left(\frac{t}{100}\right)^{4}-0.7\left(\frac{t}{100}-1\right), \quad t=97 \sqrt[4]{p}-\frac{5}{p}+8
$$

a k tomu Antoine

$$
\log p=5 \cdot 431-\frac{1956}{t+260}, \quad t=\frac{1956}{5 \cdot 431-\log p}-260
$$

${ }^{*}$ ) Antonín Farolimek ( ${ }^{*}{ }^{13} / 2$ 1835), bratr geometra našeho Vincence Jarolimka, professora na české technice v Praze, vystudoval polytechniku Prażskou a straivil pak vétšinu let suých v cizinẽ (ve Freiburku, Pes̃ti, Rjece, Hainburku); pozdéji pûsobil v Sedlci u Kutné Hory jako vrchni inspektor v rozsáhlé tamêjsí továrnè tabákovè. Četné jsou jeho práce zejména v oborech technických.
${ }^{* *}$ ) Viz podrobnéjs̄i Zprávy cis. Akad. Videñské z roku 1883 a Dingler's polyt. Journ. 259, pag. 393, 1884.

$$
-310-
$$

Z formulí těchto pozorováním Regnaultovým nejlépe vyhovuje Jarolímkova *). Zvláštni dủležitosti nabyla formule, kterou udal Biot (1844), a kteráž se jeví jakožto další rozvinuti formuli $\operatorname{logarithmických~tím,~že~} \log p$ se vyjadřuje opět exponenciálně. Formule má totiž tvar
kdež jest

$$
\log p=a+b \beta^{x}+c \gamma^{x}
$$

podobně jako nahoře u vzorce, který přijal Roche. Formule Biotova stala se tim významnou, že ji Regnault při svých fundamentálnich pracich položil výpočtům za základ; proto se zove často Biot-Regnaultova. Zeuner ve své Techn. thermodynamice propočítal pro celou řadu kapalin hodnoty $\log \left(b \beta^{x}\right)$ a $\log \left(c \gamma^{z}\right)$, kteréž klade $=m+n x$. Čísla $m, n$ jakož i a se tam udávají.

Formule Biot-Regnaultova poukazuje sama k podstatnému zjednodušení. Vliv posledniho členu $c \gamma^{x}$ jevi se býti nepatrným. Pro číslo $\beta$ pak vycházi pro různé kapaliny velmi souhlasně

$$
\beta=0.9932
$$

Proto v novější době Bartoli a Stracciati (1890) hleděli veškerá pozorování vystihnouti jednotnou formulí

$$
\log p=a+b 0.9932^{t}
$$

Za přiklad uvedme jen hodnoty pro ty kapaliny, o jichž parách bylo dříve zvlášt jednáno ( $\S 95$. .), dle pozorováni Regnaultových.

| Aethylalkohol . . . . . . . | $a=5 \cdot 39940$ | $b=-4.29601$ |
| :--- | :--- | ---: | ---: |
| Chloroform . . . . . . . . | $5 \cdot 01424$ | $-3 \cdot 21624$ |
| Sirouhlik . . . . . . . . . | 4.97152 | $-2 \cdot 86549$ |
| Aether . . . . . . . . . . . | $5 \cdot 15927$ | $-2 \cdot 89245$. |

Zmínky zasluhuje ještě rovnice, kteráž odvozena byla z úvah theoretických na základě mechanické theorie tepla; jeji forma jest

$$
\log p=a-\frac{b}{T}-c \log T
$$

Vzorec zove se Rankine-uiv (1866) nebo Dupré-ivv (1869), též Dupré-Hertzưv a osvědčuje se též pro celé řady kapalin dobře. Odvozuje se zpủsobem různým z předpokladu, že spojený zákon Boyle-Mariotte-ův a Gay-Lussac-ův má platnost až i pro páry

[^100]nasycené, a že skupenské teplo vypařování jest lineární funkce teploty.

Tento výpočet rozmanitých formulí není ještě úplný, stačí však k illustraci toho, co hned na počátku tohoto odstavce bylo uvedeno. - Pro zvláštni zajímavost uvádíme z nejnovější doby formuli pro páry vodiku*)

$$
\log p=6.2874-\frac{68 \cdot 02}{T}
$$

kdež jest $p$ vyjádřeno v $m m$ sloupce $H g 0^{0}$. Pro $T=14.96$ (absol.), bod tání vodiku, vychází $p=505 \mathrm{~mm}$.

Připojme na tomto místě výsledky, které $v$ době nejnovější**) obdrželi Holborn a Henning pro střední a pravé teplo specifické vodní páry, při teplotách velmi vysokých. Pro střední teplo specifické, mezi teplotou $100^{\circ}$ až $\Theta$, odvodili dvě formou různé rovnice, totiž algebraickou druhého stupně, a exponenciální:

$$
\text { I. } C_{100}, \Theta=0.4669-0.0000168 \Theta+0.000000044 \Theta^{2}
$$

II. $C_{100}, \Theta=0.4544+0.006925 .10^{0.0007513 \Theta}$.

Tabellárně jeví se střední a pravé teplo specifické dle formule I. a II. následovně.

Střední a pravé teplo specifické vodní páry.

	Vzorec I.		Vzorec II.	
$\Theta$	$C_{100, \Theta}$	C	$C_{100, \Theta}$	C
$[0]^{0}$	$0 \cdot 4669$	0.469	0.4613	$0 \cdot 460$
200	$0 \cdot 4653$	$0 \cdot 465$	0.4642	$0 \cdot 466$
400	$0 \cdot 4672$	0.473	$0 \cdot 4682$	0.475
600	0.4726	$\bigcirc \cdot 491$	$0 \cdot 4740$	0.491
800	0.4817	0.519	0.4820	0.515
1000	$0 \cdot 4941$	0.558	0.4935	0.554
1200	0.5101	$0 \cdot 608$	0.5096	0.614
1400	0.5296	0.668	0.5323	0.707
[1600]	0\%อัอั27	0.739	05646	0.849

[^101]Formule uvedené jsou jenom interpolační; formule kvadratická dává minimum (při $190^{\circ}$ ), exponenciálni ovšem nikoli. Výsledkủm přímého pozorování vyhovuji obě v daném temperaturním intervallu stejnẽ dobře.

Vidime tu opět novou illustraci o podřizeném významu takovýchto rovnic interpolačnich, jak o tom na počátku tohoto odstavce bylo jednáno.

## § 107. 0 hutnotě par; definice základni.

Hmotnou povahu těles pevných a kapalných charakterisujeme jich hmotou specifickou, t. j. hmotou (v grammech), jež jest obsažena v jednotce objemové (kub. centimetru) při dané teplotě $(t)$. Píšeme tedy na př. pro rtut obyčejné teploty

$$
S=13 \cdot 552 \frac{g}{c^{3}}, \quad\left(18^{0}\right)
$$

Účinek tlaku ustupuje u těchto těles do pozadí. Avšak u plynů a par vzniká tlakem účinek téhož řádu jako teplotou; proto dlužno specifickou hmotu plynů a par udávati (v týchž jednotkách $\frac{g}{\mathrm{~cm}^{3}}$ ) pro určité normální poměry teploty a tlaku. Za takové volíme zpravidla teplotu $0^{\circ} \mathrm{C}$ a tlak**) jedné atmosféry $\left(76 \mathrm{~cm} \mathrm{Hg} 0^{0}, g^{*}\right) . V$ tomto smyslu jest na př. specifická hmota

vzduchu	$S=0.0012928 \frac{g}{\mathrm{~cm}^{3}}$,
vodíku	$S=0.00008985 \mathrm{n}$
kysličníku uhličitého	$S=0.0019766 \quad$ n.

Jsou-li poměry tepelné a tlakové jiné než normální, lze specifickou hmotu z čísel uvedených počitati dle zákona Boyle-Mariotte-ova a Gay-Lussac-ova. Na př. při vzduchu. Není-li tlak 76 cm , nýbrž $b$, změní se specifická hmota dle zákona Boyle-Mariotte-ova na

$$
0.0012928 \cdot \frac{b}{76}
$$

[^102]Neni-li teplota $0^{0}$, nýbrž $t$, přejde dle zákona Gay-Lussacova na

$$
0.0012928 \frac{1}{1+\gamma t}
$$

při čemž jest

$$
\gamma=0.00367
$$

Při současné změně máme výraz

$$
0.0012928 \cdot \frac{b}{76} \frac{1}{1+\gamma t}
$$

jakožto specif. hmotu suchého vzduchu. Pro tento výraz bývají vypočítány tabulky, dle argumentu $t$ a $b$ uspořádané *).

Vedle specifické hmoty jest pro plyny a páry zvlástě dủležitým pojem hutnoty ${ }^{\text {**) }}$. Z oněch čísel, za příklad uvedených, můžeme počitati, kolikrát jest za normálnich poměrů na př. $1 \mathrm{~cm}^{3} \mathrm{CO}_{2}$ hmotnějši než $1 \mathrm{~cm}^{3}$ vzduchu. Obdržíme

$$
\frac{0.0019766}{0.0012928}=1.5289
$$

Toto číslo jest především přehlednějši; udává, že při normálních poměrech $1 \mathrm{~cm}^{3}$ kysličníku uhličitého váži okrouhle $1 \frac{1}{2}$ kráte více než $1 \mathrm{~cm}^{3}$ vzduchu. A poněvadž to, co o jednom $\mathrm{cm}^{3}$ platí, jest v platnosti též o každém jiném, udává toto číslo, kolikrát jest při normálních poměrech jakýloli objem plynu daného tě̌žsi než týž objem vzduchu. Nazýváme číslo to hutnotou plynu.

Dle toho jest hutnota vzduchu $=1$. Volba vzduchu jakožto plynu, s nímž ostatní srovnáváme, doporučuje se z důvodủ fysikálních, poněvadž methody, jimiž hutnotu stanovíme, samy sebou ke vzduchu vedou. Misto vzduchu lze však z dủvodú, na př. chemických, voliti plyn jiný. Dříve se brával vodik, poněvadž se váhy atomové vztahovaly na $H=1$. Dnes se vztahuji na kyslik, ale nikoli tak, že by se bral $O=1$, nýbrž klade se okrouhle $O=16$, což jest přibližně váha atomová kyslíku vztahovaná na vodik. Tedy indirektně je přece vodik základem,

[^103]jenom že nikoli hodnotou $H=1$, nýbrž takovou, kterou dle čisla $O=16$ chemicky dlužno stanoviti; to však dosud nelze provésti s přesností takovou, aby nějaké čislo miohlo býti stabilisováno. Nyni se přijímá $H=1.008$.

Připustíme-li, že zákon Boyle-Mariotte-ủv a Gay-Lussac-ủv pro plyny vủbec jest platným, pak nabývá hutnota na vzduch (nebo kyslik) vztahovaná vẏznamu všeobecnĕjšího. Stanovíme-li totiž dle hořejšiho pravidla hutnotu pro tlak $b$ a teplotu $t$, obdržíme pro ony plyny za příklad volené poměr

$$
0.0019766 \frac{b}{76} \frac{1}{1+\gamma t}: 0.0012928 \frac{b}{76} \frac{1}{1+\gamma t}=1.5289
$$

tedy číslo identické jako pro poměry normální. V tomto smyslu udává pak hutnota, kolikrát jakýkoli objem plynu, libovolného napětí i libovolné teploty, váží vice než stejný objem vzduchu téhoz̆ napētí a téže teploty.

V této modifikaci lze definici hutnoty přenésti též na páry, kteréž při poměrech normálních jako páry vůbec neexistují. Tak na př. páry vodní, teploty $0^{0}$, mají, i když jsou nasycené, napětí jen asi $\frac{1}{2} \mathrm{~cm}$. Mohou však býti vodní páry přehřảté, kteréž na př. při teplotě $20^{\circ}$ mají napěti 1 cm . Hutnota, kteráž jest $0 \cdot 625$, udává pak, kolikrát jest jakýkoli objem takovéto vodní páry těžši než týž objem vzduchu téže teploty $20^{\circ}$ a téhož napětí 1 cm (tedy vzduchn značně zředěného). Podobně jest to v platnosti pro páry alkoholu, aetheru, sirouhliku, benzolu a j .

Nêkterí autorové nazy̌vaji též hmotu specifickou nêjakého plynu jeho , hutnotou", totiž vztahovanou na vodu (maxim. hustoty) $\stackrel{p l y}{=} 1$. V tom smyslu pak mluvi o hutnoté plynu bud pro vodu $=1$, nebo ${ }_{\text {vicueho namíati. }}^{\text {vzo }}=1$, kyslik $=16$. Pro poměry normálni nelze proti tomu ničeho namítati. Ale specif. hmota plynu na vodu (maxim. hustoty) vztaho-
vaná není hutnotou na tlaku a teploté vzduch neb kyslik nat tlaku a teploté nezávislou, jako hutnota na vzduch neb kyslik vztahovaná. Proto jest lépe oba pojmy od sebe roz-
lisovati.

## § 108. Přehled method, jimiž se stanovi hutnota par.

Všechny methody, jichž užíváme ke stanoveni hutnoty par, určují předevšim specifickou hmotu $S_{1}$ páry a to nikoli pro poměry normálni, nýbrž jiné, od obyčejných odchylné, jak se právě pokusem udaji, tedy pro nějakou vhodně volenou teplotu
$t_{1}(C)$ a příslušný tlak $\left.b_{1}\left(c m H g 0^{0}\right)^{*}\right)$. Pro tytéž poměry vypočitá se specifická hmota $\sigma_{1}$ suchého vzduchu dle vzorce

$$
\begin{gathered}
\sigma_{1}=0.0012928 \frac{b_{1}}{76} \frac{1}{1+\gamma t_{1}} \\
\gamma=0.00367
\end{gathered}
$$

anebo se vypiše z tabulek.
$Z$ obou čísel $S_{1}$ a $\sigma_{1}$ počitá se pak hutnota $\Delta$ jednoduše z poměru

$$
\Delta=\frac{S_{1}}{\sigma_{1}}
$$

a tato hutnota má platnost pro poměry teploty a tlaku libovolné.
Methody jednotlivé rozeznávaji se tedy jenom dle toho, jak se pokusem nalezne specifická hmota $S_{1}$. Rozeznáváme hlavni methody tři.

1. Methoda, kterouž udal (1827) Dumas ${ }^{* *}$ ), uživá zpủsobu pyknometrického (Mechanika, pag. 464, 1901).
2. Methoda, kterouž zavedl (1812) Gay-Lussac a zdokonalil (1867) Hofmann***), určuje specifickou hmotu ze hmoty („váhy") absolutni a objemu (Mechanika, pag. 460, 1901).
3. Methoda, kterouž udal (1878) V. Meyer $\dagger$ ), stanoví též hmotu („váhu") absolutní a objem. V principu jest tedy stejná jako předešlá. Rozdir jest však v tom, že se př̌i methodě Hofmannově měří objem, jaký pára zaujme při vysoké teplotě, při niž jest přehřătou, za tlaku menšího než jest atmosférický; v methodě Meyerově se však určuje aequivalentní objem vzduchu obyčejné teploty, který pára vytlači, za obyčejného tlaku atmosférického.

Pojednáme nyní o těchto methodách jednotlivě a podrobněji.

[^104] zemr̃el.

## § 109. Methoda Dumasova.

Jak již řečeno, jest methoda Dumasova v podstatě své pyknometrickou. Tímto pyknometrem jest zde skleněný ballonek kapacity 100 až $200 \mathrm{~cm}^{3}$, dole kulatý *). Před pokusem se velmi pečlivě vyčistí a vysuší. Potom se jeho široká trubice vytáhne plamenem v úzkou. Na to se dá do skříně vah, nechá se vychladnouti a zváží se; jeho váha poznamená se jako tára.

Po této práci př̌ípravné přejde se $k$ naplněni ballonku parou té kapaliny, kterou $k$ pokusu volíme. Aby se něco této kapaliny dostalo do vnitř ballonku, zahříváme jej mírně a po-


Obr. 110.
Methoda Dumasova. nořime pak jeho úzkou trubičku do lahvičky s kapalinou; když se ballonek ochlazuje, vniká něco té kapaliny dovnitř. Touto kapalinou se pak ballonek uvnitř oplachuje, aby se jeho stěny omočily, a vloži se do připravené lázně (obr. 110.). Bývá to bử lázeň vodní nebo olejová, dle toho, jak vysoký jest bod varu dané kapaliny; lázen̆ musí nad tento bod jiti výše nejméně o $20^{\circ}$. Na teploměru do lázně vloženém sleduje se stoupání teploty.
Když teplota dostoupila žádoucí výše a po delši dobu na této výši byla udržována, odečte se definitivně teploměr $\left(t_{1}\right)$, ballonek se zatavi, a současně kohoutek plynový k lázni zatáhne. Zatavení ballonku děje se nejjistěji tak, že se malá z lázně vyčnívající trubička sevře pincettou, pod niž se malým plaménkem zahřivá a (zvolna) vytáhne; vytažený kousek se uschová jakožto náležející $k$ ballonku. Současně jiný pozorovatel odečitá tlakoměr a odečtení redukuje na $0^{\circ}$; tím jest určen tlak $\left(b_{1}\right)$, jemuž pára $v$ okamžiku zatavení ballonku podléhala. Jsou tedy poznamenány veličiny $t_{1}, b_{1} ; \mathrm{k}$ těm se z tabulek vypiše přislušná specif. hmota suchého vzduchu $\sigma_{1}$.

[^105]Ballonek se na to z lázně vytáhne a osuši; páry se v něm kondensuji v kapalinu; obrátíme-li ballouek, aby tato kapalina přetekla do úzké trubičky, kontrolujeme, zdali byl ballonek dobře zataven; nebot jinak vnikaji skrze kapalinu dovnitř malé bublinky vzduchové, jež jest dobře viděti. Když se ballonek ochladil, postavi se do skřině vah, aby teploty se vyrovnaly, zváži se a určí se váha páry $M_{1}$ netto, t. j. jak se obdrží, když se váha ballonku prázdného odečte. Teplota ve skřini vah budiž $t$, tlak vzduchu $b$, napětí par vodních $e$; z těchto veličin určí se specif. hmota $\sigma$ vzduchu, jaký právě ve skřini vah jest*).

Jedná se ještě o naplnění ballonku vodou. K tomu cíli vyvaři se v kádince destillovaná voda, aby se z ni vypudil vzduch, kádinka se vloz̆í do chladné vody, aby se ona vyvařená voda rychleji ochladila, a když jeji teplota klesla na obyčejnou, ponoří se ballonek trubičkou svou dolủ do vody, a trubička se propiluje nebo ulomí; ihned vniká voda velmi prudce do ballonku a naplní jej zcela, když při vypařování se kapaliny vzduch úplně z ballonu byl vypuzen **). Současně odečte se teplota $t$ vody. Ballonek se vytáhne, osuší a zváží; po odečteni táry zbývá váha vody netto $m$ při teplotě $t$, pro kterou se z tabulek vypiše specifická hmota vody $s$.

Při tomto vážení má patrně ballonek menší objem než když byl naplněn parou; nebot jeho teplota byla tu $t_{1}$, kdežto nyní jest $t$. Objem jeho se tedy zmenšil v poměru

$$
\frac{1+\alpha t}{1+\alpha t_{1}}
$$

Nutno tudiž váhu $m$ přepočitati na onen větší objem, jaký byl při $t_{1}$; korrigovaná váha $m_{1}$ jest patrně

$$
m_{1}=m \frac{1+\alpha t_{1}}{1+\alpha t}
$$

Vzhledem k tomu, že koefficient $\alpha$ roztažnosti objemové skla jest velmi malý, přibližně $\frac{1}{400000}$, lze pohodlněji počitati dle

[^106]vzorce *)
čili
\[

$$
\begin{aligned}
m_{1} & =m\left[1+a\left(t_{1}-t\right)\right] \\
m_{1} & =m+m \alpha\left(t_{1}-t\right)
\end{aligned}
$$
\]

Výpočet pyknometrický děje se pak dle vzorce **)

$$
S_{1}=\frac{M_{1}}{m_{1}}(s-\sigma)+\sigma
$$

a konečná hutnota dle rovnice

$$
\Delta=\frac{S_{1}}{\sigma_{1}}
$$

## § 110. Methoda Gay-Lussac-Hofmannova.

Malá lahvička se zabroušenou zátkou odváži se nejprve prázdná (tára) a pak s kapalinou (brutto); z toho odečtením se počítá hmota (netto) kapaliny $=M$ (v grammech). Když se tato kapalina promèni v páru, znači $M$ též hmotu této páry. Určí-li se tedy ještě její objem $V_{1}\left(\mathrm{~cm}^{3}\right)$, který zaujme při teplotě $t_{1}$ a tlaku $b_{1}$, jest její hmota specifická

$$
S_{1}=\frac{M}{V_{1}}
$$

A když se pro $t_{1}$ a $b_{1}$ vypočítá ještě specifická hmota suchého vzduchu $\sigma_{1}$, jest hledaná hutnota páry

$$
\Delta=\frac{S_{1}}{\sigma_{1}}
$$

Proměňování kapaliny v páru a současné stanovení objemu $V_{1}$, který tato pára při $t_{1}$ a $b_{1}$ zaujme, děje se následovně. Barometrická trubice asi 1 m dlouhá a 1 cm až 1.4 cm v průměru, nahoře zatavená a bử dle objemu ( $\mathrm{cm}^{3}$ ) kalibrovaná

[^107]nebo jen dělením podélným ( mm ) opatřená, naplní se suchou rtutí, nejlépe ve vakuu, t. j. při současném vyčerpáváni vzduchu, aby na stěnách nezůstaly bublinky vzduchové*). Na to se trubice ponoři svým otevřeným koncem do pneumatické vany a míně se nakloní, aby se vakuum Torricelliho ještě nevytvořilo. Pak se ona lahvička s kapalinou podstrči dole do trubice; lahvička ve rtuti rychle vystupuje. Když dojde až nahoru, pak teprve vztyčuje se zvolna trubice, aby se počalo vakuum tvořiti. Zde dlužno si počínati velmi obezřele. Kapalina, vypařujíc se, vyrazí totiž zátku lahvičky, což nesmí se státi přiliš prudce, aby se nárazem nerozbila trubice nebo nevyrazila zpět rtut. Trubice barometrická vztyči se konečně kolmo. Prostor nade rtutí jest nyni naplněn nasycenými parami kapaliny.

Aby se páry tyto proměnily v přehřáté, obklopí se trubice plástěm zahřívacím (obr. 111.), kterým se ženou horké páry vhodné kapaliny. Užívá se vody $\left(100^{\prime \prime}\right)$, anilinu $\left(183^{\circ}\right)$, benzoanu amylnatého $\left(180^{\circ}\right)$ a j. Páry tyto se po straně zhušfuji.

Když se teplota ustálila, odčítá se dilec stupnice, až do kterého se snižil meniskus rtufový. Z toho lze stanoviti objem $V_{1}$ páry. Je-li trubice shora dělena na $\mathrm{cm}^{3}$, odečítá se objem přímo; nutno však míti na paměti, že kalibrace udává správný objem $V$ při teplotě obyčejné, na př. $15^{\circ}$, že však nyni jest teplota značně vyšši, na př. $183^{\circ}$, tak že objem odečtený jest malý; dlužno tedy ze známého koefficientu $\alpha=\frac{1}{40000}$ kubické roztažnosti skla objem ten korrigovati, dle vzorce

$$
V_{1}=V+V \alpha\left(t_{1}-1 \tilde{5}^{0}\right)
$$

Má-li však trubice děleni délkové, na $m m$, zapíše se dílec, až do kterého meniskus sahá, a teprve po pokuse určí se dodatečnou kalibrací (na př. rtutí) až do onoho dílce objem; korrekei temperaturní dlužno ovšem i zde přičiniti.

Ke kontrole teploty $t_{1}$ jest dobře zavěsiti vedle trubice ještě teploměr. Co se tlaku $b_{1}$ týče, vypočítá se z tlaku barometrického $b$, když se od něho odečte výška $h$ sloupce rtufového v trubici, na $0^{0}$ redukovaná a expanse $E$ par rtufových, nasycených, při teplotě $t_{1}$ dle vzorce

$$
b_{1}=b-h-E .
$$

Methoda, ač v provádění poněkud choulostivá, doporučuje se tím, že páry jsou pod tlakem umenšeným; proto se hodí

[^108]i pro kapaliny o vyšším bodu varu a zejména pro takové, jež se při varu za tlaku obyčejného rozkládají.

Odçitáni polohy, jakou zaujímá v trubici barometrické rtufovy meniskus, bývá stizezeno lahvickou, která na rtuti plove. Proto upravil Max Reinganum ${ }^{*}$ ) trubici barometrickou tak, ze od ní asi 15 cm nad otevreny̌m koncem odvêtvil jinou parallelni, kterou nahore $k$ hlavni pripojil; mimo to pridal na hor̂ejsím konci sklenény kohout, aby mohl rtut do této


Obr. 111.
Methoda Gay-Lussac-Hofmannova.
dvojité trubice vssáti. Stav rtươvého sloupce odçítá se pak v oné uz̃̄̃1 parallelní trubičce. Żádá se ovšem, aby kohout i pri zahráti vzduchotẽsnẽ držel, podmínka, kteréż nelze tak snadno vyhovêti. Jiná obtiz̄ vznikả tím, že páry, jimižz se topí, na stênách zahřivaciho pláste se kondensují a tím odečitání menisku rutuového v barometrické trubici znesnadñuji. Ponêkud se tomu odpomưže, když na místě, kde se odẽitãni dẽje, stẽna plásté
plamenem plamenem Bunsenovỳm opatrné se zahřeje, aby se odtud kapalná vrstra rychlym vyparením odstranila a sklo tak ocistilo.
${ }^{*}$ ) Berichte der d. physik. Ges. III, pag. 75, 1905.

## § 111. Methoda Meyerova.

Methodou Meyerovou neměři se objem $V_{1}$, jaký zaujimá odvážené množství páry př̌i vysoké teplotẽ $t_{1}$ a při tlaku $b_{1}$ jako se děje methodou předešlou - nýbrž měří se misto toho objem $V$, jaký zaujme při obyčejné teplotě $t$ a tlaku obyčejném $b$ vzduch parou vytlačený. Objem tento $V$ jest jakoby početně redukovaný objem $V_{1}$ z teploty vysoké $t_{1}$ na teplotu obyčejnou $t$ (tlaky $b_{1}$ a $b$ se mnoho nerozeznávaji), při čemž je zajímavo, že vysokou teplotu $t_{1}$ není vủbec třeba znáti; redukci tu provádi pokus sám. Přistroj potř̌ebný jakož i uspořádání pokusu objasňuje obr. 112. Dlouhá skleněná trubice jest dole vyfouknuta v podlouhlou širši válcovitou nádobu, kapacity asi $\frac{1}{4}$ litru; nahoře pak jest k trubici stranou přitavena úzká, kolenovitě ohnutá trubička, ústící do vany naplněné vodou nebo lépe rtutí. Nad otvor této trubičky lze př̌ešinouti kalibrovanou, nahoře zatavenou, malou mensuru, jež před tím se naplní vodou resp. rtutí a ponoří otevřeným koncem pod povrch kapaliny ve vaně. Konečně jest pod rouru hlavní podstrčen širši skleněný válec, který se dole rozšiřuje v kouli; v této kouli jest kapalina (na př. anilin), jejímiž parami se má topiti.

Před pokusem připravi se malá lahvička se skleněnou zátkou, nebo tenkostěnný skleněný ballonek vytažený v úzkou trubičku, odváži se, naplní zcela


Obr. 112. kapalinou, jejiž páry chceme zko odváži jo odváží se znovu a určí tak váha $M$ kapaliny netto.

Pokus začne pak tím, že se kapalina v kouli, na př. anilin, uvede plamenem*) ve var. Páry vystupujíce zahřívaji válcovitou nádobu a kondensují se v hořejšich vrstvách v kapalinu, která po stěnách stéká zpět. Vzduch v pokusné trubici, jež se nahoře uzavře korkem, uniká úzkou postranní trubičkou v bublinkách, jež prostupuji kapalinou ve vaně. Znenáhla počet bublinek se umenšuje, tepelný stav se ustaluje, konečně jest rovnováha, vzduch se dále již neroztahuje. Nyni se přes otvor trubičky přešine ona mensura, korek nahoře se na okamžik otevře a do vnitř pokusné trubice vhodi se ona lahvička s kapalinou. Ještě lépe, když se lahvička již před tím vloži pod korek a drátkem zachytí, a pak jednoduchou manipulací drátkem nechá padnouti bez otevřeni nádoby. Lahvička, dopadnouc dolů, otevře se účinkem vy̌̌ší teploty, kapalina promění se v páry, tyto vytlačují vzduch, který úzkou trubičkou uniká a chytá se v mensuře nad vodou nebo rtuti. Za nějakou krátkou dobu proud bublinek vzduchových slábne, až ustane, pokus jest proveden. Zbývá jen odečísti v mensuř̌e objem vzduchu $V$ a určiti jeho teplotu $t$ a tlak $b$.

Teplota $t$ souhlasí s teplotou sině, předpokládajíc, že teploty jsou vyrovnány; jinak přijme vzduch teplotu vody, kterou proudi. Tlak jest roven barometrickému, zmenšenému o tlak toho sloupečku kapaliny, který zủstane ještě v mensuře. Je-li tam voda, nutno výšku sloupečku přepočísti na rtut. Máme pak

$$
S=\frac{M}{V}
$$

K teplotě $t$ a tlaku $b$ počitá se specifická hmota $\sigma$ vzduchu

$$
\sigma=0.0012928 \frac{b}{76} \frac{1}{1+\gamma t},
$$

při čemž jest $\gamma=0.00367$ nebo 0.004 dle toho, je-li vzduch suchý (zachycuje-li se nade rtutí) nebo vlhký (nad vodou). Hutnota hledaná jest

$$
\Delta=\frac{S}{\sigma}
$$

Jedná-li se o kapaliny, jež se vaří až při teplotách velmi vysokẏch, užívá se místo parní (na př. anilinové) lázně raději kovových lázní, na př. olova, zinku anebo výhně; místo přístroje skleněného béré se porculánový nebo pro velmi vysoké teploty platinový.

[^109]
## § 112. Jak se stanovi hutnota plynů.

Hutnota plynủ stanoví se methodou pyknometrickou zcela podobně jako hutnota par při methodě Dumasově. Pyknometrem bývá zde ballon, nejlépe dvěma kohouty opatřený, z nichž jedním se uzavírá ballon, druhým pak trubička, sahající až na dno ballonu. Ballon se váží prázdný (tára), t. j. naplněný obyčejným vzduchem (jaký jest v síni, kde jsou váhy), o teplotě $t$ a tlaku $b$, pak naplněný plynem, jehož teplota $t_{1}$ a tlak $b_{1}$ se poznamená v okamžiku, kdy se ballon uzavře, a konečně naplněný vodou hustoty $s$. Značí-li $M$ váhu netto plynu, $m$ váhu netto vody, počitá se dle týchž vzorcủ jako při methodě Dumasově. Teploty $t$ a $t_{1}$ bývají tak málo rozdilné, že ke změně objemu ballonového netřeba míti zřetele. Plnění ballonu plynem, je-li dostatečné množství plynu k disposici, děje se jednoduše tak, že se kohoutem ballon uzavírajícím vzduch odssává, druhým pak kohoutem trubičku uzavírajícím nechá vstupovati plyn a to shora, je-li těžží, zdola, je-li lehčí než vzduch. Je-li plynu k disposici málo, dlužno ballonek naplniti rtutí, obrátiti do pneumatické vany a pak známým způsobem nad rtut nechati vstupovati plyn, kterým se rtut zase vypudi.

Zde budiž též připomenuta methoda Bunsenova, kterou lze srovnávati hutnoty plynů dle doby, za niž při téže teplotẽ a témž přetlaku stejný objem plynu jednoho a pak druhého proudí malým otvorem. Jsou-li $\Theta$ a $\Theta^{\prime}$ tyto doby, $\Delta$ a $\Delta^{\prime}$ hutnoty plynủ, jest

$$
\Delta: \Delta^{\prime}=\Theta^{2}: \Theta^{\prime 2}
$$

Uspořádání pokusné a podrobnosti jsou uvedeny již v Mechanice, pag. 582, 1901.

## § 113. 0 vztahu mezi hutnotou plyni̊ a par a vahou molekulovou.

Srovnáme-li hutnotu $\Delta$ těch plynủ a par, které jsou ve smyslu chemickém látkami složenými, s jejich vahou molekulovou $\mu$, shledáme pro obě čísla chod parallelní; hutnota $\Delta$ a váha molekulová $\mu$ jsou veličiny vespolek úměrné; tu jest v platnosti vztah

$$
\frac{\mu}{\Delta}=\text { const. }
$$

Číselná hodnota konstanty úměrnosti řídí se tím, na který plyn vztahujeme hutnotu $\Delta$ a váhu molekulovou $\mu$. Obyčejně vztahuje
se $\Delta$ navzduch $=1$, a $\mu$ na kyslík $O=16$. Tak obdržíme na př. pro kysličnik siřičitý, ammoniak a kysličnik ubličitý hodnoty, jak je uvádi tabulka:

	$\mu$	$\Delta$	$\frac{\mu}{\Delta}$
$\mathrm{SO}_{2}$	64.06	2.2639	$28 \cdot 30$
$\mathrm{NH}_{3}$	17.06	0.590	28.91
$\mathrm{CO}_{2}$	44.00	1.5289	28.78

Kysličník siřičitý jest tedy hatnějši než uhličitý a tento zase hutnějši než ammoniak; ale ona úměrnost poučuje zároveň, jaká je toho přičina. Váži-li - za stejných poměrủ tepelných a tlakových - týž objem kysličuiku siřičitého vice než uhličitého, neni to proto, že by plyn onen byl „hustši" tohoto, t. j. že by molekulami byl vyplněn „hustěji" *), že by jich bylo více, nýbrž přičina leží v molekulách samých, jež jsou více nebo méně hmotné; avšak počét téchto molekul jest - za stejných poměrů teploty a tlaku - ve stejných objemech plynů týż. K stejnému dûsledku přichází chemie na základě chemických reakcí a vyslovuje onu větu jakožto hypothesu Avogadrovu **).

Počitáme-li konstantu úměrnosti pro plyny jednoduché, jako kyslik, dusik, helium, kladouce váhu atomovou za molekulovou, obdržíme:

	$\alpha$	$\Delta$	$\frac{\alpha}{\Delta}$
$O$	16	$1 \cdot 1053$	$14 \cdot 48$
$N$	$14 \cdot 04$	$0 \cdot 9673$	$14 \cdot 52$
$H e$	4	$0 \cdot 137$	$29 \cdot 20$

U helia souhlasí tudiž konstanta s dřívějši, u kysliku a vodiku jest polovični. Souhlasu se u těchto plynù docili, když vezmeme

[^110]v počet dvojnásobnou hmotu atomovou, t. j. když předpokládáme, že jsou plyny ty složeny z molekul po dvou atomech (molekul t. zv. elementárních).

Chemie pŕicházi u těchto a jiných plynů k témuž důsledku a to na základě objemových vztahủ, jež jsou v platnosti při slučování se plynux jednoduchých.

K orientaci uvedme nêkteré známé príklady.
Jeden objem kyslíku se slučuje se dvěma objemy vodíku na dvà objemy vodní páry. Tento fakt nebylo by lze vyjádřiti rovnicí

$$
O+2 H=O H_{2}
$$

nebot by vycházel objem jeden; ale ovšem lze tak učiniti rovnicf

$$
O_{2}+9 H_{\mathrm{a}}=2 O H_{2}
$$

kterouz̃ vznik dvou objemủ se ihned vysvétluje.
Jeden objem dusiku slučuje se střemi objemy vodíku na dva objemy (nikoli jeden) ammoniaku; to souhlasi s rovnici

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3} .
$$

Jeden objem vodiku sluçuje se s jedním objemem chloru na dva objemy (nikoli jeden) chlorovodiku, což souhlasí s rovnicí

$$
\mathrm{H}_{\mathrm{a}}+\mathrm{Cl}_{2}=2 \mathrm{HCl}
$$

Nutno tudĩz i chlor pokládati za sloz̃ený z elementárních molekul $\mathrm{Cl}_{2}$.
U mnohých plynú, jako helia, argonu, neonu, kryptonu, xenonu, obdržime souhlas na základě vah atomových; tyto plyny jsou tedy složeny z atomů; podobně i páry rtutové. Za to páry jiné mají molekuly složené i z většiho počtu atomů, na př. páry fosforu $\left(P_{4}\right)$, arsenu $\left(A s_{4}\right)$ a j., jakoz̆ následuje, kdy̌̌ pro plyny a páry vủbec akceptujeme relaci

$$
\frac{\mu}{\Delta}=\text { const. }
$$

jakožto všeobecně platnou.
Co se číselné konstanty týče, obdržime ji, když rovnici

$$
\frac{\mu}{\Delta}=\mathrm{const} .
$$

applikujeme na některý plyn jako základní. Dokud se váhy atomové vztahovaly na $H=1$, býval plynem tím vodik. Za dnešních dob vztahují se váhy atomové na $O=16$; proto jest nyní plynem tím kyslik. Jeho hutnota, vzhledem ke vzduchu, jest $1 \cdot 1053$. Obdržime tedy, dosadíce

$$
\Delta=1 \cdot 1053, \quad \mu=32, \quad \text { const. }=28.95
$$

Někdy se vztahuje hutnota $\Delta$ - dûsledně - nikoli na vzduch, nýbrž též na kyslik, jenom že se (analogicky) klade $\Delta$ nikoli jedničkou (jako se $\mu$ neklade pro kyslík jedničkou), nýbrž $\Delta=16$. Pak jest

$$
\text { const. }=\frac{32}{16}=2
$$

Někdy se klade pro kyslík $\Delta=32$, t. j. béře se za jedničku pro hutnoty plyn, který by měl $\frac{1}{32}$ hutnoty kysliku. Pak jest patrně

$$
\mu=\Delta, \quad \text { const. }=1,
$$

váhy molekulové ve stavu plynném a hutnoty jsou čísla stejná.
K objasnění všech těchto definic a vztahů slouží následujicí tabulka. Tato obsahuje pro celou řadu plynủ a par především specifickou hmotu $\left(\frac{g}{\mathrm{~cm}^{3}}\right)$ pro poměry normální $\left(0^{0}, 76 \mathrm{~cm} \mathrm{Hg} 0^{0}, g^{*}\right)$. Vedle toho hutnotu $\Delta$ a to pro vzduch $=1$ a pro $\mathrm{kyslik}=16$, konečně váhu molekulovou $\mu$ (resp. atomovou) a poměr $\mu: \Delta$, a to vztahovaný na kyslik, poněvadž zde hodnota konstanty, jež by měla býti $=2$, jednodušeji a jasněji vynikne. U některých plynů vycházi $=1$; to jsou ty, pro kteréž musíme předpokládati konstituci nikoli atomovou, nýbrž molekulovou, v nichž jsou atomy spojeny podvojně.

Ćiselná data pro $S$ a pro $\Delta$ vyñata jsou z Praktické fysiky F. Kohl rauschovy 1905, tabulka 12. a) ; ostatní data jsou autorem počitána.

Na základě rovnice

$$
\frac{\mu}{\Delta}=28.95
$$

možno $\Delta$ již napřed z váhy molekulové $\mu$ počitati; hutnota $\Delta^{*}$ takto vypočítaná zove se theoretickou. Zpravidla bývá blizce $\Delta^{*}=\Delta$ čili $\frac{\Delta^{*}}{\Delta}=1$. Ale mnohdy se stává, že za vyšších teplot hutnota skutečná $\Delta$ jest menší než theoretická $\Delta^{*}$, tak že jest $\frac{\Delta^{*}}{\Delta}>1$. Rozdil $\frac{\Delta^{*}}{\Delta}-1$ vysvětlujeme dissociaci, t. j. pochodem, při němž molekuly se rozpadávaji. Jedná-li se o molekuly ze dvou atomů složené, jako na př. u jodu $\left(J_{2}\right)$, u něhož při $160^{\circ}$ dissociace začíná a při $1600^{\circ}$ jest dovršena ${ }^{*}$ ), blíží se

[^111]Specifická hmota $S$ a hutnota $\Delta$ některých plynů a par.

		$s$	$\begin{gathered} \Delta \\ \text { vzduch } \\ =1 \end{gathered}$		váha atomová a molekulová	$\frac{\mu}{J}$
Vzduch . .		$0 \cdot 0012928$	1.0000	14.476	1.008	1.00
Vodik . . .	$H_{2}$	008985	$0 \cdot 0695$	1.006	4	2.02
Helium .	He	0177	$0 \cdot 137$	1.98	14.04	1.00
Dusik	$N_{2}$	12505	$0 \cdot 9673$	14.003		
Dusik atm.		12567	$0 \cdot 9721$	14.072		
Kyslik	$\mathrm{O}_{2}$	14290	$1 \cdot 1053$	16.000	16.00	$1 \cdot 00$
Fluor	$F_{2}$	169	1.31	$19 \cdot 0$	19	1.00
Neon .	$N e$	0890	$0 \cdot 688$	$9 \cdot 96$	20	2.01
Chlor .	$C l_{2}$	322	$2 \cdot 49$	36.0	$35 \cdot 45$	$0 \cdot 98$
Argon .	$A$	1782	$1 \cdot 378$	$19 \cdot 96$	$39 \cdot 9$	$2 \cdot 00$
Kryptón .	$K r$	3642	$2 \cdot 817$	40.78	$81 \cdot 8$	2.01
Xenon . .	$X$	572	$4 \cdot 42$	64.0	128	2.00
Chlorovodik	HCl	16408	$1 \cdot 2692$	$18 \cdot 373$	$36 \cdot 46$	1.98
Kysl. uheln.	CO	12503	0.9671	14.00	28.00	$2 \cdot 00$
Kysl. uhlič.	$\mathrm{CO}_{2}$	19766	1-5289	$22 \cdot 132$	44.00	1.99
Acetylen	$\mathrm{C}_{2} \mathrm{H}_{2}$	11759	0.9096	$13 \cdot 167$	26.02	1.98
Aethan .	$\mathrm{C}_{2} \mathrm{H}_{6}$	1390	1.075	15.56	30.05	1.93
Methan .	$\mathrm{CH}_{4}$	07209	$0 \cdot 5576$	8.072	16.03	1.99
Ammoniak	$\mathrm{NH}_{3}$	0763	0.590	8.54	17.06	2.00
Kysličn. dusnatý	$\mathrm{N}_{2} \mathrm{O}$	19777	1.5298	$22 \cdot 145$	44.08	1.99
${ }^{n}$ dusičitý	NO	1344	1.039	15.04	30.04	$2 \cdot 00$
Sirovodik .	$\mathrm{H}_{2} \mathrm{~S}$	153	$1 \cdot 18$	$17 \cdot 1$	34.08	1.99
Kyslič. sirìcity	$\mathrm{SO}_{2}$	29268	2-2639	32.772	64.06	1.96

poměr $\frac{\Delta^{*}}{\Delta} \mathrm{k}$ hodnotě $=2$, tudiž difference $\frac{\Delta^{*}}{\Delta}-1 \mathrm{k}$ hodnotě 1 . Okamžitá hodnota této difference $(0 \ldots 1)$ zove se stupněm dissociace. Jsou-li molekuly složeny z $n$ atomů, bylo by při úplné dissociaci

$$
\frac{\Delta^{*}}{\Delta}=n
$$

tudiž

$$
\frac{\Delta^{*}}{A}-1=n-1
$$

anebo

$$
\left(\frac{\Delta^{*}}{\Delta}-1\right) \frac{1}{n-1}=1
$$

Tedy také tento výraz probíhá hodnoty $0 \ldots 1$, i zove se okamžitá hodnota jeho též analogicky stupněm dissociace, t. j. stupněm, až do jakého dissociace pokročila. Ovšem má stupen̆ takto vypočitaný jen tehda smysl, když se $n$-atomové molekuly skutečně v atomy jednotlivé rozpadávaji. Mnohdy tomu tak není. Tak na př. molekula kyseliny sírové $\mathrm{H}_{2} \mathrm{SO}_{4}$ nerozpadává se při vysokých teplotách v atomy, nýbrž v jednodušši molekuly $\mathrm{SO}_{3}$ a $H_{2} O$. Při $365^{\circ}$ jest na př. $\Delta=2 \cdot 12$, kdežto $d^{*}=3 \cdot 38$. Stupeň dissociace se zde musí počitati dle rovnice

$$
\frac{\Delta^{*}}{\Delta}-1=\frac{3.38}{2.12}-1=1.6-1=0.6 \quad \text { t. j. } 60 \%
$$

Z úhrnného počtu molekul jest tedy při $365^{\circ}$ dissociováno $60 \%$. Při teplotě $416^{\circ}$ dosaženo $100 \%$, t. j. dissociace v ony molekuly jednodušší jest provedena úplně *).

## V1hkoměrství (hygrometrie).

## § 114. Jak se měři množstvi vody spadlé.

Postavíme-li $v$ dešti řadu nádob cylindrických různého průměru vedle sebe, zachytí se ve větší nádobě ovšem více vody než v menší; avšak ve výšce spadlé vody nebude tu rozdilu žádného, voda bude po dešti státi ve všech nádobách stejně vysoko. Udáme-li tudiž, jak vysoko, obdržime číslo, jež není závislé na velikosti horizontální plochy a přece pro množství spadlé vody je význačné. Udáváme toto číslo vždy v millimetrech. Každý millimetr výšky dává pro horizontální plochu jednoho čtverečního metru objem jednoho litru čili (přibližně) množství jednoho kilogrammu vody.

Má-li všeobecně cylindrická nádoba průměr $2 r(\mathrm{~cm})$, a je-li $m(g)$ množství vody spadlé v ni zachycené, počitáme výšku $x$ ( cm ) ze vzorce

$$
\pi r^{2} x=m
$$

[^112]ve kterémž vynecháváme specifickou hmotu vody, kterou zde klademe $=1$, s přesností úplně dostačující.

Při srážkách zajímá jednak číslo úhrnné, mnoho-li vody vůbec spadlo, ale také v jaké době, což charakterisuje intensitu deště. Mủže dešt býti, jak řikáme, mírný, ale dlouho a stále trvající; anebo mủže býti prudký, tak že v krátké době mnoho vody spadne, ale dešt nevytrvá. Obyčejně se udává intensita deště minutová.t. j. výška ( mm ) vody za jednu minutu spadlé. Deště malé intensity mívají velikou oblast, jsou regionální; deště velké intensity bývaji při bouřkách, ale maji rozsah malý, jsou lokální.

Budtez̃ uvedeny nékteré přiklady desstů zvláş́ vydatny̌ch a to z krajin našeho mocnářstvi.

V Terstu strhla se v noci z 10. na 11. zárí 1906 velmi prudká bouřka, spojená s lijákem, jenž začal po pủl noci $12^{h} 11^{m}$ a trval $58^{m}$, tedy témểr hodinu, za kterouz̃to dobu napršelo 45.8 mm vody, s: minutovou intensitou, jež se stupňovala až na $2.65 \mathrm{~mm} / \mathrm{min}$.

V Kreuzenu u Bêláku spustil se dne 2. kvêtna 1904 při bouřce neobyčejné prudký lijak, který trval od $6^{h} 30^{m}$ do $7^{h} 15^{m}$ odpol.; napršelo vody 197 mm , coz̃ dává prüměrnou intensitu minutovou $4.38 \mathrm{~mm} / \mathrm{min}$, která jistẽ v jednotlivých chvilkách byla jestẽ značnẽ vêtşi*).

Pr̂i povodni zárijové 1890 v Cechách bylo v Praze mẻreno, za celý den, 1. zảří 2.0 mm , 2. září $19 \cdot 8 \mathrm{~mm}$, 3. zăr̆í 20.6 mm , 4. záríi 12.2 mm , úhrnem za 4 dny 54.6 mm . Císla tato nejsou veliká; ale při všeobecnosti deštê, jenz̄ byl regionálnim a v jiz̄nich Ceehách vydatnějsím, byly účinky velmi zhoubné.

Množství spadlẻ vody měří se zvlǎštními deštoméry čili ombrometry ${ }^{* *}$ ). Lepši přístroje tohoto druhu jsou zařizené na autoregistraci čili na záznamy samočinné, jako na př. ombrometr Hellmann-Fuessův, znázorněný v obr. 113. Voda zachycená plochou kruhovou svádí se úzkou trubičkou do dešfoměrné nádoby, kdež stoupá; toto stoupání přenáší se na plavač, který zároveň píše na válci, jenž se hodinovým strojem za den jednou kolem své osy otáči. Křivka udává svým vice méně prudkým výstupem intensitu deště, pořadnice pak udávají výšku spadlé vody v millimetrech. Je-li dešfoměrná nádoba plna, vyprázdní se zařízením násoskovým ve způsobu z obrazce patrném, a ovšem se toto vyprázdnění též registruje. U ombrometrů jednoduchých není zařizení regi-

[^113]stračního, voda zachycená svádí se pouze úzkou trubičkou do nádoby. Jednou (neb dvakráte) za den přeleje pozorovatel vodu do skleněné mensury tak graduované, aby se výška spadlé vody ihned odečetla.

Podobně jako deštoměry (ombrometry) jsou zařizeny sněhoměry (chionometry) *). Moderní toho drahu stroje (na př. G. Hellmannovy) jsou registrační a zaznamenávaji dle váhy sněhu, danou plochou zachyceného hned výsiku aequivalentní vody ${ }^{* *}$ ) a to až do výsky 35 mm , což odpovídá největšimu množství sněhovému, jež v našich krajinách za den asi může napadnouti.

Jednoduché dva ombrometry ***) jsou na hvẽzdảrnẽ Pražské umistẽny nad střechou jihovy̌chodniho traktu Klementina (kde jsou posluchárny české fakulty filosofické) ve výsce $26 m$ nad zemí; odétají se denně v 7 hodin räno. ${ }^{\mathrm{Z}}$ vy̌sledkủ denních tvorí se pak roc̄ní summa.
Obr. 113. Destomẽr. Následujicí tabulka udává tyto summy za posled-
ních 20 let.

Roční srážky v Praze,
dle pozorování na hvězdárně v Klementinu.

Rok		$m m$	Rok	$m m$	Rok	$m m$	Rok
1886	521	1891	506	1896	539	1901	
1887	490	1892	388	1897	511	1902	359
1888	545	1893	363	1898	391	1903	460
1889	534	1894	477	1899	579	1904	382
1890	636	1895	503	1900	503	1905	412

Roční průmẽr činí tedy 459 mm za posledních a 496 mm za předpo-
slednich deset let, tedy celkem 478 . sraz̃ky činily ménén neã půl metru. 478 mm . Dle toho by v Praze roc̃ní

[^114]Od roku 1893 pozoruje se množství srážek v Praze též na stanici Petřínské, zařízené péči prof. Fr. Augustina. Koncem pak roku 1896 byly z usnesení rady král. hl. města Prahy postaveny ombrometry v zahradách na ostrově Kampě, na Karlově náměsti, na Letné, na Pořiči a v Holešovicích. Tato sit ombrometrická byla později ještě rozšiřena, zejména též na předměstí, tak že dnes jest v obvodu Prahy a předměstí postaveno 14 ombrometrů, z nichž 11 jest registračních. Zajímavo jest srovnávati výsledky nabyté na různých těchto stanicích v poslednich 8 letech, v době od r. 1897 do r. 1904. Následujíci tabulka obsahuje tyto výsledky a to především množstvi za celý rok ( $\mathbf{v}$ millimetrech), ale vedle toho též rozdělení tohoto ročniho množství (procentuálně) na jednotlivá roční počasí *).

Průměrné množství ročnich srážek pozorované $v$ době 1897-1904 na různých ombrometrických stanicích v Praze.

Stanice	Vẏska stanice nad mõem	Ročni srázky	Srázky dle ročnich počasí			
			jaro	léto	podzim	zima
	$m$	mm	\%	\%	\%	\%
Klementinum, hvězd.	213	455	26.0	38.5	21.2	14.3
Ostrov Kampa	188	542	26.8	$37 \cdot 0$	$20 \cdot 6$	$15 \cdot 6$
Stanice Petřínská	327	527	$27 \cdot 1$	36.5	$21 \cdot 1$	$15 \cdot 3$
Letná. .	228	534	$27 \cdot 4$	$36 \cdot 2$	$20 \cdot 4$	16.0
Karlovo náměstí	208	518	26.4	36.6	21.0	16.0
Pořič, park	190	512	25.9	37.5	$20 \cdot 6$	160
Holešovice	191	512	27.5	$37 \cdot 0$	$20 \cdot 2$	$15 \cdot 3$

Souhlas jednotlivých stanic jest dosti dobrý, jenom stanice Klementinská dává výsledky značně menší; to souvisí s nepřiznivým umístěním ombrometru na střeše, kde vitr dešt odhání. Prof. Augustin přijímá za normální výšku ročních srážek pro Prahu 529 mm , totiž tu, kterou dává stanice Petřínská. Pro účely technické (kanalisaci města) jest ostatně dủležito

[^115]znáti nikoli ročni průměr, nýbř̌ výšku dešfovou, když jde o deště prudké, lijáky; aby se vědělo, na jaké množstvi vody dlužno odtokové kanály zaříditi. Jde tedy o intensitu deštovou, kterou udávají ovšem jen ombrometry registrační.

V době nejnovějši začínaji se zaváděti registrační dešfoměry s velikou plochou zachycovací. Na stanicich italských (R. Ufficio Centrale di Meteorologia e Geodinamica, Roma) zaveden byl modell, který navrhl $L$. Palazzo, a který má plochu zachycovací o průměru 35.7 cm , tedy o velikosti $1000 \mathrm{~cm}^{2}$, kdežto deštoměry Hellmannovy maji plochu zachycovaci o prủměru jen 15.96 cm , tedy o velikosti $200 \mathrm{~cm}^{2}$, pětkráte menší. Zdá se, že většími rozměry nahodilosti a nepravidelnosti vznikajici zejména větremı spiše se odstraní. Větši rozměry umoz̆n̆ují, aby se zavedla registrace pro celý týden. což jest též daleko praktičnějši, než když se musí každého dne hodiny natahovati a papir pro registraci vyměňovati.

Když se ombrometrická služba pro určitou oblast (na př Čechy) účelně organisuje, mohou se spojiti mista o stejném ročnim množstvi spadlé vody čarami, jež se zovou isohyety ") Anebo se na mapách barvou na př. modrou, více méně jasnou neb tmavou vyznačuji krajiny o menšim neb většim množství srážek. U nás pozorování ombrometrická sorganisoval zesnulý prof. Dr. F. J. Studnička, jenž také vydal ombrometrickou mapu Cech. V jeho smyslu pokračuje prof. Dr. Fr. Augustin, jenž nové vydání této dešfopisné mapy Cech, a také Moravy a Slezska, má připraveno. V mapách takových jeví se velmi zřetelně účinek výšky nad mořem. V krajinách výše položených prší častěji a vice. Číselně (pro Čechy) objasňuje účinek tento tabulka následující, dle níž kreslen ${ }^{* *}$ ) přislušný diagramm obr. 114.

Sem náleži též pojednání, jež uveřejnil Dr. Ruvarac a Dr. Penck o poměrech dešstových v Čechách ${ }^{* * *}$ ). Prûměrná výška spadlé vody pro celé Cechy udává se na 692 mm . Z podrobností vyjimáme (dle referátu Frejlachova): ${ }_{n} V$ letech 1876 - 1890 spadlo

[^116]Přibývání deště s výškou nad mořem.

$\underset{m}{\text { Výska }}$	Výska srázzek mm dle prof   F. Studničky	Vẏska srážek mm dle prof. Augustina
300	613	615
400	626	645
500	695	680
600	780	775
700	847	855
800	970	975
900	-	-
1000	1058	1085
1100	1213	1195
1200	-	1260

v oblasti Labe v Č̌echách ročně průměrně $35 \cdot 29 \mathrm{~km}^{3}$ vody, což souhlasí s průměrnou výškou dešfovou 692 mm . Tohoto množstvi


Obr. 114.
Jak přiby̌vá ročnich srážek s vẙskou nad mořem.
$57.6 \%$ všeho území nedosalují (zvláště v nitrozemí, 400 mm ), $42 \cdot 4 \%$ přesahují (zvláště v horách pohraničních, 1200 mm ). Pra-
videlného vzrůstu srážek do výše není. Při okrajních a centrálních vyvýšeninách zřejmě se jeví rozdil mezi stranou exponovanou a stranou ležící v t. zv. dešfovém stínu. Údolí hořejši Vltavy, ležicí ve stínu šumavském, má ve výší 700 m srážek $600-700 \mathrm{~mm}$, kdežto na exponované (jihozápadni) straně Krkonoš pozorujeme totéž množství deště již ve výši 400 m . Velmi deštivy jsou západni svahy pohoři Doupovského a Brdského, málo deštivy svahy východní. Nejmenší množství deště pak nejeví se na nejvy̌̌šich místech, nýbrž na východních úpatích pohoř̌í; tak na úpatí hor Krušných u Mostu, vrchủ Doupovských u Žatce, východně od Džbánu, východně od pohoří Brdského pobliž Přibramě a dále v krajině kolem Strakonic, Vodñan a j."

Udává se obyčejné, że tretina vody deşfové se ihned vypaří, druhá tretina odteče, a zbytek se vpije do pưdy. Pủda orná a luc̃ní ssají vody v mî́e skrovné, více prii desti mirném a dlouho trvajicím, méné pri deşti prudkém a nảhlém. Tím vêtsí vy̌znam prísluši v tomto ohledu lesûm. Jest znảmo, jak lesy zachycuji i prudké lijakky. Jiz̀ ve stromech samých zůstává veliké množstvi vody, ale jesté vêtši v lesní pûdé, me̋kké, kypré, která vodu ssaje jako houba. V krajinách na lesy bohatých nebyyvá povodni. Voda nevtéká do rek nảhle, ale za to odtéká po mâlu, v pramenech a v potocích, které živí se onou velikou zásobou vody po dlouhy̆ jestẽ̃ čas a které nevysychají ani v dobách velikého sucha. Lesy jsou tudiziz regulátory odtoku vod, prijijmajice vodu ve velkém a vydávajice v malém. Hladina reek, v jichž oblasti jest mnoho lesủ, kolisá ve vyšce své velmi mảlo, udržujic se v blizkosti jakési vẏsky „normální" (průmérné, nullové). U frek však, v jichž oblasti se lesy vykácely, jsou variace ve výsce hladiny velmi znac̃né; v čas deştủ voda rychle stoupá, v dobách sucha rychle klesá, jako na př. u vêtsiny rek francouzských.

Klade se často otázka, zdali v lesich pršivá více nez̃ v okolí lesú, oršem prii téz̃e vẙsce nad morem. V nejnovéjzi dobê (Meteorol. Z. 22, pag. 566,1905 ) studoval tuto otázku prof. Dr. J. Schubert na deŝ́tomęrny̌ch výsledcich, jež byly zjednány v pruské provincii Slezska. V okolí mēstyse Proskova, v kraji Opolském, jsou dosti rozsáhlé lesy; zde pak z výsledkủ za léta 1900-1904 dle průběhu krivek isohyetických, na stejnou vy̌ku ( 180 m nad mořem) redukovaných, ukazuje se, že mnoz̃ství za rok spadlé vody v lesich ( 650 mm ) jest větš̀́ nez̃ v okolí lesa ( 600 mm ). Dluz̃no ovšem tézz připustiti, że v lesích jest destomêr před vêtrem vice chrảnẻn, čimž by onen rozdil mohl býti vysvêtlen - ale jen Cástec̃né; autor má za to, że účinek lesa na zvy̌sení sraz̃ek jest nepochybmý,

Na jiný jesté úćinek lesú upozorñují něktefí meteorologové (Meteorol. Z. 19, pag. 580, 1902), że totiz zamezuji krupobiti; les dle toho byl by proti krupobití immunni. Zdali vêta v této všeobecnosti má platnost, dluz̃no ovšem dalsími studiemi prokázati.

Vzhledem k tomu, že lesy naše, jichž rozsah se velice umenšil a v mnohých krajinách ještě i nyní nerozumně umen-
šuje, jako regulátor vod již nestačí, jest nutno vynakládati mnoho peněz na regulaci řek. Míní se však tím ponejvice regulace řečiště, kdežto na regulaci vody se zapominá. Jest však patrno, že pro zamezení povodní a zejména pro účely plavebni jest dûležitějši regulace vody - a té lze dosíci jenom přehradami $v$ údolich přitokư, kde by při prudkých lijavcích voda z velké části se zachytila a pak v dobách sucha pouštěla. Voda takto zachycená a vzedmutá byla by mimo to pro mnohé krajiny vitaným zdrojem energie pracovní.

U mnohých našich horských řek přtroda sama $k$ přehradẽ přímo vybizi. Tak na př. Chrudimka u Seče proudi kotlinou a prodirá se mezi skalami, na nichž jsou zříceniny hradủ Ohebu a Vildsteina. Zde by postačilo vystavêti jedinou hráz, jez̃ by se opirala o tyto skály, a celá kotlina stala by se velikým jezerem, které by prívaly zachycovalo a v dobách, kdy o vodu na př. v Labi je nouze, vodu dodávalo. Soustavné práce tohoto druhu byly by výhodnéjsí a lacinêjsỉi nez̃ regulace feečištẽ, kterou se naopak rychlý odtok vody jen podporuje a voda právẽ tímto rychlým tokem se stává dravéjısí a tím škodlivéjesí.

## § 115. Jak se měrí množstvi vody vypařené.

Položime-li na misku vah skleněnou cylindrickou nádobku s destillovanou vodou a vyvážíme-li ji, múžéeme za krátkou dobu konstatovati, že se vypařováním vody váha její umenšuje. Znamená-li $m$ úbytek na váze, $2 r$ průměr nádoby, $x$ výšku vypařené vody, obdržime (analogicky jako v § předešlém)

$$
\pi r^{2} x=m
$$

ze kteréž $x$ lze počitati. Při pravidelném pozorování užívá se ovšem stále téže nádobky; lze pak počítati jednou pro vždy tabulku v rozsahu takovém, jak pro praxis postači, z nî̌̌ ke každému $m$ se nalezne přislušné $x$. Tato výška vody vypařené jest význačnou právě tak jako výška vody spadlé.

Na stanicích meteorologických umístí se taková nádoba ven, na místo préd sluncem chráněné, obyčejně do klece, aby vzduch volnẽ mohl přes ni prouditi, ale aby na př. ptáci z ní vody neupili. V pravidelných intervallech, obyčejnẽ 12 hodinných ( $7^{h}$ ráno a $7^{h}$ vec̃er) nebo 24 hodinnẏch se zváží; difference ve výsledcích převedou se na přislušné výšky $x$. Takovýmto zpúsobem bylo na pir. na hvẽzdárné Praz̃ské v Klementinu mẽreno vypar̃ování až do roku $1893^{*}$ ).
*) Pozorováni tato byla rokem 1893 zastavena; za dúvod bylo uvedeno, že ona klec s nádobkou byla nepřiznivé umistěna, a že následkem toho výsledky nebyly dosti spolehlivé. Nádobka byla v kleci na stresese hlavnilho traktu Klemen-
H. Wild sestrojil zvláštní přístroj (evaporometr, atmometr), při němž $k$ vážení užito vah listovních, na nichž váhu přímo lze odečisti, ale ovšem nikoli tak citlivě jako na vahách obyčejných. Jiný princip pro evaporometry udal Piche. Jeho přistroj jest trubice skleněøá, graduovaná, nahoře zatavená, dole pak rovinně přibroušená; zde jest kryta kotoučkem nekliženého, porovitého papíru, který se pružným perem ke sklu přitlačuje. Když se trubice naplní vodou a dole kotoučem uzavře, prosakuje voda papírem a odpařuje se, čímž pak voda v trubici klesá; toto klesání se sleduje. Jen že vypařování vody z papíru děje se rychleji než z povrchu vody samé. Proto přistroj mủže dávati jen hodnoty relativně správné, absolutně jen tehda, kdyby se stanovil redukční koefficient na přímé vypařování vody. Také evaporografy lze sestrojiti v úpravě podobné jako thermonebo barografy (Richard-Frères v Pařiži).

Zajimavo jest srovnávati množství vody vypařené s množstvím vody spadlé za celý rok. Pozorováni Pražské hvězdárny udávaji pro pětiletí 1886-1890 čísla tato:

	Voda vypařená mm	Voda spadla
1886	565.1	${ }_{521.4}$
1887	581.2	489.9
1888	$550 \cdot 2$	$544 \cdot 9$
1889	$610 \cdot 6$	533.7
1890	$522 \cdot 6$	635.5
$\checkmark$ prủměru za rok	$56 \check{\cdot 9}$	$545 \cdot 1$

Z čisel těchto pro Prahu a okolí platných vidime, že zde množství vody vypařené jest větší než spadlé. Kdyby tedy na př. do rybnika nějakého nepřitékala z okolí žádná voda, tak že by byl odkázán na vodu, která přímo do něho buđ̉ jako dešt nebo sníh padá, tedy by rybnik ten stále vysýchal, nedostávalo by se mu vody, a to tím více, poněvadž hořejší čísla mají platnost ve stínu, žárem však slunce se vypařováni značně zvýši! A kde žár tento jest věť̌i a teplota vủbec vyšši, jako v krajinách tropických, tam vycházeji čisla velmi veliká. Pro krajiny rovníku blizké

[^117]udává se výška vody za rok vypařené téměř na 10 metrủ čili 10000 mm , což čini 10000 kilogrammů na každý čtvereční metr povrchu mořského. Patrno z toho, že množství vodních par, jež do vzduchu z moře za rok vystupuje, jest ohromně veliké. Tyto páry zanášejí se větry na pevniny, kdež zpủsobují vlhkost vzduchu větší nebo menši, po případě se srážejí v dešt nebo sníh.

## § 116. Vlhkost absolutni a relativni, rosný bod.

Stav vlhkosti ve vzduchu stanovíme dvojím způsobem; bử absolutně nebo relativně.
 obsažených v jednotce objemové (kubickém metru) vzduchu.
Píšeme tedy na př. $m=12.9 \frac{\mathrm{~g}}{\mathrm{~m}^{3}}$.
Než z takového čísla nelze sobě utvořiti úsudek, v jakém stupni vzduch jest vlhký. Vime-li však, že za daných poměrủ tepelných vzduch by mohl obsáhnouti vodních par na pĭ̀. až $M=17 \cdot 2 \frac{\mathrm{~g}}{\mathrm{~m}^{3}}$, aby byl úplně nasycen, pak srovnáváme, mnoho-li par ve vzduchu vskutku jest a mnoho-li by jich vůbec ve stavu nasycení býti mohlo, počitajíce poměr

$$
\varrho=\frac{12 \cdot 9}{17 \cdot 2}=0 \cdot 75
$$

Číslo 0.75 , t. j. poměr $\frac{m}{M}$ mezi vlhkostí skutečnou, aktuální, a největši možnou, maximální *), zoveme vlhkost relativní. Udává se obyčejnč v procentech; pravíme tedy, že vlhkost relativní v daném přikladě činí 75\%.

Z vlhkosti relativní poznáváme jasnêji nez̃z Z absolutní, v jakém stupni vzduch jest vlhkỷ. Vêc se má právê tak, jako kdyby se jednalo o návstễu na př. nếjakého divadla. Rekne-li se, že bylo prítomno 1400 osob, nemůz̃e nikdo posouditi, jak bylo plno; slyšíme-li však, że návstéva ćinila na pfr. $95 \%$, uznáme, že bylo divadlo navstíveno velmi dobre. Proto také údaje o vlhkosti relativní vzduchu pro obyčejné praktické účely úplnẽ postačí.

Ve výrazu

$$
\varrho=\frac{m}{M}
$$

[^118] Dr. v. Strouhal: Thermika,
mûžeme na místě množství aktuálního $m$ a maximálního $M$ par dosaditi též napěti par aktuální e a maximální $E$ a definovati vlhkost relativní poměrem $\rho=\frac{e}{E}$ a to vzhledem k tomu, že veličiny $m$ a $e$ a podobně $M$ a $E$ jsou vespolek úměrny.

Značíli totiž $\sigma$ specifickou hmotu suchého vzduchu o napětí $e$ a teplotě $t$, a je-li $\Delta$ hutnota vodních par, jest

$$
m=10^{6} / \sigma
$$

při čemž jest

$$
\sigma=0.001293 \frac{e}{76} \frac{1}{1+\gamma t} .
$$

Jest tedy skutečně

$$
m=\text { const. } e
$$

a podobně při téže teplotě

$$
M=\text { const. } E
$$

tudiž

$$
\frac{m}{M}=\frac{e}{E}
$$

Podle uvedených vzorcủ počítá se $m$ neb $M$, je-li dảno $e$ neb $E$. Tak jest na př. pro

$$
t=30^{\circ}, E=31.55 \mathrm{~mm}
$$

Specifická hmota vzduchu suchého činila by
coz̃ dává

$$
\sigma=0.001293 \cdot \frac{31.55}{760} \cdot \frac{1}{1+0.00367 .30}
$$

Hutnota vodní páry jest

$$
\sigma=0.0000484 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Obdržíme tudiž

$$
\Delta=0.622
$$

O

$$
\begin{gathered}
\Delta \cdot \sigma=0 \cdot 00003008 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \\
M=30 \cdot 1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
\end{gathered}
$$

Připojme ještě, jak se počitá specifická hmota vzduchu vlhkého na základě zákona Daltonova. Teplota vzduchu budiž $t$, tlak barometrický $b$, napětí vodnich par $e$; napětí vzduchu suchého jest tedy dle onoho zákona
tudiž jeho váha $1 \mathrm{~cm}^{3}$

$$
b-e
$$

$$
0 \cdot 001293 \frac{b-e}{76} \frac{1}{1+\gamma t}
$$

Poněvadž hutnota vodní páry činí (přibližně) $\frac{5}{8}$, jest váha $1 \mathrm{~cm}^{3}$ vodní páry při napětí $e$ a teplotě $t$

$$
\frac{5}{8} \cdot 0.001293 \cdot \frac{e}{76} \frac{1}{1+\gamma t}
$$

Sečteme-li váhu vzduchu suchého a vodní páry v každém $\mathrm{cm}^{3}$, obdržíme

$$
0.001293 \cdot \frac{b-\frac{3}{8} e}{76} \frac{1}{1+\gamma t}
$$

jakožto váhu $1 \mathrm{~cm}^{3}$ vzduchu vlhkého. Specifická hmota vzduchu vlhkého počítá se tedy jako při vzduchu suchém, jenom že se od tlaku barometrického odečte $\frac{3}{8} e$, t. j. $\frac{8}{8}$ skutečného napěti vodnich par.

K vlhkosti absolutní a relativní přistupuje jakožto třetí veličina pro vlhkost vzduchu význačná tak zv. rosný bod. Jest to teplota $\tau$, až na kteron bylo by nutno vzduch ochladiti, aby se množstvím par při teplotě $t$ daným nasytil. Tato teplota jẹst přechodní; jakmile by se vzduch ještě o něco dále ochladil, počnou se páry vodní srážeti, kondensovati, čímž se předměty omži, zarosí odtud název „rosný" bod *).

## § 117. Úlohy vlhkoměrné.

Při úlohách vlhkoměrných jsou vždy následující veličiny známé:

1. Teplota vzduchu $t$. Teploměr, na němž tuto teplotu až na desetinu stupně lze odečísti, musí vždy býti po ruce.
2. Napětí $E\left(\mathrm{~mm} \mathrm{Hg} \mathrm{O}^{\circ}\right)$ nasycených vodnich par pro každou teplotu $t$.
3. Množstvi $M \frac{g}{m^{3}}$ nasycených vodních par pro každou teplotu $t$. Jak lze toto množství z napětí $E$ počítati, bylo v odstavci předešlém vyloženo.

Tabulka, jež následuje, udává pro každou teplotu $t$ v mezích $-25^{\circ} \ldots+35^{\circ}$, jež pro účely hygrometrické dostačují, příslušné napěti $E$ a množství $M$ pro vodní páry nasycené**).

[^119]$$
t=28, E=28 \cdot 1, M=27 \cdot 0
$$

Napětí $E(\mathrm{~mm})$ a množství $M$ (v grammech pro kub. metr) nasycených vodních par v závislosti na teplotě $t$.

$t$	$E \mathrm{~mm}$	$M \frac{g}{m^{3}}$	$t$	E mm	$M \frac{g}{m^{3}}$
$-25$	$0 \cdot 48$	056	5	6.5	6.8
-24	0.53	$0 \cdot 62$	6	$7 \cdot 0$	$7 \cdot 3$
$-23$	0.59	$0 \cdot 68$	7	7.5	$7 \cdot 8$
$-22$	0.65	$0 \cdot 75$	8	$8 \cdot 0$	$8 \cdot 3$
$-21$	0.71	$0 \cdot 82$	9	$8 \cdot 6$	$8 \cdot 8$
$-20$	$0 \cdot 79$	$0 \cdot 90$	10	$9 \cdot 2$	$9 \cdot 4$
$-19$	0.87	$0 \cdot 99$	11	$9 \cdot 8$	$10 \cdot 0$
$-18$	096	1.08	12	$10 \cdot 5$	$10 \cdot 7$
$-17$	1.05	$1 \cdot 18$	13	$11 \cdot 2$	$11 \cdot 3$
$-16$	$1 \cdot 15$	$1 \cdot 29$	14	$11 \cdot 9$	$12 \cdot 0$
$-15$	1.26	1.41	15	$12 \cdot 7$	12.8
-14	$1 \cdot 38$	1.53	16	$13 \cdot 6$	13.6
-13	1.051	$1 \cdot 67$	17	14.5	$14 \cdot 4$
$-12$	$1 \cdot 65$	1.83	18	$15 \cdot 4$	$15 \cdot 3$
$-11$	1.81	1.49	19	$16 \cdot 4$	162
$-10$	$1 \cdot 97$	$2 \cdot 17$	20	$17 \cdot 4$	$17 \cdot 2$
- 9	$2 \cdot 15$	$2 \cdot 36$	21	185	$18 \cdot 2$
- 8	$2 \cdot 35$	$2 \cdot 56$	22	$19 \cdot 7$	$19 \cdot 3$
$-7$	$2 \cdot 56$	$2 \cdot 78$	23	$20 \cdot 9$	$20 \cdot 4$
-6	$2 \cdot 79$	3.01	24	$22 \cdot 2$	$21 \cdot 6$
- 5	$3 \cdot 03$	$3 \cdot 27$	25	23.5	$22 \cdot 9$
- 4	$3 \cdot 30$	3.54	26	250	$24 \cdot 2$
- 3	3.59	$3 \cdot 84$	27	26.5	25.6
-2	3.89	$4 \cdot 15$	28	$28 \cdot 1$	$27 \cdot 0$
$-1$	$4 \cdot 22$	$4 \cdot 48$	29	$29 \cdot 8$	28.5
0	4.58	$4 \cdot 85$	30	$31 \cdot 6$	$30 \cdot 1$
1	4.92	$5 \cdot 19$	31	$33 \cdot 4$	$31 \cdot 8$
2	$5 \cdot 29$	5.55	32	$35 \cdot 4$	33.5
3	$5 \cdot 68$	5.94	33	$37 \cdot 4$	$35 \cdot 3$
4	6.09	$6 \cdot 35$	34	$39 \cdot 6$	$37 \cdot 2$
5	6.53	6.78	35	$41 \cdot 9$	$39 \cdot 2$

$$
-341-
$$

Veličiny hygrometrické neznámé jsou:

1. Napětí e ( $\mathrm{mm}, \mathrm{Hg}_{\mathrm{O}^{\circ}}$ ) vodních par slutečné.
2. Množství $m \frac{g}{m^{3}}$ vodních par sluutečné.
3. Vlhkost relationi $\rho=\frac{e}{E}=\frac{m}{M}$.
4. Bod rosný $\tau$.

Je-li hygrometrickým měřením stanoveno bud' $e$ nebo $m$, vypočítá se ihned $\varrho$. Také naopak, je-li stanoveno $\varrho$, vypočítá


Obr. 115.
Diagramm hygrometrický.
se ihned $e$ nebo $m$. Bod rosný $\tau$ souvisí s napětím $e$; nebot jest to teplota, při které by toto napětí e bylo maximálním. Proto se vyhledá $\tau$ z tabulky pro $E$, když e pokládáme za $E$. Ovšem také naopak, je-li $\tau$ známo, vyhledá se z téže tabulky $E$, což jest napětí $e$.

Velmi poučně lze tyto vztahy přehlédnouti na základě hygrometrického diagrammu v obr. 115. Zde jest ke každé teplotě naneseno skutečné napěti vodnich par, jaké jest při relativní
vlhkosti $0,20,40,60,80,100 \%$. Hygrometrický stav jest určen bodem $N$. Jeho polohou jest ihned dána teplota $t$, napětí $e$, vlhkost relativní o. Vedeme-li pak od toho bodu rovnoběžku $N M$ s osou temperaturní, stihneme bod $M$ na křivce par nasycených, jehož promítnutím na osu temperaturní se určí ihned rosný bod $\tau$.

Podobný diagramm jako zde pro napêti, bylo by moz̃no sestrojiti pro množstvi par; jenom z̃e vztah $k$ rosnému bodu nebyl by tak jednoduchý; místo prímky $N M$ s osou temperaturní rovnobẽ̃̃né bylo by nutno vésti přímku ponêkud sikmo v úhlu a skloněnou.
Jest totiž

$$
\begin{aligned}
e_{\tau} & =e_{t}, \\
m_{\tau} & >m_{t}
\end{aligned}
$$

naproti tomu
poněvadz̃ ochlazením se vzduch zhuştuje. Máme pak

$$
m_{\tau}=m_{t} \frac{1+\gamma t}{1+\gamma \tau}
$$

čili vzhledem k tomu, že $\gamma$ jest koefficient velmi malý, přibliz̃nẽ

$$
\begin{gathered}
m_{\tau}=m_{t}[1+\gamma(t-\tau)] \\
m_{\tau}-m_{t}=m_{t} \gamma^{\prime}(t-\tau) .
\end{gathered}
$$

aneb
Úhel as byl by tedy určen vztahem

$$
\operatorname{tg} \alpha=m_{t} \gamma
$$

Při $20^{\circ}$ a $50 \%$ vlhkosti ( $m_{t}=8 \cdot 6$ ) byl by úhel tento asi $2^{0}$.

## § 118. VIhkoměry kondensační.

Vlhkoměry kondensačními určuje se rosný bod. Pozoruje se tedy zarosení (zamžení) lesklých, kovových částí těchto hygrometrů při dostatečném snižení temperatury. Tohoto snižení dociluje se obyčejně vypařováním aetheru.

Hygrometr Daniellìv jest nejstarší toho druhu přístroj *). Na vhodném stojánku s teploměrem (obr. 116.) jest upevněna skleněná trubice dvakrát v pravém úhlu ohnutá, rozšiřující se na svých koncích ve dvě koule. Trubice jest vzduchoprázdná a jest asi z polovice naplněna aetherem. Koule dolejší obsahuje uvnitǐ teploměr, jehož nádobka jest v aetheru; na vnější své

[^120]straně má aequatoreální zlacený, lesklý pásek. Koule hořejší jest obalena jemnou tkaninou bavlněnou (mušelínem). Při pozorování nechá se $z$ byretty vhodné formy s kohoutkem kapati na mušelinový obal aether. Tento se vypařuje; tím se ochlazuje koule a spolu uvnitř aetherové páry, jež se kondensují. Následkem toho vypařuje se aether v kouli dolejší, jehož páry stále proudí do koule hořejši; tím se aether též ochlazuje a toto ochlazování lze na teploméru uvnitř umístěném sledovati. Ochlazování aetheru přenáší se na sklo, odtud na zlacený pásek a odtud na okolní vzduch. Když teplota klesá k bodu rosnému, počne pásek ztráceti svůj lesk a pokrývati se jemnou mlhou, kteráž by při dalším ochlazování houstla a přecházela v rosu. Když zase teplota stoupá, ztrácí se ona mlha ponenáhlu, a pásek nabývá svého dřivějšího lesku. Pozornost pozorovatele musí tudiž býti obrácena na lesklý pásek a teploměr, i musí býti konstatována teplota, při které omžení nastává a také naopak, při které se ztrácí ; obě teploty budou se poněkud od sebe lišiti; „bod rosný" béře se jako


Obr. 116. Hygrometr Daniellûv. jejich hodnota střední.

Jest velmi důlez̃ito, aby byl vzduch $z$ tohoto hygrometru zcela vypuzen. Trubice vlhkoměru má původně na tom místě, kde spoc̃ívá na stojánku, úzkou trubičku postranní; touto se aether známým způsobem vssaje a pak se zahříváním uvede ve var, aby jeho páry vzduch vypudily; ve vhodném okamžiku se pak trubička nad plamenem vytáhne a tím zataví. Ostatně pozorovatel hned dovede ríci, je-li v té prícinè hygrometr bezvadný; nebot vzduch, je-li uvnitr̃, brání svým tlakem vypar̃ování aetheru, následkem čehoz̃ jeho teplota velmi zvolna klesá.

Hygrometrem Daniellovým lze dociliti dosti dobrých výsledkủ, ale dluz̃no si počinati velmi kriticky. Sklo je špatným vodičem tepla; mũz̃e tedy aether uvnitř míti teplotu (kterou teplomér udảvá), jez̃ se od teploty okolního vzduchu liši. To je také hlavni závada tohoto prístroje. Musi tudizz pozorovatel teplotu v blizkosti rosného bodu déle udržovati, aby teploty se co moz̃ná vyrovnaly. Jiná závada jest v tom, že páry aetherové z muŝelínu vystupující zủstávají v síni pozorovací a zde jsou pozorovateli na obtǐ̃, ježto kazí vzduch.

Hygrometr Regnaultưv*) podobá se v principu předešlému, jest však prost jeho vad. Na stojánku (obr. 117.) jsou upevněny dvě skleněné trabice. Jedna $z$ nich jest dole zatavena a má uvnitř teploměr v korku zapuštěný, na němž se odečitá teplota vzduchu. Hlavni však částí jest trubice druhá, v obr. 118. zvláš́t zvětšeně kreslená. Na svém dolejším konci má kovový, obyčejně argentanový, lépe však měděný a dobře pozlacený plášt, jehož vnější povrch jest pěkně lesklý. Do trubice jest


Obr. 117.
Hygrometr Regnaultův.


Obr. 118.
Část hygrometru Regnaultova.
pak korkem zapuštěn jemný teploměr, pak trubička a nahoře v nálevku rozšířená a až ke dnu sahající a druhá trubička $b$ krátká zahnutá.

Před pozorováním naleje se nálevkou $a$ do přistroje aether. Pak spojí se kaučukem trubička $b$ s vodní vývěvou nebo s aspirátorem. Ssaje-li se vzduch trubičkou $b$, vniká trubičkou $a$ zvenčí vzduch v bublinkách dovnitř, prostupuje aetherem a přivádí jej k vypařování. Tím aether chladne a jeho ochlazování lze teploměrem sledovati; tím se chladí též kovový pláśt a okolní vzduch. Klesne-li teplota až k bodu rosnému, pokrývá

[^121]se kovový plášt jemnou mlhou, která se $v$ dalšim postupu zhuštuje na rosu. Když se ssání vzduchu přeruší a teplota zase stoupá, ztráci se zarosení i zamžení. Je-li plášt dobř̌e zlacený a lesklý, možno dle ztráty lesku dobře konstatovati, kdy zamžení počiná a kdy mizí; střed z přislušných teplot jest pak rosný bod. Ssání vzduchu nesmí se diti přiliš prudce, aby teploty se mohly vyrovnati.

Jak patrno, hygrometr Regnaultûv nemá vad, jez̃ při Daniellovẽ byly vytčeny; vedení tepla mezi aetherem a vzduchem sprostředkuje méd, tedy dobrỳ vodiç; páry aetherové pak odssávají se do aspirátoru nebo do vývêry vodní a nekazí vzduchu v síni pozorovaci.

Další modifikace hygrometru kondensačniho zavedli Alluard (1878), Crova (1882), Nippold (1894), kteréž se vyznačuji vhodnější úpravou, v principu však $s$ předešlým souhlasí.

Budiž zde výslovně podotěeno, že u hygrometrữ kondensačních aether má význam zcela vedlejší, podřizený; jest jenom prostředkem, aby se jeho vypařovánim teplota vzduchu snizzila; mohl by nahrazen býti na pr̃. sirouhlíkem neb jakoukoli jinou kapalinou o nizkém bodu varu.

Výpoc̃et jest jednoduchý. Budiẑ na př. pr̃i teplotẽ $t=28 \cdot 0^{\circ}$ nalezen rosný bod $\tau=9 \cdot 0^{\circ}$. K této teplotě vypiseme (z tabulky predeslého odstavce) napětí par nasycených 8.6 mm ; to jest zároveñ skutečné napětí $e$ vodnich par pr̃ì dané teplotẽ $t=28 \cdot 0^{\circ}$. Z tézée tabulky vypíseme pro tuto teplotu přislušné $E=28.1 \mathrm{~mm} . \mathrm{Z}$ toho počitáme vlhkost relativní

$$
\vartheta=\frac{e}{E}=\frac{8 \cdot 6}{28.1}=0 \cdot 31, \text { t. ј. } 31 \% \text {. }
$$

Chtéjíce jeştě vypočitati vlhkost absolutní $m$, vypis̃eme $z$ tabulky pro $t=28 \cdot 0^{\circ}$ príslušné $M=27 \cdot 0$. Kdyby tedy při této teplotẽ byl vzduch parami úplnẻ nasycen, bylo by jich v kaz̃dèm kub. metru 27 grammủ. Při vlhkosti $31 \%$ jest jich jen

$$
m=\imath M=0 \cdot 31 \cdot 27 \cdot 0=8 \cdot 3 \frac{g}{m^{3}} .
$$

## § 119. Psychrometr.

Hygrometry kondensační nehodi se k častému, pravidelnému pozorování; nebot předpokládaji jakousi manipulaci, kteráž zase vyžaduje práce a času. Třebas že by při jediném pozorování tato práce a tento čas nebyly značné, přece však při pozorování velmi častém, jakéž se na př. vyžaduje při službě meteorologické, zveličuje se tato závada měrou již ne malou. Patrně jest žádoucno, aby se vlhkost dala právě tak jednoduše stanoviti jako teplota vzduchu, totiž jediným pohledem, jediným
odečtením. Přístroj, který tomuto prakticky dûležitému požadavku vyhovuje, jest psychrometr *).

Sestává ze dvou jemných ( $\frac{1}{10}$ ) teploměrů na společném stojánku umístěných (obr. 119.). Jeden z nich, „suchý", udává teplotu $t$ vzduchu; drahý, ${ }_{n} v l h k$ g̀'", $^{\prime \prime}$ má teploměrnou nádobku obalenou mušelínem, od něhož jdou bavlněná vlákna do nádobky naplněné vodou. Tato kapillaritou táhne se po vlákriech na obal mušelínový udržujíc jej vlhkým; voda z obalu toho se vypařuje, tím se ujímá tepla rtuti a teploměr klesne, ukazuje teplotu $t^{\prime}$ menší než $t$. Rozdíl teplot $t-t^{\prime}$ zove se difference psychrometrická.


Obr. 119.
Psychrometr Augustûv.


Obr. 120.
Grafické řešeni ùloh vlhkomérných.

Tepelná rovnováha nastane, když proud tepelný (konvekcí, kondukeí i radiací), kterýž vzniká touto differencí temperaturní, nahrazuje latentní teplo vodní páry, která z povrchu nádoby teploměrné vystupuje. Toto vypařování závisi na rozdílu $E^{\prime}-e$ mezi maximálním a skutečným napětím vodnich par při teplotách $t^{\prime}$ a $t$; onen proud tepelný pak na rozdilu psychrometrickém $t-t^{\prime}$. Přibližně lze předpokládati proportionalitu a psáti rovnici

$$
E-e=C\left(t-t^{\prime}\right)
$$

jakožto základní pro psychrometr. Obr. 120. kreslený tak jako

[^122]obr. 115., objasňuje tento vztah graficky (v souvislosti s rosným bodem $\tau$ ), a udává význam konstanty úměrnosti
$$
C=\operatorname{tg} \varepsilon, \quad \varepsilon=\mathrm{const} .
$$

Je-li úhel a znám, přejde se graficky ihned od napětí maximálního $E^{\prime}$ ke skutečnému e. Jakmile jest toto stanoveno, vychází vlhkost relativni

$$
\varrho=\frac{e}{E}
$$

kdež jest $E$ napětí vodních par při dané teplotě $t$ nasycených.
Číselnou hodnotu konstanty $C$ dlužno určiti empiricky. Jest jiná pro teploty $t$ nad nullou a jiná pod nullou. Pro vzduch v mírném pohybu, jaký bývá ve volném prostoru atmosférickém, udává se

$$
\begin{array}{lll}
C=0.60, & \quad & =31^{\circ} \\
C=0.52, & \text { pro } t>0, \\
C=27 \frac{1}{2} & \text { pro } t<0 .
\end{array}
$$

Psychrometr sestrojil August *) roku 1828 a poskytl tím meteorologickému badáni přistroj velmi praktický.

V obr. 120. jest dle křivky pro napětí nasyceny̌ch vodních par správně rỳsované proveden graficky prípad, jaky̆ by̌vá v horkých dnech, totiž pro

Pak nalezneme

$$
t=34^{\circ}, t^{\prime}=20^{\circ}, t-t^{\prime}=14^{\circ}
$$

$$
\begin{aligned}
& e=17 \cdot 4-0 \cdot 6 \cdot 14=9 \cdot 0 \mathrm{~mm} \\
& E=39 \cdot 6 \mathrm{~mm} \\
& \stackrel{\rho}{ }=9 \cdot 0: 39 \cdot 6=23 \% \\
& \tau=9 \cdot 7^{\circ} .
\end{aligned}
$$

K výkladu zde v hlavních rysech podanému dlužno připojiti některé podrobnosti. Co se konstanty $C$ týče, není vlastně konstantou, nýbrž souvisí s tlakem barometrickým b tak, ̌̌e jest

$$
C=A . b
$$

Faktor $A$ zove se pak vlastní konstantou psychrometrickou.

Že zde vskutku tlak barometrický není bez vlivu, lze snadno pochopiti. Je-li tlak větši, jest vzduch hustší, vypařováni vody děje se v hustším vzduchu volněji, ochlazeni $t^{\prime}$ se umenšuje a tím i difference psychrometrická $t-t^{\prime}$. Hořejší hod-

[^123]noty čísla $C$ odpovidaji tlaku $b=75.5 \mathrm{~cm}\left(H g 0^{\circ}\right)$; konstanta $A$ má pak hodnotu
\[

$$
\begin{array}{ll}
A=0.00080 & \text { pro } t>0 \\
A=0.00069 & \text { pro } t<0
\end{array}
$$
\]

Avšak ani konstanta $A$ není konstantou v absolutním slova smyslu; nebof závisí na umistění psychrometru. Je-li přístroj umístěn v síni uzavřené, malé, mủže hodnota koustanty $A$ vystoupiti až o $50 \%$. Vzniká totiž kolem teploměrné nádobky, mušelínem opatřené, vypařováním vody obal vodních par. Je-li vzduch v pohybu, pak se obal ten hned rozháni a voda se vypařuje znova, rychleji, a tím stoupá ochlazení i difference psychrometrická; pakli vzduch v síni pozorovaci jest nehybný, stagnující, zủstává onen obal a zadržuje dalši vypařováni vody, jež se děje volněji, čímž zase ochlazení i difference psychrometrická se umenšaje; proto musí toto umenšování býti kompensováno větši hodnotou konstanty $A$. Hodnoty výše udané odpovídají rychlosti proudění vzduchového asi $0.8 \frac{\mathrm{~m}}{\mathrm{sec}}$.

Podrobnou studii o těchto otázkách vzhledem $k$ meteorologii podal y novêjíi dobẻ Dr. J. Pircher (v Rozpravách Akademie Videñské svazek XXLIII.), na základẽ kteréž J. M. Pernter, ředitel centrálního ústavu pro meteorologii a geodynamiku ve Vidni, podal zprávu internationalnímu kongressu meteorologickému v Southport, záríi $1903^{*}$ ), ve kteréż upozorñuje, že pozorování na psychrometru vyžaduji znac̃né opatrnosti a kritic̃nosti, a prohlašuje, zze hygrometr vlasový mũze s psychrometrem pokud se týče přesnosti konkurrovati. Pro $b=75^{\circ} 5$ udává tyto hodnoty čisla $C=A . b$.

		vzduch   v klidu	vzduch v mírném   pohybu	vzduch v prudkém   pohybu
$t>0$	$C=$	0.906	0.604	0.495
$t<0$	$C=$	0.800	0.533	0.437

Vzhledem k velké důležitosti, jakou má podminka, aby vzduch $v$ okolí vlhkého teploměru byl pokud možná v určitém stavu pohybu, znamená veliký pokrok psychrometr aspirační, kterýž Assmann **) již roku 1886 vynalezl a během let konstruktivné zdokonalil. Nádobky obou teploměrů psychrometrických

[^124]jsou totiž umístěny v kovových trubicich (obr. 121.), které se sbíhají v širší trubici končicí mechanismem ventilačním, centrifugálním exhaustorem, který je hnán hodinovým strojem. Tím se docili prouděni vzduchu podél obou teploměrů o určité rychlosti, asi $2 \frac{m}{s e c}$; pro tuto pak rychlost nalezl Dr. Sprung vzorec
$$
E^{\prime}-e=\frac{1}{2} \frac{b}{755}\left(t-t^{\prime}\right)
$$
tak že pro obyčejné poměry jest zcela jednoduše
$$
e=E^{\prime}-\frac{1}{2}\left(t-t^{\prime}\right)
$$

Obal kovový má také ještě ten účel, aby teploměry byly chráněny před účinkem záření tepelného; proto jest obal ten dvojitý, z plechu mosazného, niklovaného a dobře leštěného. Přistroje lze pak použivati nejen ve stínu, ale i na slunci, coz̆ má velkou dủležitost zejména na cestách, při výstupu $v$ ballonech a pod. Není pochybnosti, že zařízením ventilačním psychrometr postoupil mezi meteorologické stroje praecisní.

Zvláštní obezřelosti v manipulaci vyžaduje psychrometr v zimě, kdy voda zamrzá. Pravidlem


Obr. 191.
Psychrometr aspirac̃ni. jest asi $\frac{1}{2}$ hodiny před pozorováním navlhčiti stečtičkou mušelínový obal tak, aby se vytvořila tenká vrstva ledu kolem nádoby teploměrné. Led se též vypařuje, obdrži se tedy i zde difference psychrometrická, ale tato jest větší a proto konstanta menši než za poměrủ obyčejných. Také pro psychrometr ventilovaný udává autor podobná pravidla. Jakási nejistota zůstává však při teplotách pod
nullou vždy, zejména proto, že voda může se přechladiti. $Z$ té přičiny jest výhodno míti ke kontrole po ruce jiný hygrometr, na př. vlasový.

Při pravidelué službě meteorologické dlužno obal mušelínový i vlákna ssací častěji obnovovati (alespoň měsíčně), zejména v městech, kde se na ně usazuje prach a saze.

Pravidelné užívání psychrometru usnadní se vhodnými tabulkami, jež pro rozmanité kombinace teplot $t$ a $t^{\prime}$ podávaji ihned napětí $e$ a vlhkost relativní o. U nás užívá se tabulek, jež vydal $K$. Jelinek (1822--1876), bývalý ředitel centrálniho ústavu pro meteorologii a zemský magnetismus ve Vidni. V úvodu $k$ těmto tabulkám jest též obsažena theorie psychrometru, jak ji odvodil Regnault a pozdě̃ji Maxwell.

V R̉ecku uz̃ivá se ke chlazení vody pitné za horkẏch mésicú letních
 zejména na ostrové Aegyna ve výborné jakosti nalézá. Voda svým tlakem uniká hlinou na venek, zde se vyparuje a tím se zpúsobuje chlad. Plukovnik Hartl ${ }^{*}$ ) srovnával teplotu vody s teplotou $t^{\prime}$ psychrometru a nalezl v mezich dosti znac̃ny̆ch dobry souhlas. Takový džbản s vodou byl by tudī̃ prastarým surrogátem psychrometru, ovšem ve spojenís teplomẽrem. of the Mejnovéjsi době doporucúuji prof. Tanakadate a T. Okada v Journal mušelinu zlelástního japanskêho papíru, kterýn 1906, aby se uživalo místo mušelínu zvlástního japanského papíru, kterỳ se zove Yoshinogami ${ }^{* *}$ ).

## § 120. Hygrometr vlasový.

Hygrometr vlasový zakládá se na známé hygroskopické vlastnosti vlasu, který se při stoupajici vlhkosti prodlužuje. Obr. 122. ukazuje modell, jak jej pro účely meteorologické i praktické vhodně zařídil Koppe. Vlas, dobře vyčištěný a tuku zbavený, upevni se nahoře na kladce, jež se otáčí nesnadno (t. j. $s$ větším třením); dole pak se vede kolem kladky, jež se velmi snadno (bez třeni) otáčí, a zatižíi se malým závažičkem, aby byl stále stejně napiat. S dolejší kladkou jest spojena ručička. Přibỳ̀-vá-li vlhkosti, prodlužuje se vlas, a kladka s ručičkou se otáčí na pravo jako u hodin. Na oblouku kruhovém za ručičkou naneseno jest empiricky dělení, udávajicí přímo vlhkost relativní. Hygrometr určuje tudiž bez počitání př̌imo tu veličinu, kterou se vlhkost vzduchu nejlépe charakterisnje.

[^125]Důležitou předností modellu v obr. 122. znázorněného jest zařizeni, kterým lze kontrolovati bod $100 \%$. Do skřínky lze totiž vzadu vsunouti stěnu mušelínovou, která se destillovanou vodou navlhči. Pak se skřínka druhou kovovou stěnou zcela uzavře; tím naplní se vodními parami do nasycení, následkem čehož vlhkoměr má ukazovati $100 \%$. Když neukazuje, pak se vlásek na hořejší kladce hodinovým kličkem přìměřeně prodlouži neb zkrátí. Hygrometry, jež takového kontrolniho zařizení nemají, mohou často ukazovati o mnoho (až 10) procent nesprávně.

Dle principu hygrometrů vlasových konstruuje R. Fuess (Berlín) hygrografy, jichž zaří-


Obr. 122. Hygrometr vlasový.


Obr. 123. Hygrograf.
zení jest z obr. 123. patrné. Podobaji se ve své úpravě baroa thermografům.

Hygrometry vlasové konají v meteorologii služby velmi dobré, doplñujíce a kontrolujice psychrometry. Kontrolovati téż bod nullový úplaým vysušením není radno, poněvadz̃ se tím kvalita vlasu poruši. Lépe jest pak do skřinky dáti dva teplomẻry, upraviti jeden z nich na psychrometr a pak nějaký čas oba prístroje souc̃asnẻ pozorovati. Obyc̃ejnẽ postačí jeden (suchỳ) teploměr, jak v obr. 122. jest nakreslen, ke stanovení teploty vzduchu; ale i pro druhý (vlhky̆) teplomẽr jest místo připraveno na druhé stranẻ vlasu, když by se taková srovnávací pozorování mẻla prováděti.

## § 121. Všeobecné poznámky o vlhkosti vzduchu.

Vlhkost vzduchu mění se dle místa i dle času. Při studiu těchto změn jest však nutno činiti rozdil mezi vlhkosti absolutní a relationi.

Na určitém místě závisí vlhkost hlavně na teplotě vzduchu. Stoupá-li teplota, vypařuje se vody více, stoupá tudiž vlhkost absolutní $m$, alo ještě rychleji vlhkost maximální $M$, tak že vlhkost relativni $\frac{m}{M}=\varrho$ následkem toho klesá. Proto krátce před východem slunce bývá vlhkost absolutní malá, relativní pak značná. Odtud teplota stoupá; po poledni v létě kolem 2. hodiny bývá maximální, a $v$ touž asi dobu jest vlhkost relativni minimum, vzduch poměrně nejsušši. Odpoledne přibývá ještě vlhkosti absolutní a také relativní stoupá klesáním teploty. V noci vlhkost absolutni se mnoho neměni, po případě kondensací (rosou) se umenši. Prủběh zde vyličený jest typický, mủže však zvláštnimi poměry meteorologickými býti změněn. Rozhoduje tu po případě, zdali se mění směr větru, který ovšem na vlhkost má vliv rozhodující. Při větrech severních až východních vllkost absolutní i relativní jest menši, při větrech jižních až západních jest větší.

Pro různá místa jest rozhodujicí geografická poloha, zejména, jedná-li se o krajinu pobliže moře nebo uvnitǐ širých kontinentů.

Veliký význam má vlhkost vzduchu ve smyslu fysiologickém pro otázku, jak dalece člověk dovede snášeti vysoké teploty vzduchu. Může i mírná teplota vzduchu, na př. $25^{\circ}$ býti nesnesitelnou, je-li vlhkost vzduchu značnou, na př. $75 \%$, nebo více; a naopak teplotu vzduchu i $50^{\circ}$ lze dobře snášeti, má-li
vzduch vlhkost jen $10 \%$ nebo ještě méně. Vzhledem k tomu je takové rozdělení klimatů naší země racionální, které přihliží nejen $k$ průměrné teplotě, nẏbrž také k průměrné vlhkosti vzduchu.

Zajimavo jest studovati extrémy vlhkosti na určitém místẽ. Pro Prahu poskytují pozorování na hvẽzdárnẽ Praz̃ské materiál za dlouhou r̃adu let. Pro epochu 1871 - 1900 vychází, že vlhkost $100 \%$ bývá y Praze dosti častou; čisla však, jež nejmenši vlhkost v tom neb onom roce udávají, jsou dosti rúzná. Velmi nízkou vlhkost jeví léta 1893 (jen 4\%, 28. března), 1882 (12\%, 17. března), 1888 ( $15 \%$, 14. kvêtna) a j. Obyčejnẽ bývají to mésice jarní (březen, duben), nêkdy téz̃ podzimní (záríi), které jsou relativné velmi suchými. Ono abnormni minimum $4 \%$ nastalo ve 2 hodiny odpol. za nebe jasného påi mírném vêtru severním, kdy úcinkem slunce teplota stoupla od $-1.9^{\circ}$ ( 7 hod. ráno) na $11.2^{\circ}$ ( 2 hod. odpol.).

V krajinách polárnich jest srážek me̛ritelných (sněhu, deště) málo. Deşt bỷvá nêkdy v zảríi i v sírce $85^{\circ}$. Přes to domnívá se Nansen - oproti anglickým badatelủm svẽta polárního - že kondensace převys̃uje vypařování, ale ovšem kondensace ve formě jinovatky, která led vždy pokrývá. Podobného něco plati o ledovcích našich Alp. Páry vystupuji tedy z krajin aequatoreálných a precházeji atmosférou po obou stranách rovníku k pólům, kde se kondensují, zejména na pólu jižním, poněvadz̃ na jižní polokouli jest ledové more rozsáhlejši.

## Zkapalňování plynú.

## § 122. 0 zảkladech, na nichž spočívaji methody zkapalñovaci.

Jednajíce o parách nasycených a přehřátých uvedli jsme hlavní způsoby, jimiž páry nasycené přecházeji v páry přehřáté; děje se tak bud zvyšováním teploty při stálém objemu, nebo zvětšováním objemu při stálé teplotě. Jde-li o kondensaci plynů, jež, jak jsme na svém místě uvedli, za páry přehřáté lze pokládati, dlužno především tyto páry přehřáté převésti v nasycené. Toho docílí se pochodem opačným ; bử snižováním teploty při stálém objemu, tedy ochlazením, nebo zmenšováním objemu při stálé teplotě, tudiž tlakem. Jak daleko v jednom i druhém případě nutno jíti, o tom poučí křivka, která pro určitou látku udává napětí nasycených par v závislosti na teplotě (jako na př. v obr. 97., 98., 99.)

Ze dvou cest právě naznačených vede cesta prvá, ochlazováním, vždycky $k$ cíli; nebot necht vyjdeme od jakéhokoliv bodu $N$ znázorňujíciho určitý stav plynu, přímka, směřující od $N$ k absolutnímu bodu nullovému, protiná vždy na některém
místě křivku pro napětí par. V dobách dřívějších mělo se za to, že také cesta druhá, kompressí, musí vésti k cili, t. j. že přímka od $N$ kolmo k ose temperaturni vzhůru vedená také onu křivku protíná. Dlužno tu poznamenati, že kompressí se plyn zahřívá, tak že k zachováni této druhé cesty jest nutno toto teplo kompressí vznikající ujímati. Než i tehda, když se dodrži přesně postup isothermický, naznačuje prủbĕh křivky, jež vždy rychleji stoupá, že ne každá taková přímka tuto křivku stihne, tak že při teplotách přiměřeně vyššich kondensace tlakem jest nemožnou. Novějši práce o této otázce ukázaly, že existuje pro každý plyn určitá teplota, tak zvaná kritická, kteráž nesmí býti př̌ekročena, má-li kondensace nastati. Tlak, kterým se při této kritické teplotě ještě kondensace docílí, zove se kritickým. Dle toho nabýváme o prủběhu křivky pro napětí par určitějšiho názoru. Jest obsažena v té části roviny nákresné, která jest limitována jednak osou temperaturní I, jednak přimkou II, jež jest k této ose kolmo vztyčena v bodu $\tau$ přislušicim teplotě kritické. Osa temperaturní I dotýká se křivky v absolutním nullovém bodu; také přimka II dotýká se křivky v bodu, jehož odlehlost od osy temperaturní udává kritický tlak.

## § 123. Skizza historická. Prvni pokusy.

Pokusy o zkapalňováni plynú začínaji v prvních letech století 19tého *); avšak výsledky prvních experimentátorů (Van Marum, Monge a Clouet a j.) byly pochybny, poněvadž plyny, o jichž kondensaci se pokoušeli, nebyly zcela suché; proto nastala kondensace vodních par, která mylně byla vykládána za kondensaci některých plynủ. Nejspolehlivějšími jeví se býti výsledky, jichž došel Northmore (1805), jenž kondensoval chlorovodik HCl , kysličník siřičitý $\mathrm{SO}_{2}$ a snad i chlor $\mathrm{Cl}_{2}$. Pozoruhodno jest poznání, jež učinil při kysličniku siřičitém, že nutno současně plyn ochladiti a stlačiti.

Po těchto pokusech předběžných následovaly pokusy soustavnější, jež konal Faraday ${ }^{* *}$ ) v chemické laboratoři na Royal

[^126]Institution v Londýně, s počátku (od roku 1813) jako assistent H. Davy-ho a později W. Th. Brande-ho, pak (od roku 1827) jako professor. Při prvnich svých pokusech užíval (dle návodu Da-vy-ho) methody velice jednoduché i základní myšlenkou i úpravou pokusnou. Do silnostěnné, kolenovitě ohnuté trubice skleněné na obou koncích zatavené, byla na jedné straně vložena chemická směs, jejíz zahříváním se určitý plyn vylučoval; druhá strana trubice byla vložena do mrazivé směsi (obr. 124.). Plyn


Ubr. 124.
První pokusy Faradayovy o kondensaci plynú.
kondensoval se jednak nizkou teplotou mrazivé směsi, jednak tlakem plynu vlastním, stále tou měrou stoupajícím, kterou se plynu vice a vice vylučovalo. Tak kondensoval celou řadu plynủ a to ze směsí následujícich:

$\mathrm{Cl}+10 \mathrm{H}_{2} \mathrm{O}$	a obdržel	$\mathrm{Cl}_{2}$	tekutý
$\mathrm{Hg}+\mathrm{H}_{2} \mathrm{SO}_{4}$	"	$\mathrm{SO}_{2}$	n
$2 \mathrm{HCl}+\mathrm{FeS}$	"	$\mathrm{H}_{2} \mathrm{~S}$	"
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$	\#	$\mathrm{CO}_{\mathbf{2}}{ }^{*}$ )	"
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	"	$\mathrm{N}_{2} \mathrm{O}$	"
$H g C_{2} N_{2}$	"	$C_{2} N_{\text {a }}$	n
$\mathrm{AgCl}\left(\mathrm{NH}_{3}\right.$ absorb.)	"	$\mathrm{NH}_{3}$	"
avy pak kondensoval ze směsi			
$2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{SO}_{4}$	a obdržel	HCl	"

[^127]Po publikaci těchto výsledkủ v roce 1823 uveřejnil Bussy *) roku 1824 obšírnou práci o kondensaci kysličníku siřičitého, pro který určil bod varu na $-10^{\circ}$ (za norm. tlaku), a jehož prudkým vypařováním docílil velmi nizké teploty - $68^{\circ}$; touto nizkou teplotou mohl pak snadno kondensovati chlor, ammoniak, kyan, (který ztužil i v těleso pevné). On tedy vlastně prvý objevil methodu, nyní všeobecně užívanou, kterouž dociluje se velmi nízkých teplot prudkým vypařováním nějakého plynu již kondensovaného.

Roku 1834 uveřejnil Thilorier**) methodu, kterouž bylo možno kysličník uhličitý ve větším množstvi kondensovati a vlastnosti jeho studovati. Jemu podařilo se též kysličnik uhličitý - náhlým rozpětím plynu - převésti ve skupenství pevné. Tento pevný kysličník, jehož teplota jest asi - $79^{\circ}$, dává s aetherem směs, jež se zove Thilorier-ova, kteréž lze pro jeji lepší vodivost tepelnou výhodněji k chlazení užívati. Apparát Thilorier-ův zdokonalil (1844) Natterer, jehož přístroj býval dříve hojně rozšiřen v laboratořich fysikálních i chemických, ježto se také svou bezpečností dobře osvědčil.

Roku 1845 podal Faraday zprávu o druhé řadě svých pokusů. Při těchto užíval k ochlazení plynủ oné směsi Thilorierovy a pracoval vysokým tlakem až 40 atmosfér, jehož docílil zvláštními kompressními pumpami. Zařizeni jeho apparátu ukazuje schematicky obr. 125. Plyny určené ke kondensaci jsou v silnostěnné ohnuté trubici skleněné, která jest u $C$ přitmelena k úzké trubici měděné, přiměřeně ohnuté a jdoucí k pumpám kompressním. V části $D$ jest manometr vzduchový, $s$ indexem rtufovým; dle objemu vzduchu tímto indexem ohraničeného lze souditi na tlak. Ohnutá trubice skleněná jest v nádobě s mrazivou směsi Thilorier-ovou. Celek jest pod recipientem vývěvy. Evakuací docílí se rychlejšiho vypařování oné směsi a tím značného snížení teploty, při tlaku $3 \mathrm{~cm} \mathrm{Hg} 0^{\circ}$ až na $-110^{\circ}$. Tímto způsobem podařilo se kondensovati a i ve stav pevný uvésti četné plyny, jako jodovodik JH, bromovodik $\mathrm{Br} H$, sirovodík $\mathrm{SH}_{2}$, kysličník siřičitý $\mathrm{SO}_{2}$, uhličitý $\mathrm{CO}_{2}$, ammoniak $\mathrm{NH}_{3}$, kyan $\mathrm{C}_{2} \mathrm{~N}_{2}$. U některých kapalin kondensací
*) Ant. Alex Bussy (1794-1882), prof. chemie na École de Pharmacie v Paříǐi, v pojednáni: Sur la liquéfaction de l'acide sulfureux, Ann. chim. et phys. 26, 1824.
${ }^{* *}$ ) Ann, chim. et phys, (2.) 60, 1835,
vzniklých pozoroval Faraday úkaz přechlazení. Kondensován byl též arsenovodik $\mathrm{A}_{3} \mathrm{H}_{3}$, chlorovodik ClH , kysličnik dusnatý $\mathrm{N}_{2} \mathrm{O}$, aethylen $\mathrm{C}_{2} \mathrm{H}_{4}$ a j. Bezvýsledné byly však pokusy zkapalniti některé plyny, jež se eminentně jakožto permanentní jevily. Některé z nich také Natterer svým apparátem marně se snažil kondensovati, ačkoli pracoval ohromným tlakem 1000 až 2790 atmosfér *) a k ochlazení užíval směsi Thilorierovy. A tak (do roku 1877) zůstaly permanentními vodik $H_{2}$, kyslík $O_{2}$, dusík $\mathrm{N}_{2}$, methan $\mathrm{CH}_{4}$, kysličník uhelnatý $C O$ a dusičitý $N O$.
§ 124. Pokračováni. Kritické poměry plynů.


Obr. 125.
Dalši pokusy Faradayovy o kondensaci plynû.

Bylo již v § 122. nazuačeno, jaká byla přičina, že plyny právě jmenované nebylo možno zkapalniti, ačkoli užito bylo tlakủ velice značných; avšak teplota, při níž byly komprimovány, nebyla dostatečně snížena, zůstávajíc nad kritickou.

Historicky dlužno poznamenati, že Cagniard de la Tour **) již v roce 1822 učinil objev $k$ předmětu tomuto se vztahující. Uzavřel hermeticky některé kapaliny, jako aether, alkohol, sirouhlík a vodu, do silnostěnných skleněných trubic tak, aby při obyčejné teplotě byly vyplněny z části kapalinou, z části pak jejími nasycenými parami. Rozhraní mezi kapalinou a parami jevilo se opticky ostrým meniskem. Když však tyto trubice v lázních vždy více zahříval, zmizel při určité teplotě tento meniskus a nebylo pak již žádného rozhraní vůbec pozorovati; trubice byla cele vyplněna látkou homogenní. Přechod tento se

[^128]stal u aetheru při $200^{\circ}$, alkoholu $259^{\circ}$, sirouhlíku $275^{\circ}$ a u vody při $362^{\circ}$. Cagniard de la Tour soudil, že při těchto teplotách látka přecházi ve zvláštni stav, který od pozdějšich fysiků jakožto Cagniard-Latour-ův


Obr. 126.
Přistroj Andrewsūv ke zkapalnēni plynũ. stav byl označován.

Soustavněji studoval tuto otázku a to speciálně pro kysličnik uhličitý Andrews*). Zavedl plyn dobř̀e vysušený a pokud možná vzduchu zbavený do silnostěnné kapilláry, kterou pak na jedné straně zatavil, na druhé však, kde se poněkud rozšiřovala, nechal otevřenou; sem vpravil rtufový sloupeček, plyn uzavírajicí, ostatek vyplnil vodou a zasadil pak trubici hermeticky pomocí mosazné šroubové uzavírky do měděného válce, též vodou vyplněného, který byl dole uzavřen ocelovým šroubem (obr. 126.). Byl tedy přístroj Andrews-ův vlastně malý hydraulický lis, šroubem ovládaný; otáčením šroubu působilo se tlakem na vodu, tim na rtuf a plyn, který se komprimoval. Když se při určité teplotě pozorovalo, jak objem plynu se mění tlakem, bylo lze výsledek pozorování znázorniti graficky čarou, jež jest isotherma. Soustavou takových isotherm bylo pak moz̆no celou otázku, o niž
*) Thomas Andrews narodil se roku 1813 v Belfastu (velkėm príistavnim mēstê na severovýchodním pobreží Irska), kdez̃ byl (az̃ do roku 1879) professorem chemie na tamêjši Queen's College; zemřel ve svém rodném mẽstê roku 1885. Proslulé jeho pojednání (jez̃ vyšlo tẻz̃ francouzsky a némecky) má název: Continuity of the gas and liquid states of matter, Phil. Trans. 159. 1869. Pogg. Ann. d. Phys. Erg. Band. 5, pag. 64, 1871.
se jedná, vystihnouti. Andrews užíval $k$ pokusům přístroje dvojitého (obr. 126.), tak že v jedné kapilláře byl kysličník uhličitý, v druhé vzduch. Obě měděné trubice kommunikovaly vespolek, aby tlak byl v obou stejný; bylo možno pak dole manipulovati bud̉ jen jedním nebo dvěma šrouby. Obě kapilláry byly pečlivě graduovány; v jedné se pozoroval objem kysličníku uhličitého, $v$ druhé objem vzduchu, a $z$ tohoto se posuzoval tlak na základě zákona Boyle-Mariotte-ova alespoň přibližně platného. Přes kapilláry bylo lze přešinouti skleněné válcovité nádoby na lázeň vodní; jedna (při vzducha) byla temperována souhlasně s okolním vzduchem, druhá byla chladnějši neb teplejší ; Andrews volil teploty $13 \cdot 1^{\circ}, 21 \cdot 0^{0}, 31 \cdot 1^{0}, 32 \cdot 5^{0}$ $39.5^{\circ}$ a $48 \cdot 1^{\circ}$.

Přístroj Andrews-ủv lze výhodnẽ též k účelûm přednášek zar̃íditi; ale pak jest lépe pracovati část kovovou jenom z oceli a užívati jenom rtuti, tak že voda jest úplně vyloučena. Nejde-li o mẽreni tlaku, postači prístroj jednoduchý. Úkaz kondensační jeví se pěkně v projekci.

Výsledky pozorování Andrews-ových objasňuje graficky obr. 127.*) K isothermám kysličníku uhličitého jsou připojeny isothermy dokonalého plynu, jenž by při normálních poměrech ( $0^{\circ}$ a 1 atm.) měl týž objem jako kysličník uhličitý. Isothermy temperatur nízkých $\left(13 \cdot 1^{\circ}\right.$ a $\left.21 \cdot 5^{\circ}\right)$ mají část, kde čára přechází v přimku, s osou úseček rovnoběžnou. Zde tedy při postupující kompressi tlak se nemění. To jest úkaz význačný pro nasycenost par a nastávající kondensaci. Tato přímočará část isothermy se však umenšuje, až při určité teplotě právě mizí. To jest teplota kritická; Andrews ji pro kysličník uhličitý určil na $30 \cdot 92^{\circ}$. Když od této teploty ještě dále směrem $\mathbf{k}$ vyšším teplotám postupujeme, prozrazují isothermy její blízkost ještě záhybem křivky, který naznačuje, že při postupujíci kompressi roste tlak poněkud volněji; ale tento záhyb ponenáhlu mizí a při $48 \cdot 1^{0}$ jeví isotherma kysličníku uhličitého týž prúběh jako isothermy dokonalého plynu.

Budiz̃ zde z původního pojednání uvedeno místo, kde Andrews vysledky své práce sám vykládá: „Obyčejný stav plynný a kapalný jsou jenom daleko od sebe oddêlené formy téhož stavu skupenského, které lze radou tak nenáhlých stupñů v sebe převésti, že nikde přerušení nebo porušení

[^129]kontinuity není znamenati. Přechod od kysličníku uhličitého jako dokonalého plynu ke kysličniku uhličitému jako kapalině děje se spojitẏm pochodem, a plyn a kapalina jsou jenom vzdálené stupnẽ dlouhé rady spojitých fy-


Diagramm Andrews-űv o zkapalněni kysličniku uhličitẻho,
sikálních pr̃eměn. Za určitých podmínek teploty a tlaku nalézá se sice kysličník uhličitỹ takřka ve stavu instability a přechází nảhle, bez dalšího užití tlaku neb změny teploty, za vzniku tepla, v objem, kteréhoz̃ mủže při processu spojitém jenom dlouhou oklikou dosáhnouti. Při náhlé změnẽ,
kterázz zde vzniká, ukazuje se v postupu processu znatelný rozdíl mezi optickými a jinými fysikảlními vlastuostmi kyslic̃níku uhličitého, který v menši objem sklesl a tím, ktery̌ ho jeştě nezměnil. Proto nečini zádných obtiží kapalinu od plynu rozeznati. Ale v jiných prípadech není toto rozeznávání možno; za mnohých ode mne popsanỵch okolností byl by to marný pokus kyslic̃niku uhličitému spíse kapalný nez̃ plynný stav pripisovati. Při teplotẽ $355^{0}$ a tlaku 108 atmosfér jest kysliěník uhliciitý na 430ty dil toho objemu redukován, který zaujímá při jedné atmosféré ; ale kdyby se někdo tázal, zdali se nyní nalézá v plynném či kapalném stavu, nebylo by lze, soudím, dáti odpovẻdi určité. Prii $355^{\circ}$ a pod tlakem 108 atmosfér nalézá se kysličník uhličity̌ uprostred mezi plynem a kapalinou, a nemảme žảdných podstatných dúvodủ, přikládati mu jeden stav aggregačni spiše nez̃ druhý. Stejná poznámka platí, ba v miře zveličené, o stavu, ve kterém se nalézá kyslic̃nik uhličitý při vyššich teplotách a vyššich tlacích nez̃ jak udáno. Znamenitý fysik Cagniard de la Tour soudil ze svého pokusu, zee kapalina zmizela a byla v plyn proměněna. Nepatrná změna jeho pokusu byla by ho vedla $k$ opaçnému úsudku: że to, co dřive plynem bylo, preşlo v kapalinu. Zkrátka, tyto stavy jsou intermediární, které hmota přijímá, kdyz̃ bez náhlé změny objemové anebo bez náhlého vzniku tepla z obyčejného stavu kapalného přechází v obyčejný stav plynný.-

Kritickou teplotou nějaké látky jest dáno rozhraní význačné; pod touto teplotou mủže pouhým tlakem nastati zkapalnění, nad ní jest to nemožno. Andrews navrhuje, aby se látka zvala v prvém případě parou, v druhém plynem. Kysličnik uhličitý byl by tedy pod $31^{0}$ parou, nad $31^{\circ}$ plynem. Dřive jsme zvali „bodem varu" teplotu, při niž napěti par nasycených se rovná danému tlaku vnějšímu. V tom smyslu jest kritická teplota též bodem varu, a to nejvyššim vủbec možným, poněvadž nad ni žádné kapaliny není; zve se proto též absolutním bodem varu (Mendělějev).

K jinému významu kritické teploty, velmi názornému, dospějeme, když srovnáváme hustoty kapaliny a nasycené páry, jež se nad kapalinou nalézá. Stoupá-li teplota, klesá hustota kapaliny a stoupá hustota páry; při teplotě kritické není rozdílu žádného, obě hustoty splývají. Mluvíme pak o hustotě kriticlé. Její reciproká hodnota jest kritický specifický objem jakožto objem jednoho grammu látky. Mnohdy se místo grammu béře gramm-molekula látky, a přislnšný kritický objem zve se molekulový.

Ještě jinak jest teplota kritická charakterisována kalorimetricky. Vypařování kapalin, jež se děje při každé teplotě je spojeno se spotřebou tepla; tato se umenšuje při teplotě stoupající a při kritické úplně mizí.

Dlužno připojiti, že Andrews také u jiných ještě plynú konstatoval stav kritický, zejména u kysličniku dusnatého, chlorovodiku, ammoniaku, aetheru a sirouhliku.

## § 125. Doba nová. Zkapalněni plynů permanentnich.

Nová doba pro zkapalňováni plynủ a pro četné otázky s tim souvisíci nastala koncem roku 1877. Dne 24. prosince


Obr. 128.
Apparát Cailletetův.
tohoto roku podali v sedění Akademie věd v Paříži Cailletet a Pictet současně zprávu o pokusech, jimiž se jim podařilo plyny dosud za permanentní pokládané zkapalniti. Oba pracovali od sebe odděleně, jeden ve své laboratoři v Chatillonu*), druhý v Ženevě, oba užívali method rúzných, tak že zásluhn o důležitý pokrok v daném úkolu oběma stejnou měrou přičísti dlužno.

[^130]Methoda, dle nǐz pracoval Cailletet*), byla v podstatě sonhlasná s methodou, kteréž užíval Andrews. Plyn stlačoval se tlakem hydraulickým ve skleněné silnostěnné trubici a současně se chladil. Kondensace při tom dosaženo nebylo. Tato nastala - a to jen na krátkou dobu několika sekund - teprve, když se plyn nechal náhle rozepnouti, čímž jeho teplota prudce klesla, a toto zařízení bylo novotou **), kterou Cailletet zavedl. Jeho apparát znázorňuje obr. 128. Skládá se ze dvou samostatných částí. Jest tu především hydraulický lis, ovládaný jednak pákou $L$, jednak šroubem $\boldsymbol{V}$; lze jím dociliti tlaku až 1000 atmosfér. Ventilem $V^{\prime}$ lze zpủsobiti náhlé klesnuti tlaku na obyčejný atmosférický. Ocelovou trubici $T U$ tlačí se voda silně komprimovaná do vlastního kondensačniho přístroje. Hlavní jeho částí je silnostěnná skleněná trubice $T$, nahoře užši, dole se rozšiřujici, naplněná suchým plynem a rtuti. V dolejši části jest trubice vnořena do rtuti, nad nǐ̌ jest voda s hydraulickým apparátem souvisíci, vše v silném ocelovém válci $B$. $V$ hořejší části jest obklopena chladivou kapalinou ve skleněném válci $M$ a ještě skleněným recipientem $C$. $\checkmark$ pozdějši úpravě byla tato trubice $T$ ohnuta šikmo vzhủru a pak náhle dolû, aby se dala pohodlněji vkládati do mrazivých lázní (obr. 129.).

První pokusy činil Cailletet


Obr. 129.
Apparát Cailletetûv v úpravẻ pozdējsisi. s kysličnikem uhelnatým CO a kyslikem $O_{2}$. Jakožto chladivé kapaliny teploty $-30^{\circ}$ užíval tekutého kysličníku siřičitého; tlak zvýšen na 300 atmosfér.

[^131]Kondensace nenastala; ale při náhlém rozpětí plynu objevila se v trubici mlha a na stěnách trabice jemné kapky zkapalněného plynu, ovšem jen na krátko. Podobným způsobem kondensoval dusík $N_{a}$, vzduch, ba, jak se domnival, i vodik $H_{2}$. V pozdějšich letech, 1882, užíval tekutého aethylenu $C_{2} H_{4}$ ke chlazeni a docilil jím chladu $-102^{\circ}$; kondensační přechod, zejména u kyslíku, jevil se pak daleko zřetelněji.

Methoda, dle niž pracoval Pictet*), byla složitější, ale též důmyslnějši, a hledic k výsledku vydatnějši. První pokusy prováděl s kyslíkem. Plyn tento obdržel zahřiváním chlorečñanu draseluatého $\mathrm{KClO}_{3}(100 \mathrm{~g})$, smišeného s chloridem draselnatým $K C l(250 \mathrm{~g})$, v silnostěnné železné nádobě $L$ (obr. 130.), ke kteréž byla připojena silnostěnná měděná trubice $M$, na jejimž konci byl manometr a kohout. Kyslik zahříváním ze směsi vypuzovaný napln̆oval trubici v množství stále stoupajícím, čímž sebe vlastním tlakem vždy více komprimoval, podobně jako plyny při prvních pokusech Faradayových.

Jednalo se ještě o dostatečné chlazení plynu. Pictet docilil toho dvěma processy kruhovými, jež provádĕl kysličnikem siřičitým a kysličnikem uhličitým, užívaje pump evakuačních a kompressnich. Processy ty byly následujici:

1. Studenou vodou a př̌iměřeným tlakem byl zkapalněn kysličnik siřičitý ve válci $D$; odtud zkapalněný byl tlačen pumpou $B$ (trabicí d) do prostoru $C$; zde čerpánim pumpou $A$ se přiváděl k prudkému vypařování, čímž se chladil až na $-60^{\circ}$; páry jeho se vháněly touže pumpou $A$ do prostoru pumpy $B$ a touto do válce $D$, kdež byly zkapalněny.
2. Chladem - $60^{\circ}$, kterým působil v prostoru $C$ kysličnik siřičitý, a přiměřeným tlakem byl zkapalněn ve válci $C$ kysličnik ubličitý, zkapalněný byl vháněn pumpou $F$ (trubicí $k$ ) do prostoru $H$; zde čerpáním pumpou $E$ přiváděl se k prudkému vypařování, čímž se chladil až na $-130^{\circ}$; jeho páry byly pumpou $E$ vháněny do prostoru pumpy $F$ a odtud do válce $C$, kdež byly zkapalněny

[^132]3. Chladem $-130^{\circ}$, kterým pûsobil kysličnik uhličitý a vlastním vysokým tlakem, který při pokusu dne 22 . prosince 1877 stoupl na 525 atmosfér a pak klesal až na 470 atmosfér, bylo pûsobeno na kyslík. Ale ochlazení nebylo dostatečné. Když byl však otevřen kohout uzavírající měděnon trubici $M$, ochladil se plyn vlastní expansí dále a vyrazil ven paprskem kapaliny


Obr. 130.
Apparát Pictetúv.
zăřivě bilým. Při zkoušce tohoto paprsku elektrickou lampou bylo možno rozeznati průhlednou část centrální, $2-3 \mathrm{~mm}$ v prưměru, a část obalovou, ve které kyslik, bezpochyby prudkým vypařováním, přešel ve stav pevný ve způsobu sněhobilého prachu, který světlo částečně polarisoval.

Pictet zkoušel (10. ledna 1878) zkapalniti stejným způsobem též vodík, který obdržel zahříváním mravenčanu draselnatého $\mathrm{CHO}_{2} \mathrm{Na}$ smišeného s hydratem draselnatým NaOH . Na místo kysličníku uhličitého $\mathrm{CO}_{2}$ užíval kysličniku dusnatého $\mathrm{N}_{2} \mathrm{O}$, kterým docilil snižení teploty až na $-140^{\circ}$. Při otevření ko-
houtu domníval se též viděti paprsek ztuženého vodiku, který rychle zmizel a na podlahu dopadl nárazem kovovým; ale pozorování tato byla sebeklamem: vodíku Pictet neztužil.

V pozdějších letech zařídil Pictet v Berlíně „laboratoř pro nízké teploty", ve kteréž v pokusech o ztužování plynủ bylo pokračováno ve velkém, methodou v podstatě nezměněnou.

Ve směru, který Cailletet naznačil, pokračovali Hautefeuille a Chappuis, kteři užívajíce ke sniženi teploty až na - $100^{\circ}$ kapalného aethylenu, zkapalnili r. 1882 ozon, dále pak zejména žáci Cailletetovi Wróblewski*) a Olszewski**), kteři jednak společně, jednak samostatně provedli velmi četné práce o zkapalňování různých plynů, jakož i o rozmanitých otázkách tepelných, optických a j., jež s úkolem tímto souvisí, při čemž nepřestávali na pokusech kvalitativních, nýbrž konali četná měřeni zejména veličin kritických. Zajímavým způsobem zdokonalili přistroj Cailletetův, a to ve dvojím směru, jednak aby docílili většiho ochlazeni kapalným aethylenem vypařujícim se za malého tlaku, jednak aby chlad tím způsobený měřili teploměrem vodíkovým. Schematicky jest jejich přístroj znázorněn v obr. 131. Z apparátu Cailletetova vyčnívajíci silnostěnná skleněná trubička $p$ jest dvakrát pravoúhle ohnuta a koncem svým umistěna ve skleněném recipientu nahoře uzavřeném, který jest určen pro chladíci lázeň. Do něho zasahá též teploměruá nádoba $t$ vodikového teploměru, jehož kapillára prochází vzduchotěsně hořejší kovovou uzavirkou. Recipient jest ještě vložen do skleněného válce $g$, v němž na dně jest chlorid vápenatý $\left(\mathrm{CaCl}_{\mathrm{o}}\right) \mathrm{k}$ vysušeni vzduchu, ježto by jinak chladem vznikala jinovatka, která by recipient pokryla a tím pozorování učinila nemožným. Aethylen, určený k ochlazení plynu, přichází ze železného reservoiru $x$, obklopeného mrazivou směsí ledu a kuchyňské soli, a proudi odtud úzkou trubičkou $w w^{\prime}$ do měděné spirály, jež jest

[^133]vydatně chlazena směsí Thilorier-ovou, a pak do recipientu. Zde se vypařuje, jeho páry se zbytkem vzduchu se čerpají trubicí $v$, tim se vypařování urychluje a dociluje se ochlazení při 25 mm tlaku na - $136^{\circ}$, při 10 mm na $-152^{\circ}$. Kyslik za těchto poměrů zkapalněl velmi snadno.

Později upravil Olszewski jiný apparát na základech zcela podobných k tomu účelu, aby bylo moz̆no zkapalněný plyn vypouštěti do vhodných nádobek a pak ho jakožto kapalinu $k$ dalším pokusủm použivati. Schematicky jest přistroj jeho znázorněn v obr. 132. Poznáváme (na pravo) část souhlasnou s obr. 131. (na levo); obsahuje zařizeni na aethylen který zkapalněný vtéká do dvojstěnného recipientu $m$. Nádobka teploměru vodikového zde není, poněvadž o měření teploty se nejedná. Trubičkou $n k i$ (přes manometr $k$ ) lze aethylenové páry odssávati. Z levé strany přichází plyn (vzduch, kyslik) ze železného reservoiru $A$, v němž jest již komprimován


Obr. 131.
Apparát, jak jej upravili Wróblewski a Olszewski. na 100 atmosfér. Plyn vchází železnými trubičkami do železné nádoby $a$, která se silně chladí aethylenem za nízkého tlaku se vypařujicím. Když se pak ještě otevře kohout $d$, rozpíná se plyn náhle a stéká zkapalněný do skleněné nádobky e s trojitými stěnami, kdež se hromadí.

Wróblewski a Olszewski zkapalnili četné plyny, určili též jejich kritickou teplotu i kritický tlak a četná jiná data thermická. Úspëchu však největšiho dosáhl Olszewski, když se mu podařilo (1895) zkapalniti vodík. Stlačil plyn tento až na 190 atmosfér a ochladil ve vařícím se kyslíku na $211^{\circ}$. Když pak náhle tlak uvolnil na 20 atmosfér, pozoroval, že vodik zkapalněl a za obyčejného tlaku se vařil při teplotě, kterou (teploměrem platinovým) určil na $-243 \cdot 5^{\circ}$. Kritickou teplotu vodiku stanovil na $-2345^{0}$.

Otázkou kondensace vodiku zabýval se v letech následujících též Dewar*). Na jaře roku 1898 obdržel kapalný vodik v množství větsím, stlačiv jej na 180 atmosfér a ochladiv ve vařícím se vzduchu na $-205^{\circ}$; při náhlé expansi vznikal kapalný vodík v množství větším. Roku 1899 určil Dewar teplotu varu vodiku, za tlaku jedné atmosféry, na - $252 \cdot 0^{\circ}$.


Obr. 132.
Apparát, kterẻho užival Olszewski.

Při zmenšení tlaku na 30 mm ztuhla část vodiku; bod tání vodiku pevného určil Dewar na - $257^{\circ}$. Travers a Jacquerod nalezli (1903) teplotu - $258 \cdot 9^{\circ}$. Pevný vodik nemá vzezření kovovitého, nýbrž spíse sklovité.

Až dosud podařilo se tedy veškeré plyny zkapalniti a též ztužiti; jedinou výjimku čini helium, jež tedy dosud zůstává plynem permanentním.

[^134]
## § 126. Dokončeni. Princip regenerativni.

Přístroje na zkapalnění plynủ dosavade popsané vyznačují se tím, že daný plyn se chladí v lázni, kterouž dává jiný zkapalněný a prudce se vypařujicí plyn, při němž podminky zkapalnění jsou snadnějši. $K$ tomu přistupuje dalši ještě ochlazeni způsobené náhlým rozpětím daného plynu z tlaku velikého $p_{2}$ na tlak malý $p_{1}$ (bez vykonávání práce vnějši), tedy na př. tak, že se plyn stlačený na $p_{2}$ atmosfér nechá kohoutem unikati do prostoru o nižším tlaku $p_{1}$ atmosfér. Theoreticky *) jest ochlazení $\Theta$ určeno vzorcem

$$
\Theta=n \frac{p_{2}-p_{1}}{(1+\gamma t)^{2}},
$$

kdez̆ konstanta $n$ (normována pro $t=0$ ) charakterisuje příslušný plyn. Pro vzduch jest na př.

$$
\Theta=0.276 \frac{p_{\mathrm{a}}-\frac{p_{1}}{(1+\gamma t)^{2}} .}{}
$$

Kdyby se tedy vzduch při $t=0$ náhle nechal rozepnouti z $p_{2}=200 \mathrm{~atm}$. na $p_{1}=20 \mathrm{~atm}$., docílilo by se ochlazení $\Theta=50^{\circ}$. Je-li vzduch lázní již velmi nízko temperován, docílí se rozpětím ochlazení vydatnějšiho.

Jest však možno i bez takovéto lázně docíliti jenom rozpétím plynu postupně ochlazení až tak značného, že plyn se zkapalni. Děje se tak na základě principu regenerativního, o jehož realisování (1895) má zásluhu Linde**). Princip ten jest podobný „dynamickému", kterýžs tak velikým úspěchem zavedl Werner Siemens pro stroje dynamoelektrické. Zde slabým magnetismem se indukuje proud, tento sesili onen magnetismus, tím se zase sesili indukovaný proud, tím opět magnetismus atd. a tak postupně, až i magnetické pole i proud jím indukovaný dosáhne stupně dle daných poměrủ nejvyššiho. U principu regenerativního jest původní vzduch málo chladný, rozpětim se ochladi více, tímto chladnějším vzduchem chladí se zase onen daný, jeho rozpětím se dosáhne ještě chladnějšiho atd., až konečně teplota klesne tak značně, že i za mirného tlaku vzduch ka-

[^135]palni. Dle tohoto principu jest tedy nutno vzduch, ktery se ochladil, vésti zase zpátky proti pủvodnimu proudicímu, který se tím chladi vydatněji, jinými slovy jest nutno opafřiti zařizeni protiproudové; toto tvoří hlavni a podstatnou část apparátu Lindeova.


Obr. 183.
Apparát Lindeủv.

Uspoř̌adáni celkové znázorňuje schematicky obr. 133. Cirkulaci vzduchovou ovládaji dvě pumpy, tvoříci tak zvaný kompressor, kteréž jsou hnány motorem parním nebo plynovým. Jedna z těch pump komprimuje vzduch na 20, druhá na 200 atmosfér, ve válci $d$, který je obklopen studenou vodou. Vzduch takto komprimovaný žene se trubicí $P_{2}$ přes válec $f$, v němž se zachycuje voda kompressorem spolu stržená, do chladiče $g$, obsahujícího obyčejnou mrazivou směs kuchyňské soli a ledu,
kde se vzduch zbavuje vodní páry a zároveň napřed chladí. Odtud vstupuje do protiproudového zařizení, totiž do dlouhé úzké měděné spirály, která se nalézá uvnitř souosé širší měděné spirály. Vzduch probíhající úzkou spirálou vyráží ventilem $a$, při čemž se rozpiná z tlaku 200 atmosfér na tlak asi 20 atmosfér. Tim se ochlazuje, a tento tak ochlazený vzduch vstupuje do širši spirály, proudi zde zpátečně a ssaje se trubicí $P_{1}$ do kompressoru, který přissává též vzduch $z$ atmosféry a směs obou vháni zase do apparátu zpět. Jest patrno, že touto protiproudovou cirkulací teplota vzduchu stále klesá; nebof vzduch rozpětím ochlazený a zpátečně širší spirálou proudicí chladí zase vzduch v užši spirále, tak že pak rozpětím ochlazování postupuje až tak daleko, že za tlaku oněch 20 atmosfér vzduch kapalní a v nádobě $c$, jako syfon zařízené, se hromadi, odkudž mủže kohoutem $h$ se vypouštěti. Protiproudová dvojspirála jest k dokonalé isolaci tepelné obalena hrubou ovči vlnou, a celek je uzavřen ve válci dřevěném

K delšímu uschování kapalného vzduchu osvědčují se velmi dobře skleněné nebo i kovové Dewar-ovy nádoby o dvojitých stěnách, mezi nimiž jest prostor evakuovaný. Skleněné bývají uvnitř střibřeny*). Nádoby ty hotoví se nyní ve velikosti mnoha litrů.

Kapalný vzduch jest směs kapalného dusiku a kysliku anebo spíše roztok kysliku v kapalném dusiku (Goldhammer 1904), normálně $20.9 \% O_{Q}$ a $79 \cdot 1 \% N_{Q}$. Avšak v tomto normálním složení se kapalný vzduch neadrží; nebot kapalný dusik se vaři již při - $1955^{\circ}$, kapalný kyslik teprve při - $182^{\circ} 04^{\circ}$. Proto se dusik vypařuje rychleji, čímž dusiku ve směsi relativně ubývá a kyslíku přibývá; směs stává se tedy na kyslík bohatši. Tím se měni též bod varu směsi. Složení páry nad směsi odchyluje se však značně od složeni kapaliny; pára jest na kyslik chudši. Souvislost těchto veličin studoval Baly; výsledky jeho práce jsou sestaveny v tabulce následujíci.

[^136]$$
-372-
$$

Bod varu kapalné směsi dusíku a kysliku v souvislosti se složením kapaliny a páry nad kapalinou.

Bod varu	$\begin{gathered} \text { Procenta } \\ \mathrm{O}_{2} \\ \text { v kapalině } \end{gathered}$	$\begin{gathered} \text { Procenta } \\ O_{2} \\ \text { v páre } \end{gathered}$	Bod varu $t^{\circ}$	$\begin{gathered} \text { Procenta } \\ \mathrm{O}_{2} \\ \text { ₹ kapalinẽ } \end{gathered}$	$\begin{gathered} \text { Procenta } \\ O_{2} \\ \mathrm{v} \text { parie } \end{gathered}$
$-195 \cdot 46^{0}$	0.00	0.00	$-188$	$72 \cdot 27$	$44 \cdot 25$
-195	$8 \cdot 10$	$2 \cdot 18$	-187	$77 \cdot 80$	$52 \cdot 19$
-194	$21 \cdot 60$	6.80	- 186	82.95	60.53
-193	$33 \cdot 35$	12.00	- 185	$87 \cdot 60$	69:58
-192	$43 \cdot 38$	$17 \cdot 66$	$-184$	91.98	$79 \cdot 45$
$-191$	$52 \cdot 17$	$23 \cdot 60$	- 183	$96 \cdot 15$	$89 \cdot 80$
$-190$	59.55	29.95	- 182.04	100	100
-189	$66 \cdot 20$	$36 \cdot 86$			



Obr. 134.
Jaký jest bod varu prii smẻsi kapalného kysliku a dusiku za různêho procentuálniho slozeni.

Na základě této tabulky jest kreslen diagramm v obr. 134., v němž jest znázorněno, jak při různém procentuálním složení
kapalné směsi bod varu se mění, přecházeje od bodu varu - $1955^{\circ}$ dusiku k bodu varu - $182^{\circ}$ kysliku. Dále jest kreslen


Jaké jest u kapalné směsi kysliku a dusiku při rûznẻm bodu varu procentuálni sloz̃eni kapaliny a páry.
diagramm v obr. 135., znázorňující, jaké jest při rủzném bodu varu procentuálni složení směsi kapalné i směsi par.

## § 127. Kritická data.

Jakožto veličiny kritické označujeme především teplotu ${ }_{\left(t_{k}\right)}$ a tlak ( $p_{k}$ ), teplotu ve stupnich $C$, tlak v atmosférách ${ }^{*}$ ), dále kritický objem ( $v_{k}$ ), který se obyčejně udává v dilech toho objemu, který má plyn za poměrủ normálních, t. j. při teplotě nullové a tlaku jedné atmosféry; konečně kritickou hustotu $\left(d_{k}\right)$ vztahovanou na vodu hustoty maximálni.

Při velikých obtižich, jež stanoveni dat kritických činí, neni divu, že údaje různých pozorovatelủ jsou od sebe dosti rozdilné. V následujicí tabulce ${ }^{* *}$ ) jsou obsažena kritická data předevšim pro plyny dříve permanentními zvané; přijaty jsou středni hodnoty dat nejnovějších a zaokrouhlené. Pak následuji

[^137]vzácné plyny elementární (jednoatomové) a konečně y̌ada sloučenin známějšich a fysikálně dủležitějšich, tyto v pořádku dle kritické teploty vzestupném.

## Data kritická.

Ply $n$	Slozeni	Teplota	Tlak	Objem	Hustota
		$t_{k}$	$p_{k}$	$v_{k}$	$d_{k}$
vodik	$\mathrm{H}_{2}$	- 235	20		
dusik	$N_{2}$	- 146	35	0.00460	$0 \cdot 40$
kysličnik uhelnaty	CO	- 140	36		
kyslik . . . . . .	$O_{\text {a }}$	$-118$	50	$0 \cdot 00404$	$0 \cdot 63$
kysličnik dusičitý	NO	- 94	71		
methan . . . . .	$\mathrm{CH}_{4}$	- 90	52		
vzduch		$-140$	39		
helium	He	- 264	-		
neon	Ne	- 205			
argon .	A	- 119	52		
krypton . . . .	Kr	- 63	54		
xenon .	X	14.7	57		
aethylen	$\mathrm{C}_{2} \mathrm{H}_{4}$	11	54	$0 \cdot 00569$	0.30
kysličnik uhličity	$\mathrm{CO}_{2}$	31	75		
aethan . . . .	$\mathrm{C}_{2} \mathrm{H}_{6}$	35	45		
kysličník dusnatý	$\mathrm{N}_{2} \mathrm{O}$	37	75	$0 \cdot 0054$	$0 \cdot 46$
chlorovodik . .	HCl	52	88	0.0046	$0 \cdot 43$
sirovodik	$\mathrm{H}_{2} \mathrm{~S}$	100	90		$0 \cdot 61$
methylaether .	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	130	57		
ammoniak	$\mathrm{NH}_{3}$	131	113		
chlor	$\mathrm{Cl}_{2}$	145	87		
kysličník siřičitý .	$\mathrm{SO}_{2}$	156	78	0.00587	0.50
aethylaether . . .	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	197	36	0.01584	0.21
methylalkohol .	$\mathrm{CH}_{4} \mathrm{O}$	240	79		$0 \cdot 272$
aethylalkohol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	244	63	$0 \cdot 00713$	$0 \cdot 288$
sirouhlik	$C S_{2}$	273	73	0.00901	
benzol	$\mathrm{C}_{6} \mathrm{H}_{5}$	289	48		0.305
voda	$\mathrm{H}_{2} \mathrm{O}$	364	195	$0 \cdot 00386$	0.54

## § 128. Rovnice stavojevná a poměry kritické.

V odstavei 58. jednali jsme o stavojevné rovnici van der Waalsově

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R(1+\gamma t),
$$

kterou se vztah mezi objemem $v$, tlakem $p$ a teplotou $t$ vyjadřuje pro plyny skutečné. Jsou-li konstanty této rovnice pro některý plyn, na př. kysličník uhličitý, vypočteny, múžeme souvislost objemu $v$ a tlaku $p$ pro každou teplotu $t$ z rovnice té počítati a graficky znázorniti; obdržíme tak isothermy theoretické. Snižujeme-li teplotu $t$ a bližíme-li se kritické, musí býti možno, existuje-li skutečně spojitost stavu plynného a kapalného, obdržeti též theoretickou isothermu pro poměry kritické, t. j. tyto poměry kritické z oné rovnice vypočisti.

Upravime-li uvedenou rovnici dle mocností objemu $v$, obdržíme

$$
v^{3}-\left[\frac{R(1+\gamma t)}{p}+b\right] v^{2}+\frac{a}{p} v-\frac{a b}{p}=0 .
$$

Rovnice tato jest třetiho stupně, má tudiž při arbitrární teplotě $t$ pro každé $p$ tři kořeny $v_{1}, v_{2}, v_{3}$. Dle známých zákonů o rovnicich maji pro tyto kořeny platnost relace

$$
\begin{aligned}
v_{1}+v_{2}+v_{3} & =\frac{R}{p}(1+\gamma t)+b, \\
v_{1} v_{2}+v_{1} v_{3}+v_{2} v_{3} & =\frac{a}{p} \\
v_{1} v_{2} v_{3} & =\frac{a b}{p} .
\end{aligned}
$$

Pokud látka jest plynem, náleži ke každému $v$ jediné určité $p$, jsou tudiž dva kořeny imaginárné. Také, když látka již jest kapalinou, plati totéž. V poměrech přechodních jsou, jak niže ješ̃ě̌ vyložíme, všechny tři kořeny reálné, a tyto splývaji v jediný při poměrech kritických, kde tudiž jest,

$$
r_{1}=v_{\mathrm{a}}=v_{3}
$$

Označíme-li kritické hodnoty veličin $v, p, t$ postupně pismenami řeckými $q, \pi, \vartheta$, obdržíme

$$
\begin{aligned}
3 \gamma & =\frac{R}{\pi}(1+\gamma \vartheta)+b \\
3 \gamma^{2} & =\frac{a}{\pi} \\
q^{3} & =\frac{a b}{\pi}
\end{aligned}
$$

Z rovnic těchto plyne ihned

$$
\begin{aligned}
q & =3 b, \\
\pi & =\frac{1}{27} \frac{a}{b^{2}}, \\
1+\gamma \vartheta & =\frac{8 a}{27 R b} .
\end{aligned}
$$

Z konstant $R, a, b$ rovnice stavojevné lze tudiž veličiny kritické počítati. Ale také naopak. Poněvadž konstanta $R$ pro všechny plyny je stejnou a známou, počítá se $a, b$ jen z kritické teploty a kritického tlaku. Vycházi pak po snadné redukci

$$
\begin{aligned}
& b=\frac{R}{8} \frac{1+\gamma \vartheta}{\pi} \\
& a=\frac{27 R^{2}}{64} \frac{(1+\gamma \theta)^{2}}{\pi}
\end{aligned}
$$

Dle téchto vzorcú jsou na pĩ. y tabulkách Landolt-Börnsteinových (1905), pag. 187, vypocteny orientačni hodnoty velicin $a, b$ a to pro takovon volbu jednotek, při níź jest $R=1$. V tomto pî́padê platí pro objem jednotka tak zvaná stheoretická normailnic, totiz̄ objem, kterỵ by dané kvantum plynu zaujalo píi pomérech normailnich $\left(0^{\circ}, 1 \mathrm{~atm}\right.$.). Pro kvantum jedné gramm-molekuly jest tato stheoretická normalnis jednotka objemova $=22387 \mathrm{~cm}^{3}$, jak v § 50 . bylo vypoc̄teno ${ }^{*}$ ).

Dlužno ovšem připomenouti, že také rovnice van der Waalsova nevystihuje stav plynu naprosto; zejména veličina $b$ jest pravdépodobnẽ funkci objemu $v$.

Vzhledem $k$ tomu, že kriticky bod přislus̃né isothermy jest bodem inflekẻním, kde tečná jest s osou ưseček rovnobẻz̃ná, obdržíme pro jakoukoli rovnici stavojemou hodnoty pro veličiny kritické z rovnic

$$
\left(\frac{d p}{d v}\right)_{t}=0 \quad\left(\frac{d^{2} p}{d v^{2}}\right)_{t}=0
$$

Index $t$ znamená, že pṛi differenciaci proměnnả $t$ jest (arbitrární) konstantou. Tyto dvẽ rovnice ve spojení s pủvodní podávají kritické veličiny.

[^138]Sestoupime-li pod teplotu kritickou $\vartheta$ počítajice theoretické isothermy, obdržíme pro tyto $v$ grafickém znázorněni prủběh od skutečného rozdilný. V obr. 127. jest schematicky naznačena isotherma pro teplotu kritickou a pak isotherma nižši, jak ji dává skutečnost a jak výpočet z rovnice stavojevné (čárkovaně). Při isothermě theoretické, kdy̌̌ páry jsou již nasycené, stoupalo by dále ještě napěti při kompressi, pak by napěti s kompressi dokonce klesalo a pak opět stoupalo. Ve skutečnosti zůstává napětí konstantní. Avšak přičinou toho jest, že daná látka se vyskytuje ve dvou skupenstvích zároveň, částečně jako pára nasycená, částečně pak již zkapalněná; odtud odchylka theorie od skutečnosti. Jenom v začáteční větvi a v konečné jest v jistém smyslu souhlas; větev začátečni by odpovidala plynům přesyceným, jichž napětí ještě při kompressi stoupá, větev pak konečná kapalinám přehřátým, jichž napěti jest menší než a par nasycených stejně temperovaných. Byly také činěny pokusy vysvětliti průběh křivky, jež odpovídá stavu labilnímu, ježto při kompressi tlak klesá; realisovati však stav tento bude sotva kdy možno.

Přesycenost par na pr̃. vodních jest vskutku moz̃ná. Když vzduch (horskẏ, prosty̌ všeho prachu), jenz̃ jest parami téměř nasycen, vstupuje do vétšich rẏšek a tam se ochlazuje, nenastává vždy kondensace, deşt, nýbrž udrži se ćasto stav presycenosti. Kdyz̀ pak prece kondensace začne, pokračuje rapidnẽ, çimz̄ vznikaji bourky spojené s prudkými lijâky. Kdyz̀ se studuje napěti par nasycených, na pr̂. isothermicky zmens̃ováním objemu par přehřátých, nutno téź počitati s možnosti, z̃e by pary se staly přesycenŷmi, tak že by se kondensace opozdila.

## § 129. Stavy plynů souhlasné.

Rovnice van der Waalsova

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R(1+\gamma t)
$$

mủže býti formálně pozměněna ve způsobu zajímavém, když do ni zavedeme relativní čísla pro napěti, objem a absolutní teplotu vzhledem $k$ hodnotám kritickým. tedy veličiny - tak zvané redukované -

$$
\frac{p}{\pi}=p^{*}, \frac{v}{\tau}=v^{*}, \frac{1+\gamma t}{1+\gamma \vartheta}=1+\gamma t^{*}
$$

Dosadime-li za $\pi$, q a $1+\gamma \vartheta$ výrazy dříve vypočtené, totiž (§ 128.)

$$
\begin{aligned}
\vartheta & =3 b \\
\pi & =\frac{1}{27} \frac{a}{b^{2}} \\
1+\gamma \vartheta & =\frac{8 a}{27 R b}
\end{aligned}
$$

obdržíme po krátké redukci rovnici stavojevnou ve formě

$$
\left(p^{*}+\frac{3}{v^{* 2}}\right)\left(3 v^{*}-1\right)=8\left(1+\gamma t^{*}\right)
$$

Múžeme ji zváti - analogicky - též redukovanou. Veličiny $p^{*}$, $v^{*}, 1+\gamma t^{*}$ jsou významem svým souhlasné *) s veličinami $p$, $v, 1+\gamma t$, jenom že jsou jinak vyčísleny, jsouce měřeny jinými jednotkami, totiž příslušnými hodnotami kritickými. Tu pak jest zajímavo, že redukovaná rovnice van der Waalsova nemá významu individuálního (jako původni), jenom pro plyny jednot. livé, nýbř̌ universálniho pro plyny vůbec, ježto jeji konstanty jsou určité a všeobecně platné. O plynech, jimž přisluši totéž $p^{*}, v^{*}$ a $1+\gamma t^{*}$, pravíme, že jsou ve stavu souhlasném (korrespondujícím); postači, když maji dvě z těchto redukovaných veličin stejné; že mají pak také i třetí stejnou, následuje jako dủsledek z oné redukované rovnice stavojevné.

Sestrojíme-li dle redukované rovnice van der Waalsovy theoretické isothermy, obdržíme diagramm, jenž má platnost pro plyny vůbec.

Rozmanité dúsledky, jež z této nauky o stavech korrespondujicich byly theoreticky odvozeny, nejsou se skutecenosti v soullasu uspokojivém. Proto byly navrżeny nêkteré zmény onéch definicí pro veliciny redukované. Tak na pf̌ mél by dle téchto nâvrhử **) redukovaný objem (a podobné i tlak a absol. teplota) býti definovan jakozto

$$
v^{*}=\frac{v-\text { const } .}{q-\text { const } .}
$$

Mêla by se tedy od objemu skutec̃ného i kritického (a podobnẽ i od tlaku a absol., teploty) odečisti jakási korrektivní konstanta, která by se pro každýy plyn méla vypočisti, tak aby seedocililo lepsiho souhlasu skutećnosti a theorie. Ale tím nabývá celá theorie o stavech korrespondujicích

[^139]struktury umêlé, strojené a přestává její všeobecný rảz, tedy prảvě to, cám se s počatku nejvice zamlouvá.

0 vs̉ech téchto otãzkảch jedná se téz̃ ve spise Chemie fysikální, kterou napsal A. Reychler a preloz̃il E. Votoček (v Praze 1902.) Viz zejména pag. 38 až 55.

## § 130. Kritické poměry směsi a roztoků.

Je-li dána kapalná směs, v níž jest obsaženo $x \%$ kapaliny I. s kritickou teplotou $\vartheta_{1}$ a $y \%_{o}^{\prime}$ kapaliny II. s kritickou teplotou $\vartheta_{2}$, jest kritická teplota $\vartheta$ směsi dána výrazem

$$
\vartheta=x \vartheta_{1}+y \vartheta_{2}
$$

Nảleží tudiž kritická teplotak veličinám, jež ve směsích vystupují additivně, dle poměrného zastoupeni. Jednoduchý zákon tento nalezl (1880) Strauss *) u směsí alkoholu a vody. Zákon se dobře osvědčuje též pro vzduch jakožto směs kysliku ( $21 \%$, $\vartheta_{1}=-118^{\circ}$ ) a dusíku ( $79 \%, \vartheta_{2}=-146^{\circ}$ ), pro který vychází

$$
-\vartheta=0.21 .118+0.79 .146=140
$$

kterýžto výsledek s pozorováním souhlasí.
Zajímavé zjevy nastávají při zkapalňování plynných směsí. O této otázce konal v letech 1880-1883 prvni pokusy Cailletet. Když směs 1 objemového dilu vzduchu a 5 objemových dilủ kysličníku uhličitého isothermicky komprimoval, zkapalněla nejprve jedna část směsi; při další kompressi však kapalina právě vytvořená zmizela. Podobné zjevy pozoroval u směsi vodíku a kysliku uhličitého. Také van der Waals učinil stejná pozorování n směsi vzduchu a kysličníku uhličitého a u směsi chlorovodíku s kysličníkem uhličitým. Vlastní priorita by však náležela, jak Stokes r. 1886 dokázal, Andrewsovi (jenž zemřel 1885), kterýž zjev ten pozoroval při kondensování směsi kysličniku uhličitého a dusiku. V nověǰ̌̌í době zabývali se zjevem tím podrobněji v. Kuenen, jenž zavedl pro něj pojmenování retrográdní (zpětné) kondensace, zejména pak (1901-1904) Caubet (v Pařiži), jenž studoval směsi kysličníku uhličitého a siřičitého ( $\mathrm{CO}_{\mathrm{o}}$ a $\mathrm{SO}_{2}$ ), kysličníku uhličitého a chlormethylu ( $\mathrm{CO}_{2}$ a $\left.\mathrm{CH}_{3} \mathrm{Cl}\right)$, kysličniku siřičitého a chlormethylu ( $\mathrm{SO}_{2}$ a $\left.\mathrm{CH}_{3} \mathrm{Cl}\right)$, kysličníku uhličitého a dusnatého $\left(\mathrm{CO}_{2}\right.$ a $\left.\mathrm{N}_{2} \mathrm{O}\right)$.

[^140]
## V.

## O teple skupenském.

## § 131. Roztřidění úkolů.

Druhým hlavním úkolem kalorimetrie je stanovení tepla skupenského, totiž tepla (v gramm-kaloriích), kterým se jednotka hmotná (jeden gramm) nějaké látky převede ze skupenstvi daného ve skupenství nejbliže vyšši. Př̌i studiu tohoto převodu pokládáme teplo specifické za známé; jeho určování jsme na svém místě označili jakožto prvý hlavni úkol kalorimetrie. V tomto oddilu budeme teplo specifické označovati $C$ pro skupenstvi pevné, $C^{\prime}$ pro kapalné a $C^{\prime \prime}$ pro plynné. Teplo skupenské pro přechod ze skupenství pevného v kapalné jest teplo tavení o, pro přechod ze skupenství kapalného v plynné teplo vyparovánír $r$.

Proměna skupenství pevného v kapalné děje se při teplotě tavení $\Theta$, která tlakem se mění jen měrou skrovnou; proto jest teplo tavení určité a jen málo s teplotou $\Theta$ proměnlivé. Přeměna ve skupenství plynné, vypařováni a var kapalin, děje se se však při každé teplotě $t$, při čemž se předpokládá tlak, kterým působi nasycené páry téže teploty $t$. Proto jest teplo vypařováni $r$ závislé na této teplotě, i jest úkolem kalorimetrie také tuto závislost vystihnouti. Při tom dospivá se k zajímavým vztahům k teplotě kritické.

## § 132. 0 teple taveni.

Kalorimetrický pochod, význačný pro tavení, vynikne přehledně grafickým znázorněním (obr. 68.), z něhož vysvitá, jak se pro každý gramm dané látky měni obsah tepelný od teploty nullové počínajíc. Přímka $O A$ udává svým odklonem $\alpha$ teplo specifické $C=t g$ a pro skupenstvi pevné. Když tepleta do-
stoupí bodu taveni $\Theta$, nastává přeměna skupenstvi, obsah tepelný stoupne az̆ o $A A^{\prime}=\varrho$, což jest teplo tavení, zatím coteplota $\Theta$ zůstává stationární. Když zkapalněni provedeno, stoupá obsah tepelný dle přímky $A^{\prime} K$, jež svým odklonem $a^{\prime}$ udává teplo specifické $C^{\prime}=\operatorname{tg} \alpha^{\prime}$ pro skupenstvi kapalné. Zpravidla jest $\alpha^{\prime}>\varepsilon, C^{\prime}>C$.


Obr. 136.
Jak se při taveni měni tepelný obsah (jednoho grammu v kaloriich) u vody, fosforu a síry.

Obr. 68. jest rýsován schematicky pro látky pevné vúbec. Teplo specifické $C$ i $C^{\prime}$ pokládáno při tom za konstantni. Když by se přihliželo k tomu, že teplo specifické s teplotou poněkud stoupá, pak bychom místo přímek $O A, A^{\prime} K$ obdrželi křivky k ose temperaturní mírně konvexni. Úhly $a, a^{\prime}$ byly by pak měnlivé, udávajíci odklon tečné, kterou k oněm křivkám při úsečce $t, t^{\prime}$ vedeme a výrazy $\operatorname{tg} \alpha, \operatorname{tg} a^{\prime}$ znamenaly by pravé teplo specifické $C_{t}, C_{t}^{\prime}$ pro teplotu $t, t^{\prime}$. Malou touto modifikaci by se však celkový ráz obrazce 68. nezměnil.

Dobře jest misto obrazce schematického provésti též výkres pro poměry určité, konkretni. Obr. 136. jest rýsován přesně pro led, fosfor a siru.

Bod taveni jest zde

	$\Theta=0^{\circ}$,	$44^{\circ}$,	$115^{\circ}$.
teplo tavení	$\imath=80$,	$5 \cdot 0$,	$9 \cdot 4 \mathrm{cal}$.

$$
\vartheta=80, \quad 5 \cdot 0, \quad 9 \cdot 4 \mathrm{cal} .
$$

Teplo specifické před tavením

$$
C=0.5, \quad 0 \cdot 19, \quad 0 \cdot 18
$$

a po taveni

$$
C^{\prime}=1 \cdot 0, \quad 0 \cdot 20, \quad 0 \cdot 24
$$

Dle toho jest úhel
a úhel

$$
\varepsilon=26 \cdot 7^{0}, 10 \cdot 8^{0}, \quad 10 \cdot 2^{0}
$$

$$
\varepsilon^{\prime}=45^{0}, \quad 11 \cdot 2^{\circ}, \quad 13 \cdot 5^{\circ}
$$

## § 133. Jak se určuje skupenskė teplo taveni.

Skupenské teplo tavení e určuje se týmiž methodami jako teplo specifické, nejčastěji kalorimetrem směšovacim nebo ledovým Bunsenovým. Užívá-li se kalorimetru směšovacího, jest experimentálni postup rủzný dle toho, zdali začáteční teplota kapaliny kalorimetrické jest nižší nebo vyšši než bod taveni daného tělesa. V případě prvém vloží se do kalorimetrické nádoby dané těleso jakožto kapalné a nechá se přes bod tuhnutí přejíti ve skupenství pevné; těleso chladnouc teplo vydává a teplem tím se kalorimetrická kapalina zahřivá. V druhém připadě vloží se do kalorimetrické kapaliny těleso jakožto pevné a nechá se přes bod taveni zkapalněti; těleso, zahřivajic se, teplo spotřebuje a ujímá je kapalině kalorimetrické, kteráž chladne. V přislušných výrazech, jež jsou v podstatě pro oba případy stejné, maji jen některé temperaturni difference opačná znamení.

Zaveđ̛me stejné označeni jako při stanoveni tepla specifického v $\S 65$. Budiž hmota daného tělesa $M$, jeho začáteční teplota $t_{\mathrm{q}}$; hmota kapaliny kalorimetrické $m$, začátečni teplota $t_{1}$; konečná teplota $v$ kalorimetru budiž $\tau$. Dále znači $\Theta$ bod tavení, o skupenské teplo tavení. Zde však jest třeba znáti též teplo specifické. Znamenejmež $C^{\prime}$ a $C^{\prime}$ specifické teplo daného tělesa ve skupenstvi pevném a kapalném, c specifické teplo kapaliny v kalorimetru.

1. Budiž $t_{1}<\Theta$. Pro tento případ znázorňuje graficky obr. 137. postup celého processu tepelného. Množství $Q$ tepla, jež těleso, chladnouc z $t_{2}$ na $\Theta$, tuhnoue při $\Theta$ a opět chladnouc z $\Theta$ na $\tau$, celkem vydává, a jež na druhé straně kapalina v kalorimetru, zahřívajíc se $z t_{1}$ na $\tau$, přijímá, jest dáno výrazy
sobè rovnými

$$
M C^{\prime}\left(t_{2}-\Theta\right)+M \varrho+M C(\Theta-\tau)=m c\left(\tau-t_{1}\right) .
$$

$Z$ rovnice této vypočteme

$$
\varrho=\frac{m}{M} c\left(\tau-t_{1}\right)-C^{\prime}\left(t_{2}-\Theta\right)-C(\Theta-\tau)
$$



Obr. 137.
Jak se urẽuje kalorimetricky teplo taveni u látky, jez̃ tuhnouc vodu v kalorimetru zahřìivá.
2. Budiž $t_{1}>\Theta$. Postup processu tepelného jest graficky podán v obr. 138. Kapalina v kalorimetru, chladnouc $\mathrm{z} t_{1}$ na $\tau$, vydává množství tepla $Q$, kteréž těleso zahřívajíc se z $t_{2}$ na


Obr. 138.
Jak se určuje kalorimetricky teplo taveni látky, jez̃ tavic se vodu v kalorimetru chladi.
$\Theta$, tavic se při $\Theta$ a ještě dále se zahřívajíc z $\Theta$ na $\tau$ přijímá, při čemž jest $Q$ dáno výrazy sobě rovnými

$$
M C\left(\Theta-t_{2}\right)+M o+M C^{\prime}(\tau-\Theta)=m c\left(t_{1}-\tau\right) .
$$

$Z$ rovnice této pak plyne

$$
\varrho=\frac{m}{M} c\left(t_{1}-\tau\right)-C\left(\Theta-t_{2}\right)-C^{\prime}(\tau-\Theta)
$$

Vzpomeneme-li, že v grafickém znázornění specifické teplo $C$. $C^{\prime}, c$ značí tangentu úhlu, který přímka souhlasně označená uzavírá s osou temperaturni, mủžeme ihned geometrickou interpretaci obou těch základních rovnic ve všech jednotlivých částech z tohoto grafického znázornění vyčisti, ovšem pro $M=1$ a $m=1$; proto nutno pak ještě těmito faktory násobiti. V obrazcich jsou vzhledem k tomu veličiny $M, m$ v závorkách př̌ipojeny.

Dle druhého zpûsobu lze provésti velmi pouc̃ný prednáškový pokus. Pripravi se $M$ grammú tajíciho ledu a $m$ grammủ vařicí vody. Pak se led vhodi opatrně do vody a promíchává se, až vseechen led roztaje; voda má pak teplotu $\tau$. Process tepelny

$$
\left(t_{2}=0, \Theta=0, \quad C^{\prime}=1, \quad c=1\right)
$$

jest vyjádien rovnici

$$
M g+M \tau=m\left(t_{1}-\tau\right)
$$

kteráž se jesté zjednoduši, když se volí $M=m$. Pak jest jednodus̃e

$$
\vartheta+\tau=t_{1}-\tau
$$

anebo, poloz̃ime-li $t_{1}=100^{\circ}$, coz̃ pribliz̃ně za obyčejných pomérủ tlakových postači,

$$
\varrho=100-2 \tau
$$

Pokus se v pr̂ednáskách provádí tak, že se kilogramm ledu odvaz̃í y nálevce, kteri před tím byla na vahách vytárována; za tajici vodu, která nảlevkou odtéká, dosazuji se kousky ledu až do té chvile, kdy se pokus má provésti. Vedle toho se litr vody svaĭí ve vétší kádince. Pak se kảdinka s var̃íci vodou postaví na podložku plstěnou a led vsype se opatrně do var̆icí vody; micháním hledíme dociliti rychlého roztãí ledu. Ponẽvadz̃ jest $\vartheta=80$, očekávali bychom $\tau=10$. Pokusem nacházime o nẻco více. na pr̂. $\tau=115$ neb i $12^{\circ}$, jednak proto, že kádinka byla téż zahratá a nyni teplotu vody zuyšuje, jednak proto, że led do vody vhozený na svém povrchu již z části taje. Vodní hodnotu kádinky neni ovšem nesnadno uvésti v počet; druhé však okolnosti predejiti, kdyz̀ se pokus déje y síni vytopené, jest nemoz̃no. Ale i přes tuto nepresnost jest pokus svou jednoduchostí jakożto orientační velmi pouc̃ný.

Uživá-li se kalorimetru ledového, na př. Bunsenova, dlužno opět rozeznávati dva připady, obdobně jako při kalorimetru směšovacím.

1. Budiž bod tavení $\Theta>0$. Do kalorimetru vloži se pak těleso roztavené na teplotu $t_{2}>\Theta$, a nechá se zde přes bod taveni $\Theta$ ochladiti na nullu; těleso teplo vydává a teplem tím se $m$ grammú ledu rozpusti. Process tepelný vyjadřime pak
rovnicí

$$
M C^{\prime}\left(t_{2}-\Theta\right)+M o+M C \Theta=80 m
$$

ze které plyne

$$
\because=80 \frac{m}{M}+\left(C^{\prime}-C\right) \Theta-C^{\prime} t_{2}
$$

2. Budǐ̌ bod tavení $\Theta<0$. Do kalorimetru přijde pak těleso ve skupenství pevném, teploty $t_{2}<\Theta$, které se zahřeje přes bod tavení $\Theta$ na nullu; těleso tedy teplo spotřebuje a ubirá je vodě, kteráž mrzne, tak že se $m$ grammů ledu nově vytroři. Process tepelný jest pak vyjádřen rovnicí

$$
M C\left(\Theta-t_{2}\right)+M g-M C^{\prime} \Theta=80 \mathrm{~m}
$$

ze které plyne

$$
\vartheta=80 \frac{m}{M}+\left(C^{\prime}-C\right) \Theta+C t_{2}
$$

Zde dluz̃no pamatovati, že teploty $t_{2}<\Theta<\tau=0$, jsou negativní; kdyz̀ se za $t_{2}$ a $\Theta$ vloz̃i císla negativni, vyjdou v piedposlední rovnici věechny çleny na levo positivně.

Na mistě 80 m lze v obou připadech psáti $882 v$, kdež znamená $v$ objem ledu, který se bud rozpustil nebo nově utvořil.

Při všech těchto pracich. bud kalorimetrem směšovacím nebo ledovým, dlužno šetřiti všech těch předpisů, jež v přičině různých korrekei byly dány při stanovení tepla specifického. Zejména vodní hodnotu kalorimetru. michačky, teploměru atd. dlužno uvésti v počet, a také účinek ztrát tepelných dlnžno, jak tam vyloženo, učiniti pokud možná neškodným.

## § 134. Výsledky.

Číselné výsledky o teple skupenském tavení podávají fysikálni tabulky *). Za přiklad budtež zde uvedena některá data pro prvky, zejména kovy. Vedle tepla skupenského o, vztahujícího se na 1 gramm v malỷch kaloriích, jsou zde též uvedena čísla vztahující se na gramm-atom, a to v kaloriich velkých, aby se zjednala čísla přehlednějši. $\Theta$ jest pozorovaný bod tavení, k němuž skupenské teplo o přisluši.

[^141]Bod tavení a skupenské teplo tavení některých látek.

Látka	Označení	$\begin{aligned} & \text { Váha } \\ & \text { atomová } \end{aligned}$	$\underset{\text { taveni }}{\text { Bod }}$	Skupenskẻ teplo 1 g tavení	Skupenské teplo taveni grammatomu
		c	$\Theta^{\circ}$	e cal	ae Cal
Fosfor	$P$	$31 \cdot 0$	44.2	5.03	$0 \cdot 16$
Kalium	$K$	$39 \cdot 2$	58	$15 \cdot 7$	0.6
Natrium	Na	$23 \cdot 1$	965	$31 \cdot 7$	$0 \cdot 7$
Síra. .	$S$	$32 \cdot 1$	115	$9 \cdot 37$	$0 \cdot 3$
Cin .	Sn	119.0	227	$14 \cdot 6$	1.7
Vismut	Bi	2085	266.8	12.5	$2 \cdot 6$
Olovo .	Pb	206.9	325	5.86	12
Zinek	Zn	$65 \cdot 4$	415.3	$28 \cdot 1$	1.8
Střibro	Ag	107.9	999	$21 \cdot 1$	$2 \cdot 3$
Żelezo	Fe	$55 \cdot 9$	(1000)	6.0	03
Měd .	Cu	$63 \cdot 6$	1080	43.0	$2 \cdot 7$
Platina	Pt	$194 \cdot 8$	1779	$27 \cdot 2$	$5 \cdot 3$

Zvláštni dủležitost - již vzhledem ke kalorimetru ledovému má skupenské teplo ledu. Jest velmi značné. čini okrouhle 80 cal. A. W. Smith (1903) udává $9=79.91 \pm 0.02$ cal $_{15}$. Bunsenova hodnota, dřive všeobecně přijímaná, činila 80.03 středni kalorie. M. A. Leduc (1905) nalezl $79 \cdot 2$ cal $_{15} . F$. Kohlrausch (1905) přijímá hodnotu $80 \cdot 0 \mathrm{cal}_{15}$. Oproti tomuto velikému číslu má rtut teplo taveni velmi malé, 2.8 cal .

## § 135. Pravidlo Personovo.

Stanovili jsme množstvi tepelné $Q$, kteréž těleso hmoty $M$ v mezich teplot $t_{2}$ a $\tau$

$$
\begin{array}{ll}
\text { bud vydává, je-li } & t_{2}>\theta>\tau, \\
\text { nebo přijímá, je-li } & t_{2}<\theta<\tau,
\end{array}
$$

když při teplotě $\Theta$ a teple skupenském ? bud tubne nebo se taví. Toto množství, na každý gramm, činí na př. pro případ prvý

$$
\frac{Q}{M}=C^{\prime}\left(t_{2}-\Theta\right)+e+C(\Theta-\tau)
$$

Úkaz přechlazení vede $k$ tomu, že by přechod skupenstvi mohl se diti též při jiné teplotě $\Theta^{\prime}$ a při jiném teple skupenském $\varrho^{\prime}$.

Je-li však začáteční a konečná teplota $t_{2}$ a $\tau$ tělesa stejnou, bude i množství tepla $Q$ stejné, tak že pro tento druhý přechod bude

$$
\frac{Q}{M}=C^{\prime}\left(t_{z}-\Theta^{\prime}\right)+\vartheta^{\prime}+C\left(\Theta^{\prime}-\tau\right)
$$

Z obou rovnic plyne třetí

$$
\varrho-\varrho^{\prime}=\left(C^{\prime}-C\right)\left(\Theta-\Theta^{\prime}\right)
$$

Rovnici touto jest zjednán vztah mezi změnou bodu tavení a změnou tepla skupenského. Poněvadž jest zpravidla $C^{\prime}>C$, vycházi, že obě změny jsou souhlasné a sobě úměrné. Čim více se bod taveni $\Theta^{\prime}$ snižuje, tím menší jest $\rho^{\prime}$.

Úměrnost právě vyslovená předpokládá, že rozdil $C^{\prime}-C$ jest konstantni, na teplotě nezávislý. Tato podmínka byla by splněna, kdyby obě tepla specifická $C, C^{\prime}$ byla konstantní. Při-pustíme-li to, pak mǔ̌̌eme početnè zavésti teplotu tavení $\Theta^{*}$ tak vzdálenou, aby bylo teplo taveni $=0$. Mêl by pak platnost vztah
aneb též

$$
\begin{aligned}
\imath & =\left(C^{\prime}-C\right)\left(\Theta-\Theta^{*}\right) \\
\varrho^{\prime} & =\left(C^{\prime}-C\right)\left(\Theta^{\prime}-\Theta^{*}\right)
\end{aligned}
$$

Temperaturni hodnotu $\Theta^{*}$ lze pro každou látku nalézti, jsou-li dány konstanty $C^{\prime}, C$ a skupenské teplo e pro obyčejný bod tavení $\Theta$. Tak jest na př. pro led (okrouhle)
tudiž

$$
\begin{array}{lr}
C=0 \cdot 5, & C^{\prime}=1 \cdot 0 \\
\Theta=0, & \imath=80 \cdot 0
\end{array}
$$

a

$$
\begin{aligned}
& 80=(1-0.5)\left(0-\Theta^{*}\right) \\
& \Theta^{*}=-160^{\circ}
\end{aligned}
$$

Geometrický význam hořejšich rovnic jest z obr. 139. ihned patrný, máme-li na zřeteli význam koefficientů $C$ a $C^{\prime}$, jak dřive byl udán. Jest totiž

$$
C=\operatorname{tg} 9, \quad C^{\prime}=\operatorname{tg} \varphi^{\prime}
$$

tedy

$$
\begin{array}{rlrl}
P A & =C\left(\Theta-\Theta^{*}\right), & Q B & =C\left(\Theta^{\prime}-\Theta^{*}\right) \\
P A^{\prime} & =C^{\prime}\left(\Theta-\Theta^{*}\right), & Q B^{\prime}=C^{\prime}\left(\Theta^{\prime}-\Theta^{*}\right)
\end{array}
$$

tudiž rozdil

$$
\varrho=\left(C^{\prime}-C^{\prime}\right)\left(\Theta-\Theta^{*}\right), \varrho^{\prime}=\left(C^{\prime}-C\right)\left(\Theta^{\prime}-\Theta^{*}\right)
$$

Jak již řečeno, docházíme k teplotě $\Theta^{*}$ předpokladem, že C a $C^{\prime}$ jest konstantní, na teplotě nezávislé ; extrapolaci obdr-

Žime pak prủsek $\Theta^{*}$ obou přímek označených v obr. 139. týmiž písmenami $C$ a $C^{\prime}$.

Person*) určil $\Theta^{*}$ pro mnohé látky a nale\%l pro některé velmi souhlasná čisla blízce - $160^{\circ}$. Tak pro fosfor, síru. ledek draselnatý i sodnatý a j. Domnival se dle toho, že vztah

$$
\imath=\left(C^{\prime}-C\right)(\Theta+160)
$$

má všeobecný význam. V tomto smyslu obsahuje tato rovnice "pravidlo Personovo". Avšak tohoto významu rovnice ta nemá; zejména pro kovy se neosvědčuje ani přibližně. O tom se ostatně Person sám na základě vlastnich pozorování přesvědčil, a proto


Obr. 139.
Geometrický význam pravidla Personova.
navrhoval pro kovy vzorec jiný. Všechny takovéto vzorce maji však význam podřizený a proto jich zde ani nenvádíme. Neni zajisté pochybnosti, že čáry $C$ a $C^{\prime}$, vyjadřujici stoupání obsahu tepelného bud ve skupenství pevném nebo kapalném, nejsou přínky, nýbrž křivky $k$ ose temperatur konvexní. Extrapolaci lineární nelze tudíz připustiti.

Rủznost tepla skupenského $a$ ledu při nižším bodu tavení jest též v obr. 136. dle skutečných poměrủ rýsovaném ( $A A^{\prime}=\vartheta$, $B B^{\prime}=\varrho^{\prime}, \Theta-\Theta^{\prime}=10^{\circ}$ ) naznačena.

[^142]
## § 136. 0 teple vypařovacim.

Teplo při vypařováni spotřebované lze stanoviti methodou dvoji. Dle jedné, starši, měří se množství tepelné, kteréž pára nasycená vydává, když se kondensuje v kapalinu. Dle druhé novějši, měří se množstvi tepelné, kteréž spotřebuje kapalina, když se měni v nasycenou páru. Přepočitá-li se měřeni dle methody prvé na jeden gramm páry, dle methody druhé na jeden gramm kapaliny, obdrži se teplo vypařovaci $r$ v grammkaloriich při pozorovací teplotě $t$. Kalorimetru možno uživati bud vodniho nebo ledového.

Při methodě prvé vede se pára z kotliku do tenkostěnnỷch spirálovitě stočených trubiček měděných, které probihaji kalorimetrem vodním nebo ledovým. Dlužno však miti pozor na to, že se pára z části kondensuje již dříve, než vstoupi do oné spirály, totiž v trubičkách přívodních. To mủže býti zdrojem chyby ve dvojim zpủsobu. Stéká-li tato kapalina do kotliku zpět, mủže teplo kondensaci této kapaliny vzuikajicí přejíti vedenim do oné spirály a tím do kalorimetru, čímž teplo vypařováni vypadne $o$ něco větším. Když však ona kapalina se proudem páry strhne s sebou a vstoupí do oné spirály, vypadne teplo vypa-


Obr. 140.
Apparảt Brixũv ke stanoveni tepla vypařovaciho. řování o něco menšim.

Z konkrétnich apparátủ, jak jich bylo při pracích vědeckých užito, budiž ze starších jako přiklad uveden apparát (obr. 140.), kterýž upravil $F$. $B r i x *$ ). Základem jeho jest kalorimetr vodní $A A$. Do něho jest vložena nádoba $B B$, v níž se páry maji kon-

[^143]densovati. Skládá se ze dvou souosých válcủ, nahoře a dole rovinně ohraničených, a jest nahoře trubičkou $L$ s vnějšim vzduchem spojena. Kapalina se vaří v retortě $R$, odkudž páry vystupuji trubici znenáhla se zúžujíci a v $P$ ostře zahnutou do prostoru $B B$, kde se kondensuji. Tím se zahřívá voda v kalorimetru, jejiž teplota se odečitá na teploměru $O$. Michačkou $C$ se voda promíchává. Ohnutím trubice přívodni v $P$ má se dociliti toho, aby kapalina, jež se kondensuje v této trubici účinkem chladnějšiho okolního vzduchu,


Obr. 141.
Apparát Berthelotúr ke stanoveni tepla vypařovaciho. před vstupem par do kalorimetru stékala do retorty zpět. Množství par. jež přejde do kalorimetru, určí se vážením retorty před pokusem a po provedení pokusu.

Z novějších přistrojù jevi se býti účelným a přehledným apparát (obr. 141.), který sestavil Berthelot*). Páry kapaliny, která se vaří v nádobě $D$, vystupují vzhủru a zahřívaji samy trubici $a$, kterou pak vstupuji do spirál $S$; zde se kondensuji v prostoru $R$, který se vzduchem vnějsím je spojen a zahřívaji vodu v kalorimetru C. Topi se malými plaménky plynovými v kruhu $B$ rozloženými a tlumenými drátěnou siti $M M^{\prime}$. Účinek zahřivací směrem dolů ke kalorimetru jest zamezen dřevěným přiklopem $H H^{\prime}$ a silným kartonem $N N^{\prime}$. Na teploměru $T$ sleduje se stoupáni teploty.
V nejnovější době (1901) zdokonalil velmi účelně Kahlenberg přistroj Berthelotủv tím, že zavedl topení elektrické spirálou platinovou přímo do kapaliny $D$ vlo-

[^144]ženou. Tím zabrání se eventuálnímu přehřáti kapaliny jakož i účinku topení na kalorimetr.

Výpočet se provádi analogicky jako při teple skupenském tavení. Páry, v mnoz̆ství $M$ se kondensujicí, vydají tepla $M r$, kapalina z nich vzniklá chladí se z teploty varu $\theta$ na výslednou $\tau$ v kalorimetru, v němž zase teplota vody stoupne ze začáteční $t$, na vẙslednou $\tau$. Znači-li tudiž C průměrné specifické teplo kondensované kapaliny pro intervall $\tau \ldots t$, a podobně $e$ průměrné specifické teplo vody v kalorimetru pro intervall $\tau \ldots t$ jest v platnosti rovnice

$$
M r+M C(\vartheta-\tau)=m c\left(\tau-t_{1}\right)
$$

Korrekce kalorimetrické dlužno ovšem všechny tak uvésti v počet jako při stanovení tepla specifického. Zejména dlužno vpočítati vodní hodnoty kalorimetru a jeho součásti jakož i teploměru a vyšetřiti účinek tepelných ztrát vedením a vyzařováním tepla.

Methoda druhá, moderni, kterou pracovali Marshall a Ramsay (1896 a 1897) a nejnověji J. C. Brown a A. C. Smith (1903), určnje přímo spotřebu tepla při vypařování a to tak, že se kapalině, jež se vypařuje a jež by jinak vypařováním chladla, dodává náhrada teplem, které vzniká prací elektrickon. Děje se tudǐ̌ vypařování při nezměněné teplotě kapaliny, což jest velkou výhodou této methody. Elektrická práce proudu, kterým se zahřívá platinová spirála nebo žárová lampička, určí se z intensity proudu $J$ a potenciálniho rozdilu e součinem eJ (Volt-Ampère), nebo z odporu $r$ součinem $r J^{2}$ (Watt), s připojením faktoru časového $\Theta$ (v sec). Převodní koefficient práce elektrické a aequivalentního množstvi tepla musí býti znám; jest $0 \cdot 239$ ( $\$ 61$.). Množstvi tepla $Q$ (gramm-kalorie) proudem dodané jest tedy
nebo

$$
\begin{aligned}
& Q=0.239 . e J \Theta, \\
& Q=0.239 . r J^{2} \Theta .
\end{aligned}
$$

Když se tímto množstvím tepla vypařilo $M$ (gramm) kapaliny, jest zároveň
$z$ čehož lze $r$ vypočitati.

$$
Q=M r
$$

V nejnovější době určoval touto methodou Dr. Petr Pecl*) skupenské teplo některých kapalin (vody, alkoholu, aetheru,
*) Dr. Petr Fecl, Přimá elektrická methoda ke stanovení skupenského tepla kapalin při bodu varu. Çasop. pro pêst. math. a fys. 37, pag. 58, 1907.
chloroformu) v jednoduchém experimentálním uspořadáni, které i pro účely přednášek se jevi býti zcela vhodným

Teplo vypařovací lze též kalorimetrem parním stanoviti (§ 67.); k účelu tomu užil tohoto kalorimetru K. Wirtz v Darmstadtu (1890) pro některé kapaliny, jichž bod varu jest nižši než $100^{\circ}$, jako na př. alkohol, benzol, chloroform, aether a j. Nádobka (skleněná zkumavka) s odváž̌enou kapalinou známé teploty vloži se do vodní páry 100 stupňové a urči se váženim, mnoho-li této páry se kondensuje, aby ona kapalina se zahřála na svůj bod varu a pak úplně vypařila. Z kondensovaného množství páry počitá se úhrnné teplo, kterým se kapalina nejprve zahřála až na svûj bod varu a pak vypar̆ila; je-li známo specifické teplo kapaliny, lze z úhrnného onoho tepla počítati teplo $k$ zahřáti vy̌̆adované, a tím určiti zbývajicí teplo k vypařováni spotřebované, ze kteréhož při známém vypař̌eném mnơ̌ství lze stanoviti teplo vypařovaci *).

## § 137. Teplo vypařovaci u vody.

Stanovením tepla, jež se spotřebuje při vypařováni vody, zabývali se badatelé velmi četni, což vzhledem k významu, jaký voda v přirodě má, jest pochopitelno. Ze staršich měření vynikaji ta, jež s velikou péčí a obezřelostí a u velkėm rozsahu provedl Regnault (1847) pro teploty $0^{\circ} \ldots 16^{\circ}, 63^{\circ} \ldots 88^{\circ}, 100^{\circ}$, $120^{\circ} \ldots 195^{\circ}$. Měření pro $100^{\circ}$ opakovali Andrews (1848), Favre a Sillermann (185̃3) a Dieterici (1905). Z novějšich badatelủ budiž ještě uveden Griffitlıs (1895).

Regnault měřil pro určité teploty $t$ a příslušné tlaky $p$ ûhrnné teplo 2, kterým se jeden gramm vody nullstupňové převede v gramm nasycené páry teploty $t$. Skládá se tudiž toto teplo z části dvou, jednak z množství tepla $q$, kterým se gramm vody nullstupňové zahřeje na teplotu $t$, jednak z množství tepla $r$, kterým se při této teplotě promění v páry. Pišeme tedy

$$
\lambda=q+r
$$

0 teple $q$ rozhoduje teplo specifické $c$. Je-li konstantuí, pak jest
Pro vodu jest přibližně

$$
q=c t .
$$

$$
c=1, \quad \text { tudiž } \quad q=t .
$$

*) K. Wirtz, Ueber eine Anwendung des Wasserdampfalorimeters zur Bestimmung von Verdampfungswārmen; Wied. Ann. 40, pag. 438, 1890.

Teplo vypařovaci $r$ vypočitá se tedy približně z rovnice

$$
r=\lambda-t
$$

Nenifli $c$ konstantní, pak jest

$$
q=\int_{0}^{1} c d t,
$$

sdež dluz̃no za e dosaditi výraz, kterỳm se závislost tepla specifickêho na teplotẽ urçuje. Takového výrazu dosud neznáme. Závislost, o kterouz̃ se jedná, jest, jak v $\$ 63$, vyloz̃eno, velmi sloz̃itá a pro vyミsi teploty (nad $100^{\prime \prime}$ ) dosud neznaima.

Následujici tabulka obsahuje pozorovaci výsledky Regnaultovy.

Teplo vypařovací u vody.

$\begin{gathered} \text { Tlak } \\ p \end{gathered}$		$\begin{gathered} \text { Teplota } \\ t \end{gathered}$	Teplo úhrnné $\lambda$	Teplo vyparováni $r$
mm Hg $0^{\circ}$	atm .	${ }^{0} \mathrm{C}$	cal.	cal.
170.9	0.23	$63 \cdot 0$	625.5	562.5
369.8	$0 \cdot 49$	81.0	$628 \cdot 8$	547.8
7600	1.00	$100 \cdot 0$	$636 \cdot 7$	536.7
$1448 \cdot 2$	1.90	$119 \cdot 3$	6423	$523 \cdot 0$
$2285 \cdot 3$	$3 \cdot 01$	134.4	$649 \cdot 0$	514.6
3042.5	4.00	144.3	$649 \cdot 7$	505.4
$3883 \cdot 1$	$5 \cdot 11$	1535	$650 \cdot 1$	496.6
$4643 \cdot 2$	$6 \cdot 11$	$160 \cdot 3$	$653 \cdot 1$	$492 \cdot 8$
$6127 \cdot 7$	$8 \cdot 06$	$171 \cdot 6$	655.5	483.9
$8056{ }^{\circ}$	$10 \cdot 60$	183.5	$662 \cdot 6$	$479 \cdot 2$
10354:8	$13 \cdot 63$	$194 \cdot 4$	$665 \cdot 4$	$471 \cdot 1$

Na základě těchto výsledků jest rýsován diagramm obr. 142. Jest z něho viděti, jaké změny v obsahu tepelném jednoho grammu vody nastávají, když jako led taje, a jak dále pokračuji, když pak se zahřivá na teplotu $A^{\prime} P=t$, kde jeho tepelný obsah stoupá dle čáry $A^{\prime} N^{\prime}$, anebo když se proměňuje v páru nasycenou, kde obsah tepelný stoupá dle čáry $A^{\prime \prime} N^{\prime \prime}$, tak že jest

$$
\begin{gathered}
P N^{\prime}=q, \quad N^{\prime} N^{\prime \prime}=r \\
P N^{\prime \prime}=q+r=2 .
\end{gathered}
$$

Čáry $A^{\prime} N^{\prime}$ a $A^{\prime \prime} N^{\prime \prime}$ jsou v mezích pozorovacích, do $200^{\circ}$, přímkami. Regnault vypočital pro tyto přímky rovnice

$$
\begin{aligned}
q & =t, \\
\imath & =6065+0305 t,
\end{aligned}
$$

z nichž odečtením plyne

$$
r=606.5-0.695 \mathrm{t} .
$$



Obr. 142.
Kontinuita tepelnėho obsahu vody a páry.
Z toho pak následuje pro oba základní body teploměrné

$$
r_{0}=606 \cdot 5, \quad r_{100}=537 \cdot 0 .
$$

Lineárni tyto vztahy pro orientaci úplně postačují. Regnault sám zkoušel jiné kvadratické a kubické relace, tim že pro specifické teplo vody c přijímal výraz se členem kvadratickým a kubickým. Víme však, že teplo specifické vody se tím vystilınouti nedá. Také jiní po Regnaultovi, jako Wüllner, Griffiths a j. užíivali vzorců kvadratických, jež však významu hlubšího
nemaji. Proto jich zde vủbec neuvádime. Jsou jenom formulemi interpolačními; extrapolací by vedly k výsledkủm nemožným.

Víme totiž dnes, jak tato extrapolace musi dopadnouti. Při teplotě kritické, jež jest pro vodu $=365^{\circ}$, musi vyjiti $r=0$. Při této teplotě jest přechod z vody v páru nenáhlý, spojitý, bez spotřeby tepla. Z oněch formulí však žádná této podmínce ani zdaleka nevyhovuje.

V době nejnověǰ̌í (1906) ujal se úkolu daného $F$. Henning ${ }^{*}$ ) a prozkoumal teplo vypařovací pro vodu od $30^{\circ}$ do $100^{\circ}$. Nalézá rovnici interpolační (v kaloriich $15^{\circ}$ )

$$
r=598.8-0.5994 t
$$

ze kteréž plyne

$$
r_{0}=598 \cdot 80, \quad r_{100}=538 \cdot 86
$$

tedy poněkud odchylně než u Regnaulta. Henning počítá $r$ na základě vzorce

$$
r=94 \cdot 210(365-t)^{0.31249}
$$

kterýmž jest stanoveno, že $r=0$ při kritické teplotě $t=365^{\circ}$. Vzorec tento jest tedy i pro extrapolaci vhodným - alespoň k povšechné orientaci - poněvadž onen krajni bod, k němuž extrapolace směřuje, jest zabezpečen. Obr. 142. udává, jak by čára pro $q$ dle tohoto vzorce postupovala, kdyby čára pro $i$ zủstala přímkon, a když by jen v blizkosti kritické temperatury spojitě s čarou pro $q$ splynula. Splynutí toto jest jenom dủsledkem kontinuity stavu kapalného (čára q) a plynného (čára 凤.) v bodě kritickém.

Výpočet rovnice

$$
r=94.21(365-t)^{\circ \cdot 31249}
$$

v extrapolaci dává totiž výsledky:

$$
\begin{aligned}
t & =200,250,300,350,360,364,365, \\
r & =465,415,347,220,156,94,
\end{aligned} .
$$

Jest viděti, že teprve v bezprostřední blizkosti teploty kritické teplo vypařovací $r$ rapidně klesá, což zase by poukazovalo k tomu, že v této blizkosti teplo specifické $c$ vody rapidně stoupá.

[^145]Že ostatně čára pro $\lambda$ jest poněkud k ose úseček konkávni, jak to vyžaduje její splynutí s čarou pro $q$ v bodě kritickém, to vysvitá $z$ interpolačnich rovnic kvadratickỷch, pǐi nichž se ukazuje, že c̆len kvadratickỷ jest negativni. Tak na př. udavá Starkweather (1899) rovnici pro teploty nad $100^{\circ}$

$$
\lambda=603 \cdot 2+0.356 t-0.00021 t^{2}
$$

Konkávita křivky jest ovšem při tomto relativně malém koefficientu kvadratického členu velmi nepatrná a s počátku sotva znatelná.

Jedná-li se o úçely prednásek, určí se skupenské teplo vodni 100 stupñové páry jednoduše tím, že se tato pára prímo vede do vody v kalorimetru. Tímto kalorimetrem mủże prostę býti kádinka, lépe nějaká vêtsi, na př. Blitrová. Před pokusem odváži se v této kádince $m$ grammú (na pí. 2 litry) vody (netto), a urči se jeji začáteční teplota $t_{1}$. Pak se z kotlíku parniho prevede do ní přimo vhodné mnoz̃ství $M$ grammú (na pr̃ 50 g ) vodni páry o teploté ot (velmi přiblizzně $100^{\circ}$ ). Pára se kondensuje a vydá tepla $M r$; voda z páry vzniklá, o teploté î, míchá se s vodou v kalorimetru a ochladi se na teplotu $\tau$, tutêz̃, na kterou se zahreje voda v kalorimetru z pũvodni teploty $t_{1}$. Máme tedy rovnici:

$$
M r+M(\vartheta-\tau)=m\left(\tau-t_{1}\right)
$$

y niz̃ specifické teplo vody klademe $=1$, coz̃ zde úplné postači. Množstvi $M$ vodní pảry urçi se dodatečným váżením kalorimetru až po ukončeni pokusu. Původné bylo v ném vody $m$ grammủ, pak jest jí $m+M$ grammun. Pr̂irūstek $M$ udává právé množstvi páry do vody převedené a zde kondensované. Pảra se prevádi sklenẽnou trubici z kotlíku nahoru stoupajíci a pak krâtce dolủ zahnuté; sem se pripojí trubiçka kaučuková, kterã zasahuje do vody. Trubiçka skleněná by praskla. Pára se nejprve nechả prouditi na prázdno, aby se všechny pr̂ivodní cásti zahraly na $100^{\circ}$. Kondensace pary ve vodé zpűsobuje praskot. Vodní hodnota kádinky a taxativné téż. teplomẽru se přiçte $k$ váze vody. Dluz̃no vodu dobře promichaivati, nejlépe husím perem. Výsledky bŷvají az̃ na málo procent správné a pokus právê svou jednoduchosti a bezprostredností jest velmi pouc̃nẏm.

Ještẽ jednodušsín jest pokus jiný, kterẏm se skupenské teplo vodní 100stupñové páry určí na základě specifického tepla vody, jez̃ jest velmi blizce $=1$, pomoci pozororání casových. Tenkostěnná zkumavka naplni se asi do ctvrtiny vodou obycejejné teploty $t$ a upevní se na stojánku. Vurčitém okamžiku, který se na hodinách zajistí, podstaví se pod ni Bunsenúv kahan s malým, dobre regulovaným nesvítivẏm plamenem plynovẙm. Voda se zahưívá, az̃ se v jistém okamz̃iku, kterỳ se rovıěz̃ na hodinách odeçte, uvede ve var. Pak vařic se vypar̆uje se, tím jí ubẏvả, az̄ konećnẽ poslední kapka se vypar̂i. Také tento okamz̃ik se na hodinách zjistí. Tím se obdrži dvẽ data časová: 1. Doba $u$, jak dlouho to trvalo, nez̃ se kaz̃dý gramm vody zahr̛al z pûvodni teploty $t$ do teploty varu $100^{\circ}$; 2. doba $U$, jak dlouho to trvalo, nez̃ se kaz̃dỳ gramm vody vařicí vypařil.

Poloz̃ime-li specifické leplo vody $=1$, a pr̆ipustíme-li, že přiváděná kalorii k zahrati a vyparovini potrebny̌ch jest době úměrno, pak jest patrne

$$
\frac{U}{u}=\frac{r}{100-t}
$$

z kteréżto relace lze r vypočisti. Pokus dává výsledek docela pêknỳ, trebas na nekkolik procent odchylny; ale pres to jest svou jednoduchosti velmi součný. Nejisty̌m býva ponẻkud okamžik varu. Také se pára nahore na zkumavce pone̊kud kondensuje a stéki dolú. Zahrátí skla jest méně na závadu. Naplniti zkumavku vice než do čtvrtiny není radno, ponéradz̃ voda, raric se, mohla by pries okraj vystrikovati. Pokus udal jiz J. Black (1762).

## s 138. Teplo vypařovaci u jiných kapalin.

Diagramm (obr. 142.) v posledním odstavei sestrojený, v němž extrapolaci křivky $q$ a 2. v kritickém bodu splývají v jedinou, jest pro všechny kapaliny typickým a naznačuje zpủsob, kterým by se pozorováni měla založiti a provésti, aby změny tepelného obsahu jakékoli kapaliny a jeji nasycené páry byly úplně vystiženy. Avšak v tomto zpûsobu žádné z dosavadnich pozorování provedeno neni. Práce starší, zejména vynikající práce Regnaultovy, určují pro některé kapaliny závislost veličin 2. a $q$ na teplotě, ale jen pro jistý temperaturní intervall, nikoli až k teplotě kritické, o niž tehda ještě nebylo žádné známosti. Novějši práce postupuji pro některé zkapalněné plyny již až do blízkosti teploty kritické, ale tím, že přestávaji na stanovení veličiny $r$, neposkytuji dostatečného čiselného materialu, aby spojitá čára (q久) mohla býti sestrojena.

Jako přiklad pozorováni staršich uvádíme výsledky Regnaultovy, a to pro následujíci látky.

Sirouhlik $C S_{2}$. Intervall $0^{\circ} \ldots 140^{\circ}$.

$$
\begin{aligned}
& \lambda=90.0+0.14601 t-0.0004123 t^{2} \\
& r=90.0-0.08922 t-0.0004938 t^{2}
\end{aligned}
$$

Aether aethylnatý $\left(\mathrm{C}_{2} H_{5}\right)_{2} \mathrm{O}$. Intervall $0^{\circ} \ldots 120^{\circ}$.

$$
\begin{aligned}
& \lambda=94.0+0.45000 t-0.00055556 t^{2} \\
& r=94.0-0.07901 t-0.0008514 t^{2}
\end{aligned}
$$

Aceton $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$. Intervall $0^{\circ} \ldots 140^{\circ}$.
$\lambda=1405+0.36644 t-0.000516 t^{2}$,
$r=140.5-0.13999 t-0.0009125 t^{2}$.

Chloroform $\mathrm{CHCl}_{3}$. Intervall $0^{\circ} \ldots 160^{\circ}$.

$$
\begin{aligned}
& \lambda=67 \cdot 0+0.1375 t \\
& r=67 \cdot 0-0.0948 \dot{s} t-0.0000507 t^{2}
\end{aligned}
$$

Chlorid uhličitý (tetrachlormethan) $\mathrm{CCl}_{4}$. Intervall $0^{\circ} \ldots 160^{\circ}$.

$$
\begin{aligned}
& \lambda=52.0+0.14625 t-0.000172 t^{2}, \\
& r=52.0-0.05173 t-0.0002626 t^{2}
\end{aligned}
$$

Benzol $C_{6} H_{6}$. Intervall $0^{0} \ldots 210^{0}$.

$$
\begin{aligned}
& \lambda=109.0+0.2443 t-0.0001315 t^{2} \\
& r=109.0-0.13550 t-0.0008515 t^{2}
\end{aligned}
$$

Pozorování Regnaultova prepočital A. Winkelwann (1880) a odvodil jiné - komplikovanéjsi - formule interpolac̃ní pribrāním jesté clenu kubického, kteréż pozorovảní lépe vystihují. Viz na př. A. Winkelmaun, Handbuch der Physik, Wairme, pag. 1093, 1906. Neuvádime jich z důvodư jizz v predešlém odstavci vyloz̃eny̌ch.

Vyjádřiti i. a r v závislosti na teplotě (pro jistý intervall temperaturni) jest úkol dosti nesnadný. Daleko jednoduššim stává se, když se jen o to jedná, aby se teplo vypařovaci r určilo pro bod varu dané kapaliny. Tabulky fysikální *) obsahují v té přičině čiselný materiál velmi hojný. Při tom jest pozoruhodno, že se ukazuje určitý vztah mezi teplem vypařovacim $r$ při absolutni teplotě varu $T$, a vahou molekulovou $\mu$, vztah, který jest vyjádřen rovnicí

$$
\mu r=k T
$$

Molekulové teplo vypařování při varu kapaliny jest úměrno absolutní teplotě varu. Konstanta úměrnosti $k$ závisí na tlaku, za kterého var se děje; udává se obyčejně pro tlak jedné atmosféry.

Zákon tento, jenž se psává ve tvaru

$$
\frac{\mu r}{T}=k
$$

objevil Pictet (1876) a Trouton (1884); nazývá se obyčejně zákonem Troutonovým ${ }^{* *}$ ), ač priorita náleži Pictetovi. Nejnověji sestavil W. Louguinine (1902) dosavadní výsledky k tomuto zá-

[^146] mannovẽ Handbuch der Physik, Wärme (1906) o téchto pracich referováno, pag. 1093 až 1099.
${ }^{* *}$ ) Frederick T. Trouton, * 1863 v Dubliné, jest nyni professorem fysiky na Univ. Coll. v Londýnê. Název přislus̃nẻho pojednáni jest Molecular latent heat, Phil. Mag. (5), 18, pag. 54, 1884.
konu se vztahujíci. Tak jest na př. pro alkohol aethylnatý $\mathrm{C}_{2} \mathrm{H}_{5}$. OH
$$
t=78 \cdot 2, \quad r=201 \cdot 47, \quad k=26 \cdot 39
$$
a pro alkoholy vủbec vycházi
$$
k=22.96 \text { a ̌ } 26.59
$$

Podobně pro acetony

$$
k=20.57 \text { a } \check{z} 21.29
$$

pro estery kyselin dvojsytých

$$
k=20.78 \text { až 21.91, }
$$

pro některé uhlovodiky

$$
k=19 \cdot 70 \text { a ̌ } 20.53
$$

a pro celou řadu jiných organických sloučenin

$$
k=16.34 \text { až } 23.69
$$

na př. pro anilin $C_{6} H_{5} \cdot N H_{2}$

$$
t=184 \cdot 24, \quad r=104 \cdot 32, \quad k=21 \cdot 22
$$

Ve veliké většině případú jest $k$ obsaženo v mezích okrouhle 20 až 21 ; ale přicházejí též odchylné hodnoty 16.3 až $26 \cdot 6$, kteréž by po připadě odchylnými processy chemickými, (na př. dissociaci) mohly býti vysvětleny.

## § 139. Teplo vypařovaci u zkapalněných plynů.

Pro některé zkapalněné plyny byly provedeny pokusy s přímým zřetelem k teplotě kritické, ovšem jen částečně, poněvadž nebylo určeno teplo úhrnné $\lambda$. nýbrž jen teplo vypařovaci $r$. Mathias ${ }^{*}$ ) zkoumal (1890) toto teplo methodou velmi jednoduchou. Udržoval kalorimetr na konstantni teplotě tim, že teplo. jež zkapalněný plyn při svém vypařování ujímal, zase dodával a to přimícháváním přiměřeného množstvi kyseliny sirové $k$ vodě; když pak stanovil též množstvi vypařené kapaliny, mohl teplo $r$ počitati. Měření tato prováděl při rủzných teplotách, od $0^{0}$ počinajíc až do blizkosti teploty kritické.

[^147]Vskutku se pak ukázalo, že teplo vypařovací $r$ v blizkosti teploty kritické rapidně klesá. Tak obdržel pro kysličník uhličitý $\mathrm{CO}_{2}$ výsledky:

Teplo vypařovací $r$ pro zkapalněný kysličník uhličitý.

$t$   ${ }^{0} \mathrm{C}$	$r$   $c a l$.	$t$   ${ }^{0} \mathrm{C}$	$r$   cal.
0	$56 \cdot 25$	22.04	$31 \cdot 80$
$7 \cdot 25$	$56 \cdot 25$	28.13	$19 \cdot 35$
13.69	42.02	30.59	7.26
16.45	40.35	30.82	3.72

Výsledky tyto shrnul ve vzorec, dle kritické teploty $t^{*}=31^{\circ}$ upravený, formy

$$
r^{2}=118.485(31-t)-0.4707(31-t)^{2}
$$

Podobuě obdržel pro kysličnik dusnatý $\mathrm{N}_{2} \mathrm{O}$, s kritickou teplotou $t^{*}=36 \cdot 4$, výsledky:

Teplo vypařovací $r$ pro kysličník dusnatý.

$t$   ${ }^{0} \mathrm{C}$	$r$   $c a l$.	$t$   ${ }^{0} \mathrm{C}$	$r$   cal.
$5 \cdot 27$ $54 \cdot 45$ $26 \cdot 2$ $29 \cdot 6$   $10 \cdot 00$ $52 \cdot 3$ $31 \cdot 47$ $20 \cdot 9$   185 $43 \cdot 65$			

Tyto výsledky shrnul ve vzorec stejné úpravy jako dřive

$$
r^{2}=131.75(36.4-t)-0.928(36.4-t)^{2}
$$

Pro kysličnik siřičitý $S O_{2}$, jehož kritická teplota jest $156^{\circ}$, prozkoumali Cailletet a Mathias (již r. 1885) teplo vypařovací $r$ toliko pro intervall $0^{\circ} \ldots 20^{\circ}$, pro který postačil vztah lineární

$$
r=91.87-0.384 t .
$$

Extrapolace ke kritickému bodu neni tu ovšem moz̆nou,
Pro jinaké plyny zkapalnělé existuji jenom data ojedinělá ${ }^{\text {e }}$ ) Nejzajimavější jsou ta, jež se týkají kysliku a dusíku a směsi

[^148]obou. Pozorování pocházeji z dob nejnovějšich, a účastnili se jich Shearer (1902 a 1905), Fenner a Richtmeyer (1905), Estreicher (1904). Jich výsledky nebyly ješte definitivni. Obširnou práci podal o témž předmětu $H$. Alt, jenž nalezl (1904):

Pro čistý kyslik

při teplotě	$t$	$=-183^{\circ}$,	$-202^{\circ}$
a při tlaku	$p$	$=710$,	65 mm Hg
teplo vypařovaci	$r=$	$52 \cdot 1$,	$59 \cdot 1 \mathrm{cal}$.

Podobně pro čistý dusik

pĭ̀i teplotě $\quad t=-197^{\circ}$,	$-210^{\circ}$	
a při tlaku $\quad p=$	685,	96 mm Hg
teplo vypar̆ovaci $r=$	$48 \cdot 8$,	$52 \cdot 1 \mathrm{cal}$.

V druhé větší práci (z roku 1905) odvodil vzorce, platné pro kyslik v intervallu $-205^{\circ}$ a ă $-184^{\circ}$ a pro dusik $-210^{\circ}$ a ǎ - $197^{\circ}$, jimiž̌ se závislost tepla vypařovaciho $r$ na teplotẽ $t$ vyjadřovala. Obdržel v gramm-kaloriich

$$
\begin{array}{ll}
\text { pro } O_{2}: & r=12.88-0.2080 t, \\
\text { pro } N_{2}: & r=-5.85-0.2736 t,
\end{array}
$$

kde ovšem za $t$ ony negativni teploty dlužno dosaditi, čímž $r$ vyjde, jak se rozumí samo sebou, positivně. Pro normální bod varui by $z$ oné relace následovalo

$$
\begin{array}{ll}
\text { pro } O_{2}: & r=50 \cdot 92 \text { při } t=-182 \cdot 9, \\
\text { pro } N_{2}: & r=47 \cdot 65 \text { při } t=-195 \cdot 6 .
\end{array}
$$

Pro kapalný vzduch, který bývá na kyslik bohatši než vzduch plynný, prrijimá se pro obyčejný tlak okrouhle

$$
r=50 \quad \text { př̌i } \quad t=-190^{\circ} \ldots-185^{\circ} .
$$

## § 140. Jak se stanovi teplo specifické kalorimetrem na kapalný vzduch.

Kapalný vzduch, když se nalézá volně ve vzduchu v nádobě Dewarově, vypařuje se stále a dosti pravidelně, tak že množstvi vypařeného plynu možno dle doby, po jakou vypařování trvá, počitati. Vypařování se však urychlí, když se do kapalného vzduchu vloži nějaké těleso obyčejné teploty; toto, ochladic se na teplotu kapalného vzduchu, vydává teplo, kteréž působí onen přirûstek vypařování. Když se tento přírủstek po-
kusem zjistí, Ize na základĕ známého tepla skupenského pro kapalný vzduch a na základě měrení temperaturnich vypočisti teplo specifické pro odvážené množstvi dané látky právě tak, jako při kalorimetru ledovém. To jest základní myšlenka kalorimetru, který zoveme kalorimetrem na kapalný vzduch.

Prvni měřeni takovým kalorimetrem provadèl J. Dewar (1905); týž stanovil onen přírủstek vypařovani měřenim objemu vznikajíciho plynu. Po něm zjednodusili Carl Forch a Paul Nordmeyer (1906) methodu tim, že přirûstek vypařováni stanovili cázennim. Methoda se osvědčila dobře; v pokusech stejným zpủsobem upravených pokračovali v době nejnovějši Paul Nordmeyer a A. L. Bernoulli (1907) s úplným zdarem *). Za skupenske teplo pro kapalný vzduch přijato čislo 50 cal . Teplota kapalného vzduchu, měřená teploměrem pentanovým, udržovala se v mezich $-190^{\circ} \ldots-185^{\circ}$, tedy prủměrně na - $188^{\circ}$. Tělesa do kapalného vzduchu vkládaná měla teplotu obyčejnou $15^{\circ}$. Teplo specifické, jež se touto methodou obdrželo. jest tudiž střednim teplem specifickým pro intervall $-188^{\circ} \ldots+15^{\circ}$.

Z pozorovaciho materiálu uvådime jen některé přiklady. Specifické teplo ledu při $0^{\circ}$ jest 05 . v intervallu - $185^{\circ} \ldots 0^{\circ}$ jest prủměrně jen 0.345 . Rtut má při $0^{\circ}$ specifické teplo 0.0333, v intervallu $-185^{\circ} \ldots+20^{\circ}$ prûměrně jenom 0.0324 . Rtut se vlévala přímo do kapalného vzduchu; teplo tuhnuti 2.82 bylo ovšem vzato v počet.

Tyto a řadu jiných výsledkū, nalezených pro intervall $-188^{\circ} \ldots+15^{\circ}$, srovnávaji autoři s těmi, jež jini pozorovatelé obdrželi pro intervally teplot vyššich, a nalézají, že pozorováni jejich se $k$ dřivějšim připojuji uspokojivě. Věc studuje se nejlépe grafickým znázorněním. Autoř̀i diskutuji otázku, jak se utváři teplo specifické látek pobliže absolutniho bodu nullového. Jest zajimavo, že kǐivky extrapolované nejevi tendenci směřovati $k$ hodnotě nullové, nýbrž $k$ hodnotě vyšssi, ač malé, v mezich 0.08 az̆ 0.03 , tak že by hodnota 0.03 byla onou limitou, pod kterouž teplo specifické vủbec peklesne. Věc ovšem neni dosavadními pokusy ještě určitě zjištèna, ale významný začátek pro řešení otázky té jest učiněn.

[^149]
## §141. Ủkazy a pokusy zakládajici se na teple skupenském.

O teple skupenském nabýváme již ze života obecného mnohých zkušenosti, hlavně ovšem o teple skupenském vody jakožto kapaliny nejrozšiřenějši a pro životni úkony nejdûležitějši.

Když na jare slunce začiná hr̄ati, a teplota vzduchu stoupá, taje snilh a led, ale taje velmi zvo'na. Přicinou toho jest velké skupenské teplo tāní Gramm suěhu neb ledu vyżaduje 80 kalorii; pouhou insolaci a teply̌m vzduchem dodava se toto teplo jen poskrovnu. Každỳ vi, že nebezpec̄i jarnith povodni nenastavá, když snîh a led $y$ muoz̃stvi sebe vetšim tíuto zpúsobem taje, nỳbrz̀ jen, kdyz pịijdou jarní deştě. Na vysokých horach neprsí, nýbr\% snēz̄i. Zde zūstávají massy snéhové a ledové lez̃eti až do léta a taji pak zairem sluuce, ale opęt jen zvolna, dodāajice tak řekim vítanỷch stâlych pritokú právě v dobê, kdy jich nejvice potřebuji. Reky v oblasti takovychto hor maji i v lété vody dosti. Jesté známêjsí jsou zkuミenosti o teple skupenském vyparovaini. Toto jest u vody velmi značnė ; za obyčejné teploty na kazdy gramm vypařené vody prichází témér 600 kalorii. Vyparuje-li se voda na povrchu téla naseho, ujímá mu teplo a zpâsobuje chlad. Za horkélıo a dusného dne osvễaje vảnek větru tím, ze urychluje vypařováni vody; vęjirem docilujeme účinku stejného. Po koupeli, kdy celé télo jest mokré, býví ujma tepelná vypã̛ováním vznikající velmi citlivou: proto halime se y plãsf. Je-li vzduch suchý, snásíme snadno i velké vedro, ponēvadž rychlỳm vypařováním têlo nas̉e se chladí. V irské lazni. kde suchẏ vzduch je vytopen az̃ na $75^{\circ}$, jeví se i tato vysokà teplota byti s počátku prijemnou, a teprve pak, kdy vŷron potu prevládá nad vyparovảním, nelze ji dále vydržeti. Známý jest takẻ veliký tepelný obsah, jaký mả pára z vody varící se. Opaření parou je hoři nez̃ horkou vodou. Pri destillaci vody nutno velikỳ tento obsah tepelny umensiti hojny̌m množstvím vody chladné, která se y chladiçi zahr̛ívá rychle. Při experimentovảni topi se, kde je treba zvýsené teploty, nejpohodlnêji vodní parou, ale také nejvydatnéji, poněvadz̀ kondensaci páry se uvolñuje jeji veliké teplo skupenské. Kdyby se topilo na př. parami anilinu, jichž teplota jest $183^{\circ}$, nebylo by topeni daleko tak vydatné přes to, že teplota jest znaçné vyssí. Proto také pffi centrálním topeni rozvãdí se teplo nejlépe vodní parou a to bud' napěti značně vẽtšiho nez̃ jest tlak barometrickŷ, jako pr̃i vytảpẽní żelezniènich vlakô parou od lokomotivy, nebo tẻmề stejného, jako pr̃i
vỵtápêni budov.

Všechny tyto a podobné zkušenosti známé ze života obecného lze doplniti a prohloubiti vhodnými fysikálnimi pokusy. Tyto lze prováděti buđ jen kvalitativně nebo též kvantitativnè.

K pokusủm kvalitativním náleží některé, o nichž bylo již jednáno. Vypařováním aethera dociluje se sniženi teploty u hygrometru Daniellova, podobně vypařováním vody u psychrometru. Když se nádobka s vodou postavi pod recipient vývěvy, a když
se čerpáním vzduchu vypařováni vody urychli, docili se značného snižení teploty, zejména, když ještě se učini opatření, aby vodni páry se rychle absorbovaly a tudiž vždy nové a nové rychle tvořily. Absorpce se dociluje nejlépe koncentrovanou kyselinou sirovou. Lze tudiž bud pod recipient vývěvy postaviti ještě nádobku s kyselinou sírovou, a nad touto na trojnožku nádobu s vodou, anebo lze páry vodni čerpáním vésti přes kyselinu sírovou v nádobě zvláštni umistěnou. V obou připadech prudkým vypar̆ováním vody docili se ochlazeni tou měrou, že voda mrzve. Na druhé straně kyselina sírová, absorbujíc vodni páry, se zahřívá. U těchto pokusủ přicházi k platnosti skupenské teplo vypařovaci. Ale také již skupenským teplem táni lze dociliti ochlazení dosti značného. Kdy̌̌ se sníh nebo roztlučený led smichás kuchyňskou soli, pak nastane táni a zároveň rozpouštěni soli ve vodě. Spotřebou tepla pro jeden i druhý process docilí se snižení teploty dosti značného; směs obou těch látek jest, jak pravime, mrazotvorná. Pokusem dlužno zjistiti, při jakém poměrném zastoupeni obou látek jest snižení teploty největším. Úkol tento a četné jemu podobné náleži do thermochemie. Při 100 dilech sněhu a 33 dilech kuchyňské soli docilí se sniženi teploty až $-21^{\circ}$. Mrazivá směs tato jest nejlaciněǰ̌í a nejvice užívanon.

Velmi pěkný pokus kvalitativní ukáže se kryoforem Wollastonovým. Vhodnou jeho úpravu znázorňuje obr. 143. Trubice skleněná vyfoukne se na jednom konci v kouli, na druhém v podélný válec; u koule se trubice olne, aby koule přisla stranou dolủ. Pak se trubice od koule odtaví a celek se naplni na druhé straně, pomocí trubice a válce, čistou vodon. Tato se vyvaři, aby se vzduch pokud možno vypudil, a když asi tolik vody zủstává, co by se ona koule naplnila něco vice než z polovice, zataví se trubice na konci válce. Nyní jest kryofor k pokusu připraven. Když se válcovitá část vloži do mrazivé směsi sněhu a kuchyňské soli, zatím co všechna voda jest nahoře v kouli (obr. 143.), kondensují se páry vodní ve válci, následkem čehož vypařuje se voda prudce v kouli a chladí se tak, že konečně zmrzne. Často se př̌echladí, a pak mrzne skoro všechna najednou, což jest úkaz velmi zajímavý. Aby koule při tom nebyla roztržena, nesmí býti naplněna vice než jen asi do polovičky.

Jiné formy kryoforũ znázorñuje obr. 144. U tẻchto lze pozorovati ¡iný zajímavý ưkaz. Když se takovy kryofor se svislé polohy rychle otočí ( $0180^{\circ}$ ), padne voda v jedné kouli na vodu v kouli druhé; dopad nenf
zadržovain vzduchem a proto jest provázen ostrým kovovým zvukem, jako když by sklo prasklo, ktery̌z dojem v prvním okamžiku mívá, kdo úkazu neznả. V obr. 144. na levo jest znázorněno vodni kladivko. Zde zase vhodným otoceením dopadne voda v podélné trubici na sklo a dopadem zpūsobuje náraz tak ostrý, jako by kladive dopadlo na kovadlinu; odtud název přístroje. Velmi pékně jeví se adhaese vody ke sklu u téhoz prístroje. Kdyz̃ se po dopadu vody přístroj ponenáhlu otácí, drži se voda na skle a nestéká Lkazy zde popsané vyžaduji orsém, aby vzduch byl z prístrojủ těch dokonale vypuzen.


Obr. 143.
Kryofor Wollastonúv.


Obr. 144.
Kryofor a vodni kladivko.

Velmi pěkně a poučně lze všechny sem připadajicí pokusy konati kvantitativně, totiž tak, aby bylo moz̆no změny teploty sledovati též thermometricky. Zde jest výhodno uživati thermočlánku, na př. železa a konstantanu (§ 21.), který se spojí s galvanometrem na optickou projekci zařizeným. Konce thermočlánku, kde se připojuji ke drátủm měděným, jež jdou ke galvanometru, udržuji se bư na teplotě síně nebo na teplotě nullové tajicim sněhem. V tomto druhém případě jest stupnice galvanometrická jakoby stupnici thermometrickou. Za index doporučuje se tmavá šipka ve světlém kulatém poli, které jest dáno lampou na přiklad Drummondskou, jež jest stranou od galvanometru postavena a opatřena čočkami kollimujicimi. Odtud dopadaji paprsky na čočku projekčni vhodné ohniskové dálky, tak aby bliže ohniska jejiho, kde se svazek rovnobě̌̌ných paprskû značně zúžuje, bylo zreátko galvanometru. Tak se docili značné jasnosti indexu. Od zrcátka se pak odrážejí paprsky na stupnici, na niž vznikne ostrý reálný obraz onoho indexu.

Je-li na př. stupnice rozdělena na centimetry, od -100 cm do +100 cm , lze citlivost galvanometru (kompensujicim magnetem) upraviti tak, aby jeden stupen̆ thermočlánku odpovidal jednomu centimetru výchylky (citlivost malá), nebo pěti centimetrûm (citlivost střední) nebo i desiti (eitlivost velká); v posledním připadě lze ještě setiny stupně velmi dobře objektivně sledovati. Jestliže se pokus timto zpủsobem připravi, lze ukázati celou řadu zajimavých zjevú tepelných.

Když se do malých skleněných mističek do vaty obalených naleje trochu vody, alkoholu, sirouhliku, aetheru a pod. a když se do těchto kapalin vloží konec thermočlánku, ukǎže se velmi pěkně, jak teplota těchto kapalin následkem vypařování znenáhla klesá. Pro vodu a alkohol volí se citlivost velká neb střední, pro sirouhlik a aether postači citlivost malá. Vypařování a tudiž i ochlazování se urychli, když se dmuchadlem žene vzduch na povrch kapalin, aby se páry odháněly. Teplota sirouhliku neb aetheru klesne při tom z obyčejné značně pod nullu. Podobně lze ukázati, jak teplota ledu znenáhla klesá, když se na něe sype kuchyňská sûl. Ale také celou řadu pokusů, jež do thermochemie náleží, lze takto ukázati. Teplota vody klesá, když se do ní sype nějaká sůl, která se ve vodẽ rozpouští, zejména salmiak. Teplota vody stoupá, když se do ní leje něco alkoholu, nebo kyseliny sírové a pod. Také oteplení, jež vzniká třením, rázem, lze i takovým jediným thermočlánkem - pří citlivosti střední nebo velké - velmi pěkně ukázati.

Za̛ízeni galvanometru na projekci vyżaduje prípravné práce a nehodí se proto pro úćely školní. Ale jest moz̃no téz vhodnýn milliampèremetrem, dle soustavy Deprez-d'Arsonval zar̂izeným, pokusy tyto ukázati, je-li pifstroj opatřen vhodným shuntem, aby moz̃no bylo přimẹ̛ené citlivosti dociliti.

Neméně zajimavé a dúležité jsou technické applikace, na teple skupenském se zakládajici, zejména umělá vẙroba ledu. Bylo jiź řečeno, že lze z vody vytvořiti led přímo, t. j. vlastním vypar̆ováním vody při evakuaci a absorpci vodních par kyselinou sírovou. Na tomto základě sestrojil Edme Carré zvláśtní přístroj na umělou výrobu ledu. Hlavní částí přistroje byla vývěva a pak olověný reservoir na koncentrovanou kyselinu sírovou. K přistroji připojena vzduchotěsně baǔka s vodou. Led se vytvořil pochodem již nahoře popsaným. Avšak záhy se poznalo, že jest výhodnějši voliti cestu nepřímou, t. j. chladiti vodu jinou kapalinou, která se prudce vypařuje a tím způsobuje chlad. Již

1. 1859 sestrojil Eduard Carré, inženýr v Pařiži, bratr předeß̌lého, přistroj na umělé tvořeni ledu pomocí aetheru. Pozdẽji byl snadno zápalný aether nahrazen zkapalněným ammoniakem. Tento apparát Carré-úv na ammoniak pracuje intermittovaně, t. j. práce se děje jakoby ve dvou odstavcich, $z$ nichž jeden je prací přípravnou a druhý prací prováděcí. V části připravné vypuzuje se na jedné straně ammoniak zahřátím $z$ vody, ve kteréž jest absorbován, a kondensuje se na straně druhé chladem


Obr. 145.
Apparát Carréũv na vỳrobu ledu.
a tlakem v kapalinu. V části prováděcí nechá se kondensovaný ammoniak na této straně při malém tlaku prudce vypařovati, při čemž se zase plyn chladnou vodou na pravé straně absorbuje. Obr. 145. ukazuje obvyklé uspořádani tohoto přístroje. A jest kotlik měděný, cinovaný, v němž jest voda čpavkem nasycená. Kotlík se topí obyčejně plynem. Ammoniak přecházi v přípravné části práce ventilem $a$ do trubice $F$ a odtud do prostoru kolem refrigerátoru $C$, kde se tlakem asi 7 atmosfér a chladem kondensuje. $V$ druhé prováděcí části práce vloži se kotlik $A$ do chladu, tak aby voda uvnitř se ochladila, pak se do
refrigerátoru vloži duté plechové krabice s destillovanou nebo obyčejnou vodou, prostor mezi nimi a stěnami refrigerátoru vyplni se alkoholem nebo glycerinem nebo roztokem chloridu vápenatêho a pod., kteréžto kapaliny jsou tepelně dobře vodivé. Chladem, který vzniká prudkým vypařováním ammoniaku, zmrzne voda, při čemž ammoniak ventilem $b$ vniká k vodĕ, která jej absorbuje

Apparát právě popsaný vyrábi led v malém; hodi se pro účely laboratoře. Stroje ve velkém nepracuji přetržitě, nýbrž stále a uživají bud též ammoniaku (Carré) nebo kysličniku siřičitélıo (Pictet), uhličitého nebo směsi obou. Sem náležeji tě̌̌ stroje chladici vůbec, jak se jich uživá $k$ přečetným účelům obchodu a prủmyslu, jako k chlazeni sklepû v pivovarech, dále v tržnicích ke chlazeni místností pro uschováváni potravin, zejména mléka, masa, také ovoce, k udržováni střelného prachu v chladu na lodich, ke konservováni urtvol $k$ účelûm anatomickým a pod.

## Základy thermochemie.

## § 142. Výklad úvodni.

V odstaveích dosavadních jednali jsme o dvon předních zjevech tepelných, změně objemu a zıněně skupenstvi, a to hledic ke stránce jak thermometrické, tak kalorimetrické. Teplo specifické a skupenské, jímž oba zjevy kalorimetricky jsou vyznačeny, jest aequivalentem té molekulové energie, kteréž každỷ gramm tělesa nabývá, když se teplotou zvětšuje jeho objem nebo když přecházi do vyššiho skupenstvi. S tohoto stanoviska jevi se úkol, určiti teplo specifické nebo skupenské, býti jen speciálním případem toho úkolu všeobecného, při němž se jedná o přeměnu energie jakékoli v energii tepelnou.

Jest známo, že energie těles mûže býti původu velmi rozmanitého. Uveđ̉me jen některé př̌iklady. Může se jednati o energii elektrických nábojů (potenciálni) nebo elektrického proudu (aktuálni). Měni-li se energie tato zcela $v$ energii tepelnou a máme li změnu tuto číselně vyšetřiti, vyjadřujeme onu energii elektrickou v jednotkách pracovních, erg nebo Joule (což jest $10^{7} \mathrm{erg}$ ) a pak přepočitáváme dle převodního koefficientu na kalorie.

Pro energii elektrických nábojủ máme výrazy

$$
\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}
$$

kdez̆ jest $Q$ (Coulomb) elektrické množstvi, $V$ (Volt) potenciál a $C^{\prime}$ (Farad) kapacita. Prvý udává přímo - ostatni nepřímo energii v jednotce Volt-Coulomb, což jest Joule. Připojíme-li tedy převodni koefficient $0 \cdot 239$, obdržíme teplo oné pracovni zásobě aequivalentní v gramm-kalorích.

Pro energii elektrického proudu máme výrazy

$$
e J \Theta=r J^{2} \Theta
$$

kdež znači e (Volt) potenciálni rozdíl na koncích vodiče, jehož odpor jest $r$ (Ohm), $J$ (Ampère) intensitu proudu, $\Theta$ (sec) dobu, po jakou proud vodičem procházi. Prvý výraz dává přimo druhý nepřímo - práci proudem vykonanou v jednotce Volt-Ampère-sec, coz̆ jest Volt-Coulomb čili Joule. Připojíme-li opět převodni koefficient 0.239, obdržíme teplo proudem vznikající v gramm-kaloriich.

Jiný přiklad podává energie (aktuálni) mechanického pohybu hmoty, bud postupného (translace) nebo toěného (rotace). Máme tu výrazy analogické

$$
\frac{1}{2} M v^{2}, \quad \frac{1}{2} K \omega^{2}
$$

kdež značí $M$ (gramm) hmotu tělesa, $K\left(g . \mathrm{cm}^{\boldsymbol{2}}\right)$ moment setrvačnosti, $v\left(\frac{c m}{s e c}\right)$ rychlost delkovou (lineárni), $\omega\left(\frac{1}{s e c}\right)$ rychlost úhlovou (angulárni). Ony výrazy udávají však zásobu pracovní v absolutni jednotce $\frac{c m^{2} \cdot g}{s e c^{2}}$ čili erg. Dlužno tudiž převésti výraz na jednotku Joule dělením na $10^{7}$ a pak přičiniti koefficient prevodní 0.239 na gramm-kalorie, čímž obdržíme teplo z onoho pohybu vznikajici, kdyby se tento pohyb tělesa jako celku úplně přeměnil $v$ teplo, t. j. v pohyb molekulový. Jaké účinky ve smyslu tepelném - t. j. v zahřátí nebo ve skupenství - by tato přeměna měla, dalo by se dle dosavadních výkladủ vypočísti.

Ve všech těchto a přečetných jiných případech má kalorimetrie přimým měřením zjistiti, že skutečně vždy, kdykoli práce jakéhokoli pủvodu se mění v teplo, obdrží se za každý Joule 0.239 gramm-kalorie. Pokud se týče energie punvodu elektrického, jedná se o úkolu tom v nauce o elektřině. Pokud se týče energie mechanické, pojednáme o úkolu tomto $v$ odstavci pozdějším obšírněji.

Jest však ještě jedna energie, velice vydatná a obsáhlá, jejiž změny jsou spojeny se současnými změnami tepelnými. Jest to energie chemická, potenciální, určitěji řečeno energie chemické přibuznosti čili affinity prvkủ. Tato přibuznost jest základem chemických reakcí; processy pak chemické, jež při
nich pozorujeme, jsou vždy provázeny processy thermickými Vzhledem $k$ nesmírné rozmanitosti těchto processủ jest úkol, vysetǐiti pokud možná všechny thermometricky i kalorimetricky, velice rozsáhlý; úkolem tímto zabývá se thermochemic. Dlužno ovšem již zde poznamenati, že reakce, které probihaji zvolna, nelze thermochemicky přesně stopovati; jest nutno, aby reakce v málo minutách byla ukončena.

Thermochemie, jakožto část fysikálni chemie, náleži ve své speciálni části do chemie, ve své obecné části do fysiky. nebof základy její, methody pozorovací jakož i apparáty jsou fysikální. Mnohé však výsledky speciálni thermochemie jsou i pro fysiku dủležité a zajímavé, tak že o některých v následujicich výkladech též pojednáme.

## § 143. Zảkladni pojmy a definice.

Při každém processu chemickém vyznačujeme jeho složky a jeho výsledek. Složky mohou býti bud prvky nebo také sloučeniny, zejména jednodušší výsledek jest pak sloučenina závěrečná. Chemie udává postup od složek k výsledku rovnici, jež má význam nejen kvalitativní, nýbř̌z téz̆ kvantitativni, stoechiometrický *).

Píšeme na př.

$$
\mathrm{C}+2 \mathrm{O}=\mathrm{CO}_{2}
$$

a vysvětlujeme rovnici tu dle atomủ nebo, konkrétněji, dle gramm-atomủ; 12 grammủ uhliku a $2.16=32$ grammy kysliku dávaji 44 grammy kysličníku uhličitého, což jest jeho gramm-molekula.

Do takovýchto reakei vstupuje každá složka - tedy každý prvek nebo kombinace prvků - s určitou zásobou vlastni energie. Když pak reakce se provede a sloučenina vznikne, mizi energie ve formě chemické přibuznosti a vystupuje jeji aequivalent ve formě energie tepelné. Tak v přikladě hořejším vzniká spalováním gramm-atomu uhlíku dvěma gramm-atomy kysliku 97000 gramm-kalorii (cal) čili 97 kilogranm-kalorii (Cal) tepla. Tuto přeměnu energetickou vyjadřujeme též rovni-

[^150]cemi, píšice na př.
$$
\text { energ. } C+\text { energ. } 20=\text { energ. } \mathrm{CO}_{2}+97 \mathrm{Cal},
$$
anebo raději
$$
\text { energ. } C+\text { energ. } 2 O-\text { energ. } \mathrm{CO}_{2}=97 \mathrm{Cal} .
$$

Absolutní energii prvkủ jakož i sloučenin nelze totiž stanoviti; mủžeme stopovati jenom změny této energie, tedy difference, jak je tato druhá rovnice vyjadřuje. Také když jakož je obyčejem - uživáme formy rovnice prvé, jsme pamětlivi toho, že jenom změny energie jsou pozorování přístupny.

Označení zde prozatím užívané, totiž , energ. $C^{-}$atd. jest těžkopádné. Proto mnozí antorové píši jednoduše

$$
\mathrm{C}+2 \mathrm{O}=\mathrm{CO}_{2}+97 \mathrm{Cal}
$$

Rovnice v této formě neni ovšem mathematicky bezvadná, nebot symboly $C, O$, atd. označuji atomy, po případě grammatomy, tedy kvantity hmotné, a s nimi se kombinuji kvantity tepelné. Rovnice neni tedy homogenní, alespoň ne formálně. Proto klade na př. L. Pfaundler (ve své Thermice) symboly pro prvky i pro sloučeniny do závorek, aby naznačil, že se jedná o energii. Piše tedy

$$
(C)+2(O)=\left(\mathrm{CO}_{\mathrm{a}}\right)+97 \text { Cal. }
$$

Avšak věc se komplikuje okolností jinou. Jest totiž žá doucno, aby v rovnicích energetických bylo označeno též skupenství jak složek, tak i vỵsledků. L. Pfaundler označuje skupenství pevné čárkou dole, plynné čárkou nahoře, kapalné pak nechává bez označeni.

Píše tedy na př.

$$
(\underline{C})+2(\bar{O})=\left(\overline{C O}_{2}\right)+97 \mathrm{Cal}
$$

Mnemotechnicky znači čárka dole a nahoře, že v kapalině tělesa pevná (zpravidla) klesaji dolủ, plyny pak že stoupaji nahoru. Není pochybnosti, že zpủsob tento má mnohé výhody, ale neuživá se ho. Místo něho hledí se formou závorky naznačiti skupenstvi. Někteří uživaji závorek pro skupenství pevné [ ], kapalné (), plynné \{ \}. Jiní nechávají skupenstvi kapalné - jakožto nejvíce obvyklé - bez označení, a uživaji závorek pro skupenství pevné [ ] a pro plynné ( ). Píši tedy

$$
[\mathrm{C}]+2(\mathrm{O})=\left(\mathrm{CO}_{2}\right)+97 \mathrm{Cal} .
$$

II. Ostwald (ve své obsáhlé Chemii) neužívá závorek žáduých; skupenstvi označuje různým druhem pisma (tisku); volí totiž pro skupenstvi pevné písmo tučné stojaté, pro plynné písmo ležaté, kursivu, a pro kapalné písmo obyčejné. Jak viděti, zavládla zde pestrost dosti značná. Tuto rozhojnil W. Ostwald zbytečně tím, že zavedl ještě novou kalorii, kterou označuje pismenou $K$ (nazývaje ji „racionálni") jakožto teplo, kterým se gramm vody zahřeje $z 0^{\circ}$ na $100^{\circ}$. Odvolává se při tom na návrh, který, jak praví, učinili Schuller a Wartha (Wied. Ann. 2. pag. 364,1877 ), ale neprávem; nebof tito autorové v pojednání zde citovaném volili středni kalorii mezi $0^{\circ}$ a $100^{\circ}$. Že středni kalorie, tak zvaná Bunsenova, jest velmi výhodná, poněvadž se opirá o záliladní body teploměrné, bylo již na svém mistè řečeno (§ 61.). Zaváděti však stonásobnou jeji hodnotu jako novou kalorii, kde již tisicẹnásobná jest jakožto velká kalorie v užívání, neni dojista účelné. K jednotkám cal a Cal přistupuje zbytečně ještě třeti $K$.

Dlužno zmíniti se také o způsobu, jaký pro psaní energetických rovnic zavedl Julius Thomsen*). Píše totiž v rovnici na levo složky chemického processu vedle sebe a klade je do závorky, na pravo pak klade počet kalorii, označujicí produkei $(+)$ nebo komsumpci ( - ) tepla. Piše tedy na př.

$$
(H, C l)=2 \cdot 2 \mathrm{Cal},
$$

coz̆ znamená, že při sloučeni gramm-atomu vodiku (1 g ) a grammatomu chloru ( 3505 g ) vznikne teplo $2 \cdot 2 \mathrm{Cal}$. Anebo píse

$$
(P b, S)=18.4 \mathrm{Cal}
$$

což znamená, že sloučením (sléváním) gramm-atomu olova ( 207 g ) a gramm-atomu siry ( 32 g ) na gramm-molekulu (239 g) sirniku olovnatého vznikne teplo 18.4 Cal . Tento způsob psáti rovnice thermometrické má pro sebe výhodu stručnosti, čehož nelze popirati, ale $v$ mnohých případech zase proti sobě vadu nejasnosti a nejistoty. Tak uvádi W. Ostwald přiklad

$$
\left(\mathrm{SbCl}_{3}, \mathrm{Aq}\right)=8.0 \mathrm{Cal},
$$

*) Y̛ulius Thomsen, * $1826 \vee$ Kodani, pûsobil lilavnê ve svém rodném mèstê jako professor chemie na polytechnice i na universitê a jako professor fysiky na vojenské akademii. Pojednảni jeho z oboru thermochemie jsou velmi ěetnả, tak że jest v oboru tomto autoritou ršeobecné uznanou. Soubornê vysly jeho práce ve čtyřsvazkovèm velkẻm dile pod naizvem: Thermochemische Untersuchungen, Leipzig 1882-1886.
kdež značka $-4 q$ (aqua) znamená libovolné větši množstvi vody. Zde není jasno, zdali při rozkladu chloridu antimonového vodou vzniká oxychlorid antimonový SbOCl nebo hydroxyd $\mathrm{Sb}(\mathrm{OH})_{3}$. Dlužno i v tom souhlasiti s $W$. Ostwaldem, když pravi dále: „Ještě více padá na váhu jiná vada, že se onen zpủsob označováni nedá vytvořiti k žádné početni methodè, jež dedukci kontrolluje. Pří složitějšich výpočtech nezbývá nic jiného než jednotlivé stupně obšírně uvážiti dříve, než lze příslušné výrazy napsati. Také skupenství se nikterak neoznačuje ani u látek vzájemně reagujících, ani u výsledku.*

Ještě jiného způsobu označování rovnic energetických nžívá Berthelot, který se však k výpočtủm právě tak málo hodi jako způsob Thomsenuiv.

Bylo by žádoucno, aby se ustálil způsob jednotný, totiž vypsati jasně složky chemického processu i jeho závěrečnẙ produkt a skupenstvi naznačiti zpủsobem třebas ne nejjednodušsim, ale takovým, jeň̌ by byl všeobecně přijat. Ve fysikálních tabulkách Landolt-Börnsteinových, jež jsou pro fysiku velmi cennými, naznačnje se skupenstvi pevné a plynné závorkami hranatými [] a kulatými (), skupenstvi kapalné jest bez označeni. Vzhledem $k$ tomu, že se těchto tabulek v laboratořich fysikálnich velmi mnoho uživá, rozhodneme se v následujicín pro tento způsob označeni. Také v tom zủstaneme ve shodě s těmito tabulkami, že množstvi tepelné budeme vyjadřovati ve velkých kaloriich (kilogramm-kaloriích Cal), poněvadž se obdrži čísla přehlednějši a pro tabellárni sestavení pohodluějši.

Naznačujice skupenství pevné závorkami hranatými, plynué kulatými, a nechávajíce kapalné bez závorek, píseme na př.

$$
\begin{aligned}
& H_{2} \mathrm{O}=\left[\mathrm{H}_{2} \mathrm{O}\right]+1.44 \mathrm{Cal} \\
& \mathrm{H}_{2} \mathrm{O}=\left(\mathrm{H}_{2} \mathrm{O}\right)-10.85 \mathrm{Cal}
\end{aligned}
$$

což znamená, že 18 grammú vody při mrznuti ( $0^{\circ}$ ) produkuji 18. $80=1440 \mathrm{cal}=1.44 \mathrm{Cal}$ tepla, naproti tomu při vypařováni $\left(0^{\circ}\right)$ konsumuji $18.603=10854 \mathrm{cal}=10.85 \mathrm{Cal}$ tepla. To jsou zjevy fysikálni. Při reakci pak nahoře za přiklad uvedené pišenie

$$
[\mathrm{C}]+2(O)=\left(\mathrm{CO}_{2}\right)+97 \mathrm{Cal}
$$

coz̆ jest process chemický.
Uvedená reakce jest přikladem. kdy teplo processem chemickým vzniká. kdy se vybaví, produkuje. V jiných připadech se zase processem chemickým teplo spotřebuje, zabavuje, kon-
sжmuje. Tak na př. při reakei

$$
[C]+2[S]=\mathrm{CS}_{2}-19 \mathrm{Cal}
$$

Dle toho rozeznáváme reakce exothermické $(+)$, při nichž se teplo produkuje, a endothermické ( - ), při nichž se konsumuje *).

Mnohdy bývaji však chemické reakce provázeny zjevy podružnými, bud povahy chemické (stěpeni molekul v atomy) nebo fysikálni (změna skupenstvi, překonávání tlaku a pod.). Takovéto zjevy, zejména fysikální, lze však přepočisti na aequivalentní jich hodnotu tepelnou v gramm-kalorích. Když se pak tato hodnota positivní nebo negativni algebraicky pričte k produkei neb komsumpci tepla, jak nahoře byla vyložena, obdrži se tak zvané tepelné zabarvení reakce chemické**).

## § 144. Zákon Hessův.

Zakladatelem thermochemie stal se G.H. Hess ***), vysloviv r. 1840 zákon, který dues - kdy je znám princip o zachováni energie - jevi se býti samož̌̀ejmým, ale své doby právě proto, že princip ten ještě znám nebyl, stal se tím významnějšim †). Zákon ten formuluje se dnes takto. Přecházi-li daná soustava chemická v soustavu jinou, jest celkové zabarveni tepelné nezaivislé ua zpűsobu, jakým přechod se děje.

Hess odvodil svůj zákon na základě jednotlivých pozorovảní, při nichž se zákon osvědčil. První reakcí, kterou zkoumal, bylo tvoření se síranu ammonatého, když se míchá kyselina sirová rûzných koncentrací s vodním roztokem ammoniaku. Dlužno však upozorniti, že v hor̆ejši formulaci zákona se mluví - zabarveni tepelném; do tohoto dlužno vpočísti nejen teplo přímo pozorované, nýbrž po případě - při změně skupenstvi

[^151]- teplo utajené jakož i - při vykonáváni práce vnějši - též teplo práci této aequivalentní.

K posouzení praice vnéjè ućiñe úvahu nâsledujici. Je-li $p\left(\frac{d y n a}{\mathrm{~cm}^{2}}\right)$ tlak na jednotku porrchu púsobicí, $d v\left(\mathrm{~cm}^{3}\right)$ zména objemu, jest $p . d v$ práce elementárni, $\int p d v$ práce integrální, vyjảdrená v jednotce erg. Dé. lice čislem $10^{7}$ obdrãime práci tu v jednotce Joule, a násobice koefficientem převodním 0.239 obdržime aequivalentní teplo v gramm-kaloriich. Je-li $p$ konstantni, vyjde $\int p d v=p\left(v-v_{0}\right)$. Kdyz plyn za konstantního tlaku $p$ vznika a na objem $v$ se rozşiri, vykonává praci voéjsí $p v$. Na místé součinu po moz̃no dle rovnice stavojevné psáti

$$
p v=R N T
$$

kdez̃ obdržime souçin pe pímo v kalorích, když poloz̃íme (§ 51.)

$$
R=1.986
$$

çili okrouhle 9. Aequivalent vykonané práce činí tudî̀ $2 T$ pro každou gramm-molekulu ( $N=1$ ).

Jakožto přiklad pro zákon Hessův studujme reakci velmi známou, totiž kdy vzniká salmiak z ammoniaku a chlorovodiku. Chemický process provedme dvojím způsobem.

Při prvém vyjděme od plynủ $\mathrm{NH}_{3}$ a HCl ; tyto se sloučí na pevný salmiak $\mathrm{NH}_{4} \mathrm{Cl}$ za současné produkce tepla. Pevný salmiak rozpustime pak ve vodě, při čemž se teplo konsumuje. Číselně vyjádříme tyto pochody rovnicemi

$$
\begin{gathered}
\left(\mathrm{NH}_{3}\right)+(\mathrm{HCl})=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]+42 \cdot 1 \mathrm{Cal} \\
{\left[\mathrm{NH}_{4} \mathrm{Cl}\right]+\mathrm{Aq}=\mathrm{NH}_{4} \mathrm{Cl}-3 \cdot 9 \mathrm{Cal} .}
\end{gathered}
$$

Sečtouce obdržíme

$$
\left(\mathrm{NH}_{3}\right)+(\mathrm{HCl})+\mathrm{Aq}=\mathrm{NH}_{4} \mathrm{Cl}+38 \cdot 2 \mathrm{Ca} .
$$

Druhý zpûsob zařídíme tak, aby oba plyny byly napřed vodou absorbovány. Tím se teplo produkuje, číselně dle rovnic

$$
\begin{aligned}
\left(\mathrm{NH}_{3}\right)+\mathrm{Aq} & =\mathrm{NH}_{3}+8 \cdot 4 \mathrm{Cal} \\
(\mathrm{HCl})+\mathrm{Aq} & =\mathrm{HCl}+17 \cdot 3 \mathrm{Cal} .
\end{aligned}
$$

Pak smícháme obě kapaliny, čímž se opět teplo produkuje, dle rovnice

$$
\mathrm{NH}_{3}+\mathrm{HCl}=\mathrm{NH}_{4} \mathrm{Cl}+12.3 \mathrm{Cal} .
$$

Sečtouce posledni tři rovnice obdržíme

$$
\left(\mathrm{NH}_{3}\right)+(\mathrm{HCl})+\mathrm{Aq}=\mathrm{NH}_{4} \mathrm{Cl}+38 \cdot 0 \mathrm{Cal}
$$

což jest výsledek (v mezich chyb pozorovacich) souhlasný.

Na základě zákona Bessova jest možno thermochemické processy, jež nelze vystihnouti přímým měřením, vyšetřiti cestou neprímou.

Tvoři-li se na př. oxydací uhliku $C$ kysliěnik uhelnatý $C O$, vzniká teplo, jež př́mo stanoviti nelze. Naproti tomu možno určiti teplo, jež vzniká dalši oxydací tohoto kysličníku uhelnatého CO na uhličitý $\mathrm{CO}_{2}$, jakož i teplo, jež vzniká přímou oxydací uhliku $C$ na kysličník uhličitý $\mathrm{CO}_{2}$. Máme tu vztahy thermochemické

$$
\begin{aligned}
& (\mathrm{CO})+(\mathrm{O})=\left(\mathrm{CO}_{2}\right)+68 \cdot 0 \mathrm{Cal} \\
& {[\mathrm{C}]+2(\mathrm{O})=\left(\mathrm{CO}_{\mathrm{a}}\right)+97 \cdot 0 \mathrm{Cal}}
\end{aligned}
$$

Odečtouce hořejši rovnici od dolejši obdržime

$$
[C]+(O)=(C O)+29 \cdot 0 \mathrm{Cal}
$$

čímž teplo hledané jest nepřímo stanoveno.
Jiným přikladem jest nepřímé vyšetření tepla vznikajícího při oxydaci siry $S$ na kysličník sirový $\mathrm{SO}_{3}$. Vyšetření se děje prostřednictvim síranu olovnatého $\mathrm{PbSO}_{4}$, který lze obdržeti dvojím způsobem. Kysličník olovnatý PbO buđ se sirou spálíme v kysliku anebo ve zředěné kyselině sírové rozpustíme. Oba processy jsou číselně vyjádřeny rovnicemi

$$
\begin{aligned}
{[\mathrm{PbO}]+[\mathrm{S}]+3(O) } & =\left[\mathrm{PbSO}_{4}\right]+165 \cdot 5 \mathrm{Cal}, \\
{[\mathrm{PbO}]+\mathrm{H}_{\mathbf{2}} \mathrm{SO}_{4} \mathrm{Aq} } & =\left[\mathrm{PbSO}_{4}\right]+\mathrm{Aq}+23 \cdot \mathrm{Cal} .
\end{aligned}
$$

Odečtouce obdržíme

$$
[S]+3(O)+A q=H_{2} S_{4} A q+142 \cdot 2 \mathrm{Cal}
$$

Rozpoušti-li se $\mathrm{SO}_{3}$ přímo ve vodě, vzniká process dle rovnice

$$
\left(\mathrm{SO}_{3}\right)+\mathrm{Aq}=\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{Aq}+41 \cdot 1 \mathrm{Cal}
$$

Odečtením této rovnice od předcházející vychází

$$
\left.[\mathrm{S}]+3(\mathrm{O})=\left(\mathrm{SO}_{3}\right)+101 \cdot 1 \mathrm{Ca}\right]
$$

## § 145. Methody pozorovaci.

Reakce chemické, kteréž mohou kalorimetricky býti vyšetrovány, jsou dvojího druhu. U jedněch pracuje se s kapalinami. Sem náleži mícháni kapalných roztoků různé koncentrace, míchání různých kapalin vespolek, rozpouštění látek v kapalinách, tvoření se roztokủ solných při míchání kyselin a zásad a pod. U druhých pracuje se s tělesy pevnými a plyny. Sem ná-

[^152]leží hlavně processy oxydační, spalování látek. Jest pochopitelno, že zařizení kalorimetrů dle tohoto dvojího účelu jest různé.

K účelu prvému lze užívati kalorimetrů nám již známých. Především kalorimetru Bunsenova. Že se zde pracuje při konstantní teplotě nullové, bývá výhodou, někdy ovšem též závadou. Dále kalorimetru směšovaciho. Nádoba kalorimetrická bývá kovová, nejlépe platinová, zřídka skleněná, formy podlouhlého válce, aby proti délce byl průřez malý a tím aby i plocha, kterou se kapalina může vypařovati, byla malá. Jedná-li se u těchto kalorimetrủ o rozpouštění soli v kapalině, dlužno teplotu látky pevné s teplotou kapaliny uvésti v souhlas. Totéž platí o kapalinách, kteréž se maji michati. Jedna bývá v kalorimetru, druhá v baňce skleněné, $z$ níž se pak, když teploty jsou stejné, do kalorimetru vyleje. J. Thomsen upravil si k účelu . tomuto dva kalorimetry nad sebou. Hořejši měl na dně ventil. Když se teploty vyrovnaly, otevřel se ventil a kapalina z hořejšího kalorimetru stekla do dolejšiho. Že dlužno míti péči o dokonalé promícháni kapalin vhodnými michačkami a neméně pak o přesné stanovení teploty, rozumí se samo sebou. Také jinak dlužno všech předpisů kalorimetrických a všech korrekcí šetřiti, jež jsme v oddílu o kalorimetrii již uvedli.

Zvláštni zmínky zasluhuje ještě kalorimetr, který speciálně k účelům thermochemickým sobě upravili Favre a Silbermann*). Zakládá se na podobné myšlence jako ledový kalorimetr Bunsenův, souditi totiž na množství tepla ze změny objemové, při čemž kalorimetrickou kapalinou jest rtut. Tato vyplňuje dutou železnou (nebo skleněnon) kouli $A$ (obr. 146.), do které je zasazena kalibrovaná trubička skleněná $t t$. Stranou je do koule vsazena nádobka $m$, větší zkumavce podobná, železná, do niž zasahá ještě druhá menší podobná nádobka skleněná o tenkých stěnách; prostor mezi oběma je vyplněn též rtuti. V této skleněné zkumavce mají se reakce thermometrické kapalinami konati. Otepleni kapalin sdili se rtuti a způsobuje zvětšení objemu, kteréž lze v kalibrované trubičce tt pozorovati. Do nádoby $A$ zasahá shora těsně šroub, jehož pošinutím lze postavení sloupečku rtufového (nullový bod) v trubičce $t t$ vhodně měniti.

[^153]Graduace trubičky $t t$ děje se empiricky velmi jednoduše. Do skleněné zkumavky vleje se totiž zpủsobem $v$ obrazci naznačeným známé množstvi $m$ vařici se vody. Tato se ochladi $z$ teploty varu $t$ na teplotu $\tau$ (kterou dlužno zvlášf změřiti), čimž vydá množství tepla

$$
m(t-\tau)=q \mathrm{cal}
$$

Tímto teplem zpủsobi se pošinuti sloupečku rtufového o $N$ dilců, tak že na jednu kalorii přichází pošinuti $\frac{q}{N}$. Když pak při jiném pokusu se pozoruje pošinuti $N^{\prime}$, znamená to počet kalorii $q^{\prime}=N^{\prime} \frac{N}{q}$. Převod lze tabulkou jednou pro vždy propočítanou usnadniti. Koule $A$ jest obklopena isolátory tepelnými.

Účel druhý, zkoumati thermochemicky processy oxydační, vyžaduje kalorimetrů zvláštni konstrukce. Jednak proto, že při spalování vznikají horké plyny, jež dlužno též na teplotu vody $v$ kalorimetru ochladiti; jednak proto, že plyny vznikají často prudce, explosivně, tak že nádoba, v niž tento process se děje, musí býti uzavřena a dostatečně pevná. Vzhledem k první okolnosti sestrojili Favre a Silbermann kalorimetr v obr. 147. znázorněný. Spalování děje se $v$ měděné komoře $A$, která jes upevněna na příklopu kalorimetrické nádoby $B$. Vhodným


Obr. 146.
Kalorimetr rtufovỳ, který sestrojili Favre a Silbermann.


Obr. 147.
Kalorimetr pro teplo spalné, jak jej sestrojili Favre a Silbermann.
otvory tohoto přiklopu prochází teploměr $k$ měření teploty, jakou má voda v kalorimetru, a dráty $q q$, jimiž se uvádí v pohyb michačka; pak trubička o jdouci téměř až na dno komory, kterou se do komory spalovací přivádí kyslik, trubice, poněkud nakloněná $b$, kterou se tam přiváději plyny ke spalování určené, konečně širši skličkem krytá trubice $a$, kterou lze pomocí zrcátka e reakci pozorovati. Horké plyny, jež při spalování vznikaji, vedou se spirálovitě stočenou trubici pod komoru spalovací a odtud pak přímo vzhủru do vzduchu. Jinak spočivá kalorimetr $B$ na korkových podložkách v širší nádobě s dvojitými stěnami, mezi nimiž jest voda $k$ ochraně proti vnějším zdrojům tepelným. V prostoru $B$ jest kalorimetr


Obr. 149.


Obr. 150.

Caisti kalorimetru pro teplo spalné.
obložen tepelným isolátorem, nejlépe prachovým peřím. Obr. 148. znázorňuje, jak se v lampičce spaluji kapaliny, obr. 149., jak se spaluje síra v porculánové misce, obr. 150., jak se spaluje uhlí v platinové nádobě $s$ dirkovaným dnem. Látky se zapáli venku
a vloží se pak do spalovací komory a s touto do kalorimetru vodniho.

Děje-li se oxydace náble, explosivně, dlužno užívati spalo vacích komor všestranně uzavřených a proti tlaku vznikajících plynů dostatečně pevných. Obr. 151. znázorǔuje tak zvanou


Obr. 151.
Kalorimetrickả bomba Berthelotova.
kalorimetrickou bombu, jak ji upravil Berthelot. Jest to nádobka ocelová $a a$, uvnitř platinou $b b$ obložená a opatřená přiklopem platinovým ee a železným dd, kterou možno do nádoby a a snadno vložiti, a pak ocelovým ee, na šroubu, kterým se celá komora pevně uzavře. Všestranné obložení platinou děje se proto, poněvadž kov tento vydrži vysoký žár plamene a nepodléhá oxydaci. Pevné těleso, kteréž se má spáliti, položí se ve formě
tyčinky $q$ na platinovou mističku $p$, která je upevněna na platinové tyči $r$. Tato je v hořejší části připojena ke kovové, přiklopem procházejici tyči $l l$, která je smaltem (emailem) isolována; smalt sám je proti plameni chránĕn obalem platinovým oo. Od tyče té se pak odděluje drát $r$ nesouci s drátem $s$ na přiklopu upevněným dole spirálu z tenkého železného drátu, který se proudem elektrickým v kysliku spáli; žhavé části oxydu železa padnou na těleso $q$ a zapálí je. Kyslik se pumpuje do bomby na tlak 25 atmosfér trubici $f$, kterou lze šroubem $k$ uzavříti. Celá komora vloz̆i se pak do kalorimetru vodniho. Dlužno ovšem stanoviti vodní hodnotu celé komory. To se děje bud počtem, dle hmoty jednotlivých součásti a dle jich tepla specifického, anebo empiricky tím, že se v komoře spaluje látka, jejiž teplo spalné jest známo, čímž do rovnic vstoupí vodní hodnota komory jako veličina neznámá, anebo konečně z pozorování differenčních, když se mění buđ̛ množstvi vody v kalorimetru nebo množstvi tělesa $k$ spálení určeného. Tohoto tělesa béře se asi tolik, aby se $k$ jeho spáleni spotřebovala pětina celé zásoby kyslíku v bombě. Spaluji-li se plyny, béře se kysliku tolik, kolik ke spálení je právě potřebí. Kapaliny se dávají podobně jako tělesa pevná na platinové mističky.

Platinovým obalem, jak jej zavedl Berthelot, se velice bomba zdražuje. Francouzský inženýr Mahler nahradil platinu laciným smaltem (emailem), který rovně̌̌ vydrží žár a nepodléhá oxydaci.

## § 146. Přiklady

Z velikého množství thermochemických měřeni budtež zde uvedeny pouze některé přiklady, zejména takové, jež i pro fysiku jsou důležité *). Následující tabulka udává teplo (tak zvané slučovací), jež se produkuje nebo konsumuje při vzniku některých sloučenin z daných prvkủ; jsou to hlavně processy oxydační, jež jsou tu jako př̌iklad uvedeny. Aby vynikl význam skupenství, rozeznává se, je-li sloučenina plynnou nebo kapalnou nebo pevnou, anebo konečně, je-li v roztoku vodním.
${ }^{*}$ ) Veliký čiselný material jest obsaz̃en ve fysikálních tabulkách LandoltBōrnsteinovẏch pag. 416-469, (1905). Tabulka, kterou uvádíme, jest sestavena $z$ čiselných dat tam obsaženy̌ch.

Teplo (Cal) při vzniku			je-li sloučenina			
jméno	vzorec	vzorec	$\begin{gathered} \text { yplyn- } \\ \text { nou } \end{gathered}$	$\begin{array}{\|c\|} \text { kapal- } \\ \text { nou } \end{array}$	$\begin{aligned} & \text { pev- } \\ & \text { nou } \end{aligned}$	$\begin{aligned} & \text { v roz- } \\ & \text { toku } \end{aligned}$
Kyselina chlorec̃ná	$\mathrm{HClO}_{3}$	$(C l)+3(O)+(H)+A q$				23
, bromiçná	$\mathrm{HBrO}_{3}$	$(B r)+3(O)+(H)+A q$				13
* jodiêná	$\mathrm{HyO}_{3}$	$[7]+3(O)+(H)$			59	57
Kysličnik sirìcity	$\mathrm{SO}_{2}$	$[S]+2(O)$	70	$7^{6}$		$7^{8}$
, sirový	$\mathrm{SO}_{3}$	$[S]+3(O)$	92	103	104	142
Kyselina sirová	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$[S]+4(O)+2(H)$		193		211
> $\quad$,	$\cdots$	$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$		213		$39^{\circ}$
Kysliẽník seleničitý	$\mathrm{SeO}_{2}$	$[\mathrm{Se}]+2(\mathrm{O})$			57	56
Kyselina selenová	$\mathrm{H}_{2} \mathrm{SeO}_{4}$	$[S c]+4(O)+2(H)+A q$				145
Kysličnik dusnaty	$\mathrm{N}_{2} \mathrm{O}$	$2(N)+(O)$	$-20.6$	$-18.8$		- 14.4
> dusicity	NO	$(N)+(O)$	$-216$			
, dusikovy	$\mathrm{N}_{2} \mathrm{O}_{3}$	$2(N)+3(O)$	-21			
dusičelẏ	$\mathrm{NO}_{2}$	$(N)+2(O)$	- 1'7	$+2.6$		
, dusiěnỹ	$\mathrm{N}_{2} \mathrm{O}_{3}$	$2(N)+5(O)$	12	$3 \cdot 6$	11'9	28.6
Kyselina dusiková	$\mathrm{HVO}_{2}$	$(N)+2(O)+(H)+A q$				$30^{\circ} 7$
> dusičná	$\mathrm{HNO}_{3}$	$(N)+3(O)+(H)$	$34 \cdot 4$	$4{ }^{1} 6$	$42 \cdot 2$	$48 \cdot 8$
Kysliẽnik fosforeěny	$\mathrm{P}_{2} \mathrm{O}_{5}$	$2[P]+5(O)$			370	405
Kyselina fosforečná	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$[P]+4(O)+3(H)$		302	304	307
Kysličnik uhelnaty	CO	$[C] \text { amorph. }+(O)$	29.0			
Kysličnik uhlicity	$\mathrm{CO}_{2}$	$[C]>+2(O)$	97			103

V př̌kladech v tabulce uvedených předpokládá se slučování dle gramm-atomủ nebo dle gramm-molekul, jak je vyjadřuje rovnice thermochemická. Tak na př. při tvoření kysličniku siř̌čitého $\mathrm{SO}_{2}$ je stanoveno, že se produkuje 70 velkých kalorií, když se 32 grammy siry slouči se 32 grammy kysliku na sloučeninu $\mathrm{SO}_{2}$ plynnou. Mnohdy udává se teplo spalné pro. každý gramm oxydované látky. Dle toho by při oxydaci jednoho grammu siry příslušným množstvím kysliku se produkovalo teplo $70: 32=2 \cdot 2$ velké kalorie. Následujici tabulka udává teplo spalné pro celou řadu látek dle tohoto posledního zpúsobu, t. j. pro každý gramm oxydované látky. Když se předpokládá toto určité množství, pak jest možno tabulku uspořádati na př. dle velikosti tepla spalného, od čisel nejvyššich po-
činaje $k$ číslům nižším*), ba až i $k$ číslủm negativním, kde oxydací teplo nevzniká, nýbrž naopak se spotřebuje.

Teplo spalné (ve velkých kaloriích), vztahované na jeden gramm látky dané.

Prvek	Produkt oxydace	$\|$Teplo   spalné   Cal na   1 g látky	Pozorovatel
Vodik	$\mathrm{H}_{2} \mathrm{O}$	34.22	Thomsen
"	n	$34 \cdot 20$	Schuller a Wartha
"		$34 \cdot 15$	Favre a Silbermann
Uhlik jako	$\mathrm{CO}_{2}$		
amorfni grafit	n	$8 \cdot 14$	Berthelot a Petit
krystall. grafit	"	$7 \cdot 90$	"
diamant	"	$7 \cdot 86$	
dřevěné uhlí	"	8.08	Favre a Silbermann
retortové uhlí	$\cdots$	$8 \cdot 05$	
diamant	CO	$2 \cdot 14$	Berthelot
Magnesium	MgO	6.08	Thomsen
Fosfor žlutý	$\mathrm{P}_{2} \mathrm{O}_{5}$	$5 \cdot 75$	Andrews
	"	$5 \cdot 96$	Thomsen
Fosfor červený kryst.		$5 \cdot 27$	Troost a Hantefeuille
Natrium	$\mathrm{NaO}$	$3 \cdot 29$	Woods
Calcium	CaO	$3 \cdot 28$	Thomsen
Sira	$\mathrm{SO}_{2}$		
přirozená, kryst.	"	$2 \cdot 22$	Favre a Silbermann
z $C S_{\underline{2}}$ kryst.	"	$2 \cdot 23$	\#
čerstvě roztavená	"	$2 \cdot 26$	\#
před 7 lety roztavená	"	$2 \cdot 22$	"
rhombická	"	$2 \cdot 22$	Thomsen
monoklinická	"	$2 \cdot 24$	\%
Kalium	$K_{2} \mathrm{O}$	1.745	Woods
Strontium	SrO	1.497	Thomsen
Železo	FeO	$1 \cdot 353$	Favre a Silbermann
Zinek	ZnO	$1 \cdot 314$	Thomsen
Baryum	BaO	0.952	"

[^154]| Prvek | Produkt oxydace | Teplo spalné Cal na 1 g látky. | Pozorovatel |
| :---: | :---: | :---: | :---: |
| Selen | $\mathrm{SeO}_{0}$ | 0.731 | Thomsen |
| Měd | CuO | 0.585 |  |
| " | $\mathrm{Cu}_{\mathrm{a}} \mathrm{O}$ | C. 321 | " |
| Cín | SnO | 0.574 | Andrews |
| Olovo | PbO | $0 \cdot 243$ | Thomsen |
| Jod | $\mathrm{J}_{2} \mathrm{O}_{5}$ | $0 \cdot 177$ | \# |
| Rtut | HgO | $0 \cdot 153$ | " |
| " | $\mathrm{Hg}_{2} \mathrm{O}$ | 0.106 | n |
| Thallium | $\mathrm{Fl}_{2} \mathrm{O}$ | $0 \cdot 104$ | Thomsen |
| Vismut | $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | 0.096 | Woods |
| Stříbro | $\mathrm{Ag}_{2} \mathrm{O}$ | $0 \cdot 027$ | Thomsen |
| Chlor | $\mathrm{Cl}_{2} \mathrm{O}$ | -0.254 | " |
| Dusik | $\mathrm{N}_{2} \mathrm{O}$ | -0.654 | n |
| n | NO | -1.541 | " |
| " | $\mathrm{NO}_{2}$ | -0.143 | " |

Spalování látek jest zdrojem tepla, jehož v životě obecném, kde tepla slunečniho využitkovati nelze, nejvice uživáme. Jak z tabulky viděti, jest oxydace vodiku zdrojem nejvydatnějším. Po něm následuje oxydace uhliku. Dle stupně této oxydace jest i produkce tepla menší (při CO ) nebo větši (pří $\mathrm{CO}_{2}$ ). Z kovû jsou v přední řadě kovy alkalické a žíravých zemin, kovy vzácné jsou naposled. Při allotropních modifikacich jest teplo spalné různé. To jest dle zákona Hessova pochopitelno, poněvadž přeměna jedné modifikace v jinou je spojena s produkcí nebo konsumpcí tepla.

Processy oxydační jsou též hlavním - byt ne výhradním - zdrojem tepla tělesného u lidí a zviǐat. Pokrmy, kteréž zvǐ̌ata poživaji, jsou hlavně organické a skládají se z uhliku $(C)$, vodiku $(H)$, dusiku $(N)$ a kysliku $(O)$; některé části jsou anorganické, obsahujicí fosfor $(P)$ a síru ( $S$ ). Respirací přijímá se ze vzduchu kyslik, kterým se oxyduje vodik na vodu $\left(\mathrm{H}_{2} \mathrm{O}\right)$, uhlik na kysličnik uhličitý $\left(\mathrm{CO}_{2}\right)$, síra a fosfor na přislušné oxydy resp. na kyseliny sirovou a fosforečnou. Množstvi tepla oxydaci vznikajicího můžeme posouditi již dle množství spotřebovaného kysliku, při čemž jednostejno jest, zdali se jim oxydoval vodik
nebo uhlik. Zviřata studenokrevná spotřebuji kysliku méně než teplokrevná. Také jest pro absolutni množství tepla jednostejno, zdali oxydace se děje prudce nebo pozvolna.

Zajimavý jest účinek okolí na teplotu tělesnou. U zvířat teplokrevných (ssavců a ptákủ) zủstává teplota tělesná nezměněnou i když se teplota okolniho prostředi velmi značně mění; tato zviřata maji teplotu stálou, jsou, jak pravime, homoiothermiclá; zvírata studenokrevná mohou míti teplotu rozmanitou, jsou, jak díme, poikilothermická, poněvadž jich tělesná teplota dle prostředi, v němž žiji, se v mezich značných mění *).

Doklady o tom, jak málo se teplota dlovêka mêni okolim, jsou nêkdy velice frappantui. Prodleni i delas (až 10 minut) v lazni horkého suchêho vzduchu neméni teplotu nezz jen o málo desetin stupné. Vloži-li se ruka do ledové vody, ochladí se svaly ruky sotva o 0-2. Pracuje-li se na ochlazení neb zahráti prostredky ostrejsimi a vydatnejsimi, nastáví pro zdravi i żivot väžné nebezpeçi. Naproti tomu u żăby mûze teplota úçinkem mrazivého okoli (mrazivé smẻsi) klesnouti až na $0^{\circ}$, a i kdyz jeji krev zmrzne, mûže později teplem se zase ozziviti. Tajicka limyzu vydrzi i nejprudši mrãz, bakterie až - $100^{\circ}$.

Množství tepla, které oxydačnimı processy vzuiká u zdravého, vzrostlého muzze, vahy asi 70 kg , za jeden den, odhadl $\mathrm{A}^{\text {. Fick }}{ }^{* *}$ ) na 2470 Cul . Kdyby toto teplo v téle zústalo, stoupla by jeho teplota o $35^{\circ}$. Fakticky spotrebuje se toto teplo na uhrazení tepelny̌ch ztrat, jez̃ vznikají vedenim, zaírením, vyparovảním, prací mechanickou atd. V krajinách polirnich jsou tyto ztráty vêţi nez̃ v aequatoreálnich; proto jest nutno nejen, aby zde çlovêk vdêvem lépe se před ztrảtami chrânil, nýbrż téz̃ vice potravy prijímal, zejména bohaté na uhlík (uhlohydráty, tuky, alkohol).

## § 147. Tepelné zabarveni při micháni kyseliny sirové s vodou nebo sněhem.

Tepelné zabarvení, jak vzniká při mícháni kyseliny sirové s vodou nebo sněhem, studoval - vedle jiných badatelủ - zeiména podrobně L. Pfaundler (1875). Jedná se o úkol následující. Gramm-molekula monohydrátu $\mathrm{SH}_{2} \mathrm{O}_{4}\left(=\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ smíchá se s $k$ molekulami vody $H_{2} \mathrm{O}$, nebo sněhu [ $\mathrm{H}_{2} \mathrm{O}$ ]. Číslo $k$ jest proměnné. Má se vyšetřiti jednak teplo produkované (nebo konsumované), jednak zvýšeni (nebo sniženi) teploty. Prvá část úkolu jest kalorimetrická, druhá thermometrická.

[^155]Při části kalorimetrické bylo by tedy postupovati dle rovnic

$$
\begin{aligned}
& \mathrm{SH}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}=\mathrm{SH}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+w_{1} \\
& \mathrm{SH}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{SH}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+w_{2} \\
& \mathrm{SH}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{SH}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}+w_{3}
\end{aligned}
$$

Vzhledem však $k$ tomu, že reakce při těchto malých číslech $k$, kde se tedy ke koncentrované kyselině přidává vody málo, probíhají prudce tak, že přesné mě̌̌eni není možné, jest lépe, teplo $w_{1}, w_{2}, w_{3} \ldots$ určiti indireltně z reakci takových, kde $k$ je číslo veliké, t. j. kde se ke kyselině koncentrované nebo málo zředĕné přidává vody mnoho, tedy z reakci následujícich:

$$
\begin{array}{ll}
\mathrm{SH}_{2} \mathrm{O}_{4} & +\quad n \cdot \mathrm{H}_{2} \mathrm{O}=\mathrm{SH}_{2} \mathrm{O}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}+w_{n} \\
\mathrm{SH}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+(n-1) \cdot \mathrm{H}_{2} \mathrm{O}=\mathrm{SH}_{2} \mathrm{O}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}+w^{\prime} \\
\mathrm{SH}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+(n-2) \cdot \mathrm{H}_{2} \mathrm{O}=\mathrm{SH}_{2} \mathrm{O}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}+w^{\prime \prime} \\
\mathrm{SH}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}+(n-3) \cdot \mathrm{H}_{2} \mathrm{O}=\mathrm{SH}_{2} \mathrm{O}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}+w^{\prime \prime \prime} .
\end{array}
$$

Patrně jest, dle zákona Hessova,

$$
\begin{aligned}
& w_{1}=w_{n}-w^{\prime} \\
& w_{2}=w_{n}-w^{\prime \prime} \\
& w_{3}=w_{n}-w^{\prime \prime \prime}
\end{aligned}
$$

Při tom jest výhodou, že se přicházi stále ke kyselině téže koncentrace $\mathrm{SH}_{2} \mathrm{O}_{4}, n \mathrm{H}_{2} \mathrm{O}$. Číslo $n$ volil Pfaundler $=119$.

Při míchání kyseliny s vodou se vždy teplo produkuje. Když se toto teplo $w$ určí a když se pro příslušný hydrát mícháním vznikající nalezne též teplo specifické $C$, počitá se pro gramm-molekulu $\mu$ zvýšeni teploty - od nully počínajíc dle rovnice

$$
\mu C \cdot t=w
$$

Přesně vzato je $C$ středním teplem specifickým mezi $0^{\circ}$ a $t$. Součin $\mu C$ je teplo molekulové (v gramm-molekulách).

V následujicí tabulce jsou obsaženy výsledky, jak je nalezl L. Pfaundler. Množství tepelná w a $\mu C$ jsou udána v grammkaloriích. Teplota ( $t$ ) jest vypočtena z tepla specifického při teplotě obyčejné, teplota $t$ pak z tepla specifického středniho, mezi $0^{0} \ldots t$.

Míchání kyseliny sírové s vodou.

$k$	$w$	$\mu \mathrm{C}$	$(t)$	$t$
$\frac{1}{2}$	3666	$41 \cdot 2$	89	S 2
1	6776	$50 \cdot 5$	134	127
2	9998	$63 \cdot 1$	158	152
3	11785	$76 \cdot 8$	153	145
4	12858	$92 \cdot 7$	139	133
5	13652	$108 \cdot 4$		
6	14395			
119	17690			

Přehlednějši jest diagramm (obr. 152.) dle těchto čisel sestrojený. Úsečkou je číslo $k$, tedy počet molekul $H_{2} O$ na jednu molekulu $\mathrm{H}_{2} \mathrm{SO}_{4}$. Pořadnicí jest množství tepelné $w-\mathrm{k}$ tomu náleží na diagrammu stupnice po levé straně - pak teplo molekulové $\mu C$ - k tomu náleží stupnice po pravé straně - pak teplota $t$, jakož i bod varu příslušné směsi; rovně̌̆ dle stupnice na pravé straně.

Diagramm jest velmi poučný. Křivka plně vytažená ukazuje, jak množstvi $w$ tepla produkovaného s počátku prudce, pak vždy volněji stoupá. Křivka tečkovaná udává zvy̌šení teploty; s počátku prudce stoupá, až k maximu $157^{\circ}$ při $k=2$ a pak klesá, což souvisí s tím, že teplo $w$, jež již málo se zvětšnje, při stoupajicím $k$ rozděluje se na větši množství $\mu$. Průběh tepla molekulového $\mu C$ objasǔuje křivka čárkovaná. Bod varu (při tlaku normálním) mění se dle čáry, jež jest střídavě tečkovaná a čárkovaná; při $k=4$ přibližuje se velmi značně ke křivce, jež udává zvýšení teploty.

Jedná-li se o úćely přednášek, volí se bud $k=2$ nebo $k=4$. V prvêm prípadè dosáhne se nejvyšsi teploty $t=157^{\circ} ;$ v druhém pripadě je teplota $t=140^{\circ}$ sice niž̌si, ale je velmi blizká teplotě $t=141^{\circ}$ varu za normálního tlaku, tak ze za tlaku menŝho smés se vskutku vaîí. Pro udané dva prípady obdržíme pro množstvi kyseliny a vody dle váhy

$$
\begin{array}{rc}
\text { pro } k=2 & \text { poměr } 98: 36 \\
\# k=4 & \Rightarrow \quad 98: 72
\end{array}
$$

Pro ưcely přednásek jest pohodlnéjsí připraviti si v kalibrovaných nádobách (mensurách) přislušné mnoz̃stvi kyseliny a vody dle objemu. Obdržíme

$$
\begin{aligned}
\text { pro } k & =2 \quad \text { poměr } \frac{98}{1 \cdot 84}: 36 \\
= & =100: 67 \cdot 6, \\
„ & =4 \quad \text { „ } \quad \frac{98}{1 \cdot 84}: 72=100: 135
\end{aligned}
$$



Obr. 152 .
Kalorimetrickỷ effekt pr̂i micháni kyseliny sirové s vodou dle Pfaundlera.
Pokus provádi se ve vysokỷch úzkých kádinkách tenkostẽnných, jež se kladou na podloz̃ku plstẽnou do porculánové mísy (pro připad, že by kảdinka praskla); kyselina koncentrovaná leje se do vody. Připravi-li se malá zkumavka s vodou (zbarvenou modre indigokarminem), $k$ nî́ se pridá něco rtuti, aby ve smẽsi plavala, ukáže se značné zvẏšení teploty tím, že voda záhy se začne vařiti.

Produkce tepla $w \mathrm{cal}$, jak vzniká při míchání monohydrátu $\mathrm{SH}_{2} \mathrm{O}_{4} \mathrm{~s}$ vodou $\mathrm{H}_{2} \mathrm{O}$, umenší se, když misto vody mícháme se
sněhem nebo ledem $\left[\mathrm{H}_{2} \mathrm{O}\right]$; umenšení zpûsobené teplem skupenským činí na každou gramm-molekulu $18.80=1440 \mathrm{cal}$. Jak se utváří rozdil $w-k$. 1440, znázorňuje diagramm v obr. 15̃3., prove-


Obr. 153.
Kalorimetrický effekt prii mícháni kyseliny sirové se snēhem dle Pfaundlera.
dený oproti diagrammu v obr. 152. ve směru úseček $k$ v rozměru polovičním. Čára silněji vytažená udává teplo $w$, přimka slaběji vytažená teplo $k \cdot 1440$. Rozdíl $w-k .1440$ stoupá až do $k=3$, zůstává až do $k=10.8$ positivní, odtud se stává negativní,
produkce tepla přechází v konsumpci, nastává ochlazeni. Jak L. Pfaundler udává, vzniká při míchání $\mathrm{SH}_{2} \mathrm{O}_{4}+1 \cdot 4\left[\mathrm{H}_{2} \mathrm{O}\right]$ nejvyšši zahřátí na $114^{\circ}$, od nully počínajic, a při michání $\mathrm{SH}_{2} \mathrm{O}_{4}$ $+162\left[H_{2} O\right]$ největši ochlazeni na $-22^{\circ}$, též od nully počinajic.

Při tẽchto pomẽrech připadalo by na kaz̃dých 98 grammú nebo $53.3 \mathrm{~cm}^{3}$ koncentrované kyseliny v prvém prípadẽ $1 \cdot 4.18=95 \cdot 2$ grammú, v druhém 16.2. $18=291 \cdot 6$ grammû suchého sněhu. Je-li takovỳ po ruce, jest pouc̃no pokus v obou téchto způsobech provésti, prii cémz̃ kontrast v temperaturách vynikne jednak varem vody (nebo jistěji alkoholu), jednak zmrznutím vody ve zkumavce.

Diagrammu v obr. 153 . lze též použíti ke studiu případu, když by se sníh přidával ke kyselině nikoli koncentrované, nýbrž zředěné. Třeba jen osu úseček pošinouti výše, až by protinala křivku silně vytaženou v bodě, jehož úsečka $k$ značí stupeň zředěni. Když se pak od tohoto bodu vede přimka slabě vytažená v témže směru, protíná křivku v bodech při větším $k$ vždy blíže k sobě ležicích, až při $k=3$ oba ty body splynou. Odtud počínajíc není pak již žádné produkce tepla, žádného zahřáti při přidáváni sněhu, nýbř̌ jen absorpce, jen ochlazení. Případ $k=3$, přesněji 2.87 odpovídá koncentraci $66 \% 2 \%$ monohydrátu. Když se pak od kyseliny této koncentrace vyjde, docílí se největšiho ochlazení (od nullové teploty vycházejíc) theoreticky - $37^{\circ}$ přidáním tolika sněhu, aby vznikl hydrát $\mathrm{SH}_{2} \mathrm{O}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$; dle váhy činí to $1 \cdot 1$ dila sněhu na 1 dil oné kyseliny $66 \cdot 2 \%$. Když by však kyselina i snih byly chladnějši než $0^{\circ}$, vzniklo by mícháním ovšem ochlazení ještě větši. $L$. Pfaundler udává pěkný způsob, jak toho docíliti. Kyselina nechá se v drobném dešti padati do sněhu ve vysokém válci skJeněném nasypaného; prvé vrstvy se ochlazuji a chladí již napřed vrstvy nižší, tak že lze docíliti ochlazeni až $-50^{\circ}$ neb pří dokonalé isolaci tepelné i většího.

## § 148. Směsi mrazivé.

Míchání sněhu s kyselinou sírovou vhodné koncentrace jest jenom zvláštním připadem směsí, jimž říkáme mrazivé neb mrazotvorné, naznačujíce tím, že jimi docilime teplot nízkých. Lze rozeznávati čtyři druhy směsi takových, a to: 1) vody a solí; 2) kyselin a sněhu; 3) sněhu a solí ; 4) kyselin a solí. Ochlazení vzniká spotřebou tepla skupenského neb rozpouštěcího, kteréž se ujímá směsi samé. V konkrétních př̌ípadech jedná se
i zde o dvojí úkol, totiž kalorimetrický, o teplo absorbované, a thermometrický, o teplotu, až na jakou se směs ochladí. V obou těchto směrech bylo pracováno jen v případech dosti řidkých; obyčejně se přestalo na pozorovánich thermometrických.

Buđtež zde uvedeny některé přiklady směsi takových, které dávají snižené teploty dosti značné a jsou i svou jakostí i svou cenou praktické.

Míchá-li se 30 dilú salmiaku $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ se 100 dily vody, sniží se teplota z $13 \cdot 3^{\circ}$ na $-5 \cdot 1^{0}$, tedy o $18 \cdot 4^{0}$ (Rüdorff). Ještě vydatněji působí chlorid vápenatý, krystallisovaný ( $\mathrm{CaCl}_{2}, 6 \mathrm{H}_{2} \mathrm{O}$ ), který jest ve vodě velmi rozpustný. Když se 250 dilů této soli smíchá se 100 dily vody, klesne teplota z $10 \cdot 8^{\circ}$ na - $12 \cdot 4^{\circ}$, tedy o $23 \cdot 2^{0}$ (Rüdorff). Pro experimentování jest prvá směs pohodlnějši a levněǰ̌í; při chloridu vápenatém krystallisovaném vadi, že jest hygroskopický a na vzduchu se rychle rozplývá. Vhodnějši jest dusičǔan ammonatý $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$, který se rovněž dosti snadno ve vodĕ rozpoušti, ač značně méně než chlorid vápenatý. Smíchá-li se 100 dilủ soli se 131 dílủ vody. snižíi se teplota až na $-17 \cdot 5^{0}$ (Tollinger).

0 směsi sněhu a kyseliny sirové bylo již v předešlém odstavei podrobněji jednáno. Jiným přikladem jest směs Glauberovy soli ( $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ ) a kyseliny solné $\mathrm{HCl} ; 8$ dilủ soli a 5 dilủ kyseliny ochladi se z $12^{\circ}$ na $-18^{\circ}$, tedy o $30^{\circ}$.

Ze směsí soli a sněhu jest nejuživanější a nejlacinější směs kuchyňské soli se sněhem neb tlučeným ledem; když se na jeden dil soli vezmou 3 dily sněhu neb ledu, docili se teploty až $-21^{\circ}$. Vydatněji pûsobí směs krystallisovaného chloridu vápenatého se sněhem; 100 dilủ soli na 70 dilů sněhu dává směs teploty až $-55^{\circ}$; ovšem musí býti sûl v drobných kouscích a sníh suchý, podminka, kterou při známé hygroskopické vlastnosti chloridu vápenatého a při snadnosti, s jakou sníh taje, lze vyplniti přibližně jen, když teplota síně jest pod nullou.

Pohodlné při této směsi jest, že lze sůl z roztoku opět ziskati. K tomu cíli zahřeje se roztok až na $31 \cdot 3^{\circ}$ nad bod varu vody, nechá se odpařiti a pak za stálého míchání ztuhnouti; obdrží se sủl drobnozrnná, jak se právě pro směs se sněhem nebo tlučeným ledem dobře hodi. Podobně lze i jiné soli z přislušných směsi opět ziskati.

Uvedli jsme zde jen takové mrazivé směsi, kterých se ještě k účelủm fysikálním užívá, ač již ne tak hojně jako dříve. Za dnú našich pracuje se v laboratořich k docilení nizky̌ch teplot
s materiálem velmi čistým, k manipulaci pohodlným, poměrně též laciným, totiž sněhem kysličuiku uhličitého. Kondensace tohoto plynu ujala se industrie, kteráž ji provádi ve velkém a dodává tekutý kysličnik uhličitý v železných válcovitých recipientech, zkoušených na tlak $250 \mathrm{~atm} . *$ ), k účelûm technickým i laboratorním

Chtějíce obdržeti pevný kysličnik uhličitý, položime recipient na vhodné dřevěné podložky šikmo ventilem dolủ a přišroubujeme na otvor kovovou trubičku s dřevěným kotoučem, k němuž jest připevněn válcovitý, ze silného sukna ušitý vak, na druhém konci motouzem svázaný. Když otevřeme ventil, žene se plyn $s$ prudkým sykotem ven a náhlým rozpětím ochlazuje se tak, ̌̌e tuhne ve snih, bílý, čistý, který se ve vaku hromadi. Smáčknutím vaku zjistíme, že jest plný sněhu, pak odšroubujeme vak, rozvážeme motouz a vysypeme sníh na porculánovou mísu. Sníh tento teplem netaje, nýbrž sublimuje v plyn; nebot bod varu $-79 \cdot 2^{\circ}$ leží niže než bod tání $-58^{\circ}$. Vydrží velmi dlouho a působí chlad kolem - $80^{\circ}$; vodní páry vzduchové se rychle na něm srážejí a tuhnou $\mathbf{v}$ obal sněhový.

Je-li přijemnějši míti kapalnou směs chladivou, smíchá se snỉh kysličníku uhličitého na př. s alkoholem nebo aetherem aethylnatým anebo též s kapalinami jinými. O teplotách těchto směsi orientujeme se rychle teploměrem pentanovým nebo petrolaetherovým (§ 16.).

Z velkého množství pokusů, kteréã lze pevným kysličnikem uhličitým ukãzati, budtez̃ nêkteré zajímavêjjíi uvedeny.

Sníh kysličniku jest dosti sypky̌; mữ̌e se na chvili položiti na ruku, ale nesmi se stisknouti. Jinak bére se sklenẽnou nebo rohovou lžickou. Hozen na vodu neponorí se, aẽ jest specificky téż̇̇̇ (1.2). Dá se komprimovati $\mathbf{v}$ krátkých drevẽny̆ch (nebo i kovových) trubicich pistem drevẽným (nebo kovovým) ne priliŝ́s têsnẽ ke stẽnám priléhajicím, aby plynný kysliẽnik mohl unikati; z druhé strany trubice se pak komprimovaný snfh vyrazí ven. Obdrži se billé kompaktní válečky, křidé podobné, které se udrži dlouho. Ve vodé klesají ke dnu.

S těmito válečky lze pẽkné akustické pokusy provádéti. Když válec̃ek postavíme na resonanẽní skǐinku ladičky o tónu vysokém a na hofejeǰ (ponẽkud prohloubenou) plochu poloz̃ime kovovou kuličku, poc̃ne zníti účinkem plynu, ktery se pod kuličkou tvorí a ji periodicky zvedá. Podobné pokusy lze konati s tyčemi kovovými v usporádání, jez̃ jest podobno pokusu Trevelyanovu **).
${ }^{*}$ ) Tlak kysliẽniku při $30^{\circ}$ nečiní více nez̃ 74 atm .; jistota jest tedy vice než trojnásobná.
**) Akustika, pag. 133, 1902.
Dr. V. Strouhal: Thermika,

Kdyz̃ se vsype snỉh kysličniku do Heronovy bánẽ, počne voda prudce střikati. Když se nasype do tenkostẽnné zkumavky a kdyz̀ se tato vloži do malého mnoz̃ství vody, obalí se vrstvou ledu. Obal lze sloupnouti, když zkumavku vytáhneme a do ní na chvilku nalejeme něco vlažné vody; obdržime tak ledovy odlitek zkumavky.

S alkoholem nebo aetherem aethylnatẙm dává pevný kysličnik kaši téže teploty - $80^{\circ}$, jakou má pevny̌ kysličnik; směs s octanem aethylnatỳm (aether aceticus, $C_{2} H_{3}, O . O \cdot C_{2} H_{5}$ ) má však teplotu - $95^{\circ}$ a smés s acetonem č. dimethylketonem $\left(\mathrm{C}^{\prime} \mathrm{H}_{3}, \mathrm{CO} . \mathrm{C}_{3}\right)$ teplotu jestẽ nižží - $98^{\circ}$ (Moissan, 1901).

Do takovýchto směsi lze za obyčejné teploty destillovati na pr. aether aethylnatý. Když se do zkumavky naleje rtuf a pak se zkumavka vloži do takovéto smẽsi, zmrzne rtuf. Dobře jest drǐve do rtuti vloz̃iti żelezný drát na konci desticckou končící, kterỳ se ve rtuti nechá spolu zamrznouti. Pak lze za nepatrného zahr̛átí zkumarky drátem váleček zmrzlé rtuti vytáhnouti ven. Kdyz̃ se vloz̃í do chladné vody, zaẽne táti; kapky padajici, které mají chlad - $40^{\circ}$, zpúsobuji ve vodé ledové trubiçky. Mnohé pêkné pokusy o vodivosti tepelné uvedeme v oddflu následujícím.

Poučné jsou téż pokusy, jimiž se ukazuje, jak vypadá chemie za teplot nízkych; chemické reakce se mrazem tlumí, ba mnohé vủbec prèstávají, jako by ochlazením chemická príbuznost se oslabovala. Kdyz̃ se na př. kousek mramoru značnẻ ochlazeného vhodi do kyseliny solné, rovnéz̃ znac̃nẽ ochlazené, neni pozorovati, že by se vyluçoval plyn (kysličnik uhlicitý), az̃ teprve, kdyz̃ se látky na vyšši teplotu přivedou. Látky pevné, za obyčejné teploty tažné nebo pruz̃né, stávají se křehkými*) jako sklo ; tak na pr̃. kauc̃uk nebo olovo a j. Kdyz se leje rtut do smési pevného kyslic̃niku uhličitého s alkoholem nebo s aetherem, vzniknou stromkovité tvary pevné rtuti zcela tak, jako když se leje roztavené olovo do vody.

Obšínèjui jedná o těchto a jiných pokusech Dr. Bohumil Kučera y článku: O užívání pevné kyseliny uhličité pr̛i fysikálních demonstracich Casop. pro pěstov. math. a fys. 31., pag. 34., 1902.
*) Za velkých mrazú stávaji se tẻż kolejnice u żeleznẏch drah kr̃ehkými a mohou tlakem tezzzkẻho vlaku prasknouti a zpûsobiti jeho vyšinuti. Tak stalo se dne 26. Iedna 1905 na dráze Frantiska Josefa u rychliku, který v $1^{n} 35^{m}$ z Prahy do Vídnê odjel, mezi Táborem a Sudomêricemi, kolem 4. hod odpoledni.

## VII.

## Vedení tepla

## § 149. Přehled úkazů.

Stýkaji li se tělesa o různé teplotě vespolek, zahřivá se těleso studenějši a chladne těleso teplejši, což trvá tak dlouho, až se teploty obou vyrovnají. O této základni pravdě poučuje nás denni zkušenost. Máme dojem, jako by to, co teplem zveme, od tělesa teplejšiho přecházelo k chladnějšimu, jako by se s tímto sdilelo. Ale i u jednoho a téhož tělesa pozorujeme podobné sdilení tepla. Vložíme-li tyč železnou jedním koncem do ohně, držice ji za konec druhý, ucitíme záhy, že také tento konec se vždy více a více zahřívá, jako by teplo tyčí od ohně dále postupovalo. Pravime, že teplo se tyčí vede, mluvíme o vedeni tepelném (o kondukci tepla) a nazýváme tyč, kterou vedení se se děje, vodičem tepla, a vlastnost jeji vodivosti tepelnou.
$V$ této vodivosti ukazují se však rozdily veliké. Tyě dřevěnou mủžeme v ohni zapáliti, plamen se přibližuje konci druhému, za který tyč držíme, ten však zůstává chladným. Vodivost jest tedy $u$ různých pevných těles různon, mluvíme o vodičích dobrých a špatných. V chladné světnici zdají se nám jednotlivé předměty, ač jsou stejně temperované, když na ně saháme, rủzně chladnými, předměty kovové více, mramorové a zejména dřevěné méně, látky a koberce nejméně. Jdeme-li za mrazivého dne přes řetězový most, můžeme se rukou o dřevěné zábradli opirati a nemáme dojmu mrazivého, naproti tomu na železných tyčích neb řetězech ruku déle miti pro chlad nevydržíme. Naopak za horkého dne zdají se dřevěné části chladnými, kovové teplými. V horkých lázních vzduchových, v nichž jest vzduch zahřát na $70^{\circ}$ až $80^{\circ}$, můžeme na dřevěné lavičky usednouti, ale na kovové mřiže neb jakékoli kovové předměty
sáhnouti nesmíme. Všechny tyto různé dojmy tepelné, při stejné teplotě vznikajíci, mají svůj základ z části v různém teple specifickém, hlavně však v různé vodivosti tepelné.

Podobné poměry jsou u kapalin a vzdušin, ale zde rozhoduje ještě okolnost jiná, souvisícís velkou pohyblivosti nejmenších jejich částic. Teplota vody v jezerech, rybnicich na jaře jen velmi zvolna se zvyšuje, ač vzduch jest teplým a slunce prrimým zářením vodu zahřívá. Ale zahřivání se děje shora a postupuje dolû zvolna; voda a kapaliny vủbec jsou vodiči tepla špatnými. Když však kapaliny v nádobě zahříváme zdola, ode dna, prohřejí se velmi rychle, nebot vrstvy na dně, jakmile se oteplí, vystupuji vzhůra, na jich místo sestupuji vrstvy chladné, nastává pohyb, cirkulace kapaliny, pravíme, že teplo se zde siírí prouděním (konvekcí). V míře ještě větší vyniká tento zjev u vzdušin. Vzduch v síni, kde se v kamnech topí, prohřeje se poměrně záhy; vzduch mezi dvojitými okny jest naopak svou špatnou vodivostí ochranou proti chladu v měsících mrazivých.

Věda př̌ečetné zkušenosti takové sbirrá, kriticky zkoumá, přehleduě roztřiđuje, hledic vhodnými pokusy vystihnouti jich zákony a o podstatě zjevů těch jakési domněnky, hypothesy, utvořiti. První takovouto domněnkou bylo, že teplo jest látkou, velice jemnou, nevažitelnou (caloricum); dle analogie proudění u kapalin označoval se pohyb této látky jako proudění tepla, mluvilo se o síle, intensitẽ proudu tepelného. Vskutku čini zjev dojem, jako by látka tepelná od místa vyšši teploty přecházela k místủm niž̌̌í teploty *). Představu látky tepelné bylo nutno opustiti; místo její zaujal názor mechanický. Zjevy tepelné jsou podminěny pohybem molekulovým, různým dle skupenství. Siření tepla jest dle toho šiření tohoto pohybu, tak že molekuly svým pohybem mohutným pobádají sousední, s nimiž silami molekulovými souvisí, k pohybu živějšímu. Mechanický tento názor, který zde jenom v hlavním rysu naznačujeme, přijímá se nyní všeobecně; nicméně názvy dle staršiho názoru odvozené podržujeme i dnes a mluvíme o šǐ̌̌ení, vedení tepla, o vodičich tepla atd., ačkoli se do názoru mechanického méně hodí.

Co se konečně proudění tepla, konvekce ${ }^{* *)}$ tepelné týče, nejedná se tu o zjev thermický, nýbrž mechanický, tudiž o zjev při-

[^156]družený, kterým se vedeni tepla značně podporuje. Zjev jest ovšem omezen na kapaliny a plyny.

Majíce po těchto všeobecně orientujících výkladech přikročiti k projednání podrobnému, rozdělíme výklad dle skupenství těles a pojednáme především o vedení tepla v tělesech pevných, kde se jeví nejjasněji, typicky, potom v kapalinách a konečně v plynech.

## Vedení tepla v tělesech pevných.

## § 150. Skizza historická.

Vložme kovovou tyč jedním koncem do plamene na př. Bunsenova. Tento konec se rychle zahřeje, ale zahřáti odtud postupuje též do dalšich části tyče, které nejsou s plamenem v přimém dotyku. Teplo se tyči vede. Ale od tyče přechází též na vrstvy okolniho vzduchu. Také zde mluvime o vedení tepla, ale označujeme toto jakožto vnējši oproti prvému, které zoveme vnitřním.

První badatelé, kteří zuámý tento úkaz hleděli vysvětliti, byli Amontons (1703) a Lambert (1778). Kvalitativně vystihli zjev dobře, ale kvantitativně nikoli*). Aby rủznosti v tepelném vedeni se ukázaly, navrhl Franklin pokus, který pak provedl Ingenhousz**). Rủzné ḳovové tyče obalily se vrstvou vosku; když se tyče na jednom konci stejně zahřívaly, tavil se voskový obal, a taveni postupovalo u některých tyčí na vzdálenost větši, u jiných menší. Zajímavo jest však, že úkaz ten zcela opačně se vykládal. Ingenhousz pokládal kovy, při nichž obal voskový roztál na

[^157]větší vzdálenost, za vodiče lepši, J. T. Mayer*) naproti tomu za horší, domnívaje se, že ty kovy jsou vodiči lepšimi, které své teplo rychle sděluji okolnímu vzduchu. Patrně zde nebyla přesně rozlišována vodivost vnější a vnitǐní.

Teprve ve století 19tém, lined na jeho počátku, byl úkaz vodivosti tepelné správně i pokud se týče stránky kvantitativní vystižen, a to experimentálně i theoreticky. V prvém směru pracoval Biot, v druhém Fourier.
J. B. Biot**) vyšetřoval rozdělení teploty v železné tyči, jejǐ̌̌ jeden konec byl stále udržován (v lázni vodni nebo rtutové) na vysoké teplotě (kolem $100^{\circ}$ ). Po 10 hodinách, když se rozdělení teploty již neměnilo, provedl měření teploty na různých místech tyče a shledal, že při arithmetické progressi od teplého konce ke studenému rozdily (přebytky) temperaturní mezi tyčí a okolim klesaji v progressi geometrické. Byl to prvni kvantitativní výsledek, který o vodivosti tepelné experimentálně byl nalezen.

## § 151. Zảkony 0 vnitřni vodivosti tepelné.

Základy k theorii o vnitřní vodivosti tepelné položil Fourier***). Vycházi od „temperaturního spádu", pojmu tehda neužívaného, nového. Budiž dána tyč na př. měděná konstantniho prủřezu (sekce) $s$ (obr. 154.). Zahřiváme-li ji na levém konci,

[^158]šiří se teplo vedením od tohoto konce ke konci druhému. Abstrahujme od vedení vnějšiho *); teplota jest pak v celém prủřezu $s$ stejná. Určíme-li v různých, od počátku tyče počítaných odlehlostech $x$ temperaturu $t$ a naneseme-li výsledek graficky, obdržíme křivku, která pro určitý okamžik časový přehledně znázorňuje, jak je teplota podél tyče rozdělena (obr. 154.). V odlehlosti nějaké $x$ je teplota $t$, v odlehlosti $x+\Delta x$ teplota $t-\Delta t$; na délku $\Delta x$ přicházi tedy úbytek teploty $\Delta t$.

Položme body $M$ a $M^{\prime}$ přimku; jest to sečná temperaturní křivky. S osou úseček svírá úhel, jehožto tangenta jest dána


Obr. 154.
Geometrický význam temperaturniho spádu.
poměrem $\frac{\Delta t}{\Delta x}$. Přimka $M M^{\prime}$ naznačuje rozdělení teploty, jaké by v intervallu délkovém $\Delta x$ bylo, kdyby teplota klesala rovnoměrně. Při libovolně velikém $\Delta x$ takové rovnoměrnosti není; ale bližime se jí, když tento intervall $\Delta x$ se stává menším a v limitě nekonečně malým. Sečná $M M^{\prime}$ přechází při tom ponenáhlu v tečnou v bodu $M$ ke křivce temperaturní vedenou; s osou úseček svirá pak úhel, jehož tangenta jest rovně̌̌ určena limitou poměru $\frac{\Delta t}{\Delta x}$, když $\Delta x$ se stává velice (nekonečně) malým.

Jest patrno, že tečná v bodě $M$ ke křivce temperaturní vedená svỷm smèrem udává, jaký má křivka na tomto místé spád ve smyslu geometrickém. Vzhledem k tomu zavádíme analogicky, ve smyslu tepelném, poměr $\frac{\Delta t}{\Delta x}$ jakožto spíd temperaturni na

[^159]mistě $x$, přepokládajíce $\Delta x$ velmi nalým. Je-li $\Delta x$ libovolně veliké, je-li tedy body $M, M^{\prime}$ položena sečná, znači $\frac{\Delta t}{\Delta x}$ temperaturni spád prumérný v intervallu od $x$ ku $x+\Delta x$.

Ve smyslu počtu differenciálnîho jest temperaturní spád pro místo $x$ určen differenciálním poměrem $\frac{d t}{d x}$, kterẙz jest limitou pomẽru differenc̃ního $\frac{\Delta t}{\Delta x}$ udávajíciho průměrný spád pro intervall $x$ až $x+\Delta x$. Patrnẽ jest zde analogie s kuefficientem roztažnosti pravým a průmẽrným, nebo s teplem specifickým pravým a průměrným, jak o tom na svém mistẽ bylo jednảno. Obr. 154. jest analogickỳ s obr. 15.

Pojmu $>$ spád e anebo ve smyslu opac̃ném > výstup < uživáme zcela podobnẽ, jedná-li se o stoupání silnic, drah żeleznỳch zejména horskẏch, drah elektrickẏch a pod. Počitáme téz̃ pomér $\frac{\Delta l}{A l}$, totiž o jakou čast $\Delta h$ ve výšce $h$ dráha vystoupí, kdyz̃ ve smyslu horizontálním (délkovém) $l$ postoupíme o $\Delta l$. Poněvadž ve zlomku tomto ćitatel i jmenovatel znači délku, jest pomér pouhým číslem, zlomkem; udává se obyčejnẽ v procentech (\%) nebo téz̃ pro mille $(\%)$. Tak na př. čteme, że dráha přes Semmerink, kterou stavêl (1848-1854) genialni inženýr Karel Ghega (1802-1860) v Benátkách narozenẏ, má největši stoupání (spád) $2.5 \%$, kteréż stoupãní prekonává se jes̄tě lokomotivou na adhaesi. Na horské dráze Sarajevo-Mostar činí stoupání (spád) až 6\%; toto prekonáyá se lokomotivou na adhaesi, ke které jest připojeno ozubené kolo zasahající do střední kolejnice rovněz̃ ozubené; na mistech, kde je stoupainí (spád) mírné, do $3 \%$, není zaảdné středni koleje a kolo ozubené se z funkce své vypne.

Spád temperaturni je základem, na němž úkaz tepelného vedení v tyči spočívá. Množství tepla $q$, kteréž za dobu $\Theta$ průřezem $s$ tyče projde*), klademe jednoduše úměrným tomuto spádu $\frac{\Delta t}{\Delta x}$, době $\Theta$ a průY̌ezu $s$. Píšeme tedy

$$
q=k s \frac{\Delta t}{\Delta x} \Theta
$$

Konstanta $k$ charakterisuje materiál tyče, zove se proto absolutni tepelnou vodivostí vnitřní.

Że množstvi tepla $q$ je na temperaturním spãdu závislé, že jest jeho funkcí, o tom neni pochybnosti. Klademe-li prosté za tuto funkci vztah

[^160]úměrnosti, musí zkušenost ukázati, zdali dúsledky z toho počtem odvozené jsou se skutečností v souhlasu. Úměrnost s prữezem $s$ a dobou $\Theta$ jest samozřejmá.

Mnohdy zavádíme do vzorce množstvi tepla, za jednotku doby průřezem tyče proudiciho, tedy poměr $\frac{q}{\Theta}$ jakožto intensitu $J$ tepelného proudu. Pišeme tedy

$$
J=k s \frac{\Delta t}{\Delta x}
$$

Tím docházíme formulace „zákona Fourierova" o intensitě tepelného proudu, kteráž byla $v$ pozdějšich dobách vzorem pro mnohé analogické formulace, zejména pro „zákon Ohmủv" o intensitě proudu elektrického, jakož i pro analogické zákony jiné *).

Mnohdy se intensita proudu tepelného vztahuje na prữ̌ez jednotkový, t. j. klade se

$$
J=\frac{q}{s \Theta}
$$

tak že jest pak jednoduše

$$
J=k \frac{\Delta t}{\Delta x}
$$

Při intensitě proudu elektrického se však takový předpoklad nikdy nečiní. Proto je lépe, kdyż se ani zde podobná formulace nezavádí, tím méné, poněvadž ono zjednodušeni je nepatrné.

Konstanta $k$ není pouhým číslem, nýbrž má rozměr (dimensi). Majíce tento určiti, pišeme

$$
k=\frac{q}{\Delta t} \cdot \frac{\Delta x}{s} \cdot \frac{1}{\Theta}
$$

Dle toho byl by rozměr ten dán výrazein

$$
\frac{c a l}{\left(^{0}\right)} \cdot \frac{1}{c m} \cdot \frac{1}{s e c}
$$

kdež symbol $\left({ }^{\circ}\right)$ značí stupeň Celsiův. Avšak poměr

$$
\frac{c a l}{\left(^{0}\right)}
$$

má význam jednodušši. Dle kalorimetrických definicí jest množstvi tepla definováno rovnicí

$$
Q=M C\left(t_{2}-t_{1}\right)
$$

*) Srovnej na př. vẏklad o diffusi kapalin, Mechanika, pag. 645, 1910.
kdež znamená teplo specifické $C$ ' pouhé číslo, vztahované na teplo specifické vody, kteréž jest jedničkou. Dle toho má poměr mezi množstvím tepla $Q$ a temperaturní differencí $t_{2}-t_{1}$ význam hmoty $M$, tak že jest

$$
\frac{c a l}{\left(^{0}\right)}=g .
$$

Následkem toho jest rozměr konstanty $k$ dán výrazem
speciálnĕ

$$
\frac{g}{\mathrm{~cm} \cdot \mathrm{sec}}
$$

a všeobecně

$$
\frac{\mathrm{M}}{\mathrm{LT}} .
$$

Jinak značí 7 c množství tepla (cal), kteréž za jednotku času (sec) projde jednotkou prúřezu $\left(\mathrm{cm}^{2}\right)$, je-li na tom mistě jednotkový spád temperaturní, t. j. klesá-li tu teplota o $1^{0}$ na jednotku délky ( cm ).

Starši vydání tabulek Landolt-Börnsteinových obsahuji pro $k$ čiselná data dle soustavy $m m, m g$, sec. Rozmẽrovẽ jest ${ }^{*}$ )

$$
\frac{g}{\mathrm{~cm} \cdot \mathrm{sec}}=\frac{1000 \mathrm{mg}}{10 \mathrm{~mm} \cdot \mathrm{sec}}=100 \frac{\mathrm{mg}}{\mathrm{~mm} \cdot \mathrm{sec}} .
$$

Jednotka v soustavê $m m, m g$, sec je tedy $100 \mathrm{kráte}$ mens̃i, tudíz̃ číslo jí vyjádřené $100 \mathrm{kráte}$ větşí. Pro střibro jest na pr̃. $k=109 \cdot 6 \frac{\mathrm{mg}}{\mathrm{mm} \cdot \mathrm{sec}}$, resp. $1.096 \frac{g}{\mathrm{~cm} \cdot \mathrm{sec}}$. V novém vydáni (1905) jest již pr̄ijata soustava $\mathrm{cm}, g$, sec, coz̃ dluz̃no rozhodně schvalovati.

## § 152, Zákony o vnějši vodivosti tepelné.

Tyč, kterou na jednom konci zahřiváme, nalézá se v prostředi, zpravidla vzduchu, jehož teplota $\tau$ je menší než teplota tyče $t$ na různých mistech. Následkem toho přechází teplo zářením i sdílenim s povrchu tyče též do okolního prostředi, ktery̌žto přechod označujeme jakožto vedení vnéjsí. Z každé plošky $\sigma$ přejde v době $\Theta$ množstvi tepelné $q$, jež jest úměrno této plošce $\sigma$, době $\Theta$ a jež souvisí s rozdilem $t-\tau$ mezi teplotou tyče a teplotou prostředi, jsouc patrně tím větši, čím jest tento rozdil větši. I. Newton předpokládal závislost nejjed-
*) Viz. Mechaniku, pag. 109, 1901.
nodušši, totiž prostou úměrnost. Zavedeme-li konstantu $h$, jež souvisi s materiálem tyče, povahou jeho povrchu a pod., obdržíme jednoduše

$$
q=h \sigma(t-\tau) \Theta .
$$

Konstanta $h$ zove se absolutní vodivostí vnější.
Zavedeme-li také zde intensitu tepelného proudu definicí

$$
J=\frac{q}{\Theta}
$$

obdržime

$$
J=h \sigma(t-\tau) .
$$

V druhé modifikaci, kde intensitu vztahujeme na plošku jednotkovou dle definice

$$
J=\frac{q}{\sigma \Theta},
$$

obdržíne

$$
J=h(t-\tau) .
$$

Rozměr veličiny $h$ stanovíme $z$ rovnice

$$
h=\frac{q}{t-\tau} \cdot \frac{1}{\sigma \Theta} .
$$

Jest tedy dán výrazem

$$
\frac{c a l}{\left(^{0}\right)} \cdot \frac{1}{\mathrm{~cm}^{2}} \cdot \mathrm{sec}
$$

Dle výkladủ předešlého odstavce má poměr mezi množstvím tepla a temperaturou ${ }^{\text {Br }} \mathrm{v}$ ýznam hmoty, t . j.

$$
\frac{c a l}{\left({ }^{\circ}\right)}=g
$$

Dle toho jest rozměr veličiny $h$
speciálně

$$
\frac{g}{c^{2} \cdot s e c}
$$

a všeobecně

$$
\frac{\mathrm{M}}{\mathrm{~L}^{2} \mathrm{~T}}
$$

Pro rozměr veličiny $k$ odvodili jsme v odstavci předešlém výraz
speciálně

$$
\frac{g}{c m \cdot} \cdot \frac{s e c}{}
$$

a všeobecně

$$
\frac{\mathrm{M}}{\mathrm{LT}}
$$

Má tudiž poměr $\frac{h}{k}$ obou veličin rozměr
speciálně

$$
\begin{gathered}
\frac{g}{\mathrm{~cm}^{2} \cdot \sec }: \frac{g}{\mathrm{~cm} \cdot \mathrm{sec}}=\frac{1}{\mathrm{~cm}} \\
\frac{\mathrm{M}}{\mathrm{~L}^{2} \mathrm{~T}}: \frac{\mathrm{M}}{\mathrm{LT}}=\frac{1}{\mathrm{~L}} .
\end{gathered}
$$

a všeobecně
Jinak znači $h$ množstvi tepla (cal), kteréž za jednotku času (sec) přejde z tyče jednotkou plochy ( $\mathrm{cm}^{2}$ ) do okolního prostředi, je-li jeho teplota o $1^{0}$ nižši.

Dlužno poznamenati, že zảkon Newtonův o vnėjším vedení tepla, zde vyložený, jest jen approximací, tím správnějši. čim jest menši rozdíl $t-\tau$ mezi teplotou tyče a teplotou prostředí. Při velkém rozdilu jest závislost na teplotách $t$ a $\tau$ složitějši.

Pro veličiny $k, h$ nžívají Angličané názvů konduktivita a emissivita.

Dle výkladú předeşlých máme tedy přii vedení tepelném dvojí tepelný proud, jehoz̃ intensita $J$ jest úměrná pr̂i vnitřním proudẽní tepla temperaturnímu spádu, pr̄i vnĕjším proudēni pak temperaturnímu rozdílu. Pišeme tedy

$$
J=-k s \frac{d t}{d x}, \quad J=h \sigma(t-\tau)
$$

připisujice v prvém výrazu znamení negativní, abychom mathematicky vyznačili, že se jedná o spád temperaturní, kde při positivnín $d x$ jest $d t$ negativním. Tyto vyrazy byly odvozeny $z$ definice

$$
J=\frac{q}{\Theta},
$$

kterou se praví, że poměr $\frac{q}{\Theta}$ jest určitým pro dobu $\Theta$ jakoukoli. Tomu jest tak při proudění ustáleném, stationárním, jez̃ se během času nemění. Neníli však podmínka tato vyplněna, nutno vyjádr̛̃ti, že intensita se prủběhem doby mění, že jest urěitou jenom pro určitý okamžik $\Theta$, od něhoz̃ se vzdálíme jen o malý přirůstek $d \Theta$, za kterŷ projde mnoz̃ství tepelné $d q$. Dluz̃no tedy intensitu tepelného proudu definovati výrazem všeobecným

$$
J=\frac{d q}{d \Theta} .
$$

Pro mathematické řešení jednotlivých případů má pak platnost rovnice všeobecná

$$
\frac{d q}{d \Theta}=-k s \frac{d t}{d x}, \quad \frac{d q}{d \Theta}=h \sigma(t-\tau)
$$

Zákon Newtonův o vnějšim vedení tepla má stránku kalorimetrickou, ježto se vztahuje k množství tepelnému. Z něho můžeme však odvoditi zákon o stránce thermometrické, který by udával, jak teplota nějaké tyče vedením vnějším klesá, a jakou rychlostí se chladnutí děje.

Předpokládejme, že celá tyč má stejnou teplotu $t$ a že jest umístẽna ve vzduchu teploty nullové. Tim není všeobecnosti učiněna ujma; je-li teplota vzduchu $\tau$ libovolnou, počitáme teploty $t$ od ní jako nullové, t. j. píseme $t-\tau$ na místẽ $t$. Povrch tyče budiž $S$, hmota $M$. Tyč chladne. Za dobu $d \Theta$ přejde do vzduchu mnoz̃ství tepla

$$
h S t . d \Theta
$$

Tím klesne teplota o $-d t$ a obsah tepelný, je-li $C$ teplo specifické, se umensío

$$
-M C \cdot d t
$$

Oba výrazy značí totéž. Máme tedy rovnici

$$
-M C \cdot d t=h S t \cdot d \Theta
$$

čili

$$
\frac{d t}{d \Theta}=-\frac{h}{C} \frac{S}{M} \cdot t
$$

Položíme-li ke zkrácení

$$
b=\frac{\hbar}{C} \frac{S}{M}
$$

jest

$$
\frac{d t}{d \Theta}=-b t
$$

Differenciální kvocient značí rychlost v chladnutí. Tato jest tedy úměrná teplotẽ $t$, jaká právẽ v daném okamz̃iku časovém jest.

Jaký časový prủběh má teplota $t$, stanoví se z differenciální rovnice

$$
\frac{d t}{t}=-b \cdot d \Theta
$$

Obdržíme

$$
\lg t=-b \Theta+\text { const. }
$$

Při začátku doby $\Theta=0$ jest teplota tyče $t=t_{0}$; plyne tudiz̃ z poslední rownice

$$
\lg t_{0}=\text { const. }
$$

Touto hodnotou nabude poslední rovnice tvaru
cili

$$
\lg t=-b \Theta+\lg t_{0}
$$

$$
l g \frac{t}{t_{0}}=-b \Theta
$$

anebo, obrátíme-li funkcionálni závislost,

$$
t=t_{0} e^{-b \Theta}
$$

kteroužto rovnicí úkol daný jest resen.
Tím jsme obdrželi zákon chladnutí jakožto dủsledek zákona Newtonova rovnici
kdež jest

$$
t=t_{0} e-b \Theta,
$$

$$
b=\frac{h}{C} \cdot \frac{S}{M}
$$

Graficky jest chladnutí vyjádřeno křivkou exponenciálni. Logarithmy temperatur umenšují se s dobou lineárně. Zároveň jest patrno, že za jinak stejných okolnosti těleso chladne tím rychleji, čim jest vodivost vnějši $h$ větši a teplo specifické $C$ menší, jakož i čím jest povrch $S$ větší a hmota $M$ menší. Součin $M C$ značí tepelnou kapacitu tělesa. Těleso přijde na teplotu okolí po době theoreticky nekonečné, prakticky dostatečně dlouhé.

Rozměr veličiny $h$ jest, jak dřive již udáno,

$$
\frac{\mathrm{M}}{\mathrm{~L}^{2} \mathrm{~T}}
$$

Vzhledem k tomu, že $C$ jest pouhé čislo, má součin $b \Theta$ rozměr

$$
\frac{\mathrm{M}}{\mathrm{~L}^{2} \mathrm{~T}} \cdot \frac{\mathrm{~L}^{2}}{\mathrm{M}} \cdot \mathrm{~T}=1
$$

jest tedy též pouhé čislo, jakož při exponentu musi býti.
Chladnuti tyče nad teplotu okolí možno pozorováním teploty a doby určiti; pak lze z jeho průběhu vypočítati naopak $b$ a tim i $h$.

## § 153. Vedeni tepla v tyčich.

Zákony o vedení tepla, jak v předešlých dvou odstavcích byly vyloženy, jsou základem výpočtủ, jež lze provésti pro jednotlivé určité připady, ovšem jen počtem differenciálním a integrálním. Fysikálně nejzajímavější jest úkol, který - jak v úvodu bylo řečeno - již Biot experimentálně studoval, totiž stanoviti rozdělení teploty v tyči, která jest ve vzduchu umístěna, a která na jednom konci se zahřívá. Délka tyče budiž
$L$, prủřez (sekce) $s$, obvod (periferie) $p$. Vzduch mějž teplotu $\tau$. Je-li $x$ odlehlost libovolného prủřezu $s$ od začátečního, a je-li $t_{0}$ teplota, na kterou se tyč při tomto začatečním průřezu, t. j. při $x=0$ zahřívá, má se určiti teplota $t$ v libovolném prủřezu, t. j. pro libovolné $x$.

Aby nebylo třeba $k$ teplotě vzduchu $\tau$ stále přihližeti, mủže se k zjednodušení klásti $=0$, t . . mohou se teploty $t_{0}$, $t$ počítati od této $\tau$ jakoby nullové, čili difference $t_{0}-\tau, t-\tau$ mohou se pokládati za teploty $t_{0}, t$, kteréž se pak dodatečně o teplotu r zvýší.

Když zahřiváním na teplotu $t_{0}$ tepelný proud v tyči vznikne, mění se teplota $t$ netoliko dle místa $x$ nýbrž též dle času $\Theta$; stoupání teploty na jednotlivých mistech $x$ má průběh časový. Ale postupem doby tento vliv času se umenšuje; rozděleníteplot $t$ dle mist $x$ se ustaluje, oproti dřívějšimu stavu, jemuž řikáme mẽnlivý, variabilní, nastane stav, jejž zoveme ustáleným, stationárním. Může tedy býti dán úkol počtem vystihnouti bud celý průběh časový anebo stav závěrečný, stationárni.

Pro účely naše přestáváme na úkolu jednodušším, odvoditi jenom stav závěrečný, ustálený. Výpočet, ktery̌ž v dalším uvádíme, vede $k$ výsledku velmi přehlednému v tom případě, když jest déllva $L$ tyče tak značná, že teplota druhého konce tyče nevystoupi nad teplotu (nullovou) okolniho vzduchu. Pak jest

$$
t=t_{0} e^{-a x}
$$

kdež znamená

$$
a=\sqrt{\frac{h}{k} \frac{p}{s}}
$$

Teplota $t$ ve stavu stationárním klesá tudiž s odlehlostí $x$ dle zákona exponenciálniho.

Pro $x=0$ jest $t=t_{0}$, pro $x=L$, tedy prakticky jako $\infty$, jest $t=0$, což jest teplota okolniho vzduchu.

Zajímavá jest formálni shoda obou zákonú o klesání teploty tělesa chladnoucího, což jest zjev časový, a o klesání teploty podél tyče následkem tepelné vodivosti, ve stavu ustáleném, což jest zjev místní. V obou případech má platnost zákon exponenciální, tam dle času $\Theta$, zde dle místa $x$, jak vychází z rovnic

$$
\begin{aligned}
t & =t_{0} e^{-b \Theta}, \text { kdež jest } b
\end{aligned}=\frac{h}{C} \frac{S}{M}, ~ \begin{aligned}
\frac{h}{k} \frac{p}{s}
\end{aligned}
$$

Jako ubývá při chladnutí tyče (jako celku) teploty od okamžiku $k$ okamžiku, tak ubývá teploty při vedení $v$ tyči od mista k místu.

Výpočet můžeme založiti ponêkud všeobecněji, předpokládajíce, že se tyč na obou koncích udrz̃uje na určitých teplotách, a to $t_{0}$ při $x=0$, pak $t_{1}$ při $x=L$. Teplotu okolního vzduchu pokládejme za nullovou. rezem při $x$ vstupuje a $x+d x$ vytkněme prủrezezy $s, s$ (obr. 155.). Prủ-

$$
-k s\left(\frac{d t}{d x}\right)_{x}
$$



Obr. 155.
Rozdêleni teploty v tyči při stavu ustáleném.
Průřezem při $x+d x$ postupuje tepelný proud dále o intensitẽ

$$
-k s\left(\frac{d t}{d x}\right)_{x+d x}
$$

zároven̆ však vystupuje na venek, do vzduchu, povrchem $\sigma$ mezi oběma těmi prủfezy obsaženým proud o intensité

$$
h a t .
$$

S počátku převládá proud vstupující nad součtem proudu dále postupujíćho a na venek vystupujicího; následkem toho teplota tyçe mezi prưrezy $x$ a $x+d x$ ponenáhlu se zvětšuje. Ale po uplynutí další doby nastane stav rovnováhy mezi přitokem a odtokem, ustálí se rovnost vyjádřená rovnicí

$$
-k s\left(\frac{d t}{d x}\right)_{x}=-k s\left(\frac{d t}{d x}\right)_{x+d x}+h \sigma t
$$

kteráž charakterisuje stav stationární.
Integrace této differenciálnf rovnice jest snadná. Předevsím jest

$$
\left(\frac{d t}{d x}\right)_{z+d x}=\left(\frac{d t}{d x}\right)_{z}+\frac{d^{2} t}{d x^{2}} d x
$$

Obdržíme tedy jednodus̃eji

$$
k s \frac{d^{2} t}{d x^{2}} d x=h \sigma t
$$

Znači-li $p$ obvod (periferii) tyče, jest patrnẽ

$$
\sigma=p . d x
$$

Dosadíce obdržime differenciální rovnici daného úkolu ve formẽ velmi
jednoduché

$$
\frac{d^{2} t}{d x^{2}}=a^{2} t
$$

kdez̃ jest ke zkrácení poloz̃eno

$$
a^{2}=\frac{h}{k} \frac{p}{s}
$$

Rozměr konstanty $a^{2}$ jest $\frac{1}{\mathrm{~L}^{2}}$ vzhledem k tomu, že $\frac{h}{k}$ má rozměr $\frac{1}{\mathrm{~L}}$ a že obvod $p$ jest délka L a prûr̃ez $s$ plocha $L^{2}$. Je-li tyč na př. kruhová, jest tudiẑ

$$
p=2 \pi R, \quad s=\pi R^{2}
$$

$$
\frac{p}{s}=\frac{2}{R}
$$

Hořejší redukovanou lineární differenciální rovnici druhého rádu

$$
\frac{d^{2} t}{d x^{2}}-a^{2} t=0
$$

integrujeme, kladouce

$$
t=e^{a x}
$$

což jest její partikulảrný integrál. Ježto charakteristická rovnice jest
máme

$$
c^{2}-a^{2}=0
$$

$a= \pm a$,
pročez̃ obecný integrál

$$
t=A e^{-a x}+B e^{a x}
$$

Integrační konstanty $A, B$ určí se blizzsími podmínkami úkolu. Bylo řečeno, že tyẽ na svẏch koncích, t. j. při $x=0$ a $x=L$, jest udrz̃ována na teplotách $t_{0}$ a $t_{1}$. Z podminek tęchto následuji vztahy

$$
\begin{aligned}
& t_{0}=A+B \\
& t_{1}=A e^{-a L}+B e^{a L}
\end{aligned}
$$

z nichz̃ lze konstanty $A, B$ vypočitati.

Jednodušeji utvárí se úkol, kdyz̃ tyč je tak dlouhá, że druhý konec, ve vzduchu teploty nullové se nacházejici, na této teplotẽ setrvává. Pak jest $t_{1}=0$, a obdržime rovnici jednodusssí.

$$
A e^{-a L}+B e^{a L}=0
$$

Je-li $L$ téměř $=\infty$ (t. j. je-li prakticky tyč velmi dlouhá), vyhoví se rovnici této jenom, když jest

$$
B=0
$$

z čehoz̃ pak plyne

$$
A=t_{0}
$$

Integrál differenciální rovnice jest pak zcela jednodus̃e
cill

$$
t=t_{0} e^{-a z}
$$

$$
\lg t=\lg t_{0}-a x
$$

Zkoumáme-li teplotu tyče v odlehlostech

$$
x, x+l, x+2 l, x+3 l, \ldots,
$$

jež tvoři řadu arithmetickou, obdržíme temperatury

$$
t, t^{\prime}, t^{\prime \prime}, t^{\prime \prime \prime}, \ldots
$$

jež tvoří řadu geometrickou. Jest totiž

$$
\begin{aligned}
t & =t_{0} e^{-a x} \\
t^{\prime} & =t_{0} e^{-a z} \cdot e^{-a t} \\
t^{\prime \prime} & =t_{0} e^{-a x} \cdot e^{-2 a t} \\
t^{\prime \prime \prime} & =t_{0} e^{-a x} \cdot e^{-a a t}
\end{aligned}
$$

tudiž

$$
\frac{t^{\prime}}{t}=\frac{t^{\prime \prime}}{t^{\prime}}=\frac{t^{\prime \prime \prime}}{t^{\prime \prime}}=\ldots=e^{-a z}
$$

Poněvadž a má rozměr $\frac{1}{\mathrm{~L}}$, jest součin al pouhé číslo, tudǐž jest jím také $e^{-a l}$, konstantní to poměr řady geometrické. Poměr tento jest tím větši, t. j. teploty $t, t^{\prime}, t^{\prime \prime}, \ldots$ klesají tím nenáhleji, čím jest a menší, t. j. čim jest vodivost vnitřní $k$ větší oproti vnějši $h$ a čím jest průřez $s$ větši oproti obvodu $p$.

Jiná forma této závislosti jest následující. Počítáme-li průměr teplot $t^{\prime}$ a $t^{\prime \prime \prime}$ proti teplotě $t^{\prime \prime}$, máme

$$
\frac{1}{2}\left(t^{\prime}+t^{\prime \prime \prime}\right)=t_{0} e^{-a x} \frac{e^{-a}+e^{-3 a t}}{2}
$$

a poněvadž

$$
t^{\prime \prime}=t_{0} e^{-a x} \cdot e^{-2 a l}
$$

obdržíme dělením

$$
\frac{\frac{1}{2}\left(t^{\prime}+t^{\prime \prime \prime}\right)}{t^{\prime \prime}}=\frac{e^{a l}+e^{-a t}}{2}
$$

Poměr tento jest nezávislý na $x$, tedy při určitém $l$ jest stálým. Geometrický jeho význam jest jednoduchý. Je-li sestrojena (obr. 155.) křivka temperaturní, v níž jako ordináty vystupují teploty $t^{\prime}=P^{\prime} M^{\prime}, t^{\prime \prime}=P^{\prime \prime} M^{\prime \prime}, t^{\prime \prime \prime}=P^{\prime \prime \prime} M^{\prime \prime \prime}, \ldots$, značí průměr obou teplot $t^{\prime}$ a $t^{\prime \prime \prime}$ ordinátu $P^{\prime \prime} N^{\prime \prime}$, jdoucí až k př̌imce $M^{\prime} M^{\prime \prime \prime}$. Při určité odlehlosti $l$ jest tudiž pro každou polohu $x$ poměr

$$
\frac{P^{\prime \prime} N^{\prime \prime}}{P^{\prime \prime} M^{\prime \prime}}=n
$$

konstantním. Z hodnoty poměru $n$, kterou mủžeme měřením temperatur stanoviti, lze pak při známé distanci $l$ vypočitati $a$. Jest totiž
čili
tudiž

$$
\begin{aligned}
& e^{2 a t}-2 n e^{a l}+1=0 \\
& e^{a l}=n \pm \sqrt{n^{2}-1}
\end{aligned}
$$

Obdržíme tedy pro $e^{a l}$ hodnoty dvě, což souhlasí s tím, že $a$ může býti bư̛ + nebo -. Máme tedy

$$
\begin{aligned}
e^{a l} & =n+\sqrt{n^{2}-1} \\
e^{-a l} & =n-\sqrt{n^{2}-1}
\end{aligned}
$$

Součin jest $=1$, obě hodnoty jsou navzájem reciproké a jsou reálné, poněvadž křivka temperaturní jest k ose úseček konvexní, tudíž $n>1$ (obr. 155.). Obdržime konečně
čili

$$
a l=l g\left(n+\sqrt{n^{2}-1}\right)
$$

$$
\sqrt{\frac{h}{k} \frac{p}{s}}=\frac{1}{l} \lg \left(n+\sqrt{n^{2}-1}\right)
$$

kdež logarithmus jest přirozený. $K$ této dủležité relaci se později vrátíme. Budiž ještě poznamenáno, že platí též pro ten všeobecnější případ, kdy je druhý konec tyče udržován na určité teplotě $t_{1}$. Věc jest pochopitelná i bez dủkazu mathematického. když uvážíme, že touto okolností se exponenciální povaha tem-
peraturní křivky nemění a že právě s touto povahou důsledky zde odvozené souvisí.

V knihách se udává vesměs hodnota

$$
2 n=\frac{t^{\prime}+t^{\prime \prime \prime}}{t^{\prime \prime}}
$$

Jest však jasno, że je lépe bráti hodnotu $n$, ponévadż má názorný geometrický význam, ktery̆ se připojuje přímo ke kr̄ivce temperaturní. Součet $t^{\prime}+t^{\prime \prime \prime}$ temperatur nemá zádného zájmu, za to střední temperatura $\frac{1}{2}\left(t^{\prime}+t^{\prime \prime \prime}\right)$ má význam, poněvadz̃ při dokonaleǰ̧̌i vodivosti vnitřni (oproti vnéjší) teplota skutec̃ná $t^{\prime \prime}$ daného místa se této středni, ze sousedních stejnẽ vzdálených míst odvozené, přibližuje, az̃ v limitẽ (pr̃i $h=0$ ) se ji rovná.

Výsledky, k nimž počet vedl, charakterisuji stav ustálený, stationární. V tom smyslu mǔžeme říci, že proud do prûřezu $s$ vstupující se dělí na část postupující do průřezu o $d x$ odlehlého a vystupující do povrchové části mezi oběma průřezy obsažené. Než tento stav nastane, zvedá se křivka temperaturní průběhem doby, s počátku rychleji, pak vždy volněji a volněji, až se ustáli.

Kdyby nebylo vodivosti vnější, kdyby možno bylo tyč na jejím povrchu tepelně zcela isolovati, šel by proud tepelný jenom vnitřkem tyče a pak je patrno, že by ve stavu ustáleném, stationárním, čára temperaturní byla přímkou, t. j. že by temperaturni spád byl na každém místě $x$ konstantním. Průřezem $s$ na kterémkoli místě procházelo by stejné množství tepla za každou jednotku časovou.

Relace dříve odvozená

$$
\frac{P^{\prime \prime} N^{\prime \prime}}{P^{\prime \prime} M^{\prime \prime}}=\frac{1}{2}\left(e^{a t}+e^{-a t}\right)
$$

při $h=0, a=0$ přešla by v relaci

$$
\frac{P^{\prime \prime} N^{\prime \prime}}{P^{\prime \prime} M^{\prime \prime}}=1, \quad \text { t. j. } P^{\prime \prime} N^{\prime \prime}=P^{\prime \prime} M^{\prime \prime}
$$

jak z přímočarého průběhu čáry temperaturní následuje. Temperatura každého místa byla by středem temperatur obou míst sousedních stejně odlehlých.

Zákony pro tepelné proudy byly vzorem zákonů analogických pro elektrické proudy. Vskutku jest zákon Ohmův parafrasi zákona Fourierova; pojmy vodivost (vnitřni) tepelná a elektrická jsou úplně analogické. Avšak v elektřině lze vodiče na venek isolovati; odpadává vodivost vnější. Následkem toho stav stationárni jest zde dán zákonem přímky.

## § 154. Vodivost relativni.

Velmi často jedná se o úkol srovnávati vodivosti vnitřní $k$ rủzných látek vespolek, t. j. stanoviti poměr vodivostí

$$
\frac{k_{2}}{k_{1}}
$$

Tento poměr zoveme relativni vodivostí látky druhé vzhledem k prvé.

Zákony v předešlém odstavci odvozené poskytuji dvojí methodu, kterou lze vodivost relativni stanoviti.

1. Methoda prvá opírá se o rovnici
kdež jest

$$
t=t_{0} e^{-a x}
$$

$$
a=\sqrt{\frac{h}{k} \frac{\bar{p}}{s}}
$$

kterou se rozděleni teploty v tyčích určuje. Mějmež dvě tyče o stejných rozměrech $p$ a $s$. Zahřívejme obě na stejnou teplotu $t_{0}$ a hledejme pak odlehlosti $x_{1}, x_{2}$, ve kterých jest stejná teplota $t$. Patrně jest pak

$$
\begin{aligned}
a_{1} x_{1} & =a_{2} x_{2} \\
x_{1} \sqrt{\frac{h_{1}}{k_{1}} \frac{p}{s}} & =x_{2} \sqrt{\frac{h_{2}}{k_{2}} \frac{p}{s}}
\end{aligned}
$$

Dejme oběma tyčím stejný povrch, na př. stejným nátěrem nebo stříbřením, niklováním a pod., abychom mohli předpokládati, že vodivosti vnější jsou stejné, že jest

Pak vycházi:

$$
h_{1}=h_{2}
$$

$$
\frac{x_{1}}{\sqrt{\overline{k_{1}}}}=\frac{x_{2}}{\sqrt{k_{2}}}
$$

čili

$$
\frac{k_{2}}{k_{\mathrm{i}}}=\left(\frac{x_{2}}{x_{1}}\right)^{2}
$$

Podstatu této methody lze pěkně ukázati pokusem přednáškovým, v obr. 156. znázorněným. Tyče měděná a železná, každá 75 cm dlouhá, stejného kvadratického prů̌̌ezu, o straně 1.8 cm , jsou vespolek tvrdě spájeny. Na dolejši straně přilepí se k nim řada dřevěných kuliček, na jednu tyč, na pǐ. měděnou, bilých, na

$$
-454-
$$

druhou železnou, černých, a to ve stejných odlehlostech po 5 cm , od místa společného doteku počínajíc. Tyče položí se na dvou malých stolcích na plstěné podložky a zahřívají se na mistě dotekovém na pǐ. alkoholickým nebo Bunsenovým (nesvitivým) plamenem. Za nedlouho počínaji kuličky odpadávati, bílé na tyči měděné $v$ počtu větším než černé na tyči železné, čímž je demonstrováno, že teplo se vede, ale také, že vodivost v různých kovech jest různá.


Obr. 156.
Jak se ukãze relativni vodivost pokusem přednáškovým.

Pro absolutní vodivost železa a mědi udávaji se v tabulkách čísla (okrouhlá)

$$
\begin{aligned}
& k_{1}=0.16 \frac{g}{c m \cdot s e c} \\
& k_{2}=0.90
\end{aligned}
$$

Z toho plyne (okrouhle)

$$
\frac{k_{2}}{k_{1}}=5 \cdot 6
$$

tudiž

$$
\frac{x_{2}}{x_{1}} \doteq 2 \cdot 4
$$

Kuličky bilé odpadávají tedy na tyči měděné v počtu $2 \cdot 4 \mathrm{kráte}$ větším, na pět černých by připadlo 12 bilých. Pokusem, když déle trval, dostáváme počet poněkud menši, na pět černých asi 10 bílých, což souvisí s tim, že prodajná obyčejná měđ̛ nebývá čistou, čímž jeji tepelná vodivost se umenšuje. Ale i tak jest taxativní tento výsledek poučným. K stejnosti povrchové netřeba u tohoto jen orientačniho pokusu přihližeti.

Úpravu jinou má pokus Ingenhouszưv, o němž již v úvodních výkladech byla řeč. Obr. 157. objasňuje starši, obr. 158. pak novější přistroj $k$ tomuto pokusu sloužicí. U staršiho zasahaly tyče v korcich upevněné do vařicí se vody; u novějšiho topi se parou vodní, 100stupn̆ovou.

Ingenhousz sám užíval lázně olejové a opatřil tyče tenkým obalem voskovým; pozoroval, jak u různých tyčí rozpouštění vosku pokračuje. Nyní se uživá tak zvaných nátěrủ thermoskopických.


Obr. 157.
Přistroj Ingenhouszův původni.
Takovým jest směs jodidu mědičnatého $\left(C u_{2} J_{2}\right.$, kuprojodid, šedý prášek) a jodidu rtufnatého ( $H g J_{2}$, merkurijodid, prášek


Obr. 158.
Pristroj Ingenhouszûv v úpravê novejusi.
ohnivě červený, který zahříváním na $150^{\circ}$ se mění v modifikaci žlutou, jež zase chladnutím v původní červenou přechází).

Směs tato dává nátěr tmavočervený, kterýž při teplotě asi $40^{\circ}$ počiná hnědnouti a při $70^{\circ}$ jest tmavým. Při chladnutí dostavaji se opět barvy původni.

Jiným thermoskopickým nátěrem jest směs jodidu střibrnatého ( $A g J$, prášek z̀lutý) a jodidu rtutnatého ( $H g J_{q}$, jako dříve). Za obyčejné teploty jest nátěr žlutavý, který pak při zahřáti červená. Tepelný účinek lze pěkně ukázati zvláště na papirech, jež jsou takovouto thermoskopickou směsi natřeny, a to plaménkem alkoholickým.

Přístroj v obr. 158. znázorněný má tyče měděnou, stříbrnou, zinkovou, mosaznou, cinovou, olověnou, železnou, skleněnou. Střibro jest lepším vodičem než měđ, ale jenom střibro čisté; tyče, které se v obchodech koupí, obsahuji něco mědi, čímž vodivost se umenšuje. Proto tyč stříbrná ukazuje oproti měděné retardaci. Žádoucno jest, aby tyče byly dosti dlouhé a aby se topilo parou delši dobu (alespoň půl hodiny), tak teprve se rozdílnosti ukáží zřetelněji. Pro pozorování kvantitativní budtež uvedeny vokrouhlých číslech vodivosti $k$; střibro (čisté) 1.01 , měd 0.90 , zinek 0.27 , mosaz 0.2 , cín 0.15 , olovo 0.08 , železo $0 \cdot 16$, sklo 0.0015 .

Apparát Ingenhouszúy doznal mnohých modifikací. Tak na pǐ. konce tyči nezahřivané mohou tésnè zasahovati do sklenẻné koule se vzduchem, jehoz̃ expanse râzným oteplením vznikajici se ukazuje manometrickými sloupečky zbarveného lihu neb pod. Dluãno vsak doznati, z̃e v pủvodní formẻ pủsobí apparăt svou bezprostředností nejlépe; zdokonalovaní pak jest tím ménẽ žádoucí, poněvadz̃ pokus sám není tak jednoduchŷ, jak se zdá; rozhoduje tu o výsledku netoliko vodivost tepelná, nýbrž téz̃ teplo specifické, tak že malá vodivost mûže malỳm teplem specifickým býti kompensována. Néco podobného jsme poznamenali u pokusu Tyndallova o teple specifickém (§ 71.), kde zase menši teplo specifické (u médi proti żelezu) bylo vêtsí vodivostí kompensováno.

Pokus Ingenhouszův lze provésti ve smyslu obráceném, jakožto "vedení chladu", když se tyče jedním koncem vloží do mrazivé směsi Thilorierovy (§ 123.), obsahujíci sníh kysličniku uhličitého s aetherem. Šíření se chladu v různých tyčich je naznačeno obalem jinovatky, která se tvoří z vlhkého okolniho vzduchu a pokračuje u dobře vodivých tyči nejdále, u špatně vodivých zvolna.

Když se do malých úzkých kádinek vloži po lžičce oné mrazivé směsi a kádinky se pak postaví na dřevo, sklo nebo měd̛ a když se pod kádinky naleje něco málo vody, přimrzne kádinka
ihned na dřevě nebo skle, ale nikoli na mědi, jež chlad rychle odvádí.
2. Druhá methoda, zkoumati vodivost relativní, spočívá na relaci, odvozené v předešlém odstavei pro teploty $t^{\prime}, t^{\prime \prime}, t^{\prime \prime \prime}$ míst aequidistantních při pokusu Biotově. Jest tu

$$
\begin{gathered}
\frac{\frac{1}{2}\left(t^{\prime}+t^{\prime \prime \prime}\right)}{t^{\prime \prime}}=n \\
\sqrt{\frac{h}{k} \frac{p}{s}}=\frac{1}{l} \lg \left(n+\sqrt{n^{2}-1}\right)
\end{gathered}
$$

Maji-li dvě tyče tepelné stejné rozměry $p$ a $s$ a jsou-li též jejich povrchy stejné tak, aby bylo $h_{1}=h_{2}$, jest pro stejné $l$ patrně

$$
\frac{k_{2}}{k_{1}}=\left[\frac{\lg \left(n_{1}+\sqrt{n_{1}^{2}-1}\right)}{\lg \left(n_{2}+\sqrt{n_{2}^{2}-1}\right)}\right]^{2}
$$

Methoda tato jest velmi přesná, poněvadž pro určité místo poměr $n$ středni teploty $\frac{1}{2}\left(t^{\prime}+t^{\prime \prime \prime}\right)$, odvozené $z$ obou mist sousedních stejně odlehlých, a teploty $t^{\prime \prime}$ toho mista samého lze přesně určiti a na různých místech zkoumati. Ovšem se předpokládá, že jest možno teploty tyče velmi přesně stanoviti.

Dle této methody, kterou Biot navrhl, prováděl četná měřeni Despretz *). Na tyčích prů̌̌ezu pravoúhlého, jež se na jednom konci zahřivaly lampou, měl řadu stejně odlehlých důlkủ, rtuti vyplněných, do nichž byly vloženy nádobky rtufových teplomě̌ů. Jinak byly všechny tyče natřeny týmž lakem k docilení stejnosti povrchové. Výsledky, jež obdržel, byly však málo přesné.

Vzhledem k tomu, že jeho pokusy byly prvními dle methody Biotovy, budiz̃ uvedeno, jak se pr̃i jeho pozorování osvẽdeçil zảkon o stálosti pomẽru

$$
n=\frac{\frac{1}{2}\left(t^{\prime}+t^{\prime \prime \prime}\right)}{t^{\prime \prime}}
$$

U tyče żelezné pozoroval na místech stejně odlehlých teploty pocítané od teploty okolního vzduchu jako nullové a vypočital pomẽr $n$ z teplot sou-

[^161]sednich a teploty toho místa, jak následuje:
\[

$$
\begin{array}{rlrll}
t^{\prime \prime} & =62 \cdot 90, & 36 \cdot 69, & 20 \cdot 59, & 12 \cdot 39,
\end{array}
$$ \quad 8 \cdot 19,6 \cdot 61
\]

Souhlas čisel $n$ jest tedy jen mírný; odchylky čini až $8 \%$.
Methodu zdokonalil Langberg (1845) tim, že místo silných tyči užival drátů a že teploty měřil thermoelementem. Mimo to nepředpokládal, že by vodivosti $k, h$ byly stálé, nýbrž uvedl je v počet jako lineárně závislé na teplotě.


Obr. 159.
Přistroj, jehož užívali G. Wiedemann a Franz.

Nejobsáhlejší a nejpečlivějši měřeni prováděli touto methodou G. Wiedemann a Franz*). Přistroj, jehož užívali, jest schematicky znázorněn v obr. 159. Všechny tyče (až na platinovou) byly $k$ docileni stejného povrchu střibřeny a pak hlazeny. Vložily se do skleněného tubulového zvonce ( 50 cm délky, 16 cm v průměru), který byl vzduchotěsně přitmelen $k$ válci

[^162]měděnému $k k$ ( 16 cm dlouhému), opatřenému silným mosazným kruhem $m m$; k tomuto dala se vzduchotěsně přišroubovati mosazná silná deska $n n$; ve středu této desky byla krátká trubka $e$, do nǐ̌ se vkládaly tyče (většinou $5 m m$ silné). Druhou stranou, u tubulu, byly tyče gumovými vložkami vzduchotěsně upevněny v trubici mosazné ke sklu přitmelené a vycházely v kovovém obalu $h$ do zahřívaci nádoby, ve které proudila pára vodní $100^{\circ}$. Vzduch ze zvonce bylo lze trubici $l$ kohoutem opatřenou pomocí vývěvy vyčerpati. Věcí nejdủležitějši bylo přesné měřeni temperaturní. Autorové uživali thermočlánku železo argentan o drátech velmi tenkých ( 0.4 mm v průměra) ; přívodní dráty ke galvanometru vycházely ven trubici, kterou bylo možno vzduchotěsně pošinovati, tak aby thermočlánek mohl býti na rủzná místa tyče stejnoměrně přitlačen. Celý pak přístroj byl vložen do větší skříně ze zinkového plechu, která byla naplněna vodou (obyčejně $12^{\circ} \mathrm{C}$ ).

Relativni tepelná vodivost $k$ kovů ve srovnání s vodivostí elektrickou.

Kov		$n$	$k$	2.
Stříloro .	$A g$	1.0228	100	100
Měd	Cu	1.031	73.6	$73 \cdot 3$
Zlato.	$A u$	1.043	$53 \cdot 2$	58.5
Mosaz .		$1 \cdot 100$	$23 \cdot 1$	21.5
Zinek *).	Zn	(1.161)	$19 \cdot 0$	$24 \cdot 0$
Cin .	Sn	$1 \cdot 132$	14.5	14.0
Železo	$F e$	$1 \cdot 19 \overline{7}$	$11 \cdot 9$	13.0
Ocel .		$1 \cdot 20 \overline{3}$	$11 \cdot 6$	$10 \cdot 7$
Olovo .	$P b$	$1 \cdot 22 \overline{3}$	$8 \cdot 5$	$10 \cdot 3$
Platina .	$P t$	$1 \cdot 299$	$8 \cdot 4$	
Argentan . .		$1 \cdot 386$	$6 \cdot 3$	
Kov Roseho .		1.717	2.8	
Vismut . . .	$B i$	$2 \cdot 28 \overline{3}$	1.8	1.9

Nejzajímavějšim výsledkem práce byl parallelismus mezi vodivostí tepelnou a elektrickou, který se dal sice tušiti, zde však ponejprv byl čiselně dokázán. Také v tom se jevila zajimavá

[^163]shoda, ̌̌e jako vodivost elektrická tak i tepelná s teplotou poněkud klesá, jak již Langberg předpokládal, ač číselně věc s dostatečnou přesností nebylo možno zjistiti. Předchozi tabulka podává výsledek práce. Obsahuje též hodnotu $n$, aby bylo viděti, jak u dobrých vodičủ jest $n$ blízké 1 , což značí, že čára temperaturni mírněji klesá; u špatnějšich jest $n$ větši. Pak jest udána relativní vodivost tepelná $k$ a elektrická 3 . (dle Lenze), když se vodivost střibra položi $=100$; čísla udávaji tedy vodivost v procentech vodivosti stříbra.

V pozdější práci (z roku 1859) zkoumal G. Wiedemann sám vodivost některých slitin; také zde osvědčil se parallelismus mezi vodivostí tepelnou a elektrickou.

Obr. 159. jest reprodukci z pâvodního pojednáni. Císla v tabulce obsaz̃ená uvádějí autor̃i jakoz̃to pravdẽ nejpodobnéjši na stránce 527. citov. pojednání. Mají platnost pro prípad, že dráty jsou ve vzduchu. Císla pro prípad, kdy vzduch byl vyčerpãn, liši se poněkud, ale autor̆i sami dávají prvním číslủm přednost. Vodivost elektrickou autoři neměrili, čehoz̃ dlužno litovati; nebol̀ data, jez̀ prijímaji, dle Riesse, Becquerela, Lenze, lişi se nêkdy velice značnẽ od sebe (na pr̂. pro mẽd nalezají tito autorí čisla $66 \cdot 7,91.5,73 \cdot 3$ !). V tabulce prijata jsou ḉsla dle Lenze, az̃ na cín, kde jeho výsledek 22.6 je rozhodné veliký; Riess obdržel $10 \cdot 0$, Becquerei 140 . Ohromné rozdíly takové mohou vzniknouti vétsimi neb mensími přimis̃eninami nebo rozdily ve strukture. Kdyby byli autor̃i elektrickou vodivost na svých vlastnich tyčich stanovili, individuálnẽ, byl by parallelismus mohl vyniknouti přesvẽdẽivéji. V pojednáni jest téż popsản v laboratorfich svẻho času velmi mnoho uživaný sgalvanometr Wiedemannủve, který ovšem za dnú našich jest již předstižen jinými. Zajimavả poznámka jest na konci práce. Vodivost elektrická çisté vody stoupne ohromné, kdyz̃ se kní přidá néco mảlo kyseliny; vodivost tepelná se mẽni zcela nepatrné. $\mathrm{T}_{0}$ mluví proti parallelismu obou vedení. Avšak autor̃i sprárně poukazují na to, že se zde jedná o vodivost elektrolytickou, kdežto onen parallelismus predpokládá vodivost metallickou.

Methodou analogickou ukázal F. Kohlrausch (1888), že vodivost tepelná oceli turdé a měkké jest velice různá, zcela podobně jako vodivost elektrická. Obdržel

$$
\begin{aligned}
& k_{1}=0.062 \frac{g}{\mathrm{~cm} \cdot \sec } \\
& k_{2}=0.111
\end{aligned}
$$

Poměr vodivostí tepelných čini 0.5ั6, a vodivostí elektrických 0.60. V četných pracich, jež provedli Strouhal a Barus, byly zmĕny odporu galvanického s tvrdosti oceli předmětem rozsáhlých studii.

Také pokus Biotův lze provésti obráceně jako „vedení chladu", ve způsobu velmi poučném, který udal B. Kučera. Měděný 4 až 5 mm silný drát prostrčí se ebonitovým nebo dřevěným přiklopem tak, aby dolejsím koncem zasahal (obr. 160.) do parallelepipedické nádobky s vodou teploty blizce $0^{\circ}$, hořejším pak aby zůstal v široké skleněné trubici, která se naplní směsí Thilorierovou. Chlad se šiři drátem dolủ do vody a způsobuje, že voda mrzne; drát se obalí ledem, úplně čirým, jehož tloustka zdola nahoru roste tak, že se utvoři rotační těleso


Obr. 160.
Vedení chladu v tyči mẻdéné.
ledové, jehož průsek rovinou, která procházi osou drátu, jest exponenciální křivka z pokusu Biotova známá. Poněvadž led a voda maji rủzný exponent lomu, lze křivku ukázati též v projekci; proto se voli dolejší nádoba se stěnami ze skla zreadlového.

## § 155. Vodivost absolutni.

Stanovení vodivosti absolutní $k$ jest úkolem velmi důležitým, ale též velmi nesnadným, Bylo dosud udáno a užíváno velmi mnoho method, kteréž se zakládaji jednak na ustáleném, jednak na proměnlivém stavu tepelném, a jež k svému porozumění předpokládají znalost počtu vyššiho. Zde podáme výklad jediné toliko methody, založené na stavu stationárním,
o němž v předešlém odstavei již bylo jednáno. Methodu udal a měřením vyzkoušel Forbes *), po něm pak mnozi jiní pracovali dle téže methody jako jeho pokračovatelé.

Theoretické úvahy vycházejí od stationárního stavu tyče velmi dlouhé, na jednom konci prii $x=0$ na teplotu $t_{0}$ zahríivané. Stav tento jest určen rovnicí jiz̄ odvozenou

$$
\begin{aligned}
t & =t_{0} e^{-a x} \\
a & =\sqrt{\frac{h}{k} \frac{p}{s}}
\end{aligned}
$$

ve kteréz̃ značí $t$ teplotu nad okolním vzduchem (jehoz̃ teplota se tudíz̃ pokládá za nullovou), $p, s$ obvod (periferii) a průfez (sekci) tyče, $h, k$ vodivosti vnějši a vnitřnf. Promẽfenf́m teplot $t$ na místech aequidistantních lze určiti $a$ a tím i $k$, když by $h$ bylo známo. Ale právẽ tato vodivost vnéjsi činí nesnáze vzhledem $k$ tomu, že zảvisi na jakosti povrchu a že zảkon Newtonúv, který jsme o vodivosti vnéjsí uvedli, jest jen približným. Forbes obešel obtiže tyto zpúsobem velmi duchaplny̌m. Uvaz̃oval takto.

Na místẽ $x$ (obr. 154.) procházi prûrezem tyčee $s$ v kaz̃dé jednotce časové množství tepla

$$
q=-k s \frac{d t}{d x}
$$

Ponẽvadz̃ teplota $t$ na rủzných místech tyče jest jizz ustálena a dále nestoupá, precházi toto teplo $q$ vedením vnëjsim do vzduchu a to vedením po celé další ćásti tyc̃e, jez̃ jest za prưrezem $s$, tedy od $x$ do $L$. Toto mnoz̃ství tepla lze vypociisti, když jest předbẽz̃nẽ vyšetřeno, jakou rychlostí $v$ tyẽ chladne, t. j. o mnoho-li stupñou se y kaz̃dé jednotce časové teplota $t$ umenši. Ovšem że rychlost $r$ závisi na této teplotě $t$; a ponêvadz̃ teplota $t$ zase na $x$ závisi, jest $v$ funkcí polohy $x$, tedy

$$
v=f(x)
$$

Vzhledem $k$ tomu vypočtěme nejprve množství tepla do vzduchu precházejíciho v cásti tyče od $x$ do $x+d x$.

Je-li o specifická hmota, $C$ specifické teplo materiálu, jest os. $d x$ hmota, Qs C . $d x$ tepelná kapacita části tyčové $d x$. Mnoz̃ství tepla odtud za jednotku času do vzduchu precházejíciho jest tedy

$$
\imath_{s} C \cdot d x \cdot v
$$

tudiž pro tu cást tyče, jež jest za průřezem $s$, od $x$ do $L$

$$
\int_{0}^{L} \varrho s C \cdot d x \cdot v=o s C \int_{0}^{L} v \cdot d x
$$

[^164]Znači-li $P$ hodnotu tohoto integrálu, obdržime dle horejeǰich výkladủ rovnici

$$
-k s \frac{d t}{d x}=o s C \cdot P
$$

čili

$$
a k t={ }^{2} C \cdot P
$$

tudiz̃

$$
k=\frac{{ }_{0} C}{a} \cdot \frac{P}{t}
$$

čimz̃ úkol dany̌ jest rozresesen. Ale, jak již upozorněno, fes̃ení je podmíněno tim, že jest známa funkce

$$
v=f(x)
$$

dle kteréż rychlost ochlazováni závisí na $t$ a tím i na $x$.
Kdyby se pro ochlazováni přijal zákon Newtonủv, bylo by moz̃no z pozorované rychlosti $v$ přimo $h$ vypočisti. Ježto však zákon Newtomũv jest jen približný, hledêl Forbes závislost rychlosti $v$ na $t$ a tím i na $x$ přímým pozorováním odvoditi. K tomu cili zahřival kratşí tyč z téhoz̃ materiálu a týchž rozměrů na rúzné teploty $t$ a studoval, jak rychlost $v$ s teplotou $t$ roste. Graficky obdržel závislost $v$ na $t$ a tím i na $x$, obdržel tedy diagramm funkce $f(t)$ a mohl pak vymérováním plochy hodnotu $P$ hỡejš̂ho integrálu vyčísliti.

Forbes konal svá pozorování na tyči železné, lité, a to při různých teplotách. Obdržel výsledky následujíci:

$$
\begin{array}{rlrrr}
t & =0^{0}, \quad 50^{0}, \quad 100^{\circ}, \quad 150^{\circ}, \quad 200^{0}, \quad 275^{\circ} \\
k & =0 \cdot 207, \quad 0 \cdot 177,0 \cdot 157,0 \cdot 145, & 0 \cdot 136, & 0 \cdot 124
\end{array}
$$

Dle toho vodivost klesá s teplotou. Výsledek tento byl by v dobrém souhlasu s vodivostí elektrickou, která rovněž s teplotou klesá. Grafické znázornění podává křivku k ose úseček konvexni. Ubývání vodivosti jest ovšem velmi rychlé. Forbes nepřihližel k tomu, že o i $C$ jest též na teplotě závislé.

Práce Forbesovy vzbudily v Anglii velikou pozornost. Zvláštní komité vědecké, v němž byli Tait, Tyndall, Stewart, zkoumalo po smrti Forbesově (1868) jeho methodu; Tait (1880) a Mitchell (1887), později E. Hall (1893) provedli dle ní některá měření, ač ne vždy s výsledkem přiznivějším než Forbes. V novější době (1895) zkoumali Quick, Child a Lanphear vodivost mědi, při čemž teploty měřili bolometricky, t. j. dle galvanického odporu měděného drátku; také rychlost ochlazováni měřili bolometricky. Výsledek práce byl zvláštní; ukázalo se totiž, že ve vodivosti mědi se ukazuji maxima a minima, což jest pravdě velice nepodobno.

Četné methody byly, jak již řečeno, udány na základě tepelného stavu proměnlivého. Přes to, že methodami těmito četné
práce vykonány, zủstávají některé otázky dosud nerozhodnuty. Tak zejména závislost vodivosti $k$ na teplotě. U některých kovủ vyšly koefficienty negativni. ale u jiných positivní, tak že by dle toho se kovy dělily ve dvě skupiny - což vzhledem k aualogii s vodivostí elektrickou, kde jest koefficient vesměs negativní, jest pochybné. Jinak se jeví v tom souhlas, že malé přimíšeniny $k$ čistým kovům mají na vodivost tepelnou právě tak jako na elektrickou vliv velmi značný a nepřiznivý, zhoršujicí tuto vodivost.

## § 156. Vodivost látek tepelně anisotropnich.

Při výkladech dosavadních jednali jsme o tepelné vodivosti pevných těles, při nichž tato vodivost nikterak nezávisí na směru, v němž ji sledujeme. Látky takové jsou thermicky isotropní; vodivost jest ve všech smèrech stejná. Když tedy od nějakého centra $C$ zahřátí všestranně pokračuje, jsou plochy isothermické soustředné koule. Sem náleží též krystally soustavy regulární. Krystally soustav jiných jsou všeobecně thermicky anisotropni; vodivost jest dle směru rủzná; plochy isothermické jsou všeobecně ellipsoidy. U krystallů soustavy kvadratické a hexagonální jsou to ellipsoidy rotačń, u krystallů soustavy orthorhombické, klinorhombické a klinorhomboidické jsou to ellipsoidy trojosé. Ellipsoidy jsou sobě podobné, mají společný střed a společné osy. Vodivosti $k_{1}, k_{2}, k_{3}$ připadající do směrů osových zovou se hlavními.

Jak patrno, tvoři krystally skupiny v ohledu thermickém podobně jako v ohledu optickém. Zde i tam máme krystally jednoosé a dvojosé. Také v tom jest analogie, že krystally jednoosé jsou opticky i thermicky bud positioni nebo negativní. Rotační osa oněch ellipsoidů jest u positivních krystallů nejvėtší, u negativních nejmenší.

Přes tuto analogii v seskupení krystallů není však dobře plochy isothermické přirovnávati $k$ vlnoplochám optickým paprsku mimořádného. Vskutku jde o úkazy velice rủzné; šiření se kmitủ světelných jest zcela jiné povahy než postupování tepelného pohybu molekulového. Proto také krystally jednoosé, opticky na př. negativní, mohou býti thermicky positivnimi,
a naopak. Pro křemen a vápenec nalezl Lees absolutní vodivost

	křemen	vápenec
II s osou	0.0299	0.0100,
L k ose	0.0158	0.0084.

Opticky jest křemen positivní a vápenec negativní, thermicky jsou oba krystally positivní.

Zpúsobem velmi elegantním zkoumal tepelnou vodivost krystallů Sénarmont*). Z různých krystallů byly odštípány tenké deštičky k osám různě orientované. Uprostřed byly provrtány a otvorem byla proložena tenká střibrná trubička, a to slabě konická, aby k ní deštička těsně přilehla. Ve vhodné vzdálenosti od deštičky byla trabička do pravého úhlu ohnuta a kahanem zahřívána, ohřatý pak v ni vzduch byl poháněn pomoci aspirátoru trubičkou, čimž se zahřivala též deštička krystallu. horizontálně položená. Aby pak bylo možno toto zahřatí sledovati, byla před tím deštička potažena slabou stejnoměrnou vrstvou bilého vosku. Teplem od středu deštičky se šírícím tál vosk; kontura tání tvořila ellipsy, kteréž bylo lze vyměřiti. Indikaci těchto ellips lze jiným ještě způsobem provésti. A. M. Mayer (1872) užival nátěrủ thermoskopických (§ 154.). W. C. Röntgen ukázal, že postači, když se na deštičku před zahřátím silně dechne a když se po zahǐáti deštička posype práškem lykopodia. Z míst suchých, až kam zahřati pokročilo, lze pak prášek odfouknouti; tam, kde zahřáti konči a plocha ještě jest vlhkou, zủstává prášek ležeti a naznačuje ostrou konturu křivky. W. Woigt (1898). jenž pracoval methodou vlastni, rozpouštěl vosk v terpentinu a přidal kyselinu elaidinovou ( $C_{18} H_{34} \mathrm{O}_{2}$, ste-reo-isomerickou s kyselinou olejovou). Zahřátí lze též jednodušeji prováděti, bud zahǐátým hrotem nebo drátkem deštičkou prostrčeným, který se proudem galvanickým zahřeje.

Thermicky jedncosým jest též krystallický vismut. Take dřevo jest thermicky anisotropním; po vláknech jest vodivost největší, napříč menši, a tu zase jinak po poloměru (radiálně) a jinak $k$ němu kolmo (tangenciálně), ač zde rozdily již nejsou tak značné. Vodivost po vláknech největši má dle Tyndalla dub a buk, nejmenši smrk. Vodivost napříc k vlák-

[^165]nûm činívá 50 až 40 procent (u dubu a buku jen 30 procent) oné vodivosti po vláknech. Tato vodivost je rozhodujici pro rozdĕleni teploty uvnitř stromú v rûzných dobách ročnich.

## § 157. Výsledky.

Z obsáhlého čiselného materiálu o vodivosti tepelné, staršiho i novějšiho, jsou v následujícich dvou tabulkách sestaveny*") přiklady fysikálně dûležitě̌jši neb zajimavějši. Především pro kovy, a to $v$ porádku sestupném, aby vynikly vodiče nejlepši. Pak pro slitiny fysikálně mnoho uživané. Dále pro krystally, křemen i vápenec, jež jsou v ohledu optickém vzory krystallủ jednoosých positivnich a negativnich; thermicky chovají se oba stejně; jsou oba positivnimi. Konečnè pro některé vodiče špatné.

Tepelná vodivost $k \frac{g}{\mathrm{~cm} . \sec }$ kovů čistých a některých slitin.

Kov	$t$	$k$	Poznamenáni
Stř̌íbro	$\begin{gathered} 18 \\ 100 \end{gathered}$	$\begin{aligned} & 1.006 \\ & 0.9919 \end{aligned}$	Jaeger: Diesselhorst (1900); materiál $999 \cdot 8$ čistý.
Měd	$\begin{gathered} 18 \\ 100 \end{gathered}$	$\begin{aligned} & 0.8915 \\ & 0.8771 \end{aligned}$	Jaeger a Diesselhorst; kov čistý.
Zlato	$\begin{gathered} 18 \\ 100 \end{gathered}$	$\begin{aligned} & 0.7003 \\ & 0.7027 \end{aligned}$	Jaeger a Diesselhorst; kov čistý.
Aluminium .	$\begin{gathered} 18 \\ 100 \end{gathered}$	$\begin{aligned} & 0.4804 \\ & 0.4923 \end{aligned}$	Jaeger a Diesselhorst: přimíšeno $0.5 \%$ Fea $0.4 \% \mathrm{Cu}$
Magnesium	0... 100	$0 \cdot 3760$	L. Lorenz (1881).
Zinek .	$\begin{array}{r} 18 \\ 100 \end{array}$	$\begin{aligned} & 0 \cdot 2653 \\ & 0 \cdot 2619 \end{aligned}$	Jaeger a Diesselhorst; kov čistý.

[^166]| Kov | $t$ | $k$ | Poznamenainí |
| :---: | :---: | :---: | :---: |
| Kadmium . . | $\begin{array}{r} 18 \\ 100 \end{array}$ | $\begin{aligned} & 0.2216 \\ & 0.2149 \end{aligned}$ | Jaeger a Diesselhorst; kov čistý. |
| Palladium | $\begin{array}{r} 18 \\ 100 \end{array}$ | $\begin{aligned} & 0 \cdot 1683 \\ & 0 \cdot 1817 \end{aligned}$ | Jaeger a Diesselhorst; kov čistý. |
| Platina. | $\begin{gathered} 18 \\ 100 \end{gathered}$ | $\begin{aligned} & 0 \cdot 1664 \\ & 0 \cdot 1733 \end{aligned}$ | Jaeger a Diesselhorst; kov čistý. |
| Cin | $\begin{gathered} 0 \\ 100 \end{gathered}$ | $\begin{aligned} & 0.1528 \\ & 0 \cdot 1423 \end{aligned}$ | L. Lorenz. |
| Železo | $\begin{array}{r} 18 \\ 100 \end{array}$ | $\begin{aligned} & 0.1436 \\ & 0 \cdot 1420 \end{aligned}$ | $\begin{gathered} \text { Jaeger a Diesselhorst; } \\ \text { přimišeno } 0 \cdot 1 \% \mathrm{C}, 0 \cdot 2 \% \mathrm{Si} \text {, } \\ 0 \cdot 1 \% \mathrm{Mn} . \end{gathered}$ |
| Nikl. | $\begin{array}{r} 18 \\ 100 \end{array}$ | $\begin{aligned} & 0 \cdot 1420 \\ & 0 \cdot 1384 \end{aligned}$ | $\begin{aligned} & \text { Jaeger a Diesselhorst; } \\ & 97.0 \mathrm{Ni} .1 .4 \mathrm{Co}, 0.4 \mathrm{Fe} \text {, } \\ & 1.0 \mathrm{Mn}, 0.1 \mathrm{Cu}, 0.1 \mathrm{Si} . \end{aligned}$ |
| Olovo . . | $\begin{gathered} 18 \\ 100 \end{gathered}$ | $\begin{aligned} & 0.0827 \\ & 0.0815 \end{aligned}$ | Jaeger a Diesselhorst; kov čistý. |
| Antimon | $\begin{gathered} 0 \\ 100 \end{gathered}$ | $\begin{aligned} & 0.0442 \\ & 0.0396 \end{aligned}$ | L. Lorenz. |
| Vismut . | $\begin{array}{r} 18 \\ 100 \end{array}$ | $\begin{aligned} & 0.0194 \\ & 0.0161 \end{aligned}$ | Jaeger a Diesselhorst; kov čistý. |
| Rtut. | $\begin{gathered} 0 \\ 50 \end{gathered}$ | $\begin{aligned} & 0.0148 \\ & 0.0189 \end{aligned}$ | H. F. Weber (1879). |
| Mosaz červená | $\begin{gathered} 0 \\ 100 \end{gathered}$ | $\begin{aligned} & 0.2460 \\ & 0.2827 \end{aligned}$ | L. Lorenz. |
| Mosaz žlutá . | $\begin{gathered} 0 \\ 100 \end{gathered}$ | $\begin{aligned} & 0.2041 \\ & 0.2540 \end{aligned}$ | L. Lorenz. |
| Konstantan | $\begin{array}{r} 18 \\ 100 \end{array}$ | $\begin{aligned} & 0.5402 \\ & 0.6405 \end{aligned}$ | Jaeger a Diesselhorst; $60 \mathrm{Cu}, 40 \mathrm{Ni}$. |
| Manganin . | $\begin{array}{r} 18 \\ 100 \end{array}$ | $\begin{aligned} & 0.5186 \\ & 0.6310 \end{aligned}$ | Jaeger a Diesselhorst; $84 \mathrm{Cu}, 12 \mathrm{Mn}, 4 \mathrm{Ni}$. |

Tepelná vodivost $k \frac{g}{c m . s e c}$ rủzných látek.

Látka	$t$	$k$	Poznamenáni	
Křemen	0... 17		Tuchschmid (1883)	
\|	s osou. .		0.0263	
$\perp \mathrm{k}$ ose. . .		0.0160		
Vápenec . .	0... 17		Tuchschmid (1883)	
\|	s osou.		$0 \cdot 0096$	
$\perp \mathrm{k}$ ose. . .		$0 \cdot 0079$		
Sklo korunové .	12... 33	0.00183	Paalhorn (1894)	
Sklo flintové.	12... 35	0.00143	Paalhorn (1894)	
Uhli retortové.	0	0.0103	R. Weber (1895)	
Mramor karrarský	0	$0 \cdot 0054$	R. Weber (1895)	
Ebonit . . .	6...90	0.00038	Dina	
Borové dřiví podél		0.00030	Forbes (1875)	
v poloměra . .		0.000088	n ,	
Plst . . . .	0	$0 \cdot 000087$	" $n$	
Hedvábí bez vzduchu . . . .	0... 18	0.000887	Rubner (1895)	
Hedvábi se vzduchem	0... 18	$0 \cdot 000061$	Rubner (1895)	

Vodiče špatné maji pro život obecný velikou důležitost jako isolátory tepelné. Takovými jsou zejména hedvábí, bavlna, čistá vlna (ovčí, zejména předem již při $100^{\circ}$ vysušená), veškeré látky kypré, sypké, jako popel, piliny, sláma, peři (kajči prachové). Isolační mohutnost těchto látek kyprých jest podporována vzduchem, který obsahují, a který jest vodičem špatným. Proto chráníme své přibytky v zimě proti mrazu okny dvojitými, mezi nimiž jest vzduch jako isolátor. Usazeniny minerálni na stěnách parniho kotle pủsobí svou špatnou vodivostí škodlivě. Také dobrých vodičů užíváme k účelům praktickým. Zmíníme se jen o vodivosti drátěných sití, železnỵ́ch nebo mosazných, jež se pěkně ukazuje účinkem síti na plameny svítivé i nesvitivé. Plamen neprorazi sití, která ho tudiž sráží, stlačuje. Naopak lze plyn z hořáků proudici zapáliti nad sítí, a plamen neprorazi skrze síf dolủ. Na tomto účinku drátěných sítí za-
kladá se úprava (obr. 161.) ochranné svitilny (olejové nebo lihové), jak ji sestrojil (1816) Sir Humphry Davy.

Máli se uçiniti pokus effektnéjsim, ize kauçuk od plynovodu pripojiti k trubiéce mosazné a plyn zapaliti; obdrži se plamen dlouhý, svitivẏ, kterỵ se sití srází zeela snadno. Anebo se plyn nechai prouditi na sif a zapali se nad siti. Ale potěnéjsi jest pokus nesvitivym horkým plamenem hofaku Bunsenova. Sit se drzi nad plamenem klidné; ukãze se ma siti světly zzhouci kruh, uprostred jest kruh tmavỳ. Tepreve od zíru site se pak plyn take nad siti zapali. Podobně, když se plamen utvorí nad síti; zirem sité prudce plamen preskoũi téz dolủ. Nechce-li experimentátor, aby se tak stalo, musi siti sem tam pohy bovati, aby se na jediném mistẽ nerozezhavila. Pokusy se dafí jistěji, je-li sit hustai. U ochranné lampy Davy-ho se zádá. aby na $1 \mathrm{~cm}^{2}$ bylo pres 100 otvorũ sifovych $\%$ draitu


Obr. 161.
Svitilna Davy-ho. dostatečnẻ silnh́ho. Lampy se uz̃ivà hlavnẻ r dolech uhelných. Je-li tam ve vzduchu na pí. plyn bánský ( $\mathrm{CH}_{4}$ methan), jenz̃ se vzduchen dává smẻs explosivní, hợi plyn uvnitr̃ lampy neşkodně - coz̃ se poznává dle toho, ze plamen je obklopen modravou aureolou, která jest hornikum vystrahou. Plamen vs̊ak neşlehne skrze sil a nezapali smés y okoli lampy. Ale jen. když jest vzduch klidný. Silnŷm prúvanem nastávi pr̃ece nebezpec̃i zapálení; rovnēz̃ nẻjakou explosí (na pr̂. výstrelem). Ochrana svitilnou Davy-ho i v modernich jeji modifikacich není tedy naprostou.

## Vedení a proudění tepla v kapalinách.

## § 158. Pokusy úvodni.

Tepelná vodivost kapalin jest velmi skrovná, zahřivání shora pokračuje u nich velice pomalu, právě tak jako ochlazováni zdola. Rumford ${ }^{\text {* }}$ ) vyslovil (1806) dle svých pokusů domměnku, že kapaliny vůbec nejson vodiči tepla a že se jimi teplo jinak nešiři než prouděním.

[^167]Na dǔkaz nepatrné vodivosti vody udává se všeobecně pokus následujíci. Do delši skleněné tenkostěnné zkumavky naleje se ledová voda a na dně se mosaznou drátěnou sitkou přidrži kousek ledu. Zahřivá-li se pak zkumavka v hořejši polovici nesvitivým plamenem Bunsenova hořaku, uvede se voda nahoře konečně ve var, ale dole zůstává chladnou a led netaje.

Učelnějši jest však násle-


Obr. 162.
Jak se ve vodẽ sirìi teplo nahoru proudêním a dolû vedenim. dujici přednáškový pokus, kterým se zároven̆ ukáže rozdil mezi kondukcia konvekcitepla. Vysoká ( 115 cm ) skleněná válcovitá nádoba (průměrem 7 cm ) má uprostried (obr. 162.) dva tubuly proti sobě, do těch pak jsou v korkovẏch neb kaučukových zatkách vsazeny mosazné trubičky, jež lze vešroubovati do dutého mosazného pouzdra, formy válcovité, umistěného vodorovně uvnitř skleněné nádoby. Před přednáskou naleje se do nádoby voda, jejiž teplota je blizká teplotě sině (kolem $20^{\circ}$ ), a připravíse malý parni kotlik na topeni parou, která se proháni onim pouzdrem a na druhé straně odvádí do kondensátoru. Zároven̆ se vloží nahoru a dolủ teploměry. V určitou dobu začue se topiti a čini se záznamy teplomèrné v pravidelných intervallech časových, na př. každých 10 minut, Výsledky se graficky na tabuli znázorni. Křivka pro hořejsí teploměr ukazuje stoupání s počảtku rychlé, pak stále volnějš̌i; tím se demonstruje, jak ztráty tepelné vedením vnějšim a vyzařováním při vyššich teplotách se zvětšuji. Během 40 minut zahřeje se hořejši sloupec vody až na $80^{\circ}$; teploměr dolejši, souměrně s hořejšim umístěný, ukazuje stoupání jen $v$ deseti-
nách stupně, a i to jest větším dilem zpủsobeno tím, že také skleněné stĕny teplo vedou. Pokus jevi muohé zajímavé a poučné podrobnosti. Thermočlánkem na dlouhých dratech dal by se spad temperaturni pod pouzdrem studovati: avsak jemnějši pokusy takové nejsou na místě, ponèvadž by výsledky - vzhledem k vodivosti skla - prece jen nebyly zcela správné.

Jedná-li se o to, aby se v kapalinĕ ukazalo proudéní při zahřivaíni zdola, postači dảti do vody v kádince nějaká tělíska pevná, na pǐ. dřevěné piliny, jichž pohybem je konvekce znázorněna. Anebo se dolejsi vrstvy vody silně zbarvi; při zahřívání kadinky zdola vystupuji tyto vrstvy vzhủru a míchaji se s vrstvami bezbarvỷmi. P. Czermak (1893) doporučuje zahř̂ivati zdola platinovou, na dno kádinky položenou spirálu, k níž jdon př̌ivodni měděné dráty na renek, aby se mohl spirálou vésti galvanický proud. Kdy̌̌ se pak dolủ do kádinky čirou vodou naplněné naleje dlouhon nalevkou vrstva vody silně inkoustem zbarvené a nechá pak ustáti, akdyž se proud elektrický uzavře, vystupuje zbarvená kapalina konvekcí do vrstev bezbarvých a padajic zase stranou dolû ukazuje zvláštni zajimavé útvary. Pokus lze ukizati tež v projekei, když nádoba má stěny ze skla zreadlového.

## § 159. Zpuisoby pozorovaci. Methody sloupcové.

Přesné pokusy kvantitativni o tepelné vodivosti vody konal Despretz (1838), uživaje téže methody, kteron stanovil vodivost těles pevných *). K pokusu byla připravena villcovitá dřevěná nádoba $C$ (obr. 153.) o prủměru 40 cm . Do postranni stěny zasadil svisle nad sebou v odlehlostech po 45 cm vodotèsnè 6 teploměrủ, tak aby jich nádobky byly vose celeho přistroje. Pak se nádoba naplnila vodou a prikryla nahoře měděnỳm dutým válcem, jehož dno se dotýkalo vody. Do válce se nalila horká voda, jež se každých 5 minut vymĕn̆ovala za novou, tak aby nejhořejši vrstva vody se stále zahřívala na stejnou vysokou teplotu. Odtud siřilo se teplo vedením do vrstev vody nižsich. Stav stationární nastal az̆ po 36 hodinách. Následujici tabulka obsahuje teploty, počitané od teploty sině (jež činila $1325^{\circ}$ ) jako nullové, a udává zároven̆ poměr teplot po sobě jdoucich.

[^168]- 472 -

Teplomér	$t$	Pomér   teplot konse-   kutivnich
1	29.21	
2	20.57	1.42
3	14.78	1.39
4	10.35	1.43
5	7.22	1.43
6	5.03	1.44

Ukázalo se tedy, že teploty tvoři řadu geometrickou, když odlehlosti rostou v řadě arithmetické. Despretz nalezl, že vodivost vody čini 0.9 procenta vodivosti mědi.


Obr. 163.
Jak mêril Despretz vodivost kapalin.

Methoda, kteréž zde Despretz užival, nazẏvá se sloupcovou, poněvadž spočivá na rozděleni teplot ve sloupci kapalném. Ve stejném zpúsobu, s malými variacemi, zkoumali vodivost kapalin Bottomley, Paalzow a j. Obtiž veliká vzniká tím, že stěny nádoby, jak již v předešlém odstavei bylo upozorněno, vedou též teplo, tak že pozorováním se obdrži střední jakýsi výsledek mezi vodivosti stěn a kapaliny.

Aby tento účinck stěn odstranil a zároveň se vyhnul vedeni vněǰ̌imu. modifikoval v novějši době Berget *) methodu sloupcovou zpûsobem zajimavým a dủmyslným. Přistroj, který k pozorováni upravil, jest znázorněn v obr. $16 t$. Byl zařizen na. zhoumáni tepelné vodivosti pro rtut.

Zakladni části celeho zařizeni jest ledový kalorimetr Bunsenúv. s vnitřni trubičkou (v průměru 1.3 cm ), která jest delši než obyčejně bývá. Do ni jest nalita rtuf, jejiž tepelná vodivost se mázkoumati. Berget mèl myšlenku, tuto rtuf chrániti pred vnèjsimi ztrátami tepelnými jinou rtuti, kteràž by ji v mnoz̆stvi dosti značném obklopovala. Proto zasadil svislou trubičku kalorimetrickou u $A$, kde zkalorimetru vycházi, těsně do vodorovné desky železné a na tuto přitmelil širši $(6 \mathrm{~cm}$ v prúměru) válec skleněný, souosy s onou trubičkou, ktery do stejné výsky naplnil rovněž rtutí. Nahoře byl válec uzavǐen


Obr. 164.
Jak mêril Berget vodivost rtuti methodou ochranného válce. přiklopem, kterým prochazeji tři trubice, dvě $k$ přiváděni a jedna $k$ odváděni 100stupňové vodni páry, kterou se nahoře topi. Dole jest kalorimetr i spodní část oné železné desky kryta ledem. Následkem temperaturniho rozdilu $100^{\circ}$ a $0^{\circ}$ na hořejsím a dolejsim konci sloupce rtufového vzniká tepelný proud; ten však se pozornje nikoli v celém prủřezu rtufoveho sloupce, nŷ́brž jen v centrální jeho úzké části $A B$, která, jsonc chráněna velkým množstvím okolni rtuti, jež jest v přimé blizkosti stejně temperována, nemá žadných ztrát tepelných vedenim vnějšim. V tom jest jadro celé methody, která se proto zove methodou ochranného valce. Následkem toho ustáli se uvnitř sloupečku $A B$ proud

[^169]tepelný stejnoměrný, při kterém každým prů̌̌ezem s procházi za každou jednotku časovou stejné mnoz̆ství tepla, dané rŷrazem (§ 151.)
$$
Q=k: s \frac{t_{2}-t_{1}}{d}
$$
kdež značí $\frac{t_{2}-t_{1}}{d}$ temperaturní spád mezi dvěma misty tohoto sloupee v odlehlosti $d$.

Množstvi tepla $Q$ urči se kalorimetrem ledovým. Jedná se tedy ještě o mèření teplot $t_{1}, t_{2}$, nebo vlastně jen rozdilu $t_{2}-t_{1}$ těchto teplot. Také tuto úlohu řeši Berget dûmyslně. Do přistroje jsou zasazeny železné drátky 1, 2, 3, 4, dobře isololované a jenom v ose sloupečku $A \dot{B}$ isolace zbavené. Každé dva drátky, jichž odlehlost $d$ lze snadno měřiti, tvoři se rtutíthermoelektrický článek, dle jehož rozdilu potenciálniho lze rozdil temperaturní počitati.

Pokus. ukazal, že tepelný spád $\frac{t_{2}-t_{1}}{d}$ nebyl zcela konstantní. Z toho soudil Berget, že $l$ i není konstantni, nýbř̌ s teplotou měnlivé, dle vztahu lineárniho

$$
k=k_{\mathrm{o}}(1+\omega t)
$$

Koefficient a vyšel negativní; dle toho ubývá vodivosti tepelné s teplotou, jak tomu také jest príi vodivosti elektrické.

Ciselně obdržel, pro středni teplotu $50^{\circ}$,

$$
\begin{aligned}
& k=0.02015 \\
& \quad \varepsilon=-0.001267
\end{aligned}
$$

Berget užival své methody též pro kovy pevné, jako měd, zinek, mosaz, železo, cín, olovo a antimon, pǐi čemž válec pǐislušného kovu, chráněn jsa větším vátcem téhož kovu, spočival dolejší plochou přímo na ledu; množství tepla $Q$ bylo stanoveno z množstvi rozpuštěného ledu. Vedle toho určil Berget pro týž materiál téžz vodivost elektrickou. Proporcionalita obou vodivosti osvědčila se velmi dobře.

Kritickou studii o sloupcové methodě pro stanoveni vodivosti tepelné kapalin provedl Wachsmuth *). Jednalo se o to, zjistiti, zdali př̀i zahřiváni kapalin shora a postupu tepla směrem dolư

[^170]jest lionvekce éplnẻ vyloučena čili nic. K cili tomu zbarvil kapaliny látkami thermoskopickými, jež zahřátim barvu měni. Takovou latikou jest na př. chlorid železitý, který jest ve velmi slabém. roztoku jasně žlutým, ale při ca. $\varepsilon 0^{\circ}$ se stává tmavohnědým. Podobně fenolfthalein, který, přidd-li se malinko ammoniaku, sarlachově červená, ale prii $65^{\circ}$ bledne anebo cyanin, který naopak, přidá-li se néco málo kyseliny solné, se odbarvi, ale teplem zase zabarvuje, anebo slabý modry roztok skrobu jodoveho. který se zahřatim odbarvuje. Wachsmuth užival v principu stejného uspořadáni jako Despret\%, ale zahřival shora parou. Dle zbarvení bylo pozorovati, že s počatku vrstyy vodorovne stejně temperované pokračovaly do hloubky pravidelně. ale prủběhem hodiny vznikaly v postupu rusive nepravidelnosti, virivé pohyby, které studoval v détailech, a ze kterých vycházelo, že methoda tak zvaná sloupcová, i když se zahřivá shora, neni prosta těch chyb, které vznikaji z konvekěnich virù a prouděni v kapalině, tak že preesnỷch výsledkù od methody té očekávati nelze. Přece však moz̆no souditi, z̆e v uspor̆́dáni Bergetove tento zdroj chyb jest značně umenšen jednak proto, že prủ̌̌ez jest malý, a ještě vice, že prohřati jest rovnoměrné.

## § 160. Pokračováni. Methody lamellové.

Závady, jež jsme vytkli při methodĕ sloupcové, odstran̆uje methoda tak zvaná lamellová"). Studuje totiž přechod tepla jenom tenkou vrstiou kapaliny, obsažené mezi deskami kovovými, mezi nimǐ̌ se kapalina udrönje bez vnějšiho omezení, pouhou kapillaritou. Tím odpadává proudĕni v kapalinĕ a odpadává vedeni tepla stěnami omezujicimi.

Methodu udal F. Guthrie (1869) sestrojiv přistroj, ktery nazval diathermometr. Skladal se ze dvou stejných dutých kuželủ mosazných, jichž rovinné základni plochy byly platinové. Kužel hořejši byl vytápěn vodní parou. Kužel dolejši byl spojen s mauometrem a trořil s nim teploměr vzduchový. Obě základni plochy byly postaveny vodorovně v malé odlehlosti proti sobě. Mezi nimi byla bud vrstva vzduchová nebo vrstva nějaké ka-

[^171]paliny. Bylo pak pozorováno, jak indikoval manometr prúchod tepla od hořejěka skzze tyto vrstvy k teploměru vzduchovému (odtud název dia-thermometr). F. Guthrie konal pozorováni srovnávaci a nalezl na př., že voda mezi kapalinami vyznačuje se vodivostí dobrou, a zase, že vodní roztoky solné vedou lépe než voda.

V novějši době byla methoda lamellová v mnohých smèrech zdokonalena, hlavně za tím účelem, aby bylo možno konati pozorováni absolutni. H. F. Weber*) užival kulatých silných desk měděných; deska dolejši spočivala na ledu a byla udržována na konstantní teplotě nullové; deska hořejši byla tenkými vložkami skleněnými od dolejši oddálena a do prostoru tak vzniklého byly vkládány rüzné kapaliny. Teplota hořejši desky byla zkoumana thermoelektricky.

Christiansen **) upravil (1881) methodu velice přehledně, zejména pro pozorováni relativni, ve způsobu, který znázorňuje obr. 16j. Užival tři horizontálně postavených desk měděných


Obr. 165
Jak zkoumal Christiansen vodivost kapalin methodou lamellovon.
I, II, III, od sebe vložkami skleněnými oddělených, 0.9 cm silných a 26.3 cm v průměru. Nahoře a dole byly s deskami III a I v kontaktu měděné duté nádoby $A, B$, dolejsisi na studenou,

[^172]hor̆ejši na teplou vodu. Teploty $t_{1}, t_{2}, t_{3}$ desk I, II, III byly mě̌̌eny vhodnými do desk zasazenými teploměry. Mezi deskami byly vrstuy kapalné o tlonštce $d_{1}$ a $d_{2}$ a vodivosti $k_{1}$ a $k_{2}$. Ve stavu ustaleném byl proud tepelný určen výrazy
$$
k_{1} \frac{t_{1}-t_{2}}{d_{1}}=k_{2} \frac{t_{2}-t_{3}}{d_{2}}
$$
odkud bylo lze pomèr $k_{2}: l_{1}$ snadno stanoviti.
V relaci této nehledi se $k$ vodivosti vnéjši. Lze však vzhledem $k$ této odvoditi téż korrekẽní relaci přesnějǰ̌i, kteréż zde neuvádíme, poněvadž se tu již jedná o détail.

Dle této methody piacovali četni badatelé, jako Stankewitseh, Henneberg, Jäger a j. s malými modifikacemi. Teploty $t_{1}, t_{2}, t_{3}$ určoval na př. Jäger thermoelektricky.

Methodu zvláštni udal (1880̆) Graetz*). Kapalina teploty $t_{1}$ proudí za konstantního tlaku kapillárními trubičkami kovovými (z mosazi nebo z platiny), jichž vnější plášt je udržován na konstantní teplotě $t_{0}$. Určuje se teplota $u$, a množstvi $G$ kapaliny vytékající. Autor udává v práci své dosti složitou theorii celého zjevu a vzorce, dle nichž lze absolutní vodivost $k$ počitati. Ukazuje se, že s teplotou vodivost stoupá; koefficient nebylo v̌̌ak lze přesně určovati vzhledem $k$ malým rozdilům temperaturním.

## § 161. Výsledky

Ciselný materiál o vodivosti tepelné kapalin jest již dosti rozsáhlý, ač dosud málo soustavný a úplný. Výsledky různých pozorovatelủ se často od sebe liší dosti značně, čemuž při nesnadnosti úkolu, o který se jedná, nelze se diviti. V následujici tabulce jest podán výběr výsledkủ, při čemž přihliženo hlavně ke kapalinám ve fysice častěji uživaným. Učinek teploty vystupuje zřidka spolehlivě; lépe účinek koncentrace, kteráž u roztokủ a kyselin jest specifickou hmoton $S$ vyznačena.

[^173]Tepelná vodivost $k \frac{g}{\mathrm{~cm} . \sec }$ některých kapalin.

Kapalina	$t$	$k$	Poznamenání
Voda ....	0 $9 \ldots 15$ $\begin{gathered}23 \cdot 7 \\ 30\end{gathered}$	$\begin{array}{r} 6.00120 \\ 136 \\ 143 \\ 158 \end{array}$	H. F. Weber
	$40 \cdot 8$	158 156	Graetz Lundquist
Glycerin	13 $9 \ldots 15$	0.000620 670	H. Fraetz ${ }_{\text {F }}$ Weber
	$9 \ldots 15$	673	Winkelmann
	23	650	R. Weber
Sirouhlik . . .	13	0000267	Graetz
	$9 \ldots 15$	343	H. F. Weber
	$9 \ldots 15$	595	Winkelmann
	15.5	537	Chree
Petroleum . . . .	13	$0 \cdot 000353$	Graetz
	23	382	R. Weber
Benzin . . . .	$9 \ldots 15$	$0 \cdot 000333$	H. F. Weber
Anilin . . .	$9 \ldots 15$	0.000408	H. F. Weber
Aether .	13	$0.000378$	Graetz
	$9 \ldots 10$	0.000303	H. F. Weber
Methylalkchol	$9 \ldots 15$	$0 \cdot 000495$	H. F. Weber
	18	577	Chree
	25	480	Lees
Aethylalkohol	$9 \ldots 15$ 17	$\begin{array}{r} 0.000423 \\ 504 \end{array}$	H. F. Weber Gractz
	25	430	Lees
Benzol .	$9 \ldots 15$	0.000333	H. F. Weber
Toluol . . . . .	$9 \ldots 15$	$0.000307$	H. F. Weber
Olej terpentinový	13	0.000325	Graetz
	$9 \ldots 15$	260	H. F. Weber
	18	315	Chree
Olej olivovy	${ }^{4}$	$0 \cdot 000395$	Wachsmuth
	$9 \ldots 15$	329	H. F. Weber

Tepelná vodivost $k \frac{g}{c m . s e c}$ některých roztoků solných a kyselin o specifické hmotě $S$.

Roztok	$t$	$S$	$k$	Poznamenání
NaCl	4	$1 \cdot 178$	0.00116	H. F. Weber Graetz Lundquist
	13	$1 \cdot 151$	112	
	44	1.178	149	
$\begin{gathered} \mathrm{KCl} \\ \mathrm{KClO}_{3} \end{gathered}$	-	1.187	0.00112	Winkelmann Graetz
	13	1.026	0.00115	
$\mathrm{CuSO}_{4}$	-	$1 \cdot 160$	0.00118	H. F. Weber
ZnSo	40	1.237	$0 \cdot 00164$	Lundquist
	40	1.252	158	"
	40	$1 \cdot 382$	158	$\cdots$
	-	$1 \cdot 134$	118	"
	$9 \ldots 15$	$1 \cdot 272$	0.00116	H. F. Weber
	-	$1 \cdot 362$	135	"
$\mathrm{H}_{2} \mathrm{SO}_{4}$	40	1128	0.0156	Lundquist
	40	$1 \cdot 207$	145	n
	40	$1 \cdot 372$	126	
	$9 \ldots 10$	1832	0.000765	H. F. Weber

Rūznosti, jakéž shledáváme při tepelné vodivosti kapalin, vyniknou ještě lépe, když místo vodivosti absolutní sestavíme vodivosti relativni. Tyto vztahuji se zde vždy na vodu, jejiž vodivost se klade $=100$. Jinými slovy, vyjadřujeme vodivost kapalin v procentech vodivosti vody. Následující tabulka obsahuje ve výběru některá číselná data.

U têles pevnỵch vztahuje se vodivost relativni na stríbro, jehoz̃ vodivost se klade $=100$. Poněvadz̄ však absolutní vodivost střibra jest témèr $=1$. nebylo třeba zhaśstni tabulkn pro vodivost relativnf sestavovati, ježto vodivost absolutní udáva nảsledkem této čiselné shody zároveñ vodivost relativni ve zlomku, ktery lze snadno dle procent interpretovati.

Relativni tepelná vodivost $r$ některých kapalin, vztahovaná na vodivost vody $=100$.

	$\%$	$\gamma$	Poznamedáni
HCl	12.5	87.0	G. Jäger
	25	$79 \cdot 4$	,
	38	$72 \cdot 6$	"
$\mathrm{H}_{2} \mathrm{SO}_{4}$	30	85.8	"
	60	$72 \cdot 2$	n
	90	58.4	"
NaCl	$12 \div$	$96 \cdot 8$	\%
	25	$93 \cdot 9$	"
	$33 \cdot 3$	173.7	Winkelmann
KCl	20	$92 \cdot 0$	G. Jäger
	20	$124 \cdot 2$	Winkelmann
$K J$	(20)	86.8	G. Jäger
	(40)	77.8	-
	(60)	$65 \cdot 1$	"
NaNO 3	20	94.9	"
	22	$94 \cdot 1$	"
	40	$92 \cdot 7$	"
	44	$90 \cdot 4$	"
$\mathrm{KNO}_{3}$	10	$97 \cdot 2$	n
	20	$92 \cdot 2$	n
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	10	99.8	"
$\mathrm{K}_{2} \mathrm{SO}_{4}$	10	$49 \cdot 3$	"
	18	$95 \cdot 1$	\%
$\mathrm{ZnSO}_{4}$	16	$95 \cdot 3$	\#
	32	91\%	"
	22	97.5	"
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	10	96.8	\#
$\mathrm{K}_{2} \mathrm{CO}_{3}$	20	94.7	"
Aethylalkohol	10	91.0	Henneberg
	20	$81 \cdot 4$	"
	30	$73 \cdot 1$	"
	40	$64 \cdot 6$	"
	50	54.6	"
	60	47.6	"


	$\%$	$r$	Poznamenání
Aethylalkohol	70	$41 \cdot 7$	Henneberg
	80	37.5	》
	90	$32 \cdot 1$	n
	absol.	$30 \cdot 1$	,
Methylalkohol	absol.	$27 \cdot 3$	De Heen
Aether	n	$32 \cdot 6$	H. F. Weber
Benzol	"	26.8	
	"	$19 \cdot 1$	De Heen
Chloroform	"	$29 \cdot 6$	H. F. Weber
Sirouhlik	"	$33 \cdot 6$	$n$
Glycerin	n	$59 \cdot 9$	Christiansen
Olej olivový	"	$32 \cdot 1$	\#
Olej citronový	"	$32 \cdot 1$	"
Xylol	n	$17 \cdot 14$	De Heen
Cymol	"	15.93	"

Z tabulky poznáváme, že voda jest mezi kapalinami vodičem velmi dobrým; jeji vodivost zlepši se ještě rozpuštěním některých soli*). Alkohol methylnatý i aethylnatý, aether, benzol, sirouhlik a j. jsou vesměs vodiči daleko špatnější, nejvíce pak xylol, cymol a j., jež lze jaksi za kapalné isolátory tepelné pokládati.

Ve směsi dvou kapalin o složení $x_{0}{ }_{0}$ a $y^{0} \%(x+y=1)$ není tepelná vodivost vlastnosti additivni. Vzorec

$$
k=x k_{1}+y k_{2},
$$

dle něhož by dle poměrného zastoupeni možno bylo $k$ počitati, se neosvědčuje. U některých kapalin se lépe osvědčoval vzorec

$$
k_{i}^{n}=x k_{1}^{n}+y k_{2}^{n}
$$

kdež $n$ pro každé dvě komponenty jest jiné a musí býti určeno.
Zajímavá jest otázka, zdali při taveni nějaké látky, t. j. při přechodu ze skupenství pevného v kapalné, vodivost se nemění, anebo zdali nastává náhlá změna. C. Barus zkoumal

[^174] Dr. v. Strouhal: Thermika.
(1892) v tomto smyslu thymol, který se taví při $13^{\circ}$, a nalezl náhlý vzrůst vodivosti o $13 \%$ té vodivosti, kterou má látka pevná. Ch. H. Lees zkoumal (1898) fosforečňan sodnatý (střední $\mathrm{Na}_{2} \mathrm{HPO}_{4}+12 \mathrm{H}_{2} \mathrm{O}$ ), paratoluidin a naphtylamin a nenalezl změny žádné. Co se ledu týče, soudí E. v. Aubel, že voda, mrznouc v led, stává se vodičem lepším.

## Vedení a proudění tepla v plynech.

## § 162. Vẏznam úkolu.

Jednajíce o tepelné vodivosti kapalin, seznali jsme obtíže, jež stanovení této vodivosti činí nesnadným. Tyto obtiže stupňují se u plynů měrou ještě daleko větší. Plyny maji obsah tepelný malý; rušivý účinek pevných stěn plyn uzavírajících, teploměrů do plynu vložených a pod. jest tudiž poměrně velmi značný. U plynủ proudění, jakož i tepelné záření přichází k platnosti ještě více než u kapalin a dlužno tudiž k němu přihližeti $s$ velkou kritičností. Přes tyto obtiže bylo záhy k tomu pracováno, aby se tepelná vodivost plynů absolutně určila, a to vzhledem k významu, jaký má pro dynamickou theorii tepla. Tato vykládá rozpínavost plynů jako effekt působený narážením molekul, kteréž jsou v živém progressivním pohybu přímočarém. Výměnou rủzných rychlosti, jimiž se molekuly v různých vrstvách plynů pohybuji, vysvětluje theorie vnitřní tření u plynủ. $V$ dalším postupu vykládá theorie diffusi a vodivost tepelnou a dovede dle určitých základních předpokladů též kvantitativně napřed vodivost tepelnou plynů, jakož i její vztahy $k$ teplotě vyložiti. Dle toho byla situace u plynů jiná než u kapalin a těles pevných. Theorie byla proti praxi napřed, theorie dovedla vodivost již dříve vypočisti, než byla skutečně určena pokusem. Ale právě proto nabylo pokusné určení vodivosti významu tím důležitějšiho; stalo se kontrolou nebo zkouškou o správnesti theorie a jejích některých předpokladů základních.

K objasnění toho, co zde všeobecně řečeno, budtež uvedeny některé theoretické vztahy sem náležející.

Vodivost tepelnou $k$ přivádi theorie v jednoduchou souvislost s teplem specifickým $C_{v}$ při konstantním objemu a s koefficientem vnitřního tření $\eta$, a to dle zákona přímé úměr-
nosti. Jest tedy

$$
k=\varepsilon \eta C_{v} .
$$

Konstanta úměrnosti é vychází však theoreticky čiselně rủzně, dle oněch základních predpokladů, od nichž jednotliví badatelé v tomto oboru theoretické fysiky vysli. Tak nalézá

Clausius	$\varepsilon=1 \cdot 25$,
Maxwell	$\varepsilon=1 \cdot 5$,
O. E. Meyer	$\varepsilon=2 \cdot 5$,
$\varepsilon=1 \cdot 6$.	

Na příkladu Maxwellově, jenž dle různých předpokladủ vypočítal pro e dvě velmi se různící číselné hodnoty, jest nejlépe viděti, jak pokus má rozhodčí význam o větší neb menší správnosti oněch předpokladů, kteréž vykládá fysika theoretická.

Jiná otázka týče se účinku teploty. Předpokládejme, že teplo specifické $C_{v}$ jest na teplotě nezávislé. Pro teplotu nullovou a obyčejnou obdržíme tedy vztahy

$$
\begin{gathered}
k_{0}=\varepsilon \eta_{0} C_{v}, \\
k=\varepsilon \eta C_{v}
\end{gathered}
$$

tudiž

$$
\frac{k}{k_{0}}=\frac{\eta}{\eta_{0}}
$$

Mění se tudiž teplotou vodivost právě tak jako vnitřní třeni. Připustíme-li dle jiných analogií, prozatím čistě empiricky, závislost lineární, dle vztahu

$$
\eta=\eta_{0}(1+\beta t)
$$

pak jest též

$$
k=k_{0}(1+\beta t)
$$

Theorie Clausiova přicházi k výsledku, že vnitřní třeni jest úměrno druhé odmocnině z absolutní teploty; naproti tomu theorie Maxwellova, že jest úměrno absolutní teplotě samé.

Měli bychom tedy dle Clausia

$$
\frac{\eta}{\eta_{0}}=\frac{\sqrt{T}}{\sqrt{T_{0}}}=\sqrt{\frac{\frac{1}{\gamma}+t}{\frac{1}{\gamma}}}=\sqrt{1+\gamma t}
$$

anebo, když rozvineme $v$ řadu,

$$
\sqrt{1+\gamma t}=(1+\gamma t)^{\frac{1}{2}}=1+\frac{1}{2} \gamma t-\ldots
$$

Vyšší mocnosti, od $\gamma^{2} t^{2}$ počinajic, smíme zanedbávati, vzhledem k tomu, že $\gamma=0.00367$ jest číslo malé, Pak tedy jest

$$
\frac{\eta}{\eta_{0}}=1+\frac{1}{2} \gamma t,
$$

tudiž také

$$
\frac{k}{k_{0}}=1+\frac{1}{2} \gamma t
$$

a tedy

$$
\begin{aligned}
& \beta=\frac{1}{2} \gamma \\
& \beta=0.00183 .
\end{aligned}
$$

Naproti tomu dle Maxwella
čili

$$
\frac{\eta}{\eta_{0}}=\frac{T}{T_{0}}=\frac{\frac{1}{\gamma}+t}{\frac{1}{\gamma}}
$$

$$
\frac{\eta}{\eta_{0}}=1+\gamma t
$$

tudiž také

$$
\frac{k}{k_{0}}=1+\gamma t
$$

tedy

$$
\begin{aligned}
& \beta=\gamma \\
& \beta=0.00367 .
\end{aligned}
$$

Také zde má pokus rozhodnouti mezi těmito dvěma hodnotami

$$
\beta=0.00183 \text { nebo } \beta=0.00367
$$

a dle toho též mezi oněmi předpoklady, $z$ nichž tyto hodnoty byly odvozeny.

Tepelná vodivost plynů jest velmi skrovná. Měli jsme v okrouhlýnh číslech

$$
\begin{array}{ll}
\text { pro střibro } & k=1, \\
\text { pro vodu } & k=0 \cdot 0013 .
\end{array}
$$

Oproti těmto číslům máme

$$
\text { pro vzduch } \quad k=0.00005
$$

Jest tedy vzduch vodičem 26kráte horším než voda, $20.000 \mathrm{kráte}$ horšim než střibro. Ale mezi plyny jednotlivými
jsou zase rozdily značné, daleko značnější, než mezi jednotlivými kapalinami. Tak jest na př.

$$
\begin{array}{ll}
\text { pro kysličnik uhličitý } & k=0.00003, \\
\text { pro vodik } & k=0.00040 .
\end{array}
$$

Jest tudiž vodik 13 kráte vodivějším než kysličník uhličitý.
Rozdíly tyto lze pěkně znázorniti pokusem přednáškovým. Ve dvou tubulovaných baňkách jsou za sebou zapiaty dvě stejné platinové spirály, drátu $1 / 4 \mathrm{~mm}$ silného. Těmi zavede se proud elektrický tak silný, aby se rozežhavily. Pokud je v baňkách vzduch, rozežhaví se obě spirály stejně. Naproti tomu jeví se ihned veliká různost, když do jedné baňky se vpustí kysličník uhličitý, do druhé vodik. Podobně, když vedeme proud dvěma žárovkami, úplně stejnými a za sebou do proudu vepiatými. Jsou-li obě evakuované, záři stejným žárem. Když se jedna z nich nahradi jinou zcela stejnou, ale vodikem naplněnou, záři tato daleko slaběji, ale za to stěny její teplem nejen vyzǎ̛ovaným, nýbrž též vedeným se značně zahřívají, ačkoli žár vlákna uhelného jest malý.

## § 163. Methody pozorovaci.

První, jenž konal (1861) pokusy srovnávací o tepelné vodivosti plynủ, byl Magnus *). Jeho methoda byla thermometrická. Při prvém uspořádání pokusném zasahal teploměr vertikálně do malé válcovité skleněné nádobky, kterou bylo lze různými plyny naplniti. Nádobka se vnořila do vařící vody. Pozorováno bylo, jak stoupal teploměr, když byla nádobka naplněna vzduchem, nebo vodikem, nebo ammoniakem, anebo kysličnikem uhličitým. Při druhém uspořádání pokusném byl teploměr zasazen do nádobky asi uprostřed a to horizontálně, celá nádobka byla v lázni vodni $15^{0}$, a jen jeji hořejši basis byla udržována na teplotě $100^{\circ}$ horkou vodou, jež se nalézala v nádobce jiné $k$ prvé nahoře přitavené. Před přimým zářením tepla byl teploměr chráněn stinítkem.
*) Heinrich Gustav Magnus (1802-1870), professor fysiky a technologie na universitê Berlinskẻ. Přislušné pojednáni má název: Wãrmeleitung in Gasen, a vyşlo v Pogg. Ann. d. Ph. 112, 1861, a také v jiných vêdeckých časopisech.

Přesnějši pokusy nejen o relativní, nýbř̌. též o absolutni vodivosti plynů konal $J$. Stefan ${ }^{*}$ ), a to v roce 1872 o absolutní vodivosti vzduchu, později pak, v roce 1875, též jiných plynủ.

Jeho přistroj v definitivní úpravě jest znázorněn v obr. 166. Měděný válec $A B C D$, dole kohoutem $N$ (k přivádění plyuů) opatřený, má nahoře zabroušenou měděnou misku abcd, která je korkem vyplněna a kterou lze z válce vyzvednouti. Korkem prochází jednak druhý kohout $M$ (k odváděni plynů), jednak trubice skleněná $R$, přitmelená $k$ druhému měděnému válci GHJK, který jest vzduchotěsně uzavřen. Tento druhý válec vloží se na trabici $R$ onou zabroušenou miskou do válce prvého; jest tak vyměřen, aby mezi oběma, na plášti i na plochách základnich, vznikla vrstva plynová vs̆ude stejné tloušfky. Vnitřni válec byl teploměrnou nádobou teploměru plynového. Stefan užíval zprvu vzduchu, později však vodiku za látku teploměrnou. Aby se mohlo měřiti napěti plynu, byla trubice $R$ nahoře zpět ohnuta a zasahovala do rtuti, jež byla nalita do zkumavky $E$. Trubičkou $r$ bylo lze rtuti přilévati nebo odlévati. Jak patrno, byl teploměr zařizen na ochlazování, při čemž napěti plynů se umenšovalo a rtuf ze zkumavky v trubici $R$ vystupovala. Změny napětí, vyjádřené sloupcem rtutovým, bylo lze na stupnici $S$ měriti.

Při pokusuzachováván byl tento postup. Prostor mezi vinitřním a vnějšim válcem

[^175]naplnil se plynem, jehož vodivost se měla zkoumati. Na to se nechal přistroj nejméně dvě hodiny státi, aby plyn v něm přišel v klid a zároveǔ aby teplota se ustálila. Potom se celý přistroj vložil do sněhu (s vodou smíšeného) a pozorovalo se na onom teploměru vzduchovém, jak ochlazování časově pokračuje.

Úprava prístroje upomíná ponékud na diathermometr, kterým pozoroval Guthrie, jak dríve (\$ 160) již bylo vyloženo. Na místê kuz̃elú, zâkladními plochami k sobé pristavených, aby mezi nimi vznikla vrstva (lamella) vzduchová (nebo i kapalná), jsou zde valce do sebe tak vložené, że mezi nimi vzniká téz vrstva vzduchová anebo vrstva plynu jiného. Tam se uživá zà teplomẽr jednoho $z$ obou kuželǒ, zde vnitřniho vâlce. Stefan byl si této podobnosti zajisté vẽ́dom, coz̃ lze souditi z toho, że nžívã pro svũj prístroj téz̃ pojmenovảní diathermometr.

Ubývání teploty $t$ od počáteční $t_{0} \mathrm{~s}$ časem $\Theta$ děje se dle zákona exponenciálního

$$
t=t_{0} e-\beta \Theta
$$

Při tom jest koefficient $\beta$ dán výrazem

$$
\beta=\frac{k \cdot s}{M C \cdot \delta},
$$

kdež znači $M$ hmotu, $C$ specifické teplo vnitřniho válce (tudiž $M C$ jeho tepelnou kapacitu), $s$ středni povrch obou válců, $\delta$ tlouštku vrstvy, $k$ tepelnou vodivost přislušného plynu.

Vzorce tyto odvodíme touto úvahou: V době $d \Theta$ klesne teplota vnitr̄ního válce o $d t$ a tepelný jeho obsah se umenší o $M C$. $d t$. Toto teplo, precházejíci na vâlec vnêjši, jehož teplota se udržuje na nullové, jest úměrno době $d \Theta$, rozdílu teplot $(t-0)$, vodivosti $k$ a porrchu $s$ prímo, tloušfice $\delta$ vrstvy plynové neprimo, Jest tudíz v platnosti rovnice

$$
-M C d t=\frac{k s t d \Theta}{\delta}
$$

cili

$$
d t=-\beta t d \Theta
$$

kdez̄ jest

$$
\beta=\frac{k s}{M C \cdot \delta}
$$

Integrujeme-li differenciálni rovnici

$$
\frac{d t}{t}=-\beta d \Theta
$$

obdržíme

$$
t=t_{0} e-\beta \theta
$$

kdež jest $t_{0}$ teplota počáteční při $\Theta=0$. Pro $\Theta=\infty$ obdržíme $t=0$,
souhlasnẽ s podmínkami pokusu.
V první své práci stanovil Stefan $k$ pro vzduch, v druhé pro kysličnik uhličitý a uhelnatý, kyslík, vodik, methan, kysličnik dusnatý a aethylen.


Obr. 167.
Přistroj, kterỳm Kundt a Warburg zkoumali tepelnou vodivost plynû

Relativní vodivosti, dle čísel stoupajicích uspořádané, obdržel jak následuje:

pro	$\mathrm{CO}_{2}$	$k=0.642$
$"$	$\mathrm{~N}_{2} \mathrm{O}$	0.665
$"$	$\mathrm{C}_{2} \mathrm{H}_{4}$	0.752
$"$	CO	0.981
$"$	vzduch	1
$"$	$\mathrm{O}_{2}$	1.018
$"$	$\mathrm{CH}_{4}$	1.372
$"$	$\mathrm{H}_{2}$	6.718

Absolutních hodnot $k$, kteréž Stefan obdržel, zde neuvádime; vypadly poněkud velké, poněvadž nepřihližel dostatečně $k$ záření tepelnému. Nikoli, že by byl na záření nepamatoval - učinil i pokus $k$ záření se vztahujici, o němž na konci svého prvniho pojednání mluví - ale měl za to, že účinek jeho jest téhož řádu jako jsou chyby pozorovaci. Za to zjistil, že vodivost nezávisí na tlaku. tudižže plyny zhuštěné a zředěné mají tepelnou vodivost stejnou.

Krátce před tím, nežli vyšla druhá práce Stefanova, uveřejnili Kundta Warburg*) pozorování $k$ témuž thematu se vztahujici. Přístroj. jehož uživali, jest znảzorněn v obr. 167. Plyn, který zkoumali, byl v duté skleněné kouli $a$, do niž byl zabroušen (nebo zataven) teploměr $e c$. Kohout $g$ sloužil k tomu, aby se plyn mohl vývěvou zřediti. Koule byla zapuštěna do sněhu a bylo pozorováno, jak průběhem doby teploměr klesal. V podstatĕ jest tedy úprava těchto pokusů stejná jako Magnusových a také stejná jako Stefanových; místo jeho teploměru vzduchového uživali prostě rtutového, čím ̌̌ pozorování se zjednodušila.

[^176]Přes tuto stejnost byl však v jejich pozorováních pokrok methodický. Odváděni tepla od teploměru $k$ lázni sněhové dále se nejen vedenim, nýbř̌ též prouděnim a zářením. Autorové hleděli tyto účinky isolovati. Ukázali pokusem, že proudēní se umenšnje a konečně přestává, když se plyn zředuje*). Přimé zạ̛rení bylo pak stanoveno tím, že se koule tak úplně evakuovala, jak jen možno. Když tedy podil, který má zářeni, byl stanoven a když se pozorováni dála při onom zředění, kdy prouděni odpadá, bylo lze vypočisti vedení samotné.

V téže době provedl apparátem Stefanovým též Winkelmann**) řadu pozorování o vodivosti tepelné a jeji závislosti na teplotě.

Roku 1885 zkoušel Schleiermacher ***) platnost zákona Stefanova (z roku 1879), dle něhož množstvi tepla tělesy vyzařovaného stoupá úměrně se čtvrtou mocnosti jich absolutní teploty. Ve skleněné nádobce úplně evakuované byl napiat drát (platinový nebo niklový), který se proudem elektrickým rozežhavil. Jeho teplotu jest možno z veličin elektrických počitati. Množstvi tepla vyzářeného rovnĕž. Udržuje li se nádoba v lázni na konstantní teplotě a nastane-li stav rovnovážný, trvá i drát na určité teplotě, tak že pak proudem právě tolik tepla se dosazuje, kolik se vypařováním ztrácí. Základní tato myšlenka rovnováhy tepelné jest však v platnosti i tehda, když v nádobě jest plyn jakýkoli, po připadě více nebo méně zředěný. Proto podnikl v roce 1888 tým̌̌ přistrojem četné pokusy o vedení tepelném plynů. Učinek proudění a vedení hleděl eliminovati stejným zpûsobem jako Kundt a Warburg.

V novější době konali pokusy o vedení tepelném plynů Graetz (1881), Eichhorn (1890), Egon Müller (1901), Mehlis (1902) a Schwarze (1903); poslední tři zkoumali zejména plyny jednoatomové argon a helium.

Vrafme se ještě k zákonủm, dříve již uvedeným, dle nichž závisí vodivost tepelná $k$ jednak na vnitřním třeni

$$
k=\varepsilon \eta C_{v},
$$

[^177]jednak na teplotě
$$
k=k_{o}(1+\beta t)
$$

Koefficient e vycházi dle prací nejnovějšich pro jednoatomové plyny

$$
\varepsilon=2 \cdot 5
$$

pro jiné

$$
\varepsilon=16
$$

Co se koefficientu $\beta$ týče, vedou pozorováni ve většině $k$ hodnotě

$$
\beta=\frac{1}{2} \gamma
$$

což by bylo v souhlasu s theorii Clausiovou. Zdá se však, že při nizkých teplotách (Eckerlein 1900) tento koefficient je značně větši, a že se pak blíži spíše hodnotě $\gamma$ dle theorie Maxwellovy,

Bylo též zkoumáno (Hahn 1903), zdali paprsky Röntgenovy maji účinek na tepelné vedení plynů, jako maji účinek na elektrické vedení (ionisace); avšak výsledek byl negativní.

## § 164. Výsledky.

Z výsledků dosavadními pracemi nabytých budtež uvedeny jen některé, zejména pro plyny nejvíce zkoumané, vzduch, vodík, kysličník uhličitý a uhelnatý, kyslík a dusík a některé jiné. Souhlas ve výsledcích pozorovatelủ jednotlivých není vždy uspokojujíci, což souvisí s obtižemi úkolu. Tak na př. údaje pro vzduch při téže teplotě $0^{\circ}$ pohybuji se v mezich $k=0.000047$ až $0 \cdot 000057$. Účinek teploty jevi se nejlépe ve výsledcích, jež obdržel $P$. A. Eckerlein v době novějši (1900). V mezích teplot nízkých, - $180^{\circ}$ až $0^{\circ}$, vypočital koeffïcienty, jak je v dalším uvádíme. Jsou positivní tepelná vodivost plynû s teplotou se zvětšuje. Obdržel

$$
\begin{array}{ll}
\text { pro vzduch } & \beta=0.00362, \\
\text { pro vodik } & \beta=0.00422, \\
\text { pro kysličnik uhličitý } & \beta=0.00352 .
\end{array}
$$

Tyto hodnoty blíží se dosti koefficientu rozpínavosti plynủ $\gamma=0.00367$, tak že by dle toho tepelná vodivost plynủ byla úměrná absolutni teplotě.

Tepelná vodivost $k \frac{g}{c m . s e c}$ některých plynů.

Plyn	$t$	$k$	Poznamenání
Vzduch	-	0.0000558	Stefan
	0	$0492$	Kundt a Warburg
	0	0568	Winkelmann
	0	0484	Grätz
	100	0573	n
	0	0562	Schleiermacher
	100	0720	"
	$-150$	0215	Eckerlein
	- 59	0368	"
	0	$0468$	"
Vodik	0	$0 \cdot 0003270$	Winkelmann
	0	3190	Graetz
	100	3693	"
	0	4100	Schleiermacher
	100	5228	\#
	$-150$	1175	Eckerlein
	- 59	2393	"
	0	3186	"
Kyslik	7... 8	0563	Winkelmann
Dusik	7... 8	$0524$	2
Argon	0	0389	Schwarze
Helium	0	3386	
Kysličník uhličitý	0	0307	Winkelmann
	0	0327	Schleiermacher
	100	0506	"
	- 78.5	$0255$	Eckerlein
	$-50.5$	0282	"
	0	0343	
Kysličník uhelnatý	0	$0 \cdot 0000499$	Winkelmann
	7... 8	0510	"
Ammoniak	0	0458	"
	100	0709	$»$
Páry rtufové	203	0185	Schleiermacher

$$
-492-
$$

Lepší přehled podávaji čísla o vodivosti relativni, kterou vztahujeme na vzduch, kladouce jeho vodivost $=100$, t. j. vyjadřujíce vodivost plynů v procentech vodivosti vzduchu. Následující tabulka, uspořádaná dle klesající vodivosti, podává některé přiklady. Vodičem nejlepším jest vodik, (helium snad ještě lepšim, ač rozdil není veliký), pak svítiplyn a methan. Ostatni plyny jeví rozdily méně značné. Ze známějšich plynủ jest kysličnik uhličitý přikladem vodivosti menši.

Relativní tepelná vodivost $r$ některých plynů, vztahovaná na vodivost vzduchu $=100$.

Plyn	$r$	Poznamenáni
Vodik	710	Kundt a Warburg
Sin	701	Stefan
Svitiplyn	267	Plank
Methan	139	Stefan
Kyslik	102	"
Dusik	$99 \cdot 3$	Plank
"	98	Narr
Kysličnik uhelnatý	98	Stefan
Kysličnik dusičitý	95	Plank
Ammoniak	92	"
Aethylen	74	Stefan
Kysličnik uhličitýy	62	$"$
Methylamin	59	Kundt a Warburg
Methylamin	66	Häfker
Propilamin	58	$"$
Butylamin	53	$"$
Amylamin	49	$"$
		$"$

Co se směsi plynů týče, není ani zde vodivost vlastností additivní, podobně jako nebyla u kapalin. Otázku tuto studovala slečna Wassiljeva (1904) a odvodila jiné vzorce, než dle procentuálního zastoupení additivní, kteréžto vzorce jsou však značně tuálního zastou
§ 165. 0 temperaturnim skoku na stykové ploše různých těles.
Kinetická theorie plynú, vykládajíc vedení tepla, docházi závěrku, že vedeni toto neni závislé na tlaku; je stejné pro plyny zředěné i zhuštěné. Skutečná pozorování s tímto důsledkem theorie souhlasí. Avšak malá, neočekávaná odchylka ukázala se přece. Kundt a Warburg, zkoumajíce zpủsobem v předešlém odstavci popsaným, jak ochlazování v plynech zředěných časově postupuje, nalezli, že tento postup až do zředěni asi $1 \mathrm{mmHg} 0^{\circ}$ je stálým, že však při dalš̌ím zř̌edění plynu nastalo opozđování, tak, jako by odtud dále vodivost plynu se umenšovala*). Diskusse, o této otázce vedená, ukázala však, že věce souvisi s otázkou jinou, rázu všeobecného, totiž se skokem temperatury na rozhraní mezi stĕnami nádoby a zředěným plynem v nádobě obsaženým.

Jak řečenc, jest otázka rázu všeobecného. Stýkají-li se dvě tělesa stejného nebo rủzného skupenství, na př. dva kovy nebo dvě kapaliny anebo kov a kapalina, sklo a plyn a pod. a neni-li teplota ustálená, vzniká otázka, zdali změna teploty na ploše stykové se děje spojitě nebo přetržitě, t. j. zdali zde nevzniká změna náhlá, diskontinuita teploty, temperaturní skok. U těles pevných vyšetřovali otázku tu A. Angström (1861) a G. Wiedemann (1885) a nalezli souhlasně, že při styku dokonalém není skoku žádného. U kapalin (vody a nitroglycerinu) nalezl M. Despretz skok $2^{0}$ až $3^{0}$. Rogovsky (1903) napial do osy skleněné trubice drát a nechal pak trubicí prouditi vodu. Když se drát proudem oteplil, shledal v temperatuře drátu a vody rozdil až $24^{\circ}$. Nebylo by nemožno, że by se zjevy uvedené mohly jinak ještě než skokem temperaturním vysvětliti. Naproti tomu jest dnes již nepochybno, že mezi plynem značně zředěným a stěnami nádoby plyn uzavírajicí pří výměně tepelné skutečný skok temperaturni existuje. Zásluhu o theoretické i experimentální prozkoumání tohoto zjevu má Smoluchowski**). Jeho měření opakoval Gehrke (1900) a obdržel výsledky souhlasné.
*) Při nejzazšim zředěni, ale teprve při tomto, musi ovs̃em vodivost se umens̃ovati, ponẽvad̃̄ vakuum jest tepelný isolátor. Na tom se zakládá isolační mohutnost nádob Dewarových pro uchováváni zkapalnẽných plynủ.
${ }^{* *}$ ) Maryan rytïr Smoluchowski (* 1872,) vynikajici fysik polský, studoval na universitê ve Vidni, v Parizizi, v Glasgowé a v Berliné, habilitoval se r. 1898 ve Vidni, načež r. 1899 byla jeho habilitace uznána téz̃ pro universitu Lvovskou. Zde stal se r. 1900 mimořảdnẙm a r. 1903 rádným professorem fysiky theoretické. Přislus̃né pojednání o skoku temperaturním pr̆i vodivosti plynů uver̄ejnil ve Zprávách akad. Videñské 107, pag. 304, 1898 a 108, pag. 5, 1899.

Postoupime-li ve smęru normály k plos̃e stykové o $d n$, změní se teplota o dt. Differenciảní pomẽr $\frac{d t}{d n}$ znači rychlost, s jakou teplota se mẽni. Při nenáhlém přechodu jest tato rychlost nekonečně malá. Existuje-li skok temperaturní $=\vartheta$, jest ona rychlost tomuto skoku úměrnou, t. j. má tu platnost rovnice

$$
\gamma \frac{d t}{d n}=i
$$

Konstanta $\gamma$ znači pak tloušfku $d n$ vrstvy, v níž skok of nastane. Značili $L$ tak zvanou střední délku volné molekulové dráhy, t. j. délku, podél niž se molekula pohybuje než narazí na jinou, jest

$$
\gamma=c L
$$

Tato délka $L$ jest tím vêtşí, čím je napêtí $p\left(\mathrm{~cm} \mathrm{Hg} 0^{\circ}\right)$ plynû menši, a stává se značnęjsíi u plynů velice zredẽných. Smoluchowski nalezl

$$
\begin{array}{ll}
\text { pro vzduch } & \gamma=1.70 L=0.0000171 \frac{76}{p} \mathrm{~cm} \\
\text { pro vodik } & \gamma=6.96 L=0.000129 \frac{76}{p} \mathrm{~cm}
\end{array}
$$

Gehrke nalezl ćisla ponêkud vêtši:

$$
\begin{aligned}
\text { pro vzduch } \quad \gamma & =1.83 L=0.0000184 \frac{76}{p} \mathrm{~cm} \\
\text { pro vodik } \quad \gamma & =7.70 L=0.000143 \frac{76}{p} \mathrm{~cm}
\end{aligned}
$$

coz̃ jest vzhledem $k$ jemnosti celého zjevu shoda velmi dobrá. Smoluchowslii řešl problém téż theoreticky a ukázal kriticky, że i v resultátech mnohých drívējších pozorovatelů, kteñí vedení tepelné u plynû studovali (Winkelmann, Kundt a Warburg, Brush, Schleiermacher), lze skok temperaturní dokázati.

## Záření tepla.

VIII.

## § 166. Skizza historická.

Ve výkladech o vedeni tepelném bylo již naznačeno, že tento způsob, jak teplo se šíríi, není jediným. Zkušenost denní poučuje nás o jiném ještě a daleko vydatnějším způsobu, který pro veškerý život $v$ přírodě má význam dalekosáhlý. Jest to záření tepla čili radiace tepelná*). Přečetné úkazy přírodní sem příslušné byly pozorovány a poznány $v$ dobách pradávných. Také některé pokusy, jimiž i dnes záření tepelné objasňujeme, byly známy již ve starém vèku. Není také pochybnosti, že příbuznost a souvislost zářeni tepelného se světelným byla záhy postihnuta. S tím souvisí, že i vysvětleni theoretické prodělalo stejný rozvoj u záření tepelného jako u světelného. Theorie emanační předcházela i zde theorii undulační. Jakousi fasí přechodní byl názor, že aetherové vlny tepelné existuji vedle světelných. Dlouhého trvání však názor tento neměl; vždy více utvrzovalo se přesvědčení, že záření tepelné a světelné jsou úkazy fysikálně identické.

Pravili jsme, že o základních úkazech záření tepelného poučuje denní zkušenost. Slunce svíti, ale také hř̌eje; obé přestává najednou, když mrak slunce zastře; jakmile slunce z mraku vyjde, ihned oba účinky se dostavují. Mrak jest od nás velmi vzdálen; jeho stíníci účinek pozorajeme však okamžitě. Slunce jest daleko více od nás vzdáleno ; ale i zde, jakmile nad obzor vyjde, ihned cítíme teplo, jež paprsky sluneční

[^178]nám přinášeji. Již v této ohromné rychlosti rozeznává se záření tepelné podstatně od vedeni tepla, kteréž postupuje velice zvolna. Ale v jiné věci jest rozdil neméně podstatný. Při vedeni tepla prohřívá se vrstva za vrstvou, není možno, aby některá byla přeskočena. Avšak za mrazivého dne vzduch, kterým paprsky sluneční se širrí, zủstává chladným a přece teplo paprskủ těch cítíme. Záření vzduchem procházi bez účinku a teprve tělem naším se jakožto tepelné vnímá. Naopak za dnủ horkých chráníme se před timto zářením stinitky, jimiž se zadržuje. Podobné zkušenosti činime u jiných zdrojủ svíticích i zároveň hřejicích. Citíme blizkost ohuě ve výhni, citime žár obloukové lampy a j . Ale též bez současného záření světelného mưže účinkovati záření tepelné. Citime hřející účinek kamen, když v nich bylo zatopeno, i když vzduch kamna obklopující jest ještě chladným; je-li nám účinek ten na obtiž, chráníme se před ním vhodnými stinítky. Jako jsou tedy tělesa průhledná a neprůhledná, tak máme též tělesa průteplivá a neprûteplivá.

Ưčinek zreadel dutých, zápalných, byl znám již ve starověku. Sem náleží legenda o Archimedovi, který prý velkými zreadly, soustředujícími světlo i teplo sluneěni, zapálil lodstvo Řimanú. V Italii byl již před založením Říma rozširíen kultus Vesty, při němž byl udržován svatý oheŭ. Když uhasl, směl býti, jak Plutarch vypravaje, opět zanicen jenom ohněm nejčistšim, totiž žárem slunce. K tomu sloužily duté kovové misky*), jichž bylo užíváno jako dutých zreadel.

Pokusy o teple zářivém za účely vědeckými konané začínají teprve ve století 17. Žáci Galileovi, členové „akademie pokusu", zkoušeli zrcadly soustřediti chlad, vycházejici od vzdáleného velkého, 500 liber těžkého ledového balvanu. Pokus jest jako první tohoto druhu historicky dủležitý.

Mezi experimentátory 18. stoleti vyniká Lambert**). Užival dvou souosých dutých zreadel. Do ohniska jednoho vkládal dutou železnou kouli, do niž nalil horké vody, v ohnisku druhého pozoroval stoupání teploměru, jehož nádobka byla sazemi začerněna, věděl tedy již, že černý nátěr má na vnímání paprsků tepelných účinek přiznivý. Pokusné úpravy Lambertovy užival též Pictet ${ }^{* * *)}$. Dal zrcadla do odlehlosti až i přes 20 metrủ.

[^179]Do ohniska jednoho položil zahřátou železnou kouli, na začerněném teploměru v druhém ohnisku pozoroval stoupảní teploty. Pak vyměnil onu kouli za nádobku s mrazivou směsí, a pozoroval na teploměru klesání teploty. Správeě usoudil, že v tomto případě teploměr vyzařuje teplo oproti mrazivé směsi. Jest pravděpodobno, že dle pokusu tohoto, který upomíná na onen pokus žáků Galileových, a dle jeho výkladu vytvořil Prevost*) svủj názor o tepelné rovnováze (équilibre mobile) mezi dvěma tělesy teplo vyzařujícími, která nastává, když každé těleso tolik tepla od druhého přijímá, kolik samo vydává, jak obrazné̛ praví, „jako jezero, do něhož tolik vody prší, kolik se vypaří ${ }^{4}$. O podstatě tepla vyzařovaného tvoři sobě v souhlasu s emanační theorii světla též jakousi theorii emissní; domnivá se, že tělesa vyzařují částečky látky tepelné, kteréž velikou rychlosti letí prostorem a jinými tělesy jsou odráženy anebo vnímány.

Pokusy o lomu paprskû tepelných konal Tschirnhausen ${ }^{* *}$ ) a to, dle záliby své, ve velikém slohu. Podal o nich zprávu v pojednání: Effets des verres brûlants de trois ou quatre pieds de diamètre, Paris 1699. Velikými těmito čočkami, v průměru přes 100 cm , soustředil světlo i teplo sluneční a dosáhl výsledků překvapujících. Voda se vařila, kovy (olovo, ba i železo) se tavily, dřevo pod vodou zuhelnatělo; kovy do uhlí vložené se proměnily v páry; černé uhlí jevilo ohromnou vnímavost pro teplo vyzařované. Také Pictet hleděl čočkou soustřediti paprsky tepelné, kteréž vycházely z nádoby s vařicí se vodou, tedy paprsky tmavé. Pokus se nezdar̀il (následkem absorpce), což ho vedlo ke klamnému domnění, と̌e isolátory tepla (sklo) jsou též pro zářené teplo neprostupnými, tak že by dle toho čočkou kovovou koncentrace paprskủ se nejlépe zdařila.

Na prahu nové doby stoji znamenitý experimentátor Leslie ${ }^{* * *) . ~ P o z n a ́ v a j e, ~ z ̌ e ~ o b y c ̌ e j n y ́ ~ t e p l o m e ̌ r ~ n e n i ́ ~ d o s t i ~ c i t l i v y ́ m, ~}$

[^180]sestrojil svůj vzduchový teplomèr differenciälní, který byl nezávislý na tlaku i na teplotě okolniho vzduchu. Jednu z obou kouli, začerněnou, umístil do ohniska dutého (cínového) zrcadla. Vedle toho upravil svou kostku - dle něho zvanou a dosud při experimentech užívanou - dutou, mosaznou, do které nalil vařicí se vody. Postranní plochy této kostky mohly býti opatřeny rủzným nátěrem nebo byly hladké a drsné anebo se pokryly jinými látkami (sklem, papírem), tak že bylo možno studovati mohutnost emissní za různých poměrů při teeže teplotě. Poznal již, že reflexe a emisse vespolek souvisí; velká reflexe je spojena s malou emissí. Zkoumal též průteplivost rủzných látek.

Do této doby, na začátku století 19. (1800), připadá též objev infračervené části při spektru slunečním, který učinil Herschel ${ }^{*}$ ).

Zkoumaje teploměrem účinek tepelný v sedmi barvách spektrálnich, přešel přes část červenou a konstatoval, 九̌e zde, v části již neviditelné, účinek se ještě stupňuje až do jistého maxima a pak teprve klesá. Poloha tohoto maxima závisí ostatně, jak Seebeck poznal, na hranolu, kterým spektrum se vytvoři. Herschel se domníval, že paprsky tepelné existuji vedle světelných, názor, který byl přechodním.

Novou dobu zahájil Melloni ${ }^{* *}$ ). Jeho apparát, jak ho dosud k účelủm přednášek uživáme, jest již upraven k soustavnému zkoumání paprskủ tepelných dle analogie paprskủ světelných. Moderním jest u tohoto apparátu thermoskop, založený na účinku thermoelektrickém. Sestrojil jej Nobili***), přítel a krajan Melloniho, jenž s ním nějaký čas pracoval společně. Thermosloup ve spojeni s galvanometrem velmi citlivým připouštèl jemnost a přesnost pokusủ nepoměrně větši, než jak byla mož-
*) Friedrich Vilém Herschel (1738-1822), slavný astronom, pūvodnē hudebnik (organista) v rúzny̌ch městech anglických, pak autodidakt a dilettant astronomickẏ. Za svého pobytu v Bathu sestrojoval sám teleskopy a obdržev podporu krále Jiřiho III presel k velikẏm rozmérûm těchto reflektorů. Objevil 13. března 1781 Urana (>Georgium siduse) a stav se na to osobním astronomem královským, věnoval se úplnẽ pracím vēdeckỷm. >Coelorum perrupit claustrac, pravi o nẻm náhrobní nápis v Uptonẽ.
**) Macedonio Melloni (1798-1854), stal se již r. 1824 professorem fysiky na université v Parmẽ, svém rodném městẽ. Z pr̄ičin politických byv r. 1831 vypuzen, zdržoval se v Par̃iži a v Ženevẽ (kde se seznámil s Prevostem), vrátil se r. 1839 do Italie a púsobil v Neapoli jako reditel meteorolog. observatore na Vesuvu. Byl povahy kontemplativni, naklonẽn mysticismu.
***) Leopoldo Nobili (1784-18355), prof. fysiky ve Florencii.
nou dosavad. Methoda elektrická, kterou takto Melloni zavedl, zûstala pak v užívání až na naše doby, ovšem s účelnými modifikacemi, ale vždy tak, že účinek tepla zářícího se studoval dle změny elektrických vlastností vodičủ. Objevy následovaly rychle za sebou a vedly $k$ přesvědčení, že paprsky tepelné, pokud jsou zároveň světelné, jsou identické. Na místo dřívějši klassifikace paprskiu (tepelných, světelných, chemických) nastoupila klassifikace účinkù. Paprsky samé jsou jednotné, repraesentujíce zářivou energii aetheru.

Identita paprskú tepelných a světelných vede přirozenẻ k otázce, zdali by nebylo dủslednéjisí vyklảdatio o têchto paprscich jednotnẽ, souvisle, nikoli z ćasti v nauce o teple a z ćásti v nauce o svétle. Mnozí autorové k tomu prisvědéuji *). Stanovisko toto jest principialné dojista správné, ale účelným není. Pri veškeré jednotnosti záreni aetherového jsou přece jen účinky velmi různé, a dle téchto úcinkủ fídi se i přistroje i methody pozorovací. Co mưžeme viděti, to poznáváme jasnéji, určitêji. Ukazy světelné budou vz̃dy svou názorností zảkladem pro stejné nebo analogické úkazy tepelné Historický rozvoj jest toho přímým důkazem. Zachovati postup, jak v tomto rozvoji se jevi, má své výhody didaktické. Manipulace s thermosloupy a s bolometry teprve tehda se stává srozumitelnou, když úkazy, jez̃ z optiky jiż velmi dobře známe, hledíme téż v thermice zkoumat.

Také $O$. D. Chwolson pojednává o záření vůbec se stanoviska jednotného, ać methodiç̉á rủznost i při jeho výkladu zcela zřetelnẻ vystupuje **). Ba jde tak daleko, že i pojmenování steplo zárivé, zárení tepelné, paprsky tepelnée jakožto nesprávné zamítá, ale názvu $2 k a l o r i c k e ́ ~ z a ́ r e e n i s ~ u z ̌ i ́ v a ́ . ~$ Jest pravda, że ve vibrac̃ním pohybu aetheru není nic tepelného - ale také ne světelného. Důslednẽ by musil též název >svétlo, paprsky svêtelné, zâreni svêtelnéa zamítnouti. Podrzíli však označení paprskủ dle úč̌inku jednoho, nemůže za nesprávné prohlásiti oznac̃ení dle účinku druhého. Pravíme-li, że oblouková lampa, které na př. užíváme při projekci, nejen svíti, ny̌brž též hřeje a hledíme-li praeparáty pred koncentrací právẽ tohoto tepla chrāniti tim, że paprsky necháme procházeti nádobou, v níz je voda nebo glycerin a tím je filtrujeme, rozumí kaz̃dý tomuto výrazu a sotva vzniká nedorozumě̃ní o podstatẻ tohoto záření. Názvy spaprsky tepelné, svêtelné, chemické, elektrické « jsou brachylogické, ve výkladech pohodlné; jich odstranění by způsobovalo těžkopádnost výrazu, která by jistě nebyla vêci na prospẽch. O nějakẻm ostrém rozlišování paprskú tepelných a svẽtelnỷch nemůže ovšem býti reči, poněvadz̃ četné paprsky svêtelné jsou zảroveñ tepelnými, čímz̃ chceme r̄́ci, że vzbuzuji vedle účinku svêtelného v oku našem téź účinek tepelný v našem têle a vůbec v látkách, kteréz̃

[^181] svētelné a elektrické. Viz zde § 12, pag. 173, 1904.
je absorbují. Právě tak jsou paprsky svêtelné zároveñ chemické, poněvadz̃ zpúsobuji reakce chemické. Vsechny tyto názvy maji poukazovati jen k úçinku, který pozorujeme a který vždy znamená přeménu energie zárivé

## § 167. O prístrojich a methodảch, jimiž se zkoumá zářeni tepelné.

Úkazy optické zkoumáme zpravidla subjektivnè, majíce k tomu zvláštní orgán neobyčejné citlivosti a jemnosti; někdy též objektivně, methodou fotografickou. Pro úkazy tepelné nemáme zvláštníbo orgánu té povahy jako jest naše oko; subjektivni zkoumání bylo by velice necitlivé. Zde pracujeme tedy jenom methodou objektivni. V dobách starších, jak v historickém úvodu vyličeno, užívalo se teploměrů, s počátku rtufových, později vzduchových differenciálních. Století 19., jež se charakterisuje velkolepým rozvojem elektřiny dynamické, dalo vědě prostředky daleko jemnější a citlivější, totiž teploměry elektrické. Absorpcí energie zářivé otepluji se kovy; tím se mění jejich vlastnosti elektrické. Není pak nesnadno tuto změnu vyjádřiti změnou intensity proudové, kterou lze galvanometricky velmi přesně a citlivě indikovati. Tímto směrem pracuje methoda thermoelektrická a bolometrická. Jsou to dle povahy své methody indirektní. Ale také direktně lze záření zkoumati.

## § 168. Methoda thermoelektrická.

Užíváni thermočlánkủ pro záření tepelné jest dle rozvoje historického starší a v experimentálním uspořádání jednodušší. Jediný thermočlánek nebyl by dosti citlivý; proto spojaje se několik thermočlánků za sebou. Tak vzniká thermosloup. Dle toho pak, zdali thermočlánky spojujeme do plochy nebo do přímky, rozeznáváme thermosloupy plos̉né a lineárni.

Pro thermosloupy plošné uživá se $s$ prospěchem kombinace antımonu a vismutu. Elektromotorická síla jest tu větší než při kombinaci jiné, což jest výhodné. Poněvadž však tyto kovy v tenké drátky zpracovati nelze, nutno užívati tyčinek. Následkem toho mají tyto thermosloupy velkou poměrně hmotu a tudiž i velkou tepelnou kapacitu, což jest zase na závadu. Obr. 168. a 169. znázorňuje plošný thermosloup, jakého užival již Melloni. Tyčinky antimonové a vismutové jsou sletovány střídavě tak, že kontakty liché jsou na jedné, sudé na druhé
straně thermosloupu, v plochách, které se začerní sazemi. K vydatnějši koncentraci paprskủ bývá $k$ thermosloupu připojen mosazný konický, uvnitř zlacený reflektor. Plošné thermo-


Obr. 168.
Spojováni thermočlánkû za sebou v thermosloup plos̃ný.


Obr. 169.
Thermosloup plos̃ný z antimonu a vismutu.
sloupy, obyčejně k účelům přednášek nžívané, mivají ve čtverci $5 \times 5$ nebo $8 \times 8$ článkủ.

Pro thermosloup lineární jsou tyčinky antimonové a vismutové přiliš široké; zde dlužno užívati drátkủ. H. Rubens


Obr. 170.
Spojováni thermoĉlánkû za sebou $v$ thermosloup lineatrni.
(1898) volil kombinaci železa a konstantanu. Drátky lze z těchto kovû zpracovati velice tenké, čimž se docílí malé tepelné kapacity;' kontakty se pak zahřívají a chladnou velmi rychle a elektrická indikace nastává v době krátké. Obr. 170. a 171.
ukazuje lineární thermosloup Rubensův. Kontakty, kteréž zářením se maji otepliti, jsou uspořádány uprostřed nad sebou v přímce ( 18 mm dlouhé), kdežto druhé kontakty, jež mají míti teplotu obyčejnou, jsou umistěny po obou stranách na rámci. Celkem má sloup 20 jednotlivých článkủ. Reflektor bývá k tomuto thermosloupu též připojen a má pak přiměřenou formu podélnou,

Krátká theorie thermočlánkủ byla již v oddilu o thermometrii vyložena (§ 21.). Jednostranným ozářením vznikaji rozdily temperaturní a těmi elektromotorická sila, která v daném kruhu galvanickém způsobuje proud. Tento proud indikuje se galvanometrem s magnetkou astatickou nebo astasovanou velmi citlivě, když multiplikátor galvanometru má odpor přibližně ty̌ž jako thermosloup a při tom závitů pokud možná mnoho. S magnetkou je spojeno zrcátko. Subjektivně pozoruje se dalekohledem, proti zrcátku ve vhodné vzdálenosti $(2.5 \mathrm{~m})$ postaveným, k nĕmuž je připojena stupnice ( mm ); objektivně pak optickou projekcí světelného indexu, na př. světlem Drummondským nebo lampou Nernstovou, na stupnici (cm), která je ve vhodné vzdálenosti ( 3 m ) umístěna. Galvanometr se připojí k thermosloupu na svorkách ( $x, y$ obr. 169. a $c, d$ obr. 171.) již k tomu připravených. Thermosloupy plošnými zkoumá se povšechné záření tepelné, kdežto lineárnimi vyšetřuje se záření tepelné na určitém místě v tepelném spektru.

V novē̃jsi dobé (1902) zkoumal Petr Lebeděv v Moskvè thermočlánek platina-konstantan v prostoru evakuovaném ${ }^{*}$ ). A $\bar{z}$ do tlaku 5 mm $H g$ zústala citlivost nezměnẽnou. Odtud az̃ do tlaku 0.01 mm Hg stoupala citlivost, stávajic se 7 kráte vêtş́ u éernẽného a 25 kráte vétši u lesklého thermočlånku. Dalši zředováni mêlo jiz̀ jen účinek nepatrny. Zvy̌̌seni citlivosti vysvéluje se tím, że rychlost ochlazováni se evakuací zmens̃uje. Vzhledem k tomu, že článek musí býti uzavǐen ve skleněné nádobě a že sklo zárení tepelné částečně pohlcuje, mêly by takovéto vakuové thermoçlánky spiše vy̌znam pro záreni elektromagnetické.

Na pěkné myšlence zakládá se radiomikrometr, který konstruoval (1887) C. V. Boys. Lehounký thermočlánek, uzavřený sám v sobě v galvanický krah, zavěsí se (unifilárně nebo bifilárnĕ) do silného pole magnetického. Když se zářením jeđ̃en z obou kontaktů zahřeje, vznikne v thermočlánku proud, následkem čehož se kruh proudový otáči; toto otáčení lze po-

[^182]mocí zrcátka subjektivně nebo objektivně zpûsobem již popsaným velmi citlivě pozorovati. Boys zkoumal timto přistrojem záření měsičné.

## § 169. Methoda bolometrická.

V novějši době přistoupily k thermosloupủm jakožto další přistroje pro studium záření tepelného tak zvané bolometry ${ }^{*}$ ). O jich základu theoretickém bylo rovněž již jednáno v thermometrii (§ 22., pag. 40). Kovové vodiče, drátky, proužky, za účelem lepší absorpce sazemi začerněné, jsou-li ozářeny, otepluji se. Tím se zvětší jich galvanický odpor a seslabi tudiž proud jimi procházejicí. Toto seslabeni lze galvanometricky zkoumati. Ale v jednoduchém kruhu galvanickém, jakého se užívá u ther-

mosloupů, bylo by pozorování málo citlivým, vzhledem k tomu, že jiné odpory v takovém kruhu (jako ballast) obsažené by celkovou změnu činily méně patrnou. Proto se užívá rozvětvení proudu a to bud dle methody differenciální nebo dle methody Wheatstoneova můstku.

 znamená têz̃ vrh, ale ve speciálnim významu vrh kostkami nebo sitẽ pri lovu ryb nebo ptãkũ. Nieménẽ se riká všeobecnẽ bolometr, ač by správnêjşim bylo, rikati bolemetr.
a) Methoda differenciální vyžaduje zvláśtního galvanometru differenciálního s magnetkou astatickou, zrcátkem a dvojitě vinutým multiplikátorem. Kdyz̃ se má tento multiplikátor vinouti, oddêli se ze zásoby mẽdẽného drátu k tomu určeného polovička, a pak se $z$ obou polovic současné, těsně vedle sebe, vinou na rámec závity multiplikátoru, tak že od svorek 1, 2 dvojité vinutí začíná a svorkami 3,4 končí (obr. 172.). Při vinutí jednotlivých vrstev se dráty překládají, aby kaz̃dỳ z nich byl jednou na pravo a jednou na levo.

Galvanometr differenciảlní má vyhovovati následujícím dvěma základním požadavkům. Když se vede proud v závitech za sebou a proti sobě, t. j. svorkami $1, \overparen{3,4}, 2$, má zůstati magnetka v klidu, na důkaz, że magnetické pole vznikající tŷmz̃ proudem v jednom a druhém vinuti, je intensity stejné. A kdyz̃ se proud na svorce $\sqrt[2,3]{ }$ rozvětví a vede jedna


Obr. 173.
Schema spojeni při Wheatstoneovè mûstku.
vêtev svorkami 3, 1, druhá svorkami 2, 4, má opét magnetka zústati v klidu, na důkaz, że oba čảstečné proudy proti sobẽ pủsobicí jsou stejné a tedy že i odpory obou vinutí jsou stejné. Dluz̃no tudíż každý differenciàlni galvanometr zkoumati nejprve na stejnost magnetického pole a pak na stejnost galvanického odporu.

Vlastní methoda differencialní jest pak velmi jednoduchá. Hlavní proud dêlí se (obr. 172.) v bodẽ $A(\sqrt{2,3})$ ve dvẽ vêtve $A 31 M B$ a $A 24 N B$, jdoucí oběma závity 3,1 a 2,4 multiplikãtoru proti sobẽ. Do vêtví jsou vepnuty bolometry I a II. Oba proudy ćástečné spoji se v bodẽ $B$. Jsou-li bolometry stejné (a také ostatní odpory ve větrich stejné a pải tom nepatrné), zủstává magnetka galvanometru při spojení proudu hlavního v rovnováze, nebợ oba částečné proudy jsou stejné a púsobf opačně. Jakmile na pr̃.
bolometr I se ozáríl, zvětší se jeho odpor, umenší se tudiz̃ intensita proudová ve větvi $A M B$, a galvanometr indikuje výchylku ve smyslu proudu ve vêtvi druhé $A N B^{*}$ ).
b) Pr̛i methodé Wheatstoneova můstku dělí se hlavní proud též ve dvě větve, $A M B$ a $A N B$ (obr. 173.), odporù libovolných. Od jedné vêtve ke druhé učiní se spojení MN (»položí se můstekィ), do ne̋hō̃ je vepiat citlivý galvanometr s magnetkou astatickou a zrcátkem. V prípadê všeobecném prochází tímto mủstkem také proud, a to bud' v jednom nebo v druhém směru dle toho, je-li potenciál v bodu $M$ vyšsí nebo nižší nez̃ v bodu $N$. Je-li však v obou bodech potencial stejnŷ, nejde proud žádnỳ.


Obr. 174.
Gratickỳ dûkaz zikona o mûstku Wheatstoneovẽ.
Tento případ nastává, kdyz̃ bodem $M$ se dělí odpor celé vêtve $A M B$ v témže poměru jako bodem $N$ odpor celé vẻtve $A N B$ çili když o těchto Castech odporovy̌ch je v platnosti úměra

$$
(A M):(M B)=(A N):(N B)
$$

Důkaz plyne z grafického znázornění (obr. 174.) ihned. Je-li $A E$ potenciální rozdil mezi body $A$ a $B$ a je-li $A M B$ odpor jedné, $A N B$ odpor druhé větve, udává přímka $E M^{\prime} B$ a $E N^{\prime} B$ potenciallní spád v obou vétvích. Jakakoli (v obr.174. tečkovaná) přímka rovnobēz̄nẽs $B A B$ vedená vytkne dva body $M^{\prime}, N^{\prime}$ stejného potenciálu, jimž náleži na větvích príslušné body $M, N$. Dle jednoduchých pravidel geometrickẏch jest

$$
\begin{aligned}
& A M: M B=E M^{\prime}: M^{\prime} B \\
& A N: N B=E N^{\prime}: N^{\prime} B .
\end{aligned}
$$

A poněvadz jest $M^{\prime} N^{\prime} \| B B$, má platnost úměra

$$
E M^{\prime}: M^{\prime} B=E N^{\prime}: N^{\prime} B
$$

*) Galvanometr differenciálni jest ūplné analogon pákovẏch vah. Předpokládajic, że jsou rovnorameuné, srovnáváfue na nich vảhy a dle toho hmoty jako tam intensity proudovè a dle téch odpory.
tudizz také

$$
A M: M B=A N: N B,
$$

kdez̃ délky mají význam odporú.
Speciálním prípadem jest ten, kdy onen poměr odporový jest $=1$, t. j. $k d y z=$

$$
(A M)=(M B) \quad \text { a } \quad(A N)=(N B)
$$

Máme pak Wheatstoneûv mustek s na rovnostc.
Při méreni postaçi dáti dva bolometry na misto I, II a odpory III, IV primẻřenẽ realisovati, aby v můstku nebylo proudu žảdného. Jakmile ieden bolometr se ozárīi, zvětší se jeho odpor, a galvanometr ukazuje proud.


Obr. 175.
Wheatstoneúv mûstek se čtyr̃mi bolometry.
Lépe jest též na místo III, IV dáti bolometry, t. j. užívati çtyr̃, nejlépe pokud možná stejných bolometrû (obr. 175.). Pak se citlivost zyýsí, kdyz̀ se souc̃asnẻ ozáří bolometry, na pr̃. I a IV, poněvadz̃ ve vŷ́razu

$$
\frac{\mathrm{I}}{\mathrm{II}}=\frac{\mathrm{III}}{\mathrm{IV}}
$$

nastane tím vêtsí porušení rovnosti, když současnẽ čitatel I prvého zlomku i jmenovatel IV druhého zlomku se stane vêtším. Spojeni pro tento prípad znázornuje schematicky obr. 176. Přístroj s takovouto úpravou, zhotovený v laborator̆i Siemens a Halske, demonstroval y sedẽní fysik. Spol. Berlínské dne 29. června 1888 R. v. Helmholtz *). Drátky byly platinové, v průméru 0.06 mm . Vhodnou kommutací bylo docfleno citlivosti v mẽreni až na $0.00008^{\circ} \mathrm{C}$.
${ }^{*}$ ) Verh. d. physik. Ges. 7, pag. 71. 1888. Robert v. Helmholtz (1862-1889) byl syn slavnêho H. v. Helmholtze; zemr̃el u vêku velmi mladém 27 let.

Dluz̃no ještẽ ke konci poznamenati, že ve všech zde uvedených schematických obrazcích, k műstku Wheatstoneovu se vztahujicich, Ize místa, určená pro batterie a galvanometr, vespolek vymẻniti. Jinými slovy, místy stejného potencialu mohou býti bud $M, N$, jak v obrazcich têch predpokládáno, nebo body $A, B$, kdyż by se naznaçená výmẽna stala.

Bolometr přivedl ve vědě k platnosti Langley*). Volil jemné listečky ocelové, též platinové a palladiové, které sazemi


Nejvýhodnëjsi umistèni bolometrū pr̀i methodé Wheatstoncora mûstku.
začernil ; pracoval methodou galvanometru differenciálniho. Přístroj svůj nazval „thermickými vážkami"; indikovaly rozdil temperaturni až na nepatrný dil stupně**).
*) Samuel Langley (1834-1906), od r. 1867 reditel hvēzdárny v Allegheny (v Pennsylvanii, naproti Pittsburku), od r. 1887 sekretáŕ Smithson. Instit. a Keeper of U. S. Nat. Museum ve Washingtonu; zemřel 27. února 1906 v Aiken v Jiz̃ñi Karolinê.
${ }^{* *}$ ) Dle referátu v Beiblătter d. Ph. 5. pag. 191, 1881 az̃ na $0.00002^{\circ} F$. Indikace do têchto mezí neznamená ovšem, że by pozorováni az̃ na tak nepatrný dil stupné byla zaručena. Viz o tom poznàmku niz̀e. O pronich pracich Langleyovy̌ch jedná se v Chem. News 43, pag. 6, 1881, a pozdêjsich Sill. Journ. 5, pag. 241, 1898.

Methodou Wheatstoneova mûstku pracovali C. Baur*) (1883), H. Schneebeli (1884), K. Ångström (1885), kteři všichni uživali jemných proužkủ stanniolových černi platinovou pokrytých. Úpravu, kterou bolometru dal Ångström **), znázorňuje obr. 177. Byly to dvě stanniolové mřižky, potažené černí platinovou a ještě sazemi začerněné. Svorka $C$ odpovídá bodu $N$, svorky $D, E$ bodům $A, B$ schematického výkresu v obr. 173. Mřižzy stanniolové byly přitmeleny na rámečku ebonitovém,


Obr. 117
Dvojitý bolometr dle Ångströma.


Obr. 178. Úprava bolometru Ångstrōmova.
tento byl vložen do pouzdra dřevěného. jak jej znázorňuje obr. 178., tento pak byl zase vsazen do plechové skř̌inky s dvojitými stěnami, mezi nimiž k ochraně tepelné proudila voda. Kulatým otvorem $G_{1} G_{1}$ působilo zářeni na hořejši mřižku; dolejši byla chr'áněna diafragmaty $F_{1}$ a $F_{2}$. Malá nádobka $I$

[^183]obsahovala chlorid vápenatý na vysušováni. Spojovaci dráty šly na venek ke svorkám, tak že celý přístroj měl úpravu velice pohodlnou.

Bolometrického principu upotřebili A. Paalzow a H. Rubens (1889) ke studiu kalorimetrického effektu, který vzniká jednotlivými výboji v Geisslerových trubičkách. Ovinuli tedy kolem kapillární části těchto trubiček jemný železný drátek a zkoumali dle změn jeho odporu souvislost kalorického effektu a intensity střídavých proudů a výbojů *).

Chtějice bolometru uživati též k účelům fotometrickým odvodili Lummer a Kurlbaum ${ }^{* *}$ ) theorii celého zjevu, aby na jejím základě zhotovili přístroj pokud možno dokonalý.

Dle této theorie jest bolometr citlivéjisi,
čim je vétši:

1. Intensita hlavniho proudu.
2. Temperaturni koefficient.
3. Ozärená caist vêtve bolometrické.
4. Odpor bolometru.
5. Absorpẽní koefficient plochy ozãrené.
6. Ozảrený povrch,
a čím je menší:
7. Mohutnost úhrnné plochy teplo zárením nebo vedením ztráceti.
8. Tepelná kapacita, t. j.
a) objem bolometru,
b) specifická hmota,
c) specifické teplo.

Je-li kov jižz předem určen (na pı̃. platina), moz̃no místo podmínky 8. říci, čím je mensí
8. tlouštka kovu.

Vzhledem k podmínkám 3., 4., 6. jeví se býti účelným, aby užito bylo platiny pokud moz̃no teničké, ale nikoli ve formẽ drátku, poněvadž zde povrch je proti objemu malým, nýbrž ve formẽ lístečkû, ale tak formovaných, aby při velké ploše byl odpor dosti veliký.

Provedení bolontetru bylo v souhlasu s theorii. Platinový plech byl s plechem střibrným asi desetkráte tlustším dohromady svařen a válcován, naposled mezi plechy mẽděnými, tak aby platinový plišek v plíšku střibrném se vyválcoval do tlouštky jenom $1 \mu$ (mikron). Kanadským balsámem přilepí se tento platino-stříbrný lísteček na sklo a dělicím strojem se

[^184]z něho vyřizne mřiž̌̌a v obr. 179. znázorněná. Jest to 12 rovnoběžných proužkủ 32 mm dlouhých, 1 mm širokých, od sebe 1.0 mm vzdálených a za sebou spojených. Tím se docili velké plochy a přece velkého odporu, poněvaď̌ proud musí procházeti všemi proužky za sebou. Chloroformem se mřižka ta opět odlepí a roztokem kolofonia v aetheru nalepí na rámeček břidlicový (obr. 180.). Koneěně se kyselinou dusičnou rozpustí stříbro, a zůstane jen mřǐ̌ka platinová. Zbývá ještě jen proužky začerniti, což se děje za chladu kouřem z hořáku petrolejového. Bolometr jest pak hotov.


Obr. 179.
Bolometr, jak jej udal Lummer a Kurlbaum.


Obr. 180.
Úprava bolometru, jak ji užìvali Lummer a Kurlbaum.

Takových nutno zhotoviti větší množstvi a z těch vybrati čtyři (I, II, III, IV) pokud možná stejné, jimiž se pak provede kombinace můstku Wheatstoneova dle schematu v obr. 176. znázorněného. Při tom přijdou bolometry na př. I a IV těsně za sebe tak, aby se ozářily oba, totiž, aby záření, jež mezerami mřižky I proniká, dopadlo na kov mřižky IV těsně za ni umístěné. Podobně se umístí bolometry II a III. Celek montuje se pak vhodným způsobem na společném stojanu, na němž jsou upevněny též svorky $k$ pohodlnému připojeni do vedeni proudového*).

Bolometry dosud popsané jsou plošné. Lineární bolometry obsahuji jenom jediný drátek nebo proužek, po případě vlákno křemenové platinované.

Oproti thermosloupu má bolometr závažnou vadu, kteráž přistroj ten, jinak velmi cenný, čini velmi choulostivým. V thermosloupu vzniká proud teprve ozárenim; jinak jest

[^185]thermosloup bez proudu - galvanometr jest v klidu. Bolometrem, af dle methody differenciální nebo dle methody Wheatstoneova mủstku upraveným, procházi stále proud, a timto proudem vzniká také oteplení. Nahodilými přičinami - na př. již proudy vzduchovými - mủže toto oteplení se poněkud měniti, a následek toho jest neklid galvanometrické indikace. Nullový bod neni konstantním. Tento neklid působi při práci ovšem velice rušivě a mủže býti zdrojem chyb; proto se smí intensita proudová v bolometrech stupňovati jen až do určitých mezí, aby zahřáti bolometra nebylo značné.

Jest patrno, že již vzhledem $k$ proudủm vzduchovým bylo by vẏhodné vložiti bolometr do vakua. Odpadlo by také vedení tepelné. Otázku tuto studovali v nejnovějṡi době Leithäuser a Johansen*) a dosli výsledku, zze indikace ve vakuu jest citlivějsis, a to zvláştẽ tehda, kdyz̃ proužky bolometrické jsou velmi úzké, jak jest to žádoucí, kdyz̃ se zkoumá záření spektrálni. Citlivost může zde býti 3 - až 4 krát vétší než za stej̣nỷch okolností ve vzduchu.

## § 170. Methoda radiometrická.

Ke studiu záření bylo užito ještě jednoho principu, na kterém se známý Crookes-ưv radiometr zakládá. Byl to Pringsheim, jenž sestrojil (1882) zvlástní radiometr **), kterého užíval (1883) k měření vln v infračervené části spektra slunečního***).

Radiometr ten zdokonalil (1897) Nichols $\dagger$ ). Ve válci mosazném, který spočivá dole na rovinné podložce a nahoře jest uzavřen skleněným zvoncem s kohoutem, visí na křemenovém vláknu vedle sebe dva lehounké proužky slídové vespolek nitkami skleněnými spojené a pod nimi malé zrcátko (obr. 181. a 182.). Oba proužky jsou na předni straně, t. j. na té, na kterou zářeni má padati, začerněné. Z válce se vzduch oním kohontem téměř úplně vyčerpá. Okénkem, které jest uzavřeno deštičkou z kazivce a ještě deštičkou z chloridu střibrnatého, dopadá na jeden z obou slidových proužkủ zářeni. Tím vzniká jednostranný tlak, kterým se celý lehounký systém $\dagger \dagger$ ) pootočí a vláknu udělí

[^186]torse. Pootočení se pozoruje na zreátku okénkem pomocí dalekohledu stupnicí opatřeného. Zředění vzduchu nesmí jiti přiliš daleko; vhodný stupeň se pokusem ustanoví. Přístroj má tu vadu, že záření musi dřive projíti deskou kazivce a chloridu stříbrnatého než dopadne na vlastni radiometr. Při thermo-


Obr. 181.
Radiometr Nicholsův; pohled z předu.

Obr. 182.
Radiometr Nicholsův; pohled se strany.
sloupu a bolometru dopadá záření bezprostředně. Ačkoli kazivec a chlorid stříbrnatý jsou pro záření infračervené značně prostupné, přece není prostupnost absolutní, tak že zkoumají se jakoby paprsky filtrované. Nicméně základní myšlenka radiometru tohoto jest velmi zajímavá.

## § 171. Zdroje tepelné.

Zdrojem tepelným při studiu záření může, jak se rozumí samo sebou, býti každé těleso. Jednáme-li zde o zdrojích tepelných zvlášt, míníme zdroje takové, jež slouží účelům experimentování.

Na prvém místě budiž uvedena kostka Leslieova, kterou jsme seznali již ve výkladech historických. Účelné jest, zaříditi ji na zahřívání vodni parou 100-stupňovou, nikoli horkou vodou, aby během pokusů teplota se neměnila. Plochy její postranní bývají obyčejně jedna hlazená, jedna drsná, jedna s nátěrem bilým a jedna konečně s vrstvou sazí. Indikátorem záření bývá zpravidla, zejména pro účely přednásek, thermosloup. Ukazuje se, jak při téže teplotě záření je různé dle toho, jaký jest povrch. Plochy kompaktní vyzařuji méně, plochy drsné, a zejména zvrstvené, zvláště sazemi, vyzařuji vice.

Tyto rozdíly lze též ukázati na skleněné baňce, horkou vodou naplněné, která jest na jedné straně zvenči střibřena a na opačné straně začerněna sazemi z plamene terpentinového. Pěkným a velmi jednoduchým pokusem lze totéž přímo ukázati na třech stejných teploměrech, z nichž jeden má nádobku teploměrnou střibřenou, druhý sazemi začerněnou a třetí obyčejnou. Když se tyto teploměry v lázni vzduchové na stejně vysokou teplotu zahřejí a pak volně do vzduchu postavi, lze přímo pozorovati, jak různě chladnou, a ovšem také naopak, když se postavi proti témuž zdroji tepla, jak různě se zahǐívají.

Pohodlným zdrojem záření jest koule měděná nebo lépe železná, poněvadž specif. teplo železa ( $0 \cdot 11$ ) je větší než mědi (0.09). Tato koule se rozpálí nesvitivým plamenem Bunsenovým do žáru tmavočerveného a lze ji pak k experimentování dosti dlouho užívati, poněvadž chladne zvolna.

Jiným zdrojem jest sitka platinová, která se - podobně jako sitka Auerova - rozežhavi nesvitivým plamenem plynovým; v jejím pozadi bývá umistěn mosazný reflektor. Také plynového plamene Argandského, vhodným diafragmatem opatřeného, lze užívati.

Pro nizké teploty slouží baňky skleněné naplněné mrazivou směsi: pokryjí se jinovatkou $z$ vodních par ve vzduchu, čímž jejich povrch se stává drsným a záření následkem toho vydatnějšim.

Všechny tyto a podobné zdroje vyzařují paprsky o rozmanitých délkách vlnitých. Pro další studium tohoto záření jest důležitou okolnosti, že vzduch je propoušti; jako jest průhledný, tak jest i prủteplivý. Nemusíme tudiž experimentovati v prostorech evakuovaných. Sledujíce pak postup záření, klademe si především otázky, jak se oproti záření rozmanitá tělesa chovají. Studujeme, jak se záření na plochách hraničnich odráži, jakou
měrou vniká po případě do těles samých a jak se tu láme a rozkládá. Jak patrno, postup je analogický jako v optice geometrické.

## § 172. Zákon Lambertův.

Budiž dána malá rovinná ploška $s$, od níž vychází záření na všechny strany. Ve směru k plošce kolmém budiž $J$ množství


Obr. 183.
Zákon Lambertův.
energie za určitou dobu vyzářené. Ve směru šikmém, o úhel $\varphi$ (obr. 183.) rozdilném, bude toto množství $J^{\prime}$ jiné. Zákon Lambertuiv*) stanoví závislost

$$
J^{\prime}=J \cos q
$$

Význam tohoto zákona jeví se býti jednoduchým, když přihližíme ke vztahu

$$
s^{\prime}=s \cos \varphi
$$

Jest tudiž záření ve směru šikmém takové, jaké by vycházelo ve směru kolmém od plochy $s^{\prime}$, v níž projekci plochu tu šikmo vidíme.

Je-li dána zářící koule a pozorujeme-li množství vyzářené ve směru libovolném $\boldsymbol{J}$ (obr. 184.), jest úhel $q$ pro rozmanité částečky plošné různý. Utvoříme-li však projekce všech těchto

[^187]plošných částí do směru $J$, pak obdržíme jakožto jich součet rovinnou plochu $M N$. Záření koule jest tedy takové, jako by vycházelo od roviny $M N$. Proto jeví se koule tato, jedná-li se o záření světelné, stejnoměrně světlou.


Obr. 184.
Zářeni plochy kulové ve smyslu zákona Lambertova.

Ve skutečnosti jevi se svítící koule kovové z daleka vskutku jako desky rovnoměrně zářící. Také měsíc v úplňku pủsobí na pouhé oko dojurem desky celkem rovnoměrně světlé nehledic k různostem, které vznikají povahou půdy měsíčí.


Obr. 185.
Jak zkoušel Leslie zákon Lambertův.

Slunce, když je pozorujeme přimo, nebo i v passážním dalekohledu, majíce oko chráněno tmavým sklem, anebo když dalekohledem na bílou stěnu promítneme reálný jeho obraz, jeví se býti též deskou celkem rovnoměrné světlosti, ovšem opět nehledic k rủznostem lokálním (skvrny, pochodně a pod.). Tato pozorování jsou zase naopak důkazem správnosti zákona Lambertova, který z nich zajisté byl odvozen. Při přesnějším měření ukazuje však kraj slunce proti střední části zář̌ení slabší. Zákon

Lambertủv nemá totiž platnosti pro žhoucí plyny a páry, tudiž také ne pro fotosféru sluneční.

Že zákon Lambertův také pro záření tepelné jest platným, zkoušel již Leslie jednoduchým zpủsobem v obr. 185. znázorněnẙm. Zdrojem tepelným byl dutý válec $a c$, horkou vodou naplněný, který bylo možno kolem vodorovné osy otáčeti. Při stejnẻ relikých diafragmatech $A A$ a $B B$ indikoval differenciální vzduchový teploměr totéž, když válec ac byl postaven přímo, jako když byl postaven šikmo.

Zákon Lambertúv plati přesnẽ jen o plochách záriviỳch, jez̀ nejeví žádného pravidelného odrazu, pri nichz̄ tedy intensita odraženého zárení nezávisí na ủhlu dopadu. Plochy takové jsou bez lesku, tudiz̃ mdlé, matné. U têles obyčejny̆ch jevi zákon Lambertúv v podrobnostech odchylky, o nichz̃ pojednáme bliže v Optice. Vŷklad o theoretické stránce zákona Lambertova zejména ve smyslu optickém podal m. j. F. Koláček ve Wied. Ann. 39, pag. 236,1890 a 64 , pag. $398,1898$.

## § 173. Odraz záření tepelného.

Zavedme otvorem heliostatovým do zatemněné sině světlo slunečni. Zachytíme-li je dokonalým zrcadlem, na př. skleněným s folii střibrnou, vidíme světlo jenom ve směru paprskủ pravidelně odraz̃ených. Dopadne-li světlo na stěnu bílou, sviti tato na všechny strany světlem diffusním bílým; dopadne-li světlo na stěnu barevnou, sviti tató rovněž na všechny strany světlem diffusnim, barevným. Je-li stěna cérná, svití jen málv, tím méně, čím jest dokonaleji černou.

Základní tyto zjevy optické jsou již z denní zkuŠenosti všeobecně známé. Dle zjevủ těchto zavádíme analogické pojmenování též vzhledem k paprskủm tepelným. Plochy, jež všechny tepelné paprsky odrážeji pravidelnĕ, zoveme thermicky zrcadlicími. Thermicky billé plochy jsou takové, jež všechny paprsky odrážeji diffusnẽ; thermicky barevné jsou pak plochy takové, jež diffusně odrážejí jenom některé paprsky, dle nichž se pak barva bliže urči. Thermicky černé neodrážeji paprskủ vủbec.

Pokusy o pravidelném odrazu zářeni tepelného konají se bử rovinnými nebo dutými zrcadly. Výhodné jsou mosazné, niklované, nebo měděné, střibřené. Když se užívá dvou stejných dutých zrcadel sdružených, t.j. proti sobě do společné osy postavených, lze obě zrcadla od sebe vzdáliti na mnoho metrủ (10 až 20 a více), čímž pak effekt záření ještẽ lépe vynikne.

Do ohniska jednoho zreadla vloží se tepelný zdroj, do ohniska druhého indikátor záření. Tím bývá pro účely přednášek thermosloup ve spojení s galvanometrem na projekci; ale je-li zdroj tepelný dostatečně mohutný, může indikátorem býti zápalná látka, která se pak, když se diafragmata zářeni zadržujíci odstraní, náhle zapálí. Za zdroj tepelný hodí se dobře žár elektrického světla. Tyndall užival k indikaci kollodiového ballónku, který byl naplněn směsi vodiku a chloru nebo jednoho objemu kysliku a dvou vodiku, kterážto směs pak explodovala, prvá účinkem světla, druhá tepla.

Pro intensitu paprskủ odražených rozhoduje při určitém úhlu dopadu, na př. $45^{\circ}$, těleso odrážejici. Dle pozorování, jež Magnus (1869) konal, reflektuje z množstvi jednotky dopadajiciho záření střibro 83 až $90 \%$, sklo 6 až $14 \%$, kamenná sůl 5 až $12 \%$, kazivec 6 až $10 \%$. Rozhoduje však též zdroj zářeni, t. j. povaha paprsků dopadajících. Když volil za zdroj záření kamennou sůl na $150^{\circ}$ zahřátou, odrážel kazivec $z$ tohoto záření značně více, 28 až $30 \%$, kdežto u ostatních uvedených těles nějakého přirůstku nebylo žádného. Odraz stupǔovaný, jako zde u kazivce, zoveme kovovým, metallickým.

Jest $z$ toho patrno, že po odrazu nastává jiné poměrné rozdělení intensity u paprsků odražených, než jaké bylo před odrazem u paprsků dopadajícich. Po odrazu jsou některé paprsky svou intensitou v převaze. Když by se tudiž odraz opakoval, stoupala by pomérné intensita těchto určitých paprskù vždy vice, tak že by po několikanásobném odrazu tyto zủstávaly jakožto jediné, zbývající. Na tom zakládá se methoda, opakovaným odrazem dociliti záření homogenniho, methoda, jak řikáme, „paprskủ zbytkových", kterou zejména Rubens a Nichols přivedli k platnosti*).

Tak odráži kazivec maximálně paprsky o délce vlny

$$
\lambda=24.0 \mu \text { a } 31 \cdot 6 \mu,
$$

při čemž však také paprsky mezi těmito obsažené odrážejí se poněkud, jak se zdá, v intensitě poměrně větši.

Maximum intensity paprskủ odražených mají dále:

$$
\begin{array}{lrl}
\text { Kamenná sủl při } \quad & =51 \cdot 2 \mu, \\
\text { sylvin } & \eta & =61 \cdot 1 \mu,
\end{array}
$$

*) H. Rubens a F. E. Nichols, Wied. Ann. 60, pag. 418, 1897. Autoři nazývaji tyto paprsky $>$ Reststrahlenc. Pokračovánim práce té jest pojednáni, které uveřejnil $H$. Rubens sám ve Wied. Ann. 69, pag. 576, 1899, kde objevil drulié maximum.

$$
\begin{array}{lr}
\text { křemen } & \text { při } \lambda=8 \cdot 5 \mu, 9 \cdot 0 \mu, 20 \cdot 8 \mu, \\
\text { slida } & \# \lambda=9 \cdot 2 \mu, 18 \cdot 4 \mu, 21 \cdot 3 \mu
\end{array}
$$

Tato methoda, vybrati z daného záření složitého mnohonásobným odrazem jenom některé paprsky a dociliti tak záření dosti homogenního, má význam zejména tehda, jedná-li se o paprsky o velmi značné délce vlny, jako u kazivce, kamenné soli a sylvinu.

Při odrazu diffusnim rozhoduje o intensitě paprsků odražených především úhel, pod kterým v rovině dopadu záření na těleso odrážejíci dopadá. Jest však zvláštnosti odrazu diffusního, že můžeme odražené záření pozorovati již v rovině dopadu samé v rozmanitèm úhlu, ve kterém záření vycházi. Ale vedle toho můžeme je také pozorovati v jakékoli jiné, kolmicí dopadu položené rovině, na pǐ. v rovině, která jest na dopadovou kolmá. Někdy se nazývá rovina dopadová proní hlavní rovinou, a rovina kolmicí dopadu k ní kolmo položená druhou hlavni rovinou. Když se v určité rovině pozorovací, na př. v první neb v druhé hlavní rovině, od bodu dopadu vedou prúvodiče v rủzných úhlech, a když se na tyto průvodiče nanesou délky úměrné intensitě diffusního záření, řadi se konečné body k sobě v křivkách. jež jsou ellipsy. Rozměry osové těchto ellips souvisi hlavně s úhlem dopadu záření daného, poněkud málo též s polohou oné roviny pozorovací.

Takovýmto způsobem vyšetřoval $K$. Angström *) diffusní odraz na plochách, jež byly utvořeny látkami pulverisovanými nebo zrnitými, na př. kysličníku hořečnatého, zinečnatého, uhličitanu hořečnatého, křidy, sádry, kamenné soli, rumělky, květu sirného a j., také papiru, broušené mědi a broušeného železa. Pohližíli se na věc s hlediska prostoru, možno říci, že u ploch úplné nelesklých jest diffusní plochou rotačni ellipsoid, jehož osou jest kolmice dopadu, t. j. že diffuse jest kolem této osy souměrná.

Význam záření dopadajícího jevi se u tak zvanẻho odrazu vybíravého čili u reflexe selektioní**), která se pozoruje u některých kovủ. V té přičině se kovy vůbec dělí ve dvě skupiny. Některé odrážejí diffusně všechny paprsky rovnoměrně. Sem náleží platina, železo, cín, zinek, olovo a některé slitiny. Jiné

[^188]kovy ukazuji odraz vybíravý. Sem náleží zlato, stříbro, měd, rtut a mosaz.

V nejnovějši době podniknuty podrobné práce*) za tím účelem, aby se pro některé kovy stanovily - při normální incidenci - relativní hodnoty odraženého záření, a z toho aby se soudilo na množství zářeni do kovu vnikajícího. Tím se obdrží hodnoty charakterisujici prostupnost kovů pro zářeni dané délky vlny - tedy to, co bychom u světla zvali prủhlednost. Tato prostupnost má dủležité vztahy $k$ vlastnostem elektrickým. Znači-li číslo 100 energii dopadajíci, $R$ energii reflektovanou, tedy jest $100-R$ energie do kovu vnikající. Ukazuje se, že tato energie souvisí s vodivosti elektrickou $\%$ a s délkou vlny 2 dle rovnice

$$
100-R=\frac{C}{\sqrt{* \lambda}}
$$

Zde jest $\%$ vyjádřeno v jednotce Mho, t. j. reciprokou hodnotou specifickóho odporn, určeného dle jednotek

$$
\frac{m}{m m^{2}} O h m
$$

a délka vlny خ. v jednotce $\mu$ (mikron). Pro tyto jednotky vypočtena hodnota konstanty

$$
C=36.5
$$

Největší vodivost má střibro; tedy také nejmenší $100-R$ a největší $R$. Dlouhé vlny odráži tudiž stříbro nejvíce, po něm měd, zlato, platina, nikl, ocel, vismut atd. Vztah ten má dủležitý význam pro elektromagnetickou theorii Maxwellovu.

## § 174. Lom a rozklad zářeni tepelného.

Pokusy orientační o lomu paprskủ tepelných lze při rủzných zdrojich tepelných prováděti nejlépe hranolem z kamenné soli, který záření tepelné téměř úplně propoušti. Za indikátor záření hodi se pro pokusy takové thermosloup, plošný nebo lépe lineárni. Tak experimentoval již Melloni (1833), uživaje tepelných zdrojů, jichž teplota se v mezích dosti značných měnila. Effekt-

[^189]$$
-520-
$$
nim způsobem ukázal Tyndall koncentraci tmavého záření světla slunečního nebo elektrického dútou čočkou skleněnou, do niž nalil roztoku jodu v sirouhliku; v ohnisku čočky zapálil hubku nebo střelnou bavlnu nebo rozežhavil i platinu. E. Lommel dává před roztokem jodu $v$ sirouhliku přednost nigrosinu*) rozpuštěnému v chloroformu nebo $v$ alkoholu. Doporučuje též tmavé ohnisko takových čoček učiniti viditelným na základě fosforescence. Látkou k tomu výhodnou jest sirnik vápenatý CaS (nebo barnatý BaS nebo strontnatý SrS); E. Lommel (1885) klade tenkou vrstvu tohoto sirníku mezi dvě desky skleněné, které na krajich jsou setmeleny. Na takovém stinitku jevi se infračervená část spektra zelenomodrým světlem, které na přední i zadni stěně možno pozorovati. Tmavé ohnisko se prozradí, pokud záření pủsobí, positivně skvrnou jasnou, a pak ve světle denním, když zářeni přestalo, skvrnou tmavou, tedy negativně.

Přesné pokusy o lomu a rozkladu záření infračerveného vyžadují, aby jednotlivé látky, $z$ nichž se hranoly pro rozklad brousí - jako sklo, křemen, vápenec, kazivec, kamenná sûl, sylvin - byly tak propracovány, jako se to děje v optice, aby totiž byla zjednána pozorovací data pro dispersi. Tato data obsahuji sdružené hodnoty délky vlny i a exponentu lomu $n$. Délkou vlny je stanoveno záření jakožto dané; příslušným exponentem lomu pak lámavost dané látky. Cetnými takovýmito hodnotami podvojnými jest dán dostatečný materiál pro dispersní křivku i pro číselný výraz této křivky dle některé dispersní formule. V optice jest úloha usnadněna tím, že tmavé čáry Fraunhoferovy nebo světlé čáry některých svítících plynủ a par jsou jakoby indexy již přirodou dané pro určité délky vlny. Při záření neviditelném takových indexů není, a nutno tudiž zavésti je do spektra uměle.

To se děje methodou interference. Z optiky jest známo, jak lze ve spektru obdržeti řadu tmavých proužků, jež jsou - dle délky vlny - aequidistantní. Takovými jsou tak zvané proužky Talbotovy, vznikají též při chromatické polarisaci, když se mezi nikoly rovnoběz̆né nebo skřižené vloži deštičky křemenové nebo sádrové. Tyto proužky nutno pak dle indikace elek-

[^190]trické (thermosloupem lineárním nebo bolometrem lineárním) sledovati do části neviditelné, pokud možná daleko, a současně měřiti úhly, z nichž by index lomu bylo možno počitati.

Jiná methoda použivá mřižky. Touto lze délku vlny pro záření dané měřiti, a pak paprsky o této známé délce vlny vésti na hranol a určiti odchylku. Také naopak lze nejprve použíti hranolu a potom mřižky.

Látky, jež pro spektrální rozbor zářeni tepelného maji největši význam, jsou kamenná sủl, sylvin a kazivec*). Lámavost těchto látek zkoumali velmi podrobně a u velkém rozsahu v dobách nejnovějšich (1892-1901) H. Rubens, B. W. Snow, A. Trowbridge, E. L. Nichols, F. Paschen, dřive již Langley. Vzhledem k velikému významu oněch látek pro účely spektrální jsou v následujícím sestaveny tabulky, obsahujíci výsledky badatelû zde jmenovaných; na základě pak číselného materiálu v tabulkách obsaženého jest provedeno v obr. 186. grafické znázornění, t. j. jsou kresleny křivky dispersní, jež zpủsobem přehledným a poučným závislost exponentu lomu na délce vlny daného zářeni vyjadřuji**).

Index lomu $n$ kamenné soli v závislosti na délce vlny $\lambda(\mu)$ $t=18^{\circ}$.

$\lambda$	$n$	2	$n$
0.226	1.6991	1.008	1.5321
0.396	1.5682	1.054	1.5315
0.559	1.5442	1.106	1.5310
0.799	1.5357	1.178	1.5303
0.884	1.5340	1.260	1.5297
0.972	1.5325	1.487	1.5285

[^191]| $\lambda$ | $n$ | $\lambda$ | $n$ |
| :---: | :---: | :---: | :---: |
| 1.637 | 1.5278 | 7.22 | 1.5102 |
| 1.767 | 1.5274 | 7.59 | 1.5085 |
| 2.182 | 1.5262 | 8.04 | 1.5064 |
| 2.356 | 1.5258 | 8.67 | 1.5030 |
| 2.808 | 1.5246 | 9.95 | 1.4951 |
| 3.110 | 1.5240 | 11.88 | 1.4805 |
| 3.370 | 1.5235 | 13.96 | 1.4627 |
| 3.819 | 1.5224 | 15.89 | 1.4410 |
| 4.712 | 1.5198 | 17.93 | 1.4149 |
| 5.890 | 1.5155 | 20.57 | 1.3735 |
| 6.78 | 1.5121 | 22.3 | 1.3403 |
|  |  |  |  |

Vysledky zde uvedené od $\lambda=0.8$ do 6.5 nalezl Langley (1886); jsou zde vypsány zkrácenẽ; úplný číselný materiál obsahují tabulky LandoltBörnsteinovy, pag. 627, 1905. Výsledky od $\lambda=6.78$ do 8.67 nalezl Rubens (1895), od $\lambda=9.95$ do 17.93 Rubens a Trowbridge (1897), od $\lambda=20.57$ do $22 \cdot 3$ Rutens a Nichols (1897). O svých pracích podali zprávu ve Wied. Ann. d. Ph., svazek 45, 46, 53, 54, 60 a 61 . K dosaz̃ení kontinuity pro křivku v diagrammu jsou pr̂ipojeny téz̃ výsledky pro vlny krátké, 2. $=0.226$ do $0.799 u$

Index lomu $n$ sylvinu v závislosti na délce vlny i. (!)

$$
t=18^{\circ} .
$$

$\lambda$.	$n$	$\lambda$	$n$
$0 \cdot 185$	$1 \cdot 8270$	$4 \cdot 81$	$1 \cdot 4709$
0:394	$1 \cdot 5121$	$5 \cdot 137$	$1 \cdot 4706$
0.589	$1 \cdot 4904$	$5 \cdot 471$	$1 \cdot 4699$
0.768	$1 \cdot 4837$	$5 \cdot 95$	$1 \cdot 4686$
$0 \cdot 845$	$1 \cdot 4823$	7.080	$1 \cdot 4660$
0.940	$1 \cdot 4809$	$7 \cdot 661$	$1 \cdot 4645$
0.982	$1 \cdot 4802$	9.006	$1 \cdot 4603$
$1 \cdot 070$	$1 \cdot 4793$	10•193	1.4549
1.179	1.4780	$11 \cdot 197$	$1 \cdot 4522$
1.584	$1 \cdot 4765$	$14 \cdot 14$	$1 \cdot 4362$
2.23	$1 \cdot 4749$	$18 \cdot 10$	$1 \cdot 4108$
$2 \cdot 947$	$1 \cdot 4742$	$20 \cdot 60$	$1 \cdot 3882$
$4 \cdot 125$	1.4791	22.50	$1 \cdot 3692$



Obr. 186.
Křivky dispersni pro kamennou sủl, sylvin a kazivec.
Tabulka obsahuje zkráceně výsledky, jez̃ v letech 1892 az̃ 1897 obdrželi Rubens, jednak sám, jednak ve spojeni s jinými, jako byli Snow, Trowbridge a Nichols. Obsírnou zprávu podali o svỳch pracich ve Wied.

Ann. d. Ph., svazek 46, 53, 54 a 60 . K docílení kontinuity jsou i zde připojeny nêkteré vẙsledky pro vlny krátké, od $\lambda=0.185$ do $0.768 \mu$.

Index lomu $n$ kazivce v závislosti na délce vlny $\rangle$. (u) $t=18^{\circ} \ldots 20^{\circ}$.

$n$	2	$n$	2
0.202	1.4933	3.241	1.4161
0.340	1.4478	3.831	1.4112
0.589	1.4339	4.715	1.4024
0.768	1.4309	5.893	1.3879
0.884	1.4298	6.483	1.3789
1.376	1.4269	7.079	1.3681
1.579	1.4260	7.661	1.3568
1.915	1.4243	8.251	1.3444
2.063	1.4236	8.840	1.3308
2.357	1.4220	9.429	1.3161
2.652	1.4202		

Tabulka obsahuje výsledky, jež obdrželi Langley (1900) a Paschen (1901), a to opêt ve výbẻru zkráceném. Souhlas ve výsledcích obou pozorovatelû jest velmi dobrý; rozsah výsledkú jest u Paschena vêtşi. K doplnẻní prijaty téź nékteré vy̌sledky pro vlny krátké, od $\lambda=0.202$ do $0.768 \mu$.

Závislost exponentu lomu $n$ na délce vlny $\lambda$ Ize vyjádřiti formuli Ketteler-Helmholtzovou o třech členech

$$
n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}^{2}}-\frac{M_{2}}{\lambda_{2}^{3}-\lambda^{2}},
$$

kterou pišeme ve formě uvedené, vzhledem $k$ tomu, že jest

$$
\lambda_{1}<\lambda<\lambda_{2}
$$

Konstanty této formule určili Rubens, Nichols a Trowbridge čiselně pro látky nahoře jako přiklad uvedené, a obdrželi:

Konstanty formule Ketteler-Helmholtzovy

	pro kamen-   nou sůl	pro sylvin	pro kazivec
$a^{2}$	$5 \cdot 1790$	4.5531	6.09104
$M_{1}$	0.018496	0.0150	0.00612093
$M_{2}$	$8977 \cdot$	10747	$5099 \cdot 15$
$\lambda_{1}^{2}$	0.01621	0.0234	0.00884
$\lambda_{2}^{2}$	$3149 \cdot 3$	$4517 \cdot 1$	$1258 \cdot 47$

Podobné výsledky byly odvozeny též pro jiné látky, zejména pro různé druhy skla flintového, pro sirouhlík a benzol, pro křemen, vápenec a j .

## § 175. Diathermansie a absorpce. (Prostupováni a pohlcováni paprsků tepelných.)

Dopadá-li na nějaké těleso záření tepelné v množství $J_{0}$, odráži se jedna jeho část $R$ a druhá zbývající část $J$ vniká do tělesa*), tudiž jest

$$
J_{0}=R+J
$$

Z množství $J$ do tělesa vnikajícího projde však opět do vzduchu jenom část $i$; ztráci se tedy část $J-i$; pravíme, že byla tělesem pohlcena. Určíme-li tyto obě části relativně, vzhledem k množství do tělesa vnikajícimu, stanovíme kvantitativně ty vlastnosti tělesa, jež se nazývaji diathermansie (průteplivost) a absorpce (pohlcováni).

Jest tedy

$$
\begin{aligned}
\text { diathermansie . . D } & =\frac{i}{J} \\
\text { absorpce . . A } & =\frac{J-i}{J}
\end{aligned}
$$

tudiž

$$
D+A=1
$$

Nêkdy stanoví se diathermansie a absorpce vzhledem k pivodnímu na têleso dopadajícimu zárení $J_{0}$. Yişe se tedy

$$
\begin{aligned}
D^{\prime} & =\frac{i}{J_{0}} \\
A^{\prime} & =\frac{J-i}{J_{0}}
\end{aligned}
$$

tak že jest

$$
\begin{aligned}
D^{\prime}+A^{\prime} & =\frac{J}{J_{0}} \\
& =\frac{J_{0}-R}{J_{0}} \\
& =1-\frac{R}{J_{0}}
\end{aligned}
$$

*) Označení dle latinskėho incidere ( $I$, dopadati), reflectere ( $R$, odrážeti).

Způsob tento jest méné vhodný a nebudeme ho nadále uživati. Pro prípad, že $R$ jest velmi malé, moz̃no ovšem klásti, alespoñ približné,

$$
D^{\prime}=D, \quad A^{\prime}=A
$$

Jak diathermansie tak absorpee souvisí s tlouštkou $x$ daného tělesa dle zákona exponenciálniho, který již Biot (1836) znal.

Jest totiž

$$
D=\frac{i}{J}=e^{-k x} \quad \text { tedy } \quad i=J e^{-k x}
$$

anebo

$$
D=\frac{i}{J}=10^{-a z} \text { tedy } \quad i=J \cdot 10^{-a x} .
$$

První forma hodi se pro logarithmy přirozené, druhá pro logarithmy Briggsovy, jež jsou obvyklejsí. Koefficienty $k$ nebo a nazýváme absorpčními. Čim jsou větší, tím menší množství i vycházi $z$ tělesa ven.

Odvození zảkona jest velmi jednoduché. Kaz̃dou vrstrou o nekonečné malé tlouštce $d x$ umenši se množství $i$ têlesem postupujicí o di, a toto umens̃eni jest úměrné jak mnoz̄ství danému $i$, tak i tlouŝ́ce $d x$.

Znac̈lili tedy $l$ k konstantu úměrnosti, jest

$$
d i=-k i d x
$$

kdez̃ znamení negativní poukazuje k tomu, že $d i$ značí umenšení. Integrace differenciální rovnice

$$
\frac{d i}{i}=-k d x
$$

jest snadná. Zavedeme-li $i=J$ pro $x=0$, vyjde
çili

$$
\log i-\log J=-k x
$$

$$
i=J e^{-k x}
$$

První, jenž o průteplivosti různých látek konal přesnější pokusy, byl Melloni ${ }^{*}$ ). Ukázal především, že prîteplivost a prühlednost vždycky vespolek nesouhlasí, tak že látky průhledné nemusí vždy býti průteplivé a naopak. V tehdejši době budila věc tato pozornost a podivení. Ale ukázal zároven̆, že rozhodujícím jest kvalita záření dopadajíciho. $K$ tomu cíli experi-

[^192]mentoval různými zdroji tepelnými, totiž lampou ( $L$ ) Locatelliho*), spirálou platinovou (Pt), jež v plamenu lampičky alkoholové byla zahřáta do červeného žáru, měděným asi na $400^{\circ}$ zahřátým plechem ( Cu ) a konečně nádobou mosaznou, začerněnou, v niž byla vařicí se voda ( $V$ ). Tyto zdroje tepelné obsáhly tudiž intervall temperaturní asi $100^{\circ}$ až $1200^{\circ}$. Zkoušel pak nejprve účinek tlouštky při témže materiálu, totiž sklu, a potom účinek materiálu při téže tlouštce. Intensita záření dopadajíciho byla položena $=100$.

Vzhledem k historické zajímavosti budtež zde výsledky, kterých Melloni došel, ve zkráceném výtahu podány.

Následující tabulka ukazuje předevšim, jak se stupňuje absorpce, když při témže materiálu, a to při sklu, tlouštka deštičky se zvětšuje.

Jak se absorbuje záření různých zdrojů tepelných skleněnými deskami různé tloušfky $x$.

$x$   $m m$	$L$	$P t$	$C u$	$V$
$0 \cdot 07$	77	57	24	12
0.5	54	37	12	1
1.0	46	31	9	0
2.0	41	25	7	0
4.0	37	20	5	0
6.0	35	18	4	0
8.0	33.5	17	3.4	0

Dle této tabulky jest kreslen diagramm obr. 187. Exponenciální povaha křivek vyniká velmi zřetelně a dobrý souhlas výsledků jest zároveň dûkazem o přesnosti, s jakou Melloni pozoroval. Podobných výsledkủ došel u jiných ještě látek, jako záhnědy, křišfálu, a také u některých kapalin, jako řepkového oleje a vody, kde ovšem bylo třeba užívati jen zdrojů tepelných o vysoké teplotě ( $L$ a $P t$ ), poněvadž záření zdrojů o nižši teplotě ( Cu a $\nabla$ ) se absorbovalo měrou velikou.

[^193]K vysvětlení toho slouži následujíci tabulka, kterou se čiselně ukazuje, jak při téže tlouštce vrstvy $2.6 \mathrm{~mm}^{*}$ ) různé látky absorbuji procentuálně velmi různé části záření pảvodního, a tu zase rozmanité, dle toho, jaké toto zářeni jest.

Jak se absorbuje záření různých zdrojů tepelných deskou tloušfky 2.6 mm z různého materiálu.

Materiál	L	Pt	Cu	V
Kamenná sủl, čirá, bezbarvá	92	92	92	92
Kazivec, čirý, bezbarvý	78	69	42	33
Kamenná sůl, prủhledná	65	65	65	65
Vápenec, čirý, bezbarvý	39	28	6	0
Zrcadlové sklo, čiré, bezbarvé	39	24	6	0
Křišáál, čirý, bezbarvý	38	28	6	0
Topas zahnědlý, čirý, zbarvený	37	28	6	0
Topas, čirý, bezbarvý.	33	24	4	0
Baryt, čirý, bezbarvý .	24	18	3	0
Achat, průsvitný, bily	23	11	2	0
Turmalin, jasný, tmavozelený	18	16	3	0
Sádrovec, čirý, bezbarvý . . .	14	5	0	0
Jantar, přirozený, průsvitný, žluty	11	5	0	0
Kamenec, čirý, bezbarvý . . . .	9	2	0	0
Cukr, roztavený, čirẏ, žlutavý		0	0	0
Led, velmi čistý, čirý, bezbarvý	6	0	0	0

Z výsledkủ zde uvedených vyniká především význam kamenné soli jakožto látky, která téměř všechno záření tepelné proponšti, při čemž je zvlášt pozoruhodno, že nerozhoduje kvalita tepelného zdroje. Jest tedy kamenná sůl dokonale průteplivou. Podobně chová se sylvin (kterého Melloni nezkoušel), menší již měrou kazivec. Naproti tomu sádrovec, kamenec jsou přikladem látek, které značně absorbnjí zejména záření při nižší teplotě. Ještě více jest to v platnosti o ledu, který jest typickým přikladem

[^194]látek dokonale prủhledných a při tom neprůteplivých. Opak toho jsou látky zcela neprůhledné, jako černé sklo, černá slída, jež Melloni též vyšetřoval a při nichž dokázal, že maji značnou průteplivost, zejména pro záření při vyšší teplotě. Typickým přikladem jest však v té příčině ebonit, který v novějš̌i době yyšetřovali E. Arno (1894) a E. Bianchi (1898). Jest to materiál úplně neprúhledný, ale značně prủteplivý a to pro záření, jež vysílaji zdroje teploty nejen vysoké, nýbrž také již nižší. Ebouit jest tedy jaksi protějškem ledu.

Byla-li již pokusy zde popsanými závislost diathermansie resp. absorpce na kvalitě dupadajiciho zářeni nad všelikou pochybnost dokázána, vynikla ještě vice, když takové záření bylo předběžnou filtraci paprskủ, t. j. prủchodem jinými absorbujicími látkami pozměněno. Také tuto otázku studoval Melloni pečlivými pokusy. Za látky filtrační užival desek tlouštky $2 \cdot 6 \mathrm{~mm}$ z kamence, sádrovce, chromanu draselnatého, jakož i deštiček


Obr. 187.
Závislost absorpce skla na tloušice při různých zdrojich zářeni. tlouštky 1.85 mm ze skla zeleného a černého. Jenom u kamenné soli a kazivce neměnila se diathermansie předběžnou filtrací, u jiných látek nastaly změny značné. Tak na př. paprsky, jež prošly zeleným neb černým sklem, byly deskou z kamence téměř úplně absorbovány; černá slída je propoušti dosti dobře, ale za to nepropouští paprsků, jež prošly kamencem.

Z vyličení zde podaného jest patrno, že Mellani svými pracemi, do let 1830 až $18 \overline{0} 0$ připadajicími, předmět svủj vyčerpal způsobem na svou dobu velice dokonalým. Částečně již za jeho života a pak po jeho nảhlé smrti *) pokračovali v letech 1847-1861 v pracích jim zahájených Knoblauch, Masson a Jamin, Zantedeschi, kteři potvrdili výsledky jim nalezené.

Nová doba, kteráž vědě přinesla neobyčejné zdokonalení jak pozorovacích method, tak i pozorovacich přístrojů, přivedla

[^195]též do badání o teple zářivém, anebo všeobecněji řečeno, o energii zářivé, nové směry jak theoreticky, tak i experimentálně. Melloni, jakož i jeho pokračovatelé, užívali při svých pokusech různých sice zdrojů tepelných, ale vždy takových, při nichž se vyzařuji paprsky rozmanité délky vlny 2 , tedy při nichž se jedná o celý větši neb menší soubor $2 \lambda$ jednotlivých tónů tepelných, po případě i světelných. Záření takové označujeme jakožto integrální. Oproti tomuto jest zářeni tak zvané spektrální, při němž uživáme homogennich zdrojủ, charakterisovaných délkou vlny $\lambda$, tedy jako by jediného tónu tepelného neb i světelného. Takové homogenni záření zjednáme si rozkladem spektrálním. Methoda tato však předpokládá, že se dovedeme ve spektru orientovati. Pokud se jedná o spektrum viditelné, jest tato orientace snadnou dle světlých neb tmavých čar ve spektru. V části ultrafialové pomáhá fotografie. V části však infračervené, jež jest daleko rozsáhlejši než části ostatní, jest nutna orientace umělá, t. j. taková, při níž na základě interference, jak již v $\S$ 174. bylo vyloženo, zjednaji se tmavé čáry jakoby indexy určitých délek vlny.

Jinak jest studium diathermansie nebo absorpce povahou svou speciálním. Všeobecně platných výsledkủ jest málo; úkol nutno řešiti dle daných látek více méně propustných pro každou látku zvlášt. Pro účely naše přestáváme v následujicich výkladech na některých, zvlášf zajímavých přikladech, zejména takových, jež illustruji zákonitosti všeobecně platné.

Pro výklad budiž ještě tolik podotčeno. Diathermansie a absorpce jsou veličiny komplementární dle rovnice

$$
D+A=1
$$

Jest tedy jednostejné, zdali se vykládaji zjevy diathermansie nebo absorpce; jedno jest opakem druhého; větší diathermansie znamená menší absorpci a naopak. Není však didakticky vhodné, když se $s$ jednoho pojmu sem a tam přechází na druhý. Lépe jest zůstati při jednom, na př. při absorpci.

## Absorpce tepelná.

## § 176. Absorpce integrálni u těles pevných.

Mezi tělesy pevnými zaujímá vynikající postavení kamenná sưl NaCl a sylvin KCl . Jsou opticky i thermicky čiré, propouštěji téměř úplně všechny paprsky a to stejnou měrou. Kamennou sûl zkoumal v té přičině Melloni a později Knoblauch a dokázal, že oproti paprskủm bud z rủzných zdrojủ vyzařovaným anebo z téhoz̆ zdroje na př. ze slunce vycházejícím, ale odrazem nebo prủchodem jinými látkami všelijak pozměněným, kamenná sůl svou prostupnost zachovává. Na sylvin upozornil Magnus, načež - Knoblauch též o této látce dokázal, že se chová jako kamenná sůl. Pokusy tyto připadají do let 1835 až 1870. Nová doba ukázala, že jak kamenná sůl, tak i sylvin, jež jeví absorpci pro paprsky skrovnou, ale stejnou, přece pro něliteré paprsky jsou nepropustnými, v souhlasu se zákonem Kirchhoffovým, o němž v dalšim jednáme. Tyto paprsky mají však délku vlny velmi velikou. H. Rubens a A. Aschkinass nalezli*), že absorpce nastává

$$
\begin{aligned}
& \text { u kamenné soli pro } \lambda=51 \cdot 2 \mu, \\
& \mathrm{u} \text { sylvinu } \quad \Rightarrow \lambda=61 \cdot 1 \mu .
\end{aligned}
$$

U obyčejných zdrojû zářeni jsou tyto dlouhé vlny zastoupeny v intensitě jen skrovné, tak že jich absorpce oproti diathermansii ostatních kratšich vln úplně mizi.

Rủzné druhy skla jeví absorpci mírnou. R. Zsigmondy zkoumal (1893), jak se oproti tepelnému záření z plamene Argandského chovaji skleněné desky 8 mm silné, a nalezl u obyčejných skel rủzného složeni dosti souhlasně absorpci asi $40 \%$. Pozoruhodno jest však, že absorpce velmi značně stoupne, když jsou ve skle obsaženy soli żeleznaté (ferro-soli). Tak stoupla u oněch skel absorpce na $99.3 \%$, ba až na $100 \%$, když sklo obsahovalo $1 \%$ nebo $2 \%$ kysličniku železnatého FeO . Dle toho by skla tohoto druhu poskytovala znamenitá stinitka proti záření tepelnému.

Co se koefficientu $k$ týče, kterým se absorpce čiselně určuje dle exponenciální rovnice

$$
i=J e^{-k x}
$$

ukazuje se, že závisí velmi značně na teplotě tělesa, kteréž záření tepelné vysilá. H. Schneebelli (1884) užíval za tepelný zdroj

[^196]platinového plechu, který byl plamenem Bunsenovým vice neb méně zahříván, a vyšetřoval absorpční koefficient pro sklo. U desky 1.75 mm silné nalezl při různých teplotách $t$ zdroje tepelného následujíci hodnoty koefficientu $k$ :
\[

$$
\begin{array}{ccc}
t=100^{\circ} . & 250^{\circ}, & 1000^{\circ} \\
k=2 \cdot 4, & 1 \cdot 47, & 0 \cdot 42
\end{array}
$$
\]

Klesáni koefficientu absorpčního při vzrůstajíci teplotě tepelného zdroje konstatoval též E. Baur (1884) pro kamennou sůl, J. Edler (1890) pro slidu, E. Bianchi (1898) pro ebonit.

Blizkou jest otázka, zdali též teplota absorbujícího tělesa má vliv na koefficient absorpění, zdali na př. skleněná deska zahřátá absorbuje jinak než chladná. Pozorováni v této přičině konaná ukázala, že pro absorpci integrální teplota tělesa absorbujíciho má význam jen malý; spíše se účinek jeji ukazuje při absorpci spektrální pošinutím absorpěnich křivek.

## § 177. Absorpce integrálni u kapalin.

Mezi kapalinami zaujímá přední místo voda. Opticky jest průhledná, thermicky však jen průsvitná, absorbujic paprsky záření neviditelného měrou značnou, a to tím větši, čím větši jest délka vlny; pro vlny dlouhé možno vodu za thermicky nepropustnou pokládati. Skleněná parallel-epipedická nádoba o stěnách ze skla zrcadlového, naplněná vodou, jest tudiž dobrým stinítkem pro paprsky tepelné a uživá se jí v tomto smyslu při optických projekcích velmi často.

Zdálo by se, že tato vlastnost vody, zadržovati paprsky tepelné, se zvýši, když se v ní rozpustí kamenec, vzhledem k tomu, že kamenec jako krystall dle výsledkủ v § 175. uvedených absorbuje paprsky tyto velmi značně. Avšak pokusy, jež zejména $B$. Donath v novější době (1896) konal s kamencem draselnatým [alumen, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}+24 \mathrm{H}_{2} \mathrm{O}$ ] ve vodě rozpuštěným ukázaly, že takové zvýšení absorpce neexistuje. To souhlasí na druhé straně s tím, že absorpce vody zase nikterak se nesníži. když se v ní rozpusti kamenná sủl nebo sylvin, ačkoli tyto soli paprsky tepelné téměř úplně propouštěji.

Jinak se má věc, když ve vodě rozpustíme látky, jež činí roztok barevným. Takovéto roztoky absorbuji některé druhy paprsků viditelných úplně, z čehož lze souditi. že tato absorpce zasahuje i dále do sousedního oboru paprsků neviditelných.

Roztoky modré, jako na př. roztok skalice modré ( $\mathrm{CuSO}_{4}$ ) anebo lazurový roztok siranu kuproammonatého $\left(\mathrm{CuSO}_{4}, 4 \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}\right)$ absorbuje paprsky žluté i červené a zároveñ i paprsky neviditelné infračervené měrou velmi značnou. Menší absorpci těchto paprskủ jeví roztoky žluté, jako dvojchromanu draselnatého $\left(\mathrm{K}_{\mathrm{q}} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$, a ještě menší roztoky červené, jako chloridu železitého ( $\mathrm{F}_{2} \mathrm{Cl}_{6}$ ).

Velmi značně zvýsí se absorpce vody (podobně jako absorpce skla, § 176.), když jsou v ní rozpuštěny soli železnaté (ferro-soli), třebas jen v množstvi tak skrovném, že roztok se jevi bezbarvým. R. Zsigmondy vyšetřoval podrobněji (1893) roztoky chloridu železnatého (ferrochloridu $\mathrm{FeCla}_{\mathrm{q}}$ ), siranu železnateho (ferrosulfátu $\mathrm{FeSO}_{4}$, skalice zelené), a shledal, že na př. při vrstvě 95 mm silné propustnost vody klesne na polovičku, když se do ní přidá $1.4 \%$ '́zeleza. U vrstev silnějšich, na př. 24.3 mm , klesla při stejném procentuálním množstvi železa propustnost na třetinu, u vrstvy 533 mm silné na pětinu.

Zajímavo jest, že alkohol aethylnatý absorbuje paprsky tepelné viditelné měrou poněkad větší, neviditelné měrou menši než voda; prechod, kde absorpce obou kapalin je stejná, nastává u paprsků žlutých.

Co se účinku teploty týče, absorbuji kapaliny zahřáté vice než chladné, ale rozdil neni značný.

Absorpci kapalin úhrnnou, integrální, studoval ze staršich badatelủ zejména R. Franz (1855) a později J. Tyndall (1864). V novějši době zabývali se četní badatelé otázkou, jak souvisí absorpce integrálni s chemickou konstituci kapalin. Výsledky poukazují k tomu, že jsou to zvláště některé pryky, jako dusik. vodik a kyslik, které ve sloučeninách zpúsobuji větši absorpci. Možno je však, že jsou spíse určité skupiny atomů, jimiž v molekulách absorpce se zvyšuje. Určitěji, než pro absorpci integrálni, lze úkoly takové řešiti při absorpci spektrální.

## § 178. Absorpce integrálni u plynů a par.

První pokusy o absorpei plynů konal R. Franz (1855) a zejména G. Magnus (1861). Po nich zkoumal J. Tyndall (v letech 1861 až 1864) podrobně absorpci plynủ a par a to methodou velmi citlivou, totiž differenciálni. Indikátorem záření byl thermosloup. Na tento nechal s obou stran dopadati paprsky ze
dvou stejných zdrojủ tepelných a to tak, že na jedné straně paprsky dopadaly přimo, na druhé pak prostupovaly trubicí cinovou dosti prostrannou*), na obou stranách deskami z kamenné soli uzavřenou, do níž pomocỉ dvou uprostřed upevněných kohoutủ bylo možno rozmanité plyny (dobř̌e vysušené) a páry vpouštěti anebo zase vývěvou z ní vyčerpávati. Zdrojem tepelným na jedné i druhé straně thermosloupu byla Leslieova kostka vařící se vodou naplněná a sazemi začerněná. Thermosloup byl spojen s velmi citlivým galvanoskopem. Způsob pozorováni byl pak jednoduchý. Trubice byla nejprve vyčerpána a galvanometr uveden na nullu. Na to se do trubice vpustil plyn a pozoroval účinek na galvanometr. Větši neb menši změna nullové polohy naznačovala větši nebo menši absorpci onoho plynu. Tyndall shledal, že vzduch, úplně suchý, čistý (bez kysličniku uhličitého) a podobně kyslik, dusik, vodik ${ }^{* *}$ ) ,,jsou pro paprsky tepelné vakuum". Velmi značnou absorpci jeví aethylen $\left(C_{2} H_{4}\right)$; tato s počátku, pokud je plyn velmi zředěný, roste s hustotou jeho téměř úměrně, pak při pokračujícím zhuštováni vždy volněji a volněji. Absorpci v podobném zpủsobu stoupající jevily následujicí plyny v pořádku vzestupném: chlor ( $\mathrm{Cl}_{2}$ ), chlorovodik $(\mathrm{ClH})$, kysličník uhelnatý $(\mathrm{CO})$, uhličitý $\left(\mathrm{CO}_{2}\right)$, dusnatý $\left(\mathrm{N}_{\mathrm{o}} \mathrm{O}\right)$, sirovodik $\left(\mathrm{SH}_{2}\right)$, methan $\left(\mathrm{CH}_{4}\right)$, kysličník siřičitý $\left(\mathrm{SO}_{2}\right)$, aethylen $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, ammoniak $\left(\mathrm{NH}_{3}\right)$. Tento pořádek, který Tyndall nalezl při napětí plynủ jedné atmosféry, změní se poněkud, když se plyny zředi. Tyndall zkoumal též absorpci četných par, a to při různém tlaku. K parám mírně absorbujícim náleží na př. páry sirouhlíku $\left(\mathrm{CS}_{2}\right)$, methyljodidu $\left(\mathrm{CH}_{3} J\right)$,

[^197]benzolu $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, chloroformu $\left(\mathrm{CHCl}_{3}\right)$, methylalkoholu $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ a amylenu ( $C_{5} H_{10}$ ); více absorbují páry aetheru aethylnatého $\left(O C_{4} H_{10}\right)$, alkoholu aethylnatého ( $\mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5}$ ), mravenčanu aethylnatého $\left(\mathrm{CHO}_{2}, \mathrm{C}_{2} \mathrm{H}_{5}\right)$, octanu aethylnatého $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} . \mathrm{C}_{2} H_{5}\right)$, propionanu aethylnatého ( $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}, C_{2} \mathrm{H}_{5}$ ) a nejvice boranu aethylnatého $B\left(O C_{2} H_{5}\right)_{3}$. Zajímavo jest, že kyslík v modifikaci ozonu $\left(O_{3}\right)$ jevil absorpci značnou, daleko větší než kterýkoli z plynů dříve uvedených. Tyndall vyšetřoval též absorpci zpủsobenou látkami vonnými, těkavými, jako jest na př. tymián, rozmarýn, anýz a j., a shledal absorpci dosti značnou.

Co se týče vztahu mezi kapalinami a jich parami, dokázal Desains (1867) na parách aetheru a mravenčanu aethylnatého, že při stejném množstvi látky jest absorpce stejná, že tedy pára ve vrstvě silné může absorbovati tolik jako kapalina ve vrstvě slabé; výsledek dojista pozoruhodný.

Tyndall zkoumal též, jak se absorpce plynủ a par mění, když stoupá teplota zdroje tepelného, a shledal, že absorpce klesá, když tato teplota stoupá. Rozhoduje však netoliko vyš̌si teplota, nýbrž též kvalita záření. Chovaji se tudiž v této otázce plyny a páry podobně jako tělesa pevná a kapalná.

Velmi zajímavou a meteorologicky dủležitou jest otázka, jaký účinek absorpěni jevi vodní páry ve vzduchu. Magnus nenalezl účinku žádného, Tyndall naopak zjistil účinek značný. Z rozporu tohoto vznikla diskusse (1861-1867), kteráž skončila alespon̆ v hlavní věci ve smyslu Tyndallové. Magnus nenalezl účinku žádného, poněvadž experimentoval vrstvami přiliš krátkými, pro kteréz jeho ostatni pokusové zařízení nebylo dosti citlivé. Tyndall zase nalezl absorpci poněkud velikou, poněvadž při vpouštěni vlhkého vzduchu vodní páry na stĕnách trubice se částečně kondensovaly ve vrstvu vodní, kteráž zase vypařujic se způsobila ochlazení vzduchu a tím ùčinek na thermoslonp takový, jaký by měla absorpce. Úkaz tento byl označen jako vaporhaese *). Že však vodni páry vskutku absorpci jevi, dokázali podrobnými pracemi J. L. Hoorweg (1875), H. Haga (1877), E. Lecher a J. Pernter (1881), J. Tyndall (1882) a W. C. Röntgen (1884), poslední dva methodou tlakovou, která totiž ze změny tlaku u danẻho plynu soudi na absorpci (jak o tom ke konci tohoto odstavce jednáme), v novějši pak dobĕ (1890) ještě K. Ångström methodou bolometrickou.

[^198]Veliký význam, kterýž tato absorpẽní mohutnost vodní páry má pro úkazy meteorologické, jest patrny z jednoduché úvahy. Vzduch vlhky zadrzuje ze zárení slunečního jistou cást tepla, a když slunce zajde a nastane noc, zabrañuje prílis̃né ztráté tepla, jež nastává vyzafovánim z pûdy do prostoru svêtového. Chráni tudiž vzduch vlhký pred přilišným ochlazením púdy a ovšem téż před zahr̉átím. Na vysokých horảch jest vzduch suchŷ. Zde tedy se za dne pủda insolací zahr̛ivá více nez̃ v údoli, ale ovšem y noci vyzařovãnim rychle chladne. Na horskỷch polich sněhovy̌ch a na ledovcich sníh a led za dne zárem slunce taje, je měkký a vodou prosảkly̆, za noci však opét mrzne. Proto musí turisté pres ledovce precházeti časnẽ z rána nebo v prvnich hodinach dopolednich. Také vzduch sám jest prii insolaci, jaká v létẻ by̌vá, na horách, kde je sucho, chladnẙm, v údolich, kde je vlhko, teplým. Velmi péknẻ lící Tyndall tento vẏznam vodních par ve svém dile $>0$ teple e $v$ prednášce trinácté: >Vzdaluje-li se slunce od krajiny, nad níz atmosféra jest suchá, následuje rychlé ochlazení. Kdyby se z atmosféry, která Anglii pokrývá, na jedinou letni noc odstranily vodni pâry. mêlo by to za nảsledek znicení vseech rostlin, které mráz umrtvuje. Pûsobením této jediné pričiny stává se měsic pro bytosii nám podobné úplnê neobyvatelnŷm. Rozdil mezi jeho měsićním maximem a minimem teploty jest pri vyzar̃ování, kterémuž nebrání zaadná pára vodni, neobyčejné velikŷ. Zima y Tibetu jest z téže pričiny témèr nesnesitelnou... Ochlazení v noci jest neobyčejné veliké, poněvadz̃ jest vzduch suchy̌. V Sahare, kde spũda jest ohnèm a vitr plamenema, lze ochlazení noc̃ni casto sotva vydržeti. Moz̃no s jistotou fíci, že, kde vzduch jest suchý, denni strídảni teploty jest značné. To vさ̌ak jest něco jiného, nę̃ kdybych řekl, że bude strídani teploty veliké tam, kde je vzduch jasný. Veliká prūhlednost vzduchu snáší se dobře se značnou neprostupností tepla; atmosféra mưze býti vodní parou naplněna, zatím co tmavomodré nebe se nad nami klene, a v prípadè takovém by se vyzařování půdy přes onu jasnost přece zadrželo . . . a Tyndall uvảdí ćetné zprávy cestovatelû, kterí vypravují o tom, jak v mnohẏch krajinách po parném dni se dostavuji rychle chladné vec̃ery a noci, tak že denní rozdil v teplotẽ jest velice značny̆. Dr. Livingstone vypravuje ve svých >Cestách v Jiz̃ni Africe ${ }^{4}$ : $>$ Pocit chladu po horku denním byl velmi citlivým. Obyvatelé krajin těchto (Balongové, kmen kaferský y Africe) neodcházejí y této roční době od svẙch ohñú před 9 . nebo 10 . hodinou ranni. \& A jak to vypadá na vysokých horách, vypravuje Hooker ve svých $\Rightarrow$ Himalayan Journals e: >Viděl jsem ve výšce 10.000 stop v prosinci o 9. hod. ranní teploměr (na slunci) stoupnouti na $55.5^{\circ} \mathrm{C}$, zatím co teplota sněhu têsnẽ vedle ležíciho, ale ve stínu, činila - $5 \cdot 6^{\circ}$. Ve vẙsce 13.000 stop ukazoval v lednu v 9 hod. ráno teploměr ve stínu - $1 \cdot 2^{\circ} \mathrm{C}$, na slunci však $36 \cdot 7^{\circ} \mathrm{C}$, o 10 . hodině ve stínu $0 \cdot 4^{\circ} \mathrm{C}$, na slunci $45 \cdot 6^{\circ} \mathrm{C}$. Při východu slunce pak ukazoval teploměr na sněhu - $18 \cdot 2^{\circ}$ C e Tyndall dokládá: s Veliké tyto rozdíly dluz̃no nad všelikou pochybnost přićísti nepatrnému množství vodních par y této vẙscce. Vzduch není schopen, aby zárení slunce nebo země zadržoval, a proto odlehlost mezi maximem tepla na slunci a maximem zimy ve stínu jest velmi veliká. Stejnou prícinou sysvétluje se rozdíl v podnebi mezi Kalkuttou a pláněmi Indie. ©

Zájem nemenší budila otázka, jaký účinek na absorpci má kysličník uhličitý, který rovněž ve vzduchu atmosférickém se na-
lézá. Učinek tento zkoumal L. Heine (1882) methodou tlakovou, J. E. Keeler (1884), K. Angström (1890) methodou bolometrickou, Sv. Arrhenius (1901), jenž význam této absorpce velice přecen̆oval.

Ke konci zminíme se ještě o zajímavé methodě, která zkoumá absorpci na základě změn v napěti daného plynu nebo dané páry. Methoda je znázorněna v obr. 188. Zdrojem zař̌ení


Obr. 188.
Jak se studuje absorpce plynủ a par dle zmêny v napèti.
jest světlo Drummondské $L$, kteréž se dutým, na přední ploše střibřeným zrcadlem $R$ koncentraje do trubice $T T^{\prime}$. Tato jest s obou stran uzavřena deskami z kamenné soli a kommunikuje kohoutem $a \mathrm{~s}$ vývěvou a kohoutem $b \mathrm{~s}$ manometrem. Když se vývěvou mírně čerpá, vstupují plyny v trubici $t$ kyselinou sírovou, kde se suší, do trubice $T T$. Když se tato naplni a když se teplota ustálila, uzavrou se kohoutky $a, c$ a nechá se otevřený jen kohout $b$. Jakmile se stinitko $S$ skloni, zahřeje se absorpcí paprsků tepelných vice nebo méně plyn, a stoupne následkem toho jeho napětí, jak manometr udává. Dle stoupnutí většího nebo menšího možno plyny seřaditi na př. v řadu podle absorpce vzestupnou.

Methoda připoušti pěknou modifikaci akustickou. Když se plyn vpustí do malé baňky $B$ (obr. 189.), která je kaučukem
spojena s naslouchátkem přímo do ucha vloženým a když se na baňku soustředi záření a to intermittovaně, pomoci ozubeného, velmi rychle otáčeného kola, nastává periodické stoupání a klesání tlaku, které působíc přímo na bubinek ucha způsobuje pravidelnou vibraci, tudiž dojem tónu. Tento je dle větší nebo menší absorpce přiměřeně silnějši nebo slabši. Lze tedy i na základě tohoto akustického účinku plyny a páry dle absorpce v řady uspořádati, třebas že způsob pozorování, dle povahy


Obr. 189.
Jak se studuje absorpce plynů a par akusticky.
účinku, jest jenom kvalitativní, kdežto dle změny tlaku jest kvantitativni. Tyndall obdržel na př. tóny slabé při parách amylalkoholu, xylolu, oleje terpentinového, silné naproti tomu u aetheru, benzolu. chloroformu. Když se baňka uzavře membránou na př. slidovou a připoji kónický resonátor, lze tóny takové obdržeti též objektivně. K cíli tomu upravil Duboscq v Pařiži dle bliž̌̌ich údajû, jež podal Mercadier, přístroj. který nazval radiophonem. K dosažení většiho účinku lze tu uživati světla elektrického nebo slunečniho.

## § 179. Absorpce spektrálni; methody pozorovaci.

Procházi-li dané zářeni hranolem, rozloží se dle délek vln v pásmo, kteréž zoveme spektrum. Ve viditelné části tohoto pásma bude záření na všech místech, pro všechny délky vlny vice méně seslabené následkem povšechné absorpce v hranolu, bez které není žádná látka. Vedle toho však pozorujeme na určitých mistech pro určité délky absorpci silnou, jevici se tmavými, více méně ostrými čarami nebo pruhy, tedy místy, kde zářeni jest seslabeno absorpcí zvláštni, silnější ; nazýváme ji absorpcí kovovou. Lze očekávati, と̌e také v neviditelných částech spektra budou zjevy podobné; i jest úlohou vědeckého badaní, vhodnými methodami, pokud možno, jak absorpci povšechnou, tak zejména onu absorpci kovovou zkoumati.

Absorpci v části ultrafialové lze učiniti též viditelnou na základè fluorescence. Zachytíme-li na př. zářeni sluneční, jež procházi hranolem z nějaké látky, na stinitku z cyauidu barnato-platičitého, objevi se pokračováni spektra a v něm po případẽ tmavé čáry nebo pruhy. Určitěji lze takováto mista kovové absorpce vystihnouti methodou fotografickou, kteréž se také pro viditelnou a ultrafialovou část spektra nejvice užívá.

Při velikých výhodách methody fotografické jest pochopitelno, ̌̌e byly záhy činěny pokusy, užíti této methody též pro zkoumáwí infrac̆ervené cásti spektra. H. W. Vogel *) ukázal (1873), jak se želatinová emulse bromostříbrnatá učiní přidáním zvláštních látek, tak zvaných sensibilátorủ, citlivou i pro záření infračervené. Ve směru jim zahájeném pracovali J. Waterhouse, W. Abney a podařilo se fotografovati speltrum až do $\lambda=1 \cdot 0 \mu$. V novějši době udal H. Lehmann (1901) jinou připravu desk, kterými fotografoval spektrum až do $\lambda=1 \cdot 2 \mu$.

Lze však ještě jinak postupovati methodou velmi zajímavou, která má svůj základ ve zvláštním účinku infračerveného zářeni na látky fluorajíci. Když totiž na desku fluorujicí, tedy svitící, dopadne záření infračervené, uháši se fluorescence, trvá však na těch mistech, kde je absorpce, následkem čehož tato mista, t. j. tyto pruhy neb čáry absorpčni se objevují jako světlé na půdě tmavé. Zajímavý tento zjev pozoroval E. Becquerel a studoval

[^199]podrobněji jeho syn $H$. Becquerel *) a to ve spektru slunečnim, kde tedy čáry Fraunhoferovy, ve viditelné části spektra tmavé, se staly v neviditelné části světlými. Jest pak možno tyto čáry bud kresliti, anebo, jak to Draper (1881) učinil, fotografovati. Methodu, dosud jen na zářeni sluneční, ke studiu čar Fraunhoferových užívanou, zdokonalil (1890) E. v. Lommel **).

Většich úspěchủ dosáhly methody elektrické. Jednotlivá mista ve spektru lze zkoumati bud lineárním thermosloupem nebo bolometrem. Zde zase vyniká methoda bolometrická, poněvadž lze užíti drátku velice jemného, a tím dociliti i v daleké části infračervené té jemnosti a určitosti, kterou v části viditelné a ultrafialové vyniká methoda fotografická měrou ovšem ještě větši. Za to methoda bolometrická poskytuje výsledky kvantitativni; dle přeměny energie zářivé v tepelnou možno i větši nebo menši stupeň absorpce vystihnouti. Vedle toho vyniká methoda bolometrická svou extensitou; lze ji užiti v celém rozsahu spektra, od vln nejkratšich až k nejdelším.

Dle toho, co zde vyloz̃eno, lze spektrum zkoumati bud opticky nebo fotograficky anebo bolometricky. Negativni vysledek podávaji tyto trí methody ovšem souhlasně; kde zárení schází, neindikuje ničeho ani oko, ani deska fotografická, ani bolometr. Co se vsak positivniho výsledku týce, reaguje oko v rozsahu velmi skrovném, ve vêtsím jiz̀ deska fotograficka, y daleko nejvétším vs̉ak bolometr. Nicménẻ jsou methody optické a fotografické y ćásti viditelné a ultrafialové dokonalejsí, jemnějs̉i; v ćásti však infračervené jest bolometr prístrojem jedinẻ možným, jistê téz̃ jemnéjsimm než lineární thermosloup, zejména, když se užìvả drátku pokud moz̃nả tenkého.

## § 180. Absorpce spektrálni u těles pevných.

Mezi tělesy pevnými vynikaji svým významem pro záření tepelné kamenná sůl, sylvin a kazivec. Absorpci těchto látek zkoumali podrobněji $H$. Rubens a A. Trowbridge (1891). Výsledky své přepočitali na tlouštku 1 cm a mohli tím zpủsobem sestaviti číselná data, dle nichž absorpční mohutnost $A$ látek uvedených lze srovnávati. Absorpce byla číselně udána dle vzorce

$$
A=\frac{J-i}{J}
$$

[^200]t. j. v procentech zářeni. Vedle toho studovali též absorpci chloridu střibrnatého, která jevi prủběh dosti zvláštní. Pozorováni nebyla však tak četná, aby byli mohli výsledky přepočísti též na tlouštku 1 cm ; deska chloridu střibrnatého měla tlouštku 3.08 cm . Proto čísla zde zjednaná nejsou s čísly pro předešlé tři látky platnými srovnatelná. Výsledky všechny jsou sestaveny v tabulce následujíci.

## Absorpce kamenné soli, sylvinu, kazivce a chloridu stříbrnatého $v$ závislosti na délce vlny.

$\lambda$	Kamenná sûl   1 cm	Sylvin   1 cm	Kazivec   1 cm	Chlorid   stribrnaty   $3 \cdot 08 \mathrm{~cm}$
$8 \mu$			$15 \cdot 6$	$59 \cdot 5$
9	$0 \cdot 5$	0	$45 \cdot 7$	$55 \cdot 2$
10	$0 \cdot 3$	$1 \cdot 2$	$83 \cdot 6$	$48 \cdot 5$
11	$0 \cdot 5$	$1 \cdot 0$	$99 \cdot 9$	45
12	$0 \cdot 7$	$0 \cdot 5$	$100 \cdot 0$	$42 \cdot 2$
13	$2 \cdot 4$	$0 \cdot 5$		$40 \cdot 8$
14	$6 \cdot 9$	$2 \cdot 5$		$39 \cdot 8$
15	$15 \cdot 4$	$4 \cdot 6$		$40 \cdot 1$
16	$33 \cdot 9$	$6 \cdot 4$		$36 \cdot 2$
17	$48 \cdot 4$	$7 \cdot 8$		$32 \cdot 2$
18	$72 \cdot 5$	$13 \cdot 8$		
19	$90 \cdot 4$	$24 \cdot 2$		$32 \cdot 1$
$20 \cdot 7$	$99 \cdot 4$	$41 \cdot 5$		$35 \cdot 3$
$23 \cdot 7$		$84 \cdot 5$		$72 \cdot 0$

Lépe než tato tabulka vysvětluji věc oba diagrammy (obr. 190. a 191.), dle udaného číselného materiálu sestrojené. První z nich, (obr. 190.) znázorňuje absorpci kazivce, kamenné soli a sylvinu. Křivky absorpění maji prủběh dosti souhlasný, ale polohu rủznou. Absorpce začiná u kazivce nejdřive a stoupá s délkou vlny rychle, u kamenné soli začiná absorpce později a stoupá již volněji, u sylvinu pak začíná ještě později a stoupání s délkou vlny jest mírné. Vzájemný poměr těchto tří látek jest tímto diagrammem velmi dobře objasněn. Druhý diagramm (obr. 191.) znázorňuje absorpci chloridu střibrnatého. Absorpce jəst mírná. má značný rozsah a nemění se mnoho. S délkou
vlny klesá až k minimu, které nastává při $\lambda=18 u$, a teprve odtud stoupá poněkud rychleji. Propouští tedy chlorid stříbrnatý


Obr. 190.
Spektrálni absorpce kazivce, kamenné soli a sylvinu.
zářeni o těch délkách vlny, které se kamennou solí a zejména kazivcem již absorbuji.


Obr. 191.
Spektrální absorpce chloridu střibrnatého.
O látkách jiných pojednáme jen kursorně, hlavně potud, pokud jeví některé zvláštnosti.

Saze absorbují záření všech délek vln. U skla začiná absorpce při $\lambda=3 \mu$. Ovšem rozhoduje kvalita skla. Tak sklo ko-
baltové má absorpční pruhy při $\lambda=0.82 u$. Jinak lze sklo pokládati za stinítko tepelného záření pro délky $\lambda=3.5$ až $20 \mu$. U slídy začíná absorpce při $\lambda=4 \mu$ a sesiluje se postupně, až při $\lambda=9 \mu$ je úplná.

Ebonit propouští záření mezi $\lambda=0.8$ až $3 \mu$, teprve odtud začíná absorpce.

Bylo již řečeno, že jest možno několikanásobným odrazem (kovovým) na některých látkách obdržeti paprsky tak zvané zbytkové o délce vlny velmi značné. Tak na př. při kazivei $\sigma$ délce $\lambda=23.7 \mu$, při kamenné soli $\lambda=51 \cdot 2 \mu$, při sylvinu $\lambda=61 \cdot 1 \mu$. Jsou to nejdelši vlny tepelné, kteréž známe. Otázku, jak se rủzná tělesa chovají oproti témto paprskům, studovali H. Rubens a F. E. Nichols (1897) a později H. Rubens a E. Aschkinass. Ukázalo se, že mnohé elektrické isolátory tyto paprsky propouštějí, tak jako také propouštěji paprsky elektrické, při nichž délka vlny jest ovšem ještě daleko větši. Ale úkaz činí dojem, jako by tato větší propustnost již zde začínala, čili, jako by se ukazovala jakási kontinuita mezi zářením tepelným a elektrickým.

Isolátory elektrické, na nichž úkaz ten byl konstatován, jsou slída, paraffin, guttaperča, křemen - z kapalin zejména sirouhlik, benzol, petroleum, toluol a j.

Co se dvojlomných krystallů týče, ukazuje se pro paprsek řádný povšechně jiná absorpce než pro mimořádný. Krystally jsou tudiž dichroitické, resp. pleochroitické, jak se zdá, hojněji v záření neviditelném než ve viditelném. Kde absorpce jeví maximum, bývá poloha tohoto maxima pro řádný a mimořádný paprsek poněkud různá.

## § 181. Absorpce spektrảlni u kapalin.

Mezi kapalinami zaujímá významem svým přední místo voda. Absorpci její studovali W. H. Julius (1892), F. Paschen (1894), nejobširněji pak E. Aschkinass (1895), jehož výsledky potvrdil B. Donath (1896). Uvedeme zde přehledně výsledky, jež obdržel Aschkinass. Modifikace spektra, kteráž nastává absorpci vodní, souvisís tlouštkou vodní vrstvy. Je-li tato značná, mizi absorpcí celé partie spektra; detaily této absorpce jsou setřeny. Maji-li tyto přijiti k platnosti, jest nutno, aby tlouštka vrstvy byla velice malá. Aschkinass vyšetřoval absorpění
spektrum vody při tlouštkách vrstvových $0.001 \mathrm{~cm}, 0.005 \mathrm{~cm}$, $1 \mathrm{~cm}, 5 \mathrm{~cm}, 100 \mathrm{~cm}$, tedy velice rủzných. Byla-li tlouštka jen 0.001 cm , tedy velice nepatrná, mohl absorpění spektrum sledovati od $\lambda=1.6$ až $8.6 \mu$. Diagramm (obr. 192.) ukazuje velice zajímavý průběh absorpění křivky (a), kteráž má dvě hlavní maxima, jedno středni a při začátku jedno malé. Při tlouštce 0.005 cm ukazuje prǔběh absorpce křivka (b), při tlouštkách následujících $1 \mathrm{~cm}, 5 \mathrm{~cm}, 100 \mathrm{~cm}$ křivky ( $c$ ), (d), (e). Jest viděti, jak vrstva vody 5 cm silná absorbuje úplně veškeré tmavé záření již od $\lambda=1 \cdot 2 \mu$ počinajic.

Autor měl dobrou myšlenku zkoušeti, jakou absorpci jeví optická prostředí našeho oka. Ukázalo se, že jejich absorpce jest stejná jako absorpce vody. $Z$ toho plyne, že začátek zářeni infračerveného dopadá neabsorbovaný na sítnici. Přičinou že zářeni toho nevidime jest, že sitnice je pro ně necitlivou, ale nikoli, že by toto záření se absorbovalo v optických prostředich, kteréž jsou před sítnicí.

Co se roztokủ vodních týče, ukazuji maxima absorpce podobná jako voda, ale vedle toho vystupaji účinkem rozpuštěných solí maxima další. Zajímavou látkou jest jod. Ve skupenstvi pevném má absorpční pruh při $\lambda=7.4 \mu$ a vedle toho jiný ve viditelné části spektra. Rozpuštěný v sirouhliku, alkoholu nebo chloroformu ukazuje touž absorpci, ale slabši, propouští zářeni infračervené $v$ množstvi a rozsahu značném, ač zářeni viditelné absorbuje - až na část modrou a fialovou úplně.
B. Donath zkoušel (1896) bolometricky absorpci roztoků fluorujicich, jako uraninu, eosinu, fluorescinu, aeskulinu, chlorophyllu, a nalezl, že až do $\lambda=2.7 \mu$ absorpěních pruhů nejeví žádných. Ale zkušenost velmi pozoruhodnou učinil při roztoku chlorophyllu (tlouštky 3.2 mm ). V části viditelné spektra, kde vystupuje absorpční pruh u paprsků červených, ukazoval bolometr ještě jiné absorpění pruhy u paprskủ oranžových, žlutých a zelených, kde oko nepozoruje zatemnění žádného. Podobné zkušenosti učinil Aymonnet (1894). Látky jako chloroform, voda, některá skla, jevily při zkoumáni bolometrickém maxima a minima záření ve viditelné části spektra, kterých oko nevidí. Z toho jest patroo, že bolometr jest přistrojem pro kvantitativní zkoumání citlivějším, než orgán náš zrakový.

Zkoušena byla ještě celá řada kapalin jiných, zejména organických. Ukazuji charakteristická maxima absorpce na

určitých místech ve spektru. Tak na př. alkohol aethylnatý při $\lambda=3.45$ a $5.58 \mu($ od 8.0 až $20 \mu$ absorpci povšechnou $)$, sirouhlik při $\lambda=4.65$ a $8.05 \mu$, benzol přii $\lambda=321$, 8.05, 8.98, $11.9 \mu$ atd. Výsledků povšechně platných zde není; mạji vesměs Dr. V. Strouhal: Thermika.

35
ráz speciální. Zdá se, jako by v mnohých případech určité absorpční pruhy byly charakteristické pro některé skupiny moleknlové.

## § 182. Absorpce spektrálni u plynů a par.

V popředí všeobecného zájmu stoji otázka, jakou absorpci jeví vodní pára a kysličník uhličitý jakožto plyny, které jsou v naší atmosféře.

Absorpci vodní páry studovali Paschen (1894) a zejména obšíně Rubens a Aschkinass (1894). Jest znázorněna v diagrammu obr. 193. pro tlouštku vrstvy 75 cm . Úsečkou v diagrammu jsou stupně spektrometrické, ale nahoře jsou též připojeny délky vlny. Pořadnice udávaji absorpci v procentech záření dopadajícího (jako v předešlých diagrammech). Prủběh absorpce jest dosti složitý. V intervallu $\lambda=9 \mathrm{až} 11 \mu$ a také ještě 11 až $14 \mu$ jest absorpce skrovná, ale odtud rychle stoupá a jeví některá maxima. Průběh křivky také naznačuje, že paprsky zbytkové o délkách $\lambda$ velikých se vodní parou též absorbují, zejména zbytkové paprsky sylvinu $(\lambda=61 \cdot \mu)$, ale také, ač méně, kamenné soli $(\lambda=51-2 \mu)$. Drude soudi, že maximum absorpce má vodní pára při $\lambda=78 \mu$.

Jednodušší jest průběh absorpce, kterou jeví kysličnik uhličitý. V obr. 193. jest znázorněn čarou tečkovanou. Ukazuje se charakteristické maximum při $\lambda=14.7 \mu$, velmi značné, které při všech pozorováních ve vzduchu konaných se účinkem svým jeví, jak později na konkrétních přikladech shledáme. Ångström (1889) a po něm Paschen (1894) nalezl ještě menší, sekundárni maxima při $\lambda=2.36$ až $3.02 \mu$ a při $\lambda=4.0$ až $4.8 \mu$. Jinak, hlavni maximum vyjímajíc, má kysličník uhličitý absorpci nepatrnou, zejména též pro zbytkové paprsky kamenné soli a sylvinu.

Kysličnik uhelnatý jeví maximum absorpce při $\lambda=4.5 \mu$ dosti význačné, vedle toho malé maximum přì $\lambda=25 \mu$. Tato maxima souhlasí poněkud s oněmi sekundárními maximy kysličníku uhličitého.

Páry aetherové maji maximum absorpce při $\lambda=3.45 \mu$; od $\lambda=9 \cdot 9$ až přes $16 u$ jest absorpce velmi značná.

Přestáváme na těchto přikladech. Úkol studovati absorpci všech možných kapalin a jejich par, jakož i plynů, jest ovšem
velmi rozsáhlý a byl dosud řešen jen v rozsahu velmi skrovném v posledních dvou desítiletích. Fysika všeobecná přihliží k výsledkům potud, pokud mají ráz všeobecný anebo zasahají svým


Obr. 193.
Spektrálni absorpce vodní páry a kysličniku uhliçitého.
účinkem, jako na př. absorpce plynů a par v atmosféře obsažených, do měření fysikálních ve vzduchu konaných. Jinak budou speciální úkoly takové vždy vice a více se soustředovati ve fysikální chemii.

## Emisse tepla.

## § 183. Emisse spektrální; zákon Kirchhoffův.

Výklady dosavadní o záření tepelném byly rázu více kvalitativního. Přicházíme nyni k výkladům povahy kvantitativní, totiž k zákonům, jimiž se stanovi vyzařování čili emisse tepelná. V čele zákonů těch jest zákon Kirchhoffùv, kterým se tato emisse tepelná uvádí v souvislost s absorpcí tepelnou, t. j. pohlcováním zářeni tepelného. Definujme především přesně veličiny, jimiž tento zákon se vyjadřuje.

Jakožto mohutnost emissní daného tělesa stanovíme množství tepelné, kteréž těleso vyzařuje za jednotku doby ( 1 sec) z každé jednotky povrchové *) ( $1 \mathrm{~cm}^{2}$ ) při teplotě $T$ (absol.) proti tělesu teploty nullové (absol.). Při tom múžeme jednati bud̉o integrální nebo o spektrální mohutnosti. Jedna i druhá jest podminěna teplotou $T$. Jedná-li se o spehtrálmi emissi, míní se jen ta, která přisluši homogennímu záření o určité délce vlny 2 a která s touto délkou vlny se měni. Jedná-li se o integrální emissi, míní se summární effekt všech jednotlivých emissi homogennich.

V tomto odstavci pojednáme hlavně o emissi spektrální čili homogenní. Jest závislá na dvou proměnných, na délce vlny $\lambda$. a teplotě $T$. Označujice tudiž tuto emissi pišeme bud zkráceně
nebo zřetelněji

$$
e(\lambda, T) .
$$

Avšak těleso teploty nullové (absol.) neműžeme si zjednati a nemúžeme tudiž také mohutnost emissní, jak byla definována, přímo zkoumati. Vyzařování děje se proti tẽlesu (thermoslonpu, bolometru) obyčejné teploty, nullové neb jakékoli jiné. Podaří-li se nalézti zákon, jímž záření ve své závislosti na teplotě absolutni $T$ (nebo obyčejné $t$ ) je vyjádřeno, pak lze extrapolaci emissi, jak byla definována, počitati.

Nêkter̄i autorové rozeznávají vzhledem k právẽ vytčené okolnosti záreni absolutní (proti têlesu teploty $0^{\circ}$ absol.) a relativní (proti têlesu teploty obyc̃ejné). Názvy jsou však ménẻ vhodné. Pojem relativnosti je

[^201]ve fysice již ustálen a rozumí se jím zpravidla poměr dvou veličin stejnorodých (na př. relativní vlhkost, relativní tepelná vodivost a pod.). Ono rozeznávání, kteréz̃ ostatnẽ není tak nutné, bylo by spî́e dle analogie relativniho pohybu ve smyslu differenčním.

Při vyzařování myslíme si těleso jakoby aktivnim. V odstavci 175. jednali jsme o tom, jak se těleso chová jakožto passivní, t. j. když naopak zař̌ení tepelné přijímá. Toto záření se z části odráži, z části $(J)$ vniká do tělesa a vychází z tělesa v množství menším (i). Definovali jsme pak mohutnost absorpčnía jakožto poměr

$$
a=\frac{J-i}{J}
$$

záření pohlceného a záření do tělesa vnikajíciho. Při této definici, poněvadž se jedná o poměr, jest velikost povrchu jednostejnou, netřeba tudíž předpokládati jednotku povrchovou. Naproti tomu zůstává, podobně jako při emissi, závislost na teplotě $T$, af se jedná o absorpci spektrálni nebo integrálni.
$V$ tomto odstavci zkoumáme absorpci spelitrální. Tato jest tudǐ̌, podobně jako emisse, závislá na dvou proměnných 2. a $T$. Označujeme ji bud jednoduše
$a$
nebo zřetelněji

$$
a(\lambda, T)
$$

Veličiny $e$, a jsou podmíněny, každá jednotlivě, povahou daného tělesa. Naproti tomu jest velice pozoruhodno, že jich poměr

## $\frac{e}{a}$

povahou těles podminěn není. Určitěji řečeno, jest poměr tento též závislý na obou proměnných $\lambda$ a $T$, ale funkce, kterou se mathematicky udává způsob této závislosti, jest pro vs̉echna tělesu stejnou. Tato věta vyjadřuje zákon Kirchhoffưv.

Jest zajímavo vzpomenouti historicky, jaký byl podnẽt, který vedl k objevení tohoto zákona. Gustav Robert Kirchhoff (* 1842 v Královei) pracoval, jako í. professor fysiky (od r. 1854) na universitẽ v Heidelberku, o analysi spektrální. Na téže universitẽ púsobil pozdējsí jeho spolupracovnik Robert Vilém Bunsen (* 1811) jako professor chemie. Chtěje zkoumati koincidenci svêtlé $N a$-čáry s tmavou $D$-čarou Fraunhoferovou, postavil Kirchhoff před sstěrbinu svého spektrálniho apparátu, na kterou dopadalo sluneční svêtlo, ještě plamen se žhoucími parami natriovými. K svému překvapení pozoroval absorpci. Cára $D$ se jevilu sesílenou. Bylo tedy
patrno, že natriové páry totéz̃ svẻtlo absorbují, které samy vysilají. Kirchhoff však poznal v pozorovaném zjevu význam hlubši, význam všeobecného zákona tepelného. S vêtši emissí je spojena vêtši absorpce. Pojednáni, v nẻmz̃ o této souvislosti jedná, má název: Zusammenhang zwischen Emission und Absorption von Licht und Wärme (Monatsber. d. Akad. Berlin, 1859).

Souvisili absorpce s kmitosmérem svétla polarisovaného, souvisí s ním téz̃ emisse. Turmalin absorbuje paprsek rádný; naopak, kdyz̃ se rozez̃haví, vysilá též paprsek řádný.

Dluz̃no však poznamenati, że zákon Kirchhoflũv jest platným jenom, $k d y z ̌$ záření má původ ve zvýşeni teploty. Jeho platnost však prestává, když záření má svůj základ v pochodech chemických, pỉi zjevech tak zvaných luminiscenčních. Têlesa na pr̂. fluorujicí jiné svêtlo vysilají a jiné pohlcuji*).

Budiž $E$, $A$ emisse a absorpce jiného tělesa. Pak jest dle zákona Kirchhoffova

$$
\frac{e}{a}=\frac{E}{A}
$$

Tímto jiným tělesem budiž tak zvané těleso absolutně černé. Dle § 175. jest absorpce všeobecně určena poměrem

$$
A=\frac{J-i}{J}
$$

Jakožto těleso absolutně černé zavádíme "ex definitione" takové, které veškeré zářeni na ně dopadajici absorbuje, tudiž žádného nepropouští, tedy takové, pro které jest
čili

$$
i=0
$$

$$
A=1
$$

a to pro jakoukoli teplotu $T$ a jakoukoli délku vlny 2. Pak jest

$$
\frac{e}{a}=E
$$

t. j. stálý poměr $e:$ a značí emissi tělesa absolutně černého, pro stejnou teplotu $T$ a stejnou délku vlny $\lambda$. Jinak pišeme poslední relaci ve formě

$$
e=E a
$$

v označení zkráceném anebo ve formě

$$
e(\lambda, T)=E(\lambda, T) \cdot a(\lambda, T)
$$

naznačujíce zřejměji závislost veličin $e, a, E$ na obou proměnných 2 a $T$.

[^202]Ve skutečnosti tělesa absolutně černého, jak bylo definováno, nemáme žádného. Ale máme některá tělesa černá, kteráž se této definici alespoň přibližuji. Tak na př. dostatečně silná vrstva platinové černi anebo sazi absorbuje každé záření témě̌̌: úplně. Jest patrno, jak se zavedenim pojmu tělesa absolutně černého problém zjednodušuje. Především odpadá funkce $A$, kteráž jest ex definitione $=1$. V popředí vystupuje pak funkce E. Majic platnost pro těleso určitě charalterisované, jest též určitou, a poněvadž se jí vyjádř̌uje poměr $e: a$ pro jakékoli těleso, jest povahy všeobecné, universální. Úkol, tuto funkci $E$ stanoviti, nabývá pak dûležitosti všeobecné a stává se úkolem nad jiné významným.

Pracemi experimentálními ziskáváme pro spektrálni emisse nebo absorpce hodnoty, jichž souvislost s teplotou a délkou vlny přehlédneme nejlépe grafickým znázorněním. Abychom toto znázorněni mohli prováděti v rovině, podržujeme jednu z obou proměnných 久 a $T$ za arbitrárni konstantu, a nanášime druhou jako úsečlu, k niž pak jest $e$ nebo $a$, po připadě $E$ pořadnicí. Křivky, při nichž jest $\lambda$ arbitrárni konstantou, zoveme isochromatické čili isochromaty. Křivky, při nichž jest $T$ arbitrárni konstantou, zoveme isothermické nebo isothermy *).

Způsob, znázorniti spektrální emisse nebo absorpce isothermami, má některé výhody. Rozvinuti křivky dle délek vln jest pro rozbor spektrální přirozenějši. Obdržíme diagramm, z něhož jest patrno, jak při určité teplotě emisse nebo absorpce se mění, když od menšich délek vln postupujeme $k$ většim.

Při emissi vystupují v popředi diagrammy pro E. Vzhledem. $k$ relaci

$$
e \leqq E
$$

jsou všechny křivky $e$ směrem $k$ pořadnicim jakoby ohraničeny křivkou $E$.

Pro absorpci plati podobně

$$
a \leqq A
$$

Poněvadž $A=1$, jsou čisla $a$ vesměs zlomky. C̀teme je jako procenta té absorpce, kterou jeví těleso absolutně černé.

[^203]V označování funkeí $e, a, E, A$ není shody. Nêkteří autorové uz̄ívají - naopak nez̃ prijato ve výkladech našich - pro absolutnẽ černé tēleso pismen malých $e, a$. Avšak mnemotechnicky upominaji velká pismena na néco vétšího, malá na něco menšího. Poněvadz̃ pak absorpce a emisse têlesa absolutnẽ černého jest vůbec nejvẻtší, jevi se býti přirozenějším, užívati zde písmen velkých. Relace

$$
e \leqq E, \quad a \leqq A
$$

pamatují se pak snadno.
K porozumění zákona Kirchhoffova budtež uvedeny některé příklady. Kovy jsou pro záření tepelné (i světelné) neprostupné; při nich jest $a$ veliké; tudiž také e, t. j. kovy vyzařují paprsky tepelné (i světelné) v miř̌e značné. Naproti tomu sklo, křišál a pod. propouštějí zářeni tepelné (a světelné), maji a malé, tudiž také $e, \mathrm{t}$. j. tělesa ta za stejné teploty hřeji (a svíti) v míře daleko menší. Železo a sklo lze uvésti do červeného žáru rozežhavením stejným, na touž teplotu; ale železo září mohutněji než sklo. Talíř s kresbou černobílou, když se rozežhaví, ukazuje kresbu negativni; části černé záři vice než bilé (Stewart).

Zákon Kirchhoffĩv praví, že emisse $E$ absolutnẽ černého tělesa závisí jenom na 2 a $T$. Avšak také prostředí, v němz̃ se těleso absolutnẽ černé nalézá, jevi na jeho zár̃eni určitý vliv. V tomto smyslu vyz̃aduje tudíz zákon Kirchhoffưv jakéhosi doplnẽní, kteréż ostatné Kirchhoff sám jiz̃ znal, ale kteréz̃ formuloval R. Clausius (1864). Méjmez̃ dvẽ absolutně Černá têlesa ve dvou prostredích 1 a 2, kteráž jsou charakterisována exponenty lomu $n_{1}$ a $n_{2}$ anebo jinak rychlostmi $r_{1}$ a $v_{2}$, jimiz̃ se v nich zárení sífíi. Znači-li $E_{1}$ a $E_{2}$ zárení oněch têles v obou prostředich, vyžaduje tepelná rovnováha vztah
cili *)

$$
\begin{gathered}
E_{1}: E_{2}=n_{1}^{2}: n_{2}^{2} \\
E_{1}: E_{2}=v_{2}^{2}: v_{1}^{2} \\
E_{1} v_{1}^{2}=E_{2} v_{2}^{2} .
\end{gathered}
$$

Dle toho jest součin

$$
E v^{2} \text { anebo } \frac{e}{a} v^{2}
$$

ona funkce, která závisí jen na $\lambda$ a $T$.
Tato vêta zove se často Clausiova, správnêji Kirchhoffova. Experimentální dûkaz provedl Quintus Icilius (1866). Nové odvození této

[^204]vêty a téź nový dûkaz experimentálni podal Smoluchouski*). Umistil dvě desky nad sebou, z nichž hořejši udržoval na teplotẻ $31^{\circ}$, dolejši na teplotẽ $0^{\circ}$. Mezi nẽ vloz̃il desku třeti a mêřil thermoelektricky zãrení kteréż prijij́mala, a to když mezi deskami byl jednou vzduch, po druhé sirouhlik. $V$ tom prípadě jest
Experiment vedl k výsledku $n_{\mathrm{a}}: n_{1}=1.523$,
$$
E_{2}: E_{1}=1.595^{2}
$$
coz̃ jest souhlas vzhledem k obtižím úkolu velmi dobrý.
Opticky lze správnost vêty Kirch-hoff-Clausiovy pochopiti zpủsobem, ktery udal $E$. Mach ${ }^{* *}$ ) a kterŷ zde budiz̄ jen naznačen. Mysleme si dvẽ prostředí obsažená v polokoulich 1, 2 (obr. 194.), jez̃ se dotýkají v otvoru $S$ velice malém. Kolmo na středové pŕimce kolem středu $C_{1}$ budiž dána malá, černá kruhová ploška $f_{1}$ v prostředí ridssím, od nîž jde zárení $k$ otvoru $S$. Světelnỷ tento kuz̃el, o otvoru $\alpha$, zhustuje se lomem ke kol mici v kužel o menšim otvoru $\beta$, který má pak mensí základnou kruhovou plošku $f_{2}$. V tomto zhuştẻni paprskú lomem spočivá jádro zákona KirchhoffClausiova. Jest zajisté patrno, že když ploška $f_{2}$ je téż černou a zárící, že toto zãrení musí primêřenẽ $k$ menši plos̃ce býti mocnêjsisi, aby byla mezi oběma cernými ploškami $f_{1}$ a $f_{\mathrm{a}}$ rovnovảha.


Obr. 194.
Zâklad vêty Kirchhoff-Clausiovy. vztahovaná na plošce $f_{1}$ Q vztahovaná na plos̃ce $f_{1}$ a $f_{2}$, jest tato rovnováha formulována rovnicí

$$
f_{1} E_{1}=f_{2} E_{2}
$$

Z té pak následuje

$$
\frac{E_{2}}{\bar{E}_{1}}=\frac{f_{1}}{f_{2}}=\left(\frac{\alpha}{\beta}\right)^{2}=n^{2}=\frac{n_{2}^{2}}{n_{1}^{2}}
$$

kdež jest $n$ relativni exponent lomu (dle zákona Ptolemaeova) prostředí druhého vzhledem k prvému, anebo $n_{1}, \quad n_{2}$ exponenty lomu vzhledem ke vzduchu nebo k vakuu.

## § 184. Emisse integrálni; modifikace zảkona Kirchhoffova.

V předcházejicín odstavci přihliželi jsme k zářeni spektrálnímu, homogennímu. Příslušné funkce

$$
e(\lambda, T) \text { nebo } E(\lambda, T)
$$

[^205]přehlédneme nejlépe soustavou křivek isothermických, při nichž jest $T$ arbitrárni konstanta a $\lambda$ základní proměnnou.

Konkrétní případy takovýchto isochromat seznáme později. Zde však budiž o jich prủběhu povšechně poznamenáno toto: Měni-li se 2. od velmi malých hodnot $k$ větším a většim, začiná emisse hodnotami ne sice nullovými, ale velmi nepatrnými, stoupá pak s počátku zvolna, pak rychleji k jednomu nebo k několika hodnotám maximálnim, mezi nimiž jsou hod-


Obr. 195.
Schematický průběh isothermy.
noty minimální, načež při délkách 2. větších a většich emisse nenáhle klesá k hodnotám ne sice nullovým, ale opět velice nepatrným. Isotherma v obou směrech, jak k malým, tak k velkým délkám 2. sestupuje v těsnou blizkost s osou úseček, při malých délkách 2 rychleji, při velkých nenáhle a pozvolna. Zde tedy může emisse prakticliy za nullovou býti pokládána, třebas že mathematicky se nikdy nullovou nestává.

K objasnění toho, co zde řečeno, slouží schematicky kreslená isotherma (obr. 195.), která by mohla vyjadřovati na př. zářeni platiny nebo zář̌ení tělesa černého. Zde máme jediné maximum; křivka odtud v obou směrech klesá a blǐži se ose úseček, na straně k vlnám krátkým rychleji, na straně opačné nenáhleji. Pro tělesa jiná bývá povšechně prủběh isothermy složitějši, ježto přicházejí často maxima a minima zář̌ení v počtu větším.

Máme-li diagrammem znázorněno záření homogenní, spektrální, můžeme sobě učiniti představu též o záření úhrnném, integrálním. Pro každé $\lambda$. udává e zář̌eni jednotlivě; pro všechna 2. udává součet všech e zářeni úhrnné. Geometricky jest záření pro 2 a hodnoty v jeho nejbližsím sousedstvi udáno uzounkým proužkem e plochy, která jest omezena křivkou a osou úseček. Ưhrnné záření udává tedy tato plocha celá. Prakticky jest ome-
zena těmi pořadnicemi $e$ na obou stranách, které právě ještě od nully rozeznáme.

Přesněji řečeno, jest záření homogenní vyjádřeno součinem

$$
e d \lambda \text { nebo } E d \lambda
$$

Zärení ûhrnné tudiz̃ integrálem

$$
\int e d x \text { nebo } \int E d x,
$$

kterým se komplanace plochy stanovi. Meze integračni jsou hodnoty $\lambda_{1}$ a $\lambda_{2}$ vin nejkratšich a nejdelsich, dosud známých. Ale dle toho, co v pr̃edcházejícím o průběhu emissnich křivek bylo řečeno, možno tyto meze rozšíriti a voliti je 0 a $\propto$ vzhledem $k$ tomu, že mezi $0 \ldots \lambda_{1}$ jakoz̃ i mezi $\lambda_{2} \ldots r^{2}$ hodnoty $e$ nebo $E$ jsou prakticky nullové. Piśseme tudiž integrální emisse ve formě

$$
\int_{0}^{\infty} e d \lambda \text { nebo } \int_{0}^{\infty} E d \lambda
$$

aneb zřetelnéji

$$
\int_{0}^{\infty} e(\lambda, T) d \lambda \text { nebo } \int_{0}^{\infty} E(\lambda, T) d \lambda
$$

Funkce, kterou omezený integrál představuje, neobsahuje již̃ proměnné 2. dle nî̃̃ integrujeme, ny̆brz̃ jen proměnnou $T$.

Záření integrální jest podmíněno jenom teplotou (abs.) $T$. Volice tudiž k jeho označení písmena $s$ a $S$, což má upominati na summaci, píšeme zkráceně

$$
\begin{array}{lcll}
\text { nebo zřetelněji } & s & \text { a } & S \\
& s(T) & \text { a } & S(T)
\end{array}
$$

pro těleso obyčejné nebo absolutně černé *).
Vzniká otázka, zdali zákon Kirchhoffỉv má platnost též pro integrální emisse a integrální absorpce. Vzhledem k veliké rozmanitosti komplexủ paprskových, kteréž na daná tělesa, jichž integrální emisse a absorpce srovnáváme, mohou dopadati, nelze očekávati, že by zákon ten zcela všeobecně byl platným. Jest však možno odvoditi podminky, kdy o této platnosti nelze pochybovati.

[^206]Majíce zkoumati zákon Kirchhoffưv pro integrâlní emissi a absorpci, stanovme predevšín definice têchto velićn. Pro integrálni emissi jsme jizz odvodili vyraz

$$
s=\int e d \lambda
$$

Zde prichází v úvahu jenom têleso, jez̃ paprsky vyzařuje. Majíce pro totéżz têleso stanoviti jeho integrální absorpci, pripomeñme si, že se absorpcí $u$ udává procentuální množství, jež se absorbuje ze záření na těleso dané dopadajíciho, tedy odjinud, od jiného télesa vycházejíciho. Toto têleso jiné emittuje svêtlo intensity $\varepsilon$, jez̃ se mẽní téż dle 2 a o ovšem téz dle $T$. Pro kaz̃dé místo ve spektru udává součin $a \varepsilon$ množství zã̃ení absorbovaného; pro všechny moz̃né paprsky obdržíme úhrnnou absorpci integrováním

$$
\int a \varepsilon d \lambda
$$

a tuto ưhrnnou absorpci vyjadr̛ujeme opět procentuálnẽ, t. j. vzhledem k ûhrnné emissi na tęleso dopadajicí, kterou obdržime téż integrací

$$
\int \varepsilon d \lambda
$$

Tím nabýváme pro integrální absorpci daného têlesa, pro kterou volime označení $\omega$ (nebo $\Omega$ ), výraz

$$
\omega=\frac{\int a \varepsilon d \lambda}{\int \varepsilon d \lambda},
$$

kdè̃, jak jiz̀ recéeno, $\varepsilon$ se vztahuje k onomu têlesu jënému, kteréz̃ pro dané têleso jest zdrojem zárení. Meze integrac̃n jsou zde $\lambda_{1}, \lambda_{2}$ c̛ili prakticky, ve smyslu již vyloženém, 0 a $\propto$.

A nyní prikroẽme ke zkoumảní vêty Kirchhoffovy. Dle této má býti, pri tézè teplotê,

$$
\frac{s}{\omega}=\frac{s^{\prime}}{\omega^{\prime}}
$$

çili

$$
\frac{s}{\omega}: \frac{s^{\prime}}{\omega^{\prime}}=1,
$$

kdez̃ veličiny čárkované se vztahuji k jiné kombinaci tělesa daného a toho, od kterého toto zárení prijímá. Znamenejmež hodnotu tohoto dvojpoměru všeobecné $k$ a vyjádreme veličiny v nêm pricházejici onẻmi integrâly. Pak máme

$$
k=\int e d \lambda \frac{\int \varepsilon d \lambda}{\int a \varepsilon d \lambda}: \int e^{\prime} d \lambda \frac{\int \hat{\varepsilon}^{\prime} d \lambda}{\int a^{\prime} \varepsilon^{\prime} d \lambda}
$$

Pokud jest $e, e^{\prime}, a, a^{\prime}, \varepsilon, \varepsilon^{\prime}$ libovolné, jest patrno, že $k$ jest od 1 od-
chylné. Zákon Kirchhoffîv tudizz všeobecně pro emissi a absorpci integrálni platným není.

Mohlo by však pro obẽ daná têlesa zdrojem zárení, kteréz̃ prijijmají, býti těleso dokonale černé. Pak jest
tudiž

$$
\varepsilon=E, \quad \varepsilon^{\prime}=E,
$$

$$
k=\int e d \lambda \frac{\int E d \lambda}{\int a E d \lambda}: \int e^{\prime} d \lambda \frac{\int E d \lambda}{\int a^{\prime} E d \lambda}
$$

Jest však
tudiž

$$
e=a E, \quad e^{\prime}=a^{\prime} E
$$

$$
k=1,
$$

t. j. zákon Kirchhoffův pro integrálni emisse a absorpce jest platným.

Mohla by však obě daná tęlesa býti sobě vzájemně zdrojem záření. Pak by ono te̋leso jiné, jako jiný zdroj, odpadlo a mêli bychom
tudíž

$$
\varepsilon=e^{\prime}, \quad \varepsilon^{\prime}=e
$$

$$
k=\int e d \lambda \frac{\int e^{\prime} d \lambda}{\int a e^{\prime} d \lambda}: \int e^{\prime} d \lambda \frac{\int e d \lambda}{\int a^{\prime} e d \lambda}=\frac{\int a^{\prime} e d \lambda}{\int a e^{\prime} d \lambda}
$$

Avšak pro spekitrálni zár̃eni jest zảkon Kirchhoffûv platným vžzdy, t. j. máme vždy

$$
\frac{e}{a}=\frac{e^{\prime}}{a^{\prime}}
$$

čili

$$
\begin{aligned}
e a^{\prime} & =e^{\prime} a \\
k & =1
\end{aligned}
$$

t. j. zákon Kirchhoffưv pro integrâlni emissi a absorpci jest také v tomto prípadê v platnosti.

Zákon Kirchhoffův jest tudiž pro integrálni emissi a absorpci platným ve dvou případech:

1. Když se absorpce daných těles vztahuje na zářeni od absolutně černého tělesa vysílané.
2. Když jsou obě tělesa daná sobě vzájemně edrojem záření, na kiteréž se jejich absorpce vztahuje. Teplota, jakožto arbitrární konstanta, jest ovšem vždy u všech téles, o jichž emissi a absorpci se jedná, stejnou.

## § 185. Zákony emisse integrálni ; skizza historická.

Jiz̃ velmi záhy, počátkem století 19 -tého, byly činěny pokusy vystihnouti závislost záření úhrnného na teplotẽ, a to na zảkladẽ pozorováni, jez̃ nebyla konána na tělesech černy̌ch, nýbrž na kovech. Dulong a Petit (1818) zkoumali záreni teplomẽru rtưového, zahãátého az̃ do nejvêtší moz̃né teploty, která se již blizzila bodu varu pro rtut. Pozorovali, že toto zárenf s teplotou $t$ roste velmi rychle. Proto pomýsleli na funkci exponenciální, na zákon formálně velice jednoduchý, totiz̃

$$
s=m a^{t}
$$

Koefficient $m$ charakterisoval povrch daného tělesa; konstanta a pak byla pro všechna tẽlesa stejnou. Z pokusủ svých nalezli číselnẽ

$$
a=1.0077
$$

Postupem casu byl zákon Dulong-Petitúv zkoušen a zdálo se, že se osvẽdčuje uspokojivě. Dobrý souhlas s pozorováním nalezli De la Provostaye a Desains (1846), kteří uživali téz̃ rtufových teploměrů s povrchem skleněným hladkým nebo stříbřeným, zlaceným, černěným, a vedle toho též drátủ galvanicky rozez̃havených. Rovnễ Hopkins (1868), jenz̃ studoval zárení rûznẏch minerálủ. Ale byli téz̃ pozorovatelé, jako Draper (1847), Wilhelmy (1851), Soret (1872) a j., kteří o platnosti onoho zákona pochybovali anebo zřejmẽ platnost popírali. To byli pozorovatelé, kteři pṛ̛i pokusech postoupili k teplotám vyšším. Tu pak se ukázalo, že exponenciální zákon Dulong-Petitưv podává výsledky prillis veliké. Pádné to illustrují čísla Draperova. Při teplotách galvanicky rozežhaveného drátu, které Draper odhadl na $800^{\circ}, 1200^{\circ}, 1600^{\circ}$, nalezl pro úhrnné záření pomérná c̃isla $1: 5: 16$, kdežto ze zákona Dulong-Petitova následovala číla $1: 22: 462$, tedy přlliš veliká. Bylo patrno, že funkce exponenciální jest pochybenou.

Roku 1878 uveřejnil Rossetti spis cenou poctěný ${ }^{*}$ ), v němž dokazuje neplatnost zákona Dulong-Petitova a udává zâkon jiný, algelraicliý, ktery jeho pozorováním dobře vyhovoval, totiž

$$
s=a T^{2}(T-\vartheta)-b(T-\vartheta)
$$

kdez̃ značí $T$ absol. teplotu tẽlesa zářícího, $\vartheta$ têlesa ozáreného, t. j. thermosloupu.

Krátce na to (1879) uveřejnil Violle ${ }^{* *}$ ) práci velmi pečlivou, y nǐ̃ měřil záření žhoucí platiny, od teploty $800^{\circ}$ až do blízkosti tavení $1775^{\circ}$. Výsledky bylo lze vyjádřiti zákonem exponenciálním ve formẽ

$$
\log s=-a+\beta t+\gamma t^{2}
$$

[^207]V pozdějši své práci (1881) přijal formuli kombinovanou, C̣ástečně algebraickou a částečnẽ exponenciální, totiž

$$
s=m T^{3}\left(1+\varepsilon \alpha^{-T}\right)^{T}
$$

a pozdêji ještě formuli jinou

$$
s=m T a^{T} b^{T 2}
$$

která vyhovovala nejen pro zár̃ení integrální, nýbrž téz̃ spektrální.
V týchz̃ letech, kdy Violle svá první pozorování činil, uveřejnil Stefan roku 1879 zảkon, který oproti formulím, jež Violle svým pozorováním položil za základ, vyniká velikou jednoduchostí a který dnes za pravdẽ nejpodobnějši se pokládá, ačkoli Violle dle svých pozorování zảkon neuznával. Stefan sám pozorování nekonal, ale zkoumal kriticky výsledky jiných pozorovatelú, zejména údaje Tyndallovy, ale také výsledky, které již obdrželi Dulong a Petit a jejich následovatelé,

Poznáváme z této skizzy historické, jak první formulace zảkona vyzar̃ovaciho funkci exponencialní vynikala jednoduchostí svou, jak se pak exponenciální funkce nahrazovaly algebraickými, do mocnosti třetí, také smísenẽ algebraickŷmi a exponenciâlními, čimz̃ vznikaly znac̃né komplikace ve formulaci zákona, az̃ konečnẽ Stefan návratem k funkci algebraické a to v mocnosti čtvrté vystihl zákon ve formé ne méně jednoduché, nez̃ jak byl onen čistẽ exponenciální zákon pryỹ.

## § 186. Zákon Stefanův pro integrảlni emissi tělesa černého.

Roku 1879 uveřejnil o záření integrảlním Stefan zákon, k němuž byl veden srovnáváním výsledků Tyndallových. Týž nalezl, že zářeni platiny stoupne (relativně) od 10.4 na 122 , když jeho teplota se zvýši od žáru slabě červeného $525^{\circ}$ do jasně bílého $1200^{\circ}$.

Absolutní teploty těchto žárủ činí

$$
273+525=798, \quad 273+1200=1473
$$

Poměr čísel, v jednotce empirické záření vyjadřujících, dává

$$
\frac{122}{10 \cdot 4} \doteq 11 \cdot 7
$$

Zkouši-li se pak, ve které mocnosti by absolutní teploty dávaly poměr týž, nalezne se velmi přibližně mocnost čtvrtá; nebof jest

$$
\left(\frac{1473}{798}\right)^{4} \doteq 11 \cdot 6
$$

Stefan provedl pak revisi starších pozorování a nalezl souhlas uspokojivý. Tak zejména u výsledkủ, jež obdrželi Dulong a

Petit, De la Pravostaye a Desains, Draper a j. Proto stanovil zákon integrálního záření ve formě

$$
s=\sigma T^{4}
$$

Konstanta $\sigma$ zve se emissní mohutností daného tělesa. Značí záření $s$ pro $T=1$, t. j. znači množství tepla (cal.), kteréž každá jednotka povrchová $\left(\mathrm{cm}^{2}\right)$ vyzařuje při teplotě $1^{\circ}$ (absol.) proti tělesu teploty $0^{0}$ (absol.).

Děje-li se záření při teplotě $T$ proti tělesu, jehož teplota není $0^{0}$ (absol.), nýbrž $\vartheta$ (absol.), jest

$$
s=\sigma\left(T^{4}-\vartheta^{4}\right)
$$

Stefan měl za to, že zákon jím vyslovený platí pro záŕení, zejména kovủ, všeobecně. L. Boltzmann ukázal (1884), že zákon Stefanův lze odvoditi též theoreticky, ale s platností jenom pro záření tělesa absolutně černého, pro kteréž jest tudíž přesuě

$$
S=\sigma T^{4}
$$

anebo

$$
S=\sigma\left(T^{4}-\vartheta^{4}\right)
$$

Zákon Stefanův byl od četných badatelủ experimentálně zkoušen a to $s$ počátku pro tělesa obyčejná, zejména platinu. Výsledky nebyly přiznivé. Zákon Stefanûv se bud vủbec přesně̀ neosvědcoval anebo jen pro některou polohu temperaturní. Jenom H. Schneebeli (1884) nalezl, že zákon v mezich temperaturních velmi značných (okrouhle $T=400^{\circ} \mathrm{a} \check{2} 1700^{\circ}$ ) se dobře osvědčoval. Naproti tomu se zákon speciálně pro platinu nikterak neosvědčil. Z pozorováni, jež konali Lummer a Kurlbaum (1898) a Paschen (1901) vycházelo, že by pro tento kov se osvědčovala úměrnost nikoli se čtvrtou, nýbrž spíše pátou (nebo ještě poněkud větši) mocností absolutní teploty. Naproti tomu osvědčil se zákon Stefanův velmi dobře pro tělesa absolutně černá, v souhlasu s theoretickým výsledkem, který odvodil Boltzmann. Rozhodujicí pokusy konali v té přičině Lummer a Pringsheim (1897) a později Lummer a Kurlbaum (1898) a konečně sám Kurlbaum (1898) v uspořádáni, o němž ve výkladech následujících ještě budeme jednati obšírněji.

Také přiznivý výsledek, jehož došel Schneebeli, vysvětlil se dodatečně tím, že pozorovatel tento dle způsobu, jak pokns svůj uspořádal, vlastně pracoval s tělesem černým.

Není nezajímavo na nêkteré momenty, jez̃ se týkají zákona Stefanova, zvlaşt upozorniti. Stefan přišel na svůj zákon srovnávaje výsledky, jež ob-
držel Tyndall pro platinu. Ale pak se ukázalo, že právẽ pro platinu jeho zákon není platným. Cisla Tyndallova o teplotě platiny byla jen odhadnuta, tedy príibližná ; a této nahodilé okolnosti dluz̃no objev onoho zákona pricičísti. Podobnê se vếc mêla u staršich pozorování, na nichž Stefan svůj zákon zkoumal a při nichz̃ se zákon osvédçil. Dnes se na celou otázku pohliži střizlivêji. Têleso dokonale černé jest určitẽ definováno, a lze je, jak později seznáme, téz̃ experimentálnẽ realisovati. Pro toto určité a dle své definitorické povahy tepelnẻ velmi jednoduché têleso jest zákon Stefanủv plně v platnosti. Co se jinỷch, skutečných te̊les týce, jest v nich tak veliká rozmanitost, że vlastnẽ ani neni pravděpodobno, že by pro nẻ nějaký jednotný zákon vyzarovací mohl existovati. Na tuto okolnost upozornil již r. 1896 A. Winkelmann. Proto také nelze očekávati, že by zákon Kirchhoffủv v plné všeobecnosti, pro záření integrální, mohl miti platnost. A vskutku přislušná úvaha (§ 184.) ukázala, že platnost tohoto zảkona jest vázána na určité podmínky. To, co zoveme zárením integrálním, jest komplex velice sloz̃itý; teprve spektrálním rozkladem objevuji se podrobnosti a zvláštnosti, jimiž tepelná povaha jednotlivých těles konkretních vynikne.

## § 187. Zákon Wienův pro spektrální emissi tělesa černého.

Spektrální emisse $E$ tělesa černého jest, jak již bylo řečeno, funkei dvou proměnných, délky vlny 2 a teploty $T$ (absol.). O povaze této funkce orientujeme se graficky obyčejně soustavou křivek isothermických.

Takováto isotherma, příslušná teplotě $T$, má určitý, typický prủběh, jak jej znázorňuje obr. 195. Když délka vlny 2 od nejmenšich hodnot stoupá k větším, jest emisse $E$ s počátku velice nepatrnou, ale nikoli nullovou; stoupá pak stále rychleji až dostoupí maxima $E_{m}$ při délce vlny $\lambda_{m}$; odtud zase klesá s počátku rychle, pak nenáhle, stávajic se při velikých hodnotách i. konečně opět velmi nepatrnou, ale nikoli nullovon.

Zvětšuje-li se teplota $T$, přichází isotherma do vyššich poloh; maximum $E_{m}$ se zvyšuje, ale zároveň, což jest velmi pozoruhodno, se pošinuje a to směrem k menším délkám vlny $\lambda_{m}$. Toto pošinováni maximáluího zářeni pozoroval již Langley (1886). Po něm nalezl (1893) Wien*) jednoduchý zákon, dle něhož toto pošinování se děje. Zákon ten jest vyjádř̌en relací

$$
\lambda_{m} T=A
$$

kdež $A$ jest konsianta.
*) Wilhelm Wien (* 1864), od r. 1900 professor fysiky na université ve Warzburku. Přislus̃né pojednáni má název: Temperatur und Entropie der Strahlung, vyšlo v Berl. Ber. $9 / 21893$ a Wied. Ann. 52, pag. 156, 1894. V novêjsí dobê podali důkaz zákona Wienova téz̃ Thiesen (1901) a Lorentz (1901).

$$
-562-
$$

Pokud se pak emisse samotné týče, nalezl Wien zajimavou formu její závislosti na $\lambda$ a $T$, totiž

$$
E=T^{5} \cdot f(\lambda T)
$$

To znamená, že emisse $E$ závisí jednak na páté mocnosti teploty $T$ (absol.), jednak na součinu $\lambda T$ vystupujicim jako druhá proměnná, kterou zkráceně můžeme označiti

$$
\lambda T=u
$$

Tím neni ještě emisse $E$ určena, poněvadž o tvaru funkce $f$ neni rozhodnuto.

Pro maximum emisse vychází pak

$$
E_{m}=T^{5} \cdot f\left(\lambda_{m} T\right)
$$

anebo

$$
E_{m}=T^{5} \cdot f(A)
$$

$$
E_{m}=B \cdot T^{5},
$$

kdež $B$ jest konstanta. Múžeme tudiž řici: Stoupá-li teplota $T$ (absol.), zvyšuje se maximum zářeni tak jako pátá mocnost teploty $T$ a zároveñ se pošinuje $k$ menším déllám vlny $\lambda_{m,}$, jež jsou této teplotě $T$ nepřimo úměrny. Tato věta zove se pošinovacim zákonem Wienovým.

Jest pravdẽ podobno, že Wien zákon pošinovací, vyjádrený vztahem

$$
\lambda_{m} T=A
$$

svým dủvtipem uhodl. Dle zảkona toho pak usoudil, že ve funkci, která vyjadruje zárení spektrálni, souçin $\lambda T$ vystupuje jako samostatná proménná $u$, že tedy jest, pri určitém $T$,

$$
E_{T}=q(u),
$$

coz̃ jest rovnice kriivky isothermické. Pro maximum funkee jest

$$
\frac{d \varphi}{d \lambda}=0
$$

čili

$$
\frac{d \varphi}{d u} \frac{d u}{d \lambda}=0
$$

anebo

$$
\varphi^{\prime}(u) . T=0,
$$

z čehoz

$$
q^{\prime}(u)=0 .
$$

Tuto rovnici nutno resesti, t. j. hledati hodnotu -- nebo hodnoty promẽnné $u$, jež rovnici vyhovuji. Zkušenost potvrzuje, že maximum notu $A$, máme

$$
u=A
$$

nebo dle našeho zpúsobu oznac̃ovảní

$$
\lambda_{m} T=A,
$$

coz̃ jest zákon pošinovací. jiiz velice snadno.

Pisime prozatín

$$
E=T^{z} f(u) .
$$

Emisse integrální $S$ jest pak dána výrazem
cili

$$
S=\int_{0}^{\infty} E d \lambda .
$$

Jest však

$$
S=T^{z} \int_{0}^{\infty} f(u) d x
$$

$$
\lambda T=u
$$

pročez̃

$$
d \lambda=\frac{d u}{T},
$$

tudiz̀

$$
S=T^{x} \int_{0}^{\infty} f(u) \frac{d u}{T}
$$

čili

$$
S=T^{x-1} \int_{0}^{\infty} f(u) d u
$$ Položme

$$
\int_{0}^{\infty} f(u) d u=\sigma
$$

Pak obdržime

$$
S=\sigma T^{z-1}
$$

z čehož následuje zákon Stefanűv, když jest

$$
x=5 .
$$

Proto jest emisse spektrální stanovena funkeí

$$
E=T^{5} f(\lambda T)
$$

Maximum $E_{m}$ této funkee nastává při

$$
\lambda_{m} T=A
$$

vskutku existuje ; jedna hodnota jest tedy jistę reálnou. Zoveme-li tuto hod-

Jakmile jest rozhodnuto, že ve funkci pro $E$ vystupuje $\rangle T$ jako samostatná promẽnná, doplní se faktor $T^{5}$ vzhledem k zảkonu Stefanovu

Omezený integrál neobsahuje jiz̃ promẽnné $u$, jest určitým číslem.
jest tedy dáno výrazem

$$
\begin{align*}
E_{m} & =T^{5} f(A)  \tag{čili}\\
E_{m} & =B T^{5}
\end{align*}
$$

kdež jest $B$ nová konstanta $=f(A)$. Jest tudiž maximum homogenního záření čili maximum v jednotlivých kr̃ivkách isothermických úmẽrno páté mocnosti absolutní teploty, stoupá tudíz s touto teplotou velmi rychle.

Wien odvodil zákon svůj též theoreticky, na základě hlavních vêt thermodynamiky a principu Dopplerova, čímż ovšem platnost zảkona jestê více byla utvrzena.

## § 188. Zákony pro spektrální emissi tělesa černėho.

V odstavei 185. bylo vyloženo, jak během dob rozmanité byly navrhovány zákony, néž̌ se došlo zákona Stefanova, o jehož platnosti pro černé záření integrálni dnes již není pochybnosti. Podobně měla se věc pokud se týče záření spektrálniho. Úloha je zde obtižnější, poněvadž se jedná o funkci dvou proměnných 2. a $T$. Jako tam, tak i zde hledány formule, o nichž autoři se domnivali, že by byly platnými pro záření jakékoliv. Dnes víme, že dlužno se uskromniti. Záření rozmanitých těles nelze vyjádřiti funkei jednotnou. Přestáváme na tom, když nalezneme alespoň výraz pro spektrální zářeni tèlesa černého.

Sledujíce postup historický uved̉me na prvém místě vzorec, který (1887) theoreticky odvodil Michelson *),

$$
E=C \frac{T^{\frac{8}{2}}}{\lambda^{6}} e^{-\frac{c}{\lambda^{2 T 2}}}
$$

Ze vzorce tohoto lze pro maximum zářeni dokázati vztahy

$$
\begin{aligned}
\lambda_{m}{ }_{m} \cdot T & =A \\
E_{m} & =B \cdot T^{4 \cdot 5} .
\end{aligned}
$$

Vzorec Michelsonův měl své doby výzuam iniciativni. Jim učiněn byl začátek, byl dán popud k badáním dalším. Jinak má dnes význam jen historický.

Pûvodní vzorec Michelsonůy byl ještě komplikovanějši ; zde jsme uvedli vzorec pozdéjsí, jednodušsí. Dủkaz relací z nêho plynoucich dęje se snadno poçtem differenciálním; ale neuvádíme dủkazu toho, ponẽvadż relace ty mají dnes téż význam jen historický.

[^208]Nedlouho po Michelsonovi udal (1888) H. F. Weber vzorec

$$
E=\frac{c \pi}{\lambda^{2}} e^{a T-\frac{1}{b 2 T 2 \lambda^{2}}},
$$

který odvodil na základĕ pozorování Langleyových. Pro konstanty $c, a, b$ ve vzorci přicházející zavedl zvláštní jména; $c$ jest dle něho konstanta emissní, a koefficient temperaturní, $b$ koefficient mohutnosti zářivé. Pro integrální záření následoval ze vzorce výraz

$$
S=C T e^{a T}
$$

tedy výraz velmi jednoduchý. Ze vzorce svého odvodil $H$. $F$. Weber též relaci

$$
\lambda_{m} T=A
$$

jako později Wien. Domníval se, že vzorec jest platným pro čisté kovy, zejména platinu, střibro a $j$.

Jiný vzorec udal (1890) Radó šlechtic Kövesligethy (ředitel astrofysikální observatoře v O' Gyalla v Uhrách), totiž

$$
E=C T^{2} \frac{\lambda^{2} T^{2}}{\left(\lambda^{2} T^{2}+\lambda_{m}^{2} T^{2}\right)^{2}}
$$

později pak vzorec pozměněný

$$
E=C T^{5} \frac{\lambda^{2} T^{2}}{\left(\lambda^{2} T^{2}+\lambda_{m}^{2} T^{2}\right)^{2}}
$$

Z obou vzorcú následoval zákon pošinovací

$$
\lambda_{m} T=A
$$

Pro maximum $E_{m}$ záření samého dával prvý relaci

$$
E_{m}=B T^{2}
$$

což by znamenalo stoupání velmi slabé, druhý pak

$$
E_{m}=B T^{5}
$$

Se zákonem Stefanovým jest v souhlasu jenom druhý z předchozích vzorců pro $E$, který formálně se shoduje se vzorcem Wienovým

$$
E=T^{5} \cdot f(\lambda T)
$$

Dlužno zmíniti se též o vzorci, který udal (1893) C. Violle, totiž

$$
E=m T b^{T 2}(\alpha-\beta \lambda)^{7}
$$

o kterém autor se domníval, že má význam všeobecný. V některých připadech osvědčil se dobře i v intervallu tepelném
$700^{\circ}$ až $1700^{\circ}$, tedy dosti značném. Konstanty $b, \alpha, \beta$ jsou čísla všeobecně platná, $m$ se mění od látky $k$ látce.

Vzorce dosavad uvedené jsou velmi komplikované. Proto vzbudily velikou pozornost vzorce, které současně uveřejnili (1896) W. Wien a L. Paschen, prvý theoreticky a jen pro těleso černé, druhý na základě vlastních experimentů, ale pro tělesa libovolná. Vskutku jest vzorec Wienủv specialisací vzorce Paschenova*).

Dle Wiena jest pro těleso černé

$$
E=\frac{C}{\lambda^{5}} e^{-\frac{c}{\lambda .7}}
$$

Konstanty $C, c$ jsou podmíněny volbou jednotek; nemají vztahu k tělesủm rozmanitým, nýbrž jenom $k$ tomu určitému typickému záření, jaké vysilá těleso dokonale černé; proto jest jich význam povšechným.

Dle Paschena jest všeobecněji

$$
E=\frac{C}{\lambda^{a}} e^{-\frac{c}{\lambda T}}
$$

Konstanta a charakterisuje těleso zářicí ; bliži se tím více speciálui hodnoté Wienově

$$
\varepsilon=5
$$

čim jest těleso černějši. Ze vzorce lze odvoditi relace dalši o maximu záření,

$$
\begin{aligned}
\lambda_{m} T & =\frac{c}{\alpha} \\
E_{m} & =\text { const. } T^{\alpha}
\end{aligned}
$$

kdež jest

$$
\text { const. }=C\left(\frac{\alpha}{c}\right)^{\alpha}
$$

Úhrnná pak emisse jest

$$
S=\sigma T^{\alpha-1}
$$

Položíme-li $\alpha=5$, obdržíme známé již relace Wienovy a zákon Stefanuv.

Aby vynikla forma zákona Wienova

$$
E=T^{s} f(\lambda T)
$$

[^209]měli bychom oba vzorce psáti jinak, totiž Wienûv ve tvaru
$$
E=C T^{5}(\lambda T)^{-5} e^{-\frac{e}{\lambda 1}}
$$
a Paschenův ve tvaru
$$
E=C T^{\alpha}(\lambda T)^{-\epsilon} e^{-\frac{c}{\lambda T}}
$$

Integrací vychází z prvého zákon Stefanûv

$$
S=\sigma T^{4}
$$

z druhého pak zákon všeobecnějši

$$
S=\sigma T^{\alpha-1}
$$

Vzorce Wienủv i Paschenûv mají však theoretickou závadu, kterou vytkl (1899) Lord Rayleigh a která v tom spočivá, že pro $T=\infty$ podávaji pro $E$ hodnotu limitní

$$
\lim E=\frac{C}{\lambda^{3}} \quad \text { a } \quad \lim E=\frac{C}{\lambda \alpha}
$$

Vzhledem $k$ tomu chtěl Lord Rayleigh korrigovati zákon Wienủv připojením faktoru $2 T$, kterým by pro $T=\infty$ se stalo též $E=\infty$. Bylo by pak

$$
E=\frac{C}{\lambda^{5}} \lambda T \cdot e^{-\frac{c}{\lambda T}}
$$

Tento vzorec se však pro malé délky vlny $\lambda$ neosvědčuje. Proto, přidal Thiesen (1900) faktor $\sqrt{\lambda T}$, tak že by bylo

$$
E=\frac{C}{\lambda^{5}} \cdot \sqrt{\lambda T} \cdot e^{-\frac{c}{\lambda T}}
$$

Lummer a Jahnke (1900) podrželi faktor, který připojil Lord: Rayleigh, ale modifikovali funkci exponenciálni ve zpûsobu

$$
E=\frac{C}{\lambda^{5}} \cdot \lambda T \cdot e^{-\frac{c}{(2 T)^{1 \cdot 3}}}
$$

čímž se mělo pro malé délky vlny docíliti lepšiho souhlasw s výsledky pozorovacími. Mocnitel 1.3 má ovšem ráz přiliš. empirický.

Smysl těchto korrekci vystihneme lépe, když v zákonech těch faktor $T^{5}$, který je nutný pro zákon Stefanúv, explicite vytkneme a vše ostatní piseme ve formẽ funkce

Pišme opět zkrácenẽ

$$
f(\lambda T)
$$

$$
\lambda T=u
$$

Integrální záření jest dáno integrálem

$$
S=\int_{0}^{\infty} E d \lambda
$$

Při tom jest zákon Planckủv
cili

$$
E=C \lambda^{-5} \cdot\left(e^{\frac{e}{\lambda /}}-1\right)^{-1}
$$

$$
E=C T^{5} \frac{\left(e^{\frac{c}{\lambda T}}-1\right)^{-1}}{(\lambda T)^{5}}
$$

Jest tedy

$$
S=C T^{5} \int_{0}^{\infty} \frac{\left(e^{\frac{c}{\lambda . T}}-1\right)^{-1}}{(\lambda T)^{5}} d \lambda
$$

Zaved'me novou proměnnou

$$
\begin{aligned}
\frac{c}{\lambda T} & =x \\
\lambda & =\frac{c}{T} \cdot \frac{1}{x} \\
d \lambda & =-\frac{c}{T} \cdot \frac{d x}{x^{2}}
\end{aligned}
$$

Dosadíce obdržíme

$$
S=\frac{C}{c^{4}} T^{4} \int_{0}^{\infty} x^{3}\left(e^{x}-1\right)^{-1} d x
$$

Integrační meze jsou $\infty$ a 0 , kteréž znamením negativním se opět obrátí na 0 a $\infty$.

Majíce vyčisliti integrál

$$
\int_{0}^{\infty} x^{3}\left(e^{x}-1\right)^{-1} d x
$$

rozviñme funkci exponenciální v řadu

$$
\left(e^{x}-1\right)^{-1}=e^{-x}+e^{-2 x}+e^{-3 x}+\ldots
$$

Máme pak integrály vesměs formy

$$
\int_{0}^{\infty} x^{3} e^{-k x} d x
$$

Když integrujeme per partes, dle vzorce

$$
\int_{0}^{\infty} u d v=[u v]_{0}^{\infty}-\int_{0}^{\infty} v d u
$$

pokládajíce $x^{3}$ za $u, e^{-k x} d x$ za $d v$, ukazuje se, že výraz $[u v]_{0}^{\infty}$ pr̂i substituci mezí se stává nullovým (coz̃ známým zpưsobem lze odvoditi). Ná-
sledkem toho jest

$$
\begin{aligned}
\int_{0}^{\infty} x^{3} e^{-k x} d x & =\frac{3}{k} \int_{0}^{\infty} x^{2} e^{-k x} d x \\
\int_{0}^{\infty} x^{2} e^{-k x} d x & =\frac{2}{k} \int_{0}^{\infty} x e^{-k x} d x \\
\int_{0}^{\infty} x e^{-k x} d x & =\frac{1}{k} \int_{0}^{\infty} e^{-k x} d x \\
\int_{0}^{\infty} e^{-k x} d x & =\frac{1}{k}
\end{aligned}
$$

a spojíme-li tyto výsledky, obdržíme

$$
\int_{0}^{\infty} x^{3} e^{-k x} d x=\frac{6}{k^{4}}
$$

Dosadime-li tento výraz do oněch hořejších integrálủ, jak vzniknou rozvinutím v radu, obdrǎíme, kladouce za $k$ speciálni hodnoty,

$$
\int_{0}^{\infty} x^{3}\left(e^{x}-1\right)^{-1} d x=6\left[1+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{4}\right)^{4}+\ldots\right]
$$

Hodnota nekonec̃né řady v závorce jest

$$
1 \cdot 0823932337=\frac{\pi^{4}}{90}
$$

Tudíz definitivnē

$$
S=\frac{C}{c^{4}} T^{4} \cdot 6 \cdot \frac{\pi^{4}}{90}
$$

anebo číselnẽ

$$
S=6 \cdot 49394 \frac{C}{c^{4}} T^{4}
$$

Jest tudiž konstanta zákona Stefanova

$$
\sigma=6.49394 \frac{C}{c^{4}}
$$

Tato relace, odvozená spojením zákonů Planckova a Stefanova, jest pro některé výpočty důležitou, jak v dalším výkladu jesstex shledáme.

## § 189. Jak se pokusem zkoumá záření tělesa absolutně černého.

Výklady, kteréž podány byly v předešlém odstavci o záření černém, mají ráz více theoretický. K jich porozumění a oživení přispěje dalši výklad o tom, jak záření černé bylo pokusně zkoumáno a jak na základě skutečných pozorováni byly stanoveny číselně konstanty zákonủ, o nichž bylo jednáno.

První otázkou jest, jak si zjednati těleso absolutnè černé. Jako přiklad těles takových uvedli jsme dřive vrstvu (dostatečně silnou) platinové černi nebo sazi. Takové zdroje tepelné lze však jen přibližně za černé, ale nikoli za absolutně černé pokládati. Na dokonalý zdroj černého zářeni upozornil však již (1860) G. Kirchhoff. Jest to záréni dutin, jichž stěny jsou udržovány na stejné konstantní teplotě, čili, jichž stěny jsou isothermické. Kdy̆̌ do takovéto dutiny otvorem velice malým vniká záření, zủstává v dutině, při čemž jednostejno jest, zdali stěny toto zářeni odrážeji nebo pohlcuji. Záření dopadajici do dutiny se tudǐ̌ chová tak, jako by bylo dokonale absorbováno, což jest definice tělesa absolutně černélıo. Na tomto základě provedli v době nejaovějši (1897 a 1900) Lummer a Pringsheim své klassické práce o záření černém.

Jest zajímavo poznamenati, že mnozí pozorovatelé jizz dríve dle svého experimentálního uspỡadáni zkoumali vlastné - mimodèk - ziîeni ćerné. Jiz̀ před pûl stoletím (1847) zkoumal Ioln William Draper zärení kouskủ vápna, kazivce, mramoru, uhlf a nêkterých kovû, prì čemz̀ kladl tyto kousky dovnitř železné trubice, na jedné strané uzavfené a na druhé otevřené. Ze svẙch pozorovảní usoudil zảkon, że všechna têlesa prí téze teploté $525^{\circ}$ začínaji vysilati viditelné červené paprsky, a tento tak zvany Draperriv zákon byl po mnohá destitetí pokládán za správný. Práce novéjsi dokâzaly, że správnẙm není; Draper zkoumal mimodẻk zárenf cerné. Podobnê C. Christiansen (1884) vyvrtal dirky do kostky Leslieovy a pozoroval, ze z nich vychází zárení jako z éernỳch skvrn. Také L. Boltzmann (1884) užival ke studiu černého zárení dutiny stejnomẽrnẽ vyhráté s malêm otvorem neb s malou ŝtérbinou. V novéjís pak době (1895) St. John zahifival v chamottové peci platinové plechy jednak čisté, jednak pokryté kyslic̃niky vzäcnẙch zemin, a shledal. že v horké oné peci zärily všechny stejnẽ, tak že nebylo možno od okolí je rozeznati. Avšak k soustacnému méren cerného zärení uâival dutin teprve y dobẻ novéjsí Lumner *),

Lummer a Pringsheim připravili k černému záření tři dutiny, dle teplot, při jakých se mělo pozorovati. Pro teplotu $100^{\circ}$ uživali zlepšené Leslieovy kostky, totiz̆ nádoby měděné s dvojitými stěnami, mezi nimiž byla vařicí se voda Pro vyšši teplotu $200^{\circ}$ až $600^{\circ}$ upravili dutou mědĕnou kouli, kterou obklopili lázní ledkovou, totiž směsí ledku sodnatého a draselnatého, která měla bod tavení $219^{\circ}$ a kterou bylo lze zahřáti až na $600^{\prime \prime}$. Teplota lázně mě̌̌ila se jednak obyčejuými teploměry (pro vysoké

[^210]teploty, § 15.), jednak thermočlánky Le Chatelierovými. Pro žár ještě vyšši užívali železných dutých nádob, jež byly vytápěny v pecích chamottových. Indikátorem zářeni byl ve všech třech případech bolometr.

Kombinováním všech těchto pozorování zjednán byl intervall temperaturní dosti značný, totiž $100^{\circ}$ a ̌ $1262^{\circ}$, čili absolutně $373^{\circ}$ až $1535^{\circ}$. Teplota bolometru byla $17^{\circ}$ čili absolutně $290^{\circ}$ Zkoušen byl zákon Stefanův

$$
S=\sigma\left(T^{4}-290^{4}\right) .
$$

Intensita záření integrálniho $S$ byla úměrná výchylce $\alpha$ galvanometru s bolometrem spojeného. Zákon se osvědčil v celém tom rozsahu tepelném velmi dobře. Později (1898) postoupili Lummer a Kurlbaum k temperaturám tak vysokým, jak je vủbec lze realisovati. K tomu cili upravili z porculánu nespadno tavitelného trubici délky 40 cm , vnitřniho prủměru 4 cm a tlouštky stěn 2 mm . Uvnitř byla trubice potřena oxydy různých kovů k docileni lepši absorpce. Přes tento válec, jehož dutina představovala zdroj černélo záření, byl přešinut válcovitý platinový plášt tlouštky jen 0.01 mm , ktery̆ proudem 100 Ampère mohl býti uveden do největšího ještě možného žáru asi $1500^{\circ}$. Celek byl pak vsazen pomocí zvlăštních prstencủ do jiné porculánové trubice, která sloužila k ochraně vnitřních částí a k zamezení vyzařováni. Teplota uvnitř dutiny byla měřena thermočlánkem Le Chatelierovým. Aby pak záření z vnitřka vycházelo jen malým otvorem, bylo uvnitř užito četných diafragmat.

Dúležitější než zkouška zákona Stefanova byla zkouška zákonủ pro zář̌ení spektrální, zejména zákona Wienova

$$
E=\frac{C}{\lambda^{5}} \cdot \frac{1}{e^{\frac{c}{i . T}}}
$$

a zákona Planckova

$$
E=\frac{C}{\lambda^{5}} \frac{1}{e^{\frac{c}{\lambda T}}-1} .
$$

V pruní své práci (z roku 189S) za tímto účelem podniknuté *)

[^211]zkoumali Lummer a Pringsheim záření černé při teplotách Celsiových
$563 \% 5,814,1104,1143^{\circ} C$
čili absolutních
$$
836 \cdot 5,1087, \quad 1377, \quad 1416^{0}
$$
a rozkládali je hranolem kazivcovým. Spektrum mělo rozsah od $1 \mu$ do $6 \mu$.


Obr. 196.
Isothermy, jak je obdrželi Lummer a Pringsheim pro zářeni černé.
Velmi zajímavé jest grafické znázornĕní výsledků. Obr. 196. ukazuje prvni tři isothermy pro absol. teploty v pravo připsané. Ležaté křiže ( $\times$ ) udávají data pozorovaci. Křivky čárkovaně vyznačené jsou isothermy, jak byly pozorovány. Každá z nich ukazuje dvě význačná minima, kiteráž jsou však zpủsobena zjevy podřizenými; prozrazuje se jimi absorpce, kterouž způsobují vodní páry a kysličnik uhličitý ve vzduchu (§ 182.). Křivky plně vytažené jsou isothermy vedené bez ohledu na tyto - nahodilé - absorpce dle dat pozorovacích grafickou interpolaci tak, aby záření bylo samo vystiženo. Velmi dobře vynikají maxima $E_{m}$ zářeni a jich závislost na
teplotě $T$, jež se jeví jednak v pošinování k menším délkám vlny, jednak v rychlém vzrủstání, když teplota stoupá. Body kolečkem označené a křivky plně, ale slaběji kreslené ukazují prủběh isotherm dle zákona Wienova. Souhlas jest dobrý. Dle toho usoudili autorové, že zákon Wienủv jest platným. Zákon pošinovací

$$
\lambda_{n t} T=A
$$

jeví se číselně takto:

$T$	$\lambda_{m}$	$A$
837	$3 \cdot 5$	2928
1087	$2 \cdot 61$	2837
1377	$2 \cdot 10$	2892
1416	$2 \cdot 02$	2860
		Průměr
	2879.	

Druhou řadou pozorování nalezena pro $A$ hodnota souhlasná 2876. Krátce na to uveřejnili ještě další tři řady pozorováni ${ }^{*}$ ). Výsledky, pokud se vztahuji $k$ tělesu černému **/, jsou graficky znázorněny v diagrammu obr. 197., o jehož úpravě jest v platnosti, co již dřive o diagrammu obr. 196. bylo řečeno. Rozsah temperaturní v této práci je větši. Zákon pošinovaci

$$
\lambda_{n} T=A
$$

jeví se číselně takto:

$T$		
$621 \cdot 2$	$4 \cdot 53$	$A$
723	$4 \cdot 08$	2814
$908 \cdot 5$	$3 \cdot 28$	2950
$998 \cdot 5$	$2 \cdot 96$	2980
$1094 \cdot 5$	$2 \cdot 71$	2956
$1259 \cdot 0$	$2 \cdot 35$	2966
$1460 \cdot 4$	$2 \cdot 04$	2959
1646	$1 \cdot 78$	
		Průměr
		2940.

Jinak ukazovaly se ve výsledcich dle zákona Wienova počítaných odchylky ještě větši než při práci prvé.

[^212]

Isothermy, jak je v pozdéjši práci obdrželi Lummer a Pringsheim pro záření cerné.

V roce následujícim (1900) rozšírili Lummer a Pringsheim *) rozsah temperaturni velmi značně, totiž

$$
\text { od } t=-186 \text { až } 1377^{\circ} \mathrm{C}
$$

čili absol.

$$
T=87^{\circ} \text { až } 1650^{\circ}
$$

a to tím, že užívali tėž kapalného vzduchu. Záření černé rozkládali hranolem sylvinovým a pokročili tím k délkám vlny značnějším až $18 \mu$. Tu pak ukázaly se při zpracování výsledkủ značné odchylky od zákona Wienova.

Tyto odchylky jevi se lépe v křivkách isochromatických než v isothermických. Je-li v rovnici

$$
E=\frac{C}{\lambda^{5}} \cdot \frac{1}{e^{\frac{c}{\lambda T}}}
$$

$\lambda$ konstantou, lze psáti, když užijeme logarithmủ (přirozených),

$$
\lg E=\lg \frac{C}{\lambda^{5}}-\frac{c}{2} \cdot \frac{1}{T}
$$

Píšeme-li na okamžik

$$
\lg E=y, \quad \frac{1}{T}=x
$$

a ke zkrácení

$$
\lg \frac{C}{\lambda^{5}}=a, \quad \frac{c}{\lambda}=b
$$

obdržíme

$$
y=a-b x
$$

což jest logarithmická rovnice isochromaty. Jest lineární, a značí přímku. Stoupají tudiž logarithmy přímočaře, když reciproké teploty $\frac{1}{T}$ klesají rovnoměrně, při postupu k teplotám $T$ vždy vyšším a vyšším.

Avšak $s$ konklusemi těmito nejsou pozorování $v$ souhlasu. V obr. 198. jsou logarithmické isochromaty rýsovány pro délky vlny

$$
\lambda=12 \cdot 3,13 \cdot 3,15 \cdot 0,16 \cdot 5,17 \cdot 9 \mu
$$

a to na základě pozorováni při teplotách
$T=287,373,628,645,673,899,1055,1193,1520,1638,1772^{\circ}$.

[^213]Jest patrno, že logarithmické isochromaty při teplotách vysokých stoupají urychleně, odchylujíce se od př́močarého průběhu velmi zřetelně. Zároveǔ seznáváme, že by přímočarý prủběh bylo lze připustiti při menšich délkách vlny až $k$ teplotåm vyšsim, při většich délkách vlny jen $k$ teplotám nižšim, tak že by bylo lze stanoviti mez součinu $2 T$, který by dle diagrammu měl hodnotu

$$
\lambda T=18 \cdot 400 \text { až } 12.6000, \text { t. j. } 7200 .
$$

Až do této hodnoty bylo by tudiž nanejvýše ještě možno také platnost zákona Wienova připustiti.


Obr. 198.
Logarithmické isochromaly, jak je obdrželi Lummer a Pringsheim pro zâreni černé.

K doplněni obrazce 198. slouži ještě obrazec 199., který znázorňuje $\lg E$ v závislosti příno na $T$.

Ale nejen dle prủběhu logarithmických isochromat, nýbrž také dle průběhu křivek isothermických došli autoři téhož výsledku, pokud se týče zákona Wienova.

Obr. 200. ukazuje isothermu pro teplotu vysokou $16500^{\circ}$ absol. Cára plnĕ vytažená udává jeji průběh skutečný, t. j. dle pozorováni. čára tečkovaná průběh počitanẏ dle formule, kterou udal Wien, ěára pak čárkovaná průběh počitaný dle formule, kterou udal Lord Rayleigh. Tato jest značně nad skutečnou, Dr. V. Strouhal: Thermika.
ona pod skutečnou isothermou, jakož pro velké délky vlny v části zvětšené, na pravo, dobře lze viděti. Formule Thiesenova vyhovuje lépe. Formule Planckova nebyla tehda ještě známa, jsouc data pozdějšího (1901).

V pokusech těchto pokračovali (1901) Rubens a Kurlbaum. Černé zářeni bylo realisováno dutými tělesy, umistěnými v lázni tekutého vzduchu, směsi Thilorierovy a vodní páry; ostatní tělesa


Obr. 199.
Logarithmickè isochromaty, jak je obdrżeli Lummer a Pringsleim pro záreni černé.
se zahřívala elektricky. Pozorováni konána pro vlny velmi dlouhé, tak zvané zbytkové ( $\S 173$. ), jež byly získány mnohonásobným oảrazem na plochách kǐišfálu ( $8.85 \mu$ ), kazivce ( $24^{\circ} 0$ a $31.6 \mu$ ) a kamenné soli $(51 \cdot 2 \mu)$. Rýsovány byly isochromaty a hodnoty pozorované byly srovnávány s počitanými dle jednotlivých zákonů. Ukázalo se, že zákon Wienủv - pro ony dlouhé vlny ukazoval odchylky největší; jiné zákony, jež udali Thiesen a Rayleigh, menší, nejlepši souhlas však jevil zákon Planckuiv.

Pokusy dosavad popsané byly konány v říšském fysikálněłechnickém ústavě v Charlottenburku.

Samostatné pokusy konal zejména Paschen*) (částečně s Wannerem), jenž nejdéle zákon Wienåv hájil, ale konečně


Obr. 200.
Isotherma đ̃erného zárení pro teplotu vysokou dle pozorování, jez̃ konali Lummer a Pringsheim.
(1901) též uznal, že jeho platnost jest limitována; jakožto mez této platnosti udává součin

$$
\lambda T=3000
$$

## § 190. Čiselné hodnoty konstant.

Přehlédněme ještě jednou zákony černého zářeni, o nichž dnes můžeme řici, že jsou určitě dokázány.

Cerné záření spektrálni jest stanoveno funkci všeobecného tvaru

$$
E=T^{5} \cdot f(\lambda . T)
$$

Z této funkce následuji zákony Wienovy

$$
\begin{aligned}
\lambda_{m} T & =A \\
E_{m} & =B T^{5} .
\end{aligned}
$$

Speciálně jest oné funkci vyhověno dle veškeré pravděpodobnosti zákonem Planckovým

$$
E=\frac{C}{\lambda^{3}} \cdot \frac{1}{e^{\frac{c}{i T}}-1}
$$

čili

$$
E=C T^{5} \cdot \frac{1}{u^{5}\left(e^{\frac{c}{u}}-1\right)}
$$

kdež jest

$$
u=\lambda T
$$

Černé záření integrální jest stanoveno zákonem Stefanovým

$$
S=\sigma T^{4}
$$

Konstanta $\sigma$ souvisi s konstantami $C$ a $c$ zakona Planckova relaci (§ 188.)

$$
\sigma=\frac{C}{c^{4}} \cdot \frac{6 \pi^{4}}{90}
$$

čili

$$
\sigma=6.49394 \frac{C}{c^{4}}
$$

Priběh isothermy zářeni černého jest typický. Měni-li se 2. od nejmenšich hodnot $k$ největším, vystupuje křivka od počátečnich hodnot - téměǐ nullových - k hodnotě maximální $E_{m}$ a odtud nenáhleji sestupuje k hodnotám konečným - opět téměř nullovým. Výstup a sestup stává se přikřejšim, když teplota $T$ je vyšsi. Při tom se maximum pošinuje směrem k vlnám kratsím.

Průběh logarithmické isochromaty černého záření s reciprokou teplotou jest - téměř - přímočarý, ale při vyšších teplotách poněkud mrychlený.

Jest patrno, že tímto jest záření černé úplně a podrobně vystiženo tak, že tuto otázku již za uzavřenou lze pokládati.

Pokud se éíselných hodnot oněch konstant týče, jež v zákonech uvedených přicházejí, budiž poznamenáno toto:

Konstanta $\sigma$ zákona Stefanova

$$
S=\sigma T^{4}
$$

tak zvaná absolutni mohutnost vyzařování černého tělesa, jest určena rovnicí

$$
\sigma=\frac{S}{T^{4}}
$$

$S$ znači množstvi tepla vyzářeného za jednotku času (1 sec) z jednotky povrchové $\left(1 \mathrm{~cm}^{2}\right)$ při teplotě $T$. Obyčejně se toto množstvi tepelné udává nikoli v kaloriích, nýbrž v jednotce pracovni erg nebo přehledněji Joule. Pro jednotku „stupeň Celsiův" volme označeni ( ${ }^{\circ}$ ). Pak jest rozměr konstanty $\sigma$

$$
\frac{\text { Joule }}{\mathrm{sec} \cdot \mathrm{~cm}^{2}} \frac{1}{\left({ }^{0}\right)^{4}}
$$

čili

$$
\frac{\text { Watt }}{\left.c^{2} m^{2}\right)^{4}}
$$

Za pravdě nejpodobnějši přijímá se dnes hodnota

$$
\sigma=5 \cdot 32 \cdot 10^{-12}
$$

kterou určil*) Kurlbaum (1898).
Pro konstantu $A$ pošinovaciho zákona Wienova (1900)

$$
\lambda_{m} T=A
$$

přijímá se hodnota, kterou ve své druhé obsáhlejsi práci obdrželi Lummer a Pringsheim (§ 189.), totiž

$$
\begin{align*}
& A=2940 u\left({ }^{0}\right)  \tag{čili}\\
& A=0.294 \mathrm{~cm}\left({ }^{0}\right)
\end{align*}
$$

Z číselných hodnot $\sigma$ a $A$, jakož i z relace

$$
\frac{C}{c^{4}}=\frac{\sigma}{6 \cdot 49394}
$$

lze určiti konstanty $C$ a $c$.
${ }^{*}$ ) Wied. Ann. 65, p. 746, 1898.

Ze zákona Planckova

$$
E=\frac{C}{\lambda^{3}} \frac{1}{e^{\frac{c}{\lambda .7}}-1}
$$

ktery̌ raději pišeme ve formé

$$
E=C T^{5} \frac{1}{u^{5}\left(e^{\frac{c}{n}}-1\right)}
$$

anebo

$$
\lg E=\text { const. }-5 \lg u-\lg \left(e^{\frac{c}{u}}-1\right)
$$

obdržime pro maximum podmínku

$$
\frac{d E}{d \lambda}=0 \text { cili } \frac{d E}{d u}=0
$$

anebo

$$
\frac{d \lg E}{d u}=0
$$

kteráž vede k rovnici

$$
\frac{5}{u}=\frac{\frac{c}{u^{2}} \cdot e^{\frac{c}{u}}}{e^{\frac{c}{u}}-1} ;
$$

odtud pak po krátké redukci obdržíme

$$
e^{\frac{c}{u}}\left(1-\frac{c}{5 u}\right)=1
$$

kde dlužno poloz̃iti

$$
u=A
$$

Zákon Planckův vede ke vztahu

$$
e^{\frac{c}{A}}\left(1-\frac{1}{5} \frac{c}{A}\right)=1
$$

Položime-li ke zkrácení na okamžik

$$
\frac{c}{A}=x
$$

máme numericky řešiti rovnici

$$
e^{x}\left(1-\frac{x}{5}\right)=1
$$

čili

$$
x \lg e+\lg \left(1-\frac{x}{5}\right)=0
$$

anebo

$$
x \cdot 0 \cdot 4343+\lg \left(1-\frac{x}{5}\right)=0
$$

Patrně jest $x<5$; ale jest od 5 málo rozdílné, poněvadž výraz $1-\frac{x}{5}$ musí býti velmi malý, aby jeho negativni logarithmus se vyrovnal součinu $x \cdot 0 \cdot 4343$. Zkusmo najdeme

$$
\begin{array}{lc} 
& x=4.9651 \\
\text { Jest tedy } & c=4.9651 . A
\end{array}
$$

tudiž, dosadime-li za $A$ hodnotu dříve uvedenou,

$$
c=4.9651 .0294
$$

čili

$$
c=1.4598 \mathrm{~cm}\left({ }^{0}\right)
$$

Konečně jest

$$
C=\frac{\sigma \cdot c^{4}}{6 \cdot 49394}
$$

Dosadime-li sem za $\sigma$ a $c$ hodnoty již nalezené, obdržíme

$$
C=3 \cdot 720 \cdot 10^{-12}
$$

v jednotce
čili

$$
\frac{\text { Watt }}{\mathrm{cm}^{2} \cdot\left({ }^{0}\right)^{4}} \cdot \mathrm{~cm}^{4}\left({ }^{0}\right)^{4}
$$

anebo

$$
C=3 \cdot 720 \cdot 10^{-6}
$$

v jednotce

$$
\frac{\mathrm{erg} \cdot \mathrm{~cm}^{2}}{\mathrm{sec}}
$$

K porozumění rozměru dlužno míti na mysli, že množství tepla (v ergách) za $1 \sec$ pro $1 \mathrm{~cm}^{2}$ vyzáreného jest dáno souc̃inem $E d \lambda$, kdez̃ dえ znači intervall $2 \ldots \lambda+d \lambda$, pro kterỳ prii teplotẽ $T$ jest platným $E$. Proto jest rozměrově

$$
E \cdot d \lambda \ldots \frac{\operatorname{erg}}{\mathrm{sec} \cdot \mathrm{~cm}^{2}}
$$

a tudíz

$$
E \ldots \frac{\operatorname{erg}}{\sec \cdot \mathrm{~cm}^{3}}
$$

A vskutku v rovnici Planckovẽ vystupuje veličina

$$
\frac{C}{\lambda^{5}}
$$

která má rozmẽr

$$
\frac{\mathrm{erg} \cdot \mathrm{~cm}^{2}}{\mathrm{sec}}: \mathrm{cm}^{5}=\frac{\mathrm{erg}}{\mathrm{sec} \cdot \mathrm{~cm}^{3}}
$$

Koefficient

$$
\frac{1}{e^{\frac{e}{\bar{T}}}-1}
$$

jest pouhé čislo a má rozměr 1 .
Konstanty $\sigma, C, c$ jsou porahy všeolecné, universální, a řadi se ke konstantám podobným, jako je na př. rychlost světla nebo konstanta gravitačni.

Pokud se konečně konstanty $B$ týče, máme pro ni ze zákona Planckova, který pišeme ve formě

$$
E=C \cdot T^{5} \frac{1}{u^{5}\left(e^{\frac{\varepsilon}{u}}-1\right)}
$$

výraz

$$
B=\frac{C}{A^{5}\left(e^{\frac{c}{3}}-1\right)}
$$

Zde jest číselně

$$
\begin{aligned}
c & =1 \cdot 4598 \\
A & =0 \cdot 294 \\
e^{\frac{c}{d}} & =143 \cdot 36 \\
e^{\frac{-1}{-}}-1 & =142 \cdot 36
\end{aligned}
$$

K tomu

$$
\begin{gathered}
C=3 \cdot 720 \cdot 10^{-12} \text { Watt } . \mathrm{cm}^{2} \\
\frac{C}{A^{5}}=16 \cdot 935 \frac{\text { Watt }}{\mathrm{cm}^{3}\left({ }^{0}\right)^{3}}
\end{gathered}
$$

Z toho dále

$$
\frac{C}{A^{5}} \cdot \frac{1}{e^{\frac{c}{4}}-1}=\frac{16 \cdot 935}{142 \cdot 36}
$$

čili

$$
B=0 \cdot 119 \frac{\text { Watt }}{\mathrm{cm}^{3}\left({ }^{0}\right)^{3}}
$$

Sestavme ke konci přehledně veškeré konstanty s udáním jich rozměrů:

$$
\begin{aligned}
\sigma & =5.32 \cdot 10^{-12} \frac{W a t t}{\mathrm{~cm}^{2}(0)^{4}} \\
A & =0.294 \mathrm{~cm}\left(^{0}\right) \\
c & =1.4598 \mathrm{~cm}\left(^{\circ}\right) \\
C & =3.720 \cdot 10^{-12} \text { Watt } \cdot \mathrm{cm}^{2}, \\
B & =0.119 \frac{\text { Watt }}{\mathrm{cm}^{3}\left({ }^{\circ}\right)^{5}} .
\end{aligned}
$$

Pozorovánim byly určeny konstanty $\sigma$ a $A$; ostatni $C$, $c$, $B$ vycházeji ze zákona Planckova.

Provedme dle téchto dat úkol zvlástni, vypočte̊meż, mnoho-li energie za kaz̃dou sekundu (Watt) precházi z každého $\mathrm{cm}^{2}$ Leslieovy kosthy sazemi začerněné, kdyz̃ se udržuje kostka na teplotẽ $100^{\circ} C$ (čili absol. $373^{\circ}$ ) a okoli (bolometr) na teplotě $0^{\circ}$ (čili absol. $273^{\circ}$ ).

Zde nuáme dle zákona Stefanova

$$
\begin{array}{cc}
T=373 & S=\sigma\left(T^{4}-\vartheta^{4}\right) \\
i=273 & T^{4}=1 \cdot 936 \cdot 10^{11} \\
T^{4}-\vartheta^{4}=1 \cdot 381 \cdot 10^{10} \\
\quad \sigma=5 \cdot 32 \cdot 10^{-12}
\end{array}
$$

thidiž
t. j.

$$
\begin{aligned}
& S=7.347 .10^{-2}, \\
& S=0.07347 \frac{\text { Watt }}{\mathrm{cm}^{2}}
\end{aligned}
$$

Chceme-li prevésti vysledek na jednotku tepelnou gramm-kalorii. pripomeñme si, ze jest (今 61.)

$$
\text { Watt }=\frac{\text { Joule }}{\text { sec }}=0.239 \frac{\mathrm{cal}}{\mathrm{sec}}
$$

Tudiž jest

$$
S=0.01756 \frac{c a l}{s c c}
$$

anebo. prepocteno na minutu.

$$
s=1.0536 \frac{\mathrm{cal}}{\mathrm{~min}}
$$

Vysledek lze snadno pamatovati. Kaz̃dé $\mathrm{cm}^{2}$ plochy $100^{\circ}$, cerné, vyzã̛uje do okolí $0^{a}$ za každou minutu jednu kalorii. Pái tom nutno - $k$ vủli jednoduchosti - předpokládati, że se vyparováni děje ve vakuu.

Přiklad uvedeny byl casto realisovan (Stefan, Christiansen, Kurlbaum a j.), ale za účelem opaēným. Bolometricky se mérila energie $S$ a dle toho se pocitala konstanta $\sigma$.

## § 191. Měřeni teploty na zảkladě záření.

Zảkony v předešlém odstavci uvedené a číselně objasněné mohou sloužiti za základ pro měření temperatur, zejména velmi vysokých. Takovýto nový, od obyčejných method thermometrických odchylný základ neni nikterak zbytečný, nýbrž naopak vitaný. tím spíse, poněvadž obyčejné methody thermometrické stávají se při velmi vysokých teplotách nejistými a
konečně vủbec nemožnými. Teploměru plynového lze užívati nanejvýše až do teplot $1200^{\circ}$. Teploměrú thermoelektrických lze uživati do teplot značně vyšších; ale dlužno je připojiti k teploměru plynovému, aby kontinuita stupnice teploměrné byla zachována. Toto připojeni děje se srovnávánim obou teploměrủ při teplotách nižšich; tím se obdrží vztah mezi thermoelektrickou silou a teplotou, dle něhož se pak extrapoluje k: teplotám vyš̌ím. Tato extrapolace jest sice vintervallu velmi značném platnou; ale konečně měřeni přece přestává. když se bližime teplotám, při nichž kovy thermočlánku se tavi. Mimo to vzniká již dříve obtiž tím, že látky, za isolátory sloužící, při teplotách vysokých se stávaji vodivými.

Prozkoumánim záření černého a zjednáním si spolehlivých čiselných relací nabyla thermometrie nových zaikladu pro obor jinak nepřístupný, t. j. pro obor teplot nejvyššich, jež realisovati lze.

Zákony, jež podávaji tento nový základ, jsou:

$$
\begin{aligned}
S & =\sigma T^{4}, \\
\lambda_{m} T & =A, \\
E_{m n} & =B T^{5} .
\end{aligned}
$$

Vzhledem k tomu, že zákony ty nejen experimentálně, nẙbř̌̌̆ též theoreticky byly odúvodněny, dlužno je pokládati za zákony přírodní, které jsou platnými nejen pro intervally tepelné, v nichž byly zkoumány, nýbrž pro teploty vůbec. Tím právě se rozeznávaji od vzorcủ interpolačnich. Proto také, když se dle těchto zákonů teplota černého zářeni zkoumá, musí všechny tři vésti $k$ výsledku souhlasnémn.

K experimentálnímu zkoumání této otázky provedli Lummer a Pringsheim práci*), jejižto výsledek úvahy právě uvedené plnou měrou potvrdil. Zdrojem černého záření byla dutina uhelného tenkostěnného válce, který byl galvanickým proudem uveden v žár. Válec měl délku 34 cm , vnitřní průměr 1 cm a stěny silné 0.12 cm . Zdrojem galvanického proudu byla akkumulátorová batterie. Při intensitě proudové 160 Ampère dosaženo žáru as $2300^{\circ}$ (absol.), a na žáru tomto bylo lze válec po nêkolik hodin konstantně udržeti. Žáru ještě většího dosaženo proudem 200 Ampère $z$ akkumulatorové batterie o 64 Volt. Energie zářeni integrálního $S$ měřena byla bolometrem plošným.
*) O. Lummer a E. Pringsicim, Verhandl. d. d. physik. Ges. (d. d. 9/1 1903) 5, pag. 3. 1903.

Celková tato energie byla hranolem kazivcovým rozložena a spektrálni energie $E$ zkoumána bolometrem lineárnim *) a vedle toho též fotometrem spektrálnim. Všechny přistroje byly předbĕ̌̆ně cejchovány.

Práce vedla k výsledkům následujícím. Z rovnic v předcházejícim uvedených hodi se k měření temperatury $T$ nejméné rovnice

$$
\lambda_{m} T=A
$$

Maximum zářeni $F_{m}$ lze sice dle jeho velikosti stanoviti velmi dobře, ale polohu jeho ve spektru nelze přesně určiti, t. j. nelze přesně udati, ku které dèlce vlny $\lambda_{\text {.m }}$ náleži, poněvadž se v okolí této určité délky vlny maximum málo měni.

Naproti tomu lze teplotu $T$ velmi dobře počitati dle záy̌ení úhrnného

$$
S=\sigma T^{4}
$$

a rovnĕz̆ tak dle záření maximálniho

$$
E_{m}=B T^{s}
$$

Kdyy̆ se pak z jedné nebo druhé rovnice teplota $T$ vypočitá, lze zase naopak z rovnice

$$
\lambda_{n} T=A
$$

hodnotu $\lambda_{, \ldots,}$ t. j. polohu tohoto maxima přesně určiti.
Autoři obdrželi pro teplotu svého černého tělesa dle rúzných těch method čísla velmi souhlasná, jež se pohybovala v mezích poměrně malých, totiž $2310^{\circ}$ ǎ̌ $2345^{\circ}$ (absol.). Dle této velmi dobré shody lze zase naopak souditi, že uvedené zákony o zářeni tělesa černého jsou platné až do nejvyšších teplot, kteréž realisovati dovedeme. Stupnice temperaturni, těmito zákony definovaná, jest absolutní, t. j. přirodou samou daná; i jest pozoruhodno, že se stupnici dle plynového teploměru stanovenou se úplně shoduje.

## § 192. Zářeni těles obyčejných.

Záření tělesa černého, dutinami realisovaného, tvoří extrém určitě definovaný, jemuž se některá skutečná tělesa více méně přibližuji. Tak na př. saze, uhli, platinová čerň, oxydy některých kovû a j. Těleso černé dává spelitrum spojité. Látky, kteréž tak jako těleso černé dávaji spektrum spojité, řadíme do

[^214]třidy prvé. Ostatni látky, jež dávaji spektrum pretržité, řadíme do trídy aruhé.

Pokud se látek třidy prvé týče, jest pravdě podobno, že lze jejich spektrálni emissi

$$
e\left(\frac{2}{2}, T\right)
$$

která je funkei délky vlny 2. a teploty $T$, vystihnouti jednotným výrazem. v něm̌̌ jenom některé konstanty se dle povahy látek měni. Z emisse spektrálni počitá se pak emisse integrální

$$
s=\int_{u}^{x} e d \lambda
$$

která závisi jenom na teplotě $T$. Zdali je při tom zákon Stefanùv splněn, zủstává otázkou, kterou dlnžno vyšetřiti zvlášt.

Pokud se látek třidy drubé týče, hledi se spektrálni emisse vystihnouti graficky, diagrammem, totiž soustavou isothermických Křivek, při nichž veškeré diskontinuity snadno přehlédneme. Řešeni mathematickému neni úkol přistupný. Látky této třidy se vyznačuji selektivni reflexí a absorpci.

## § 193. Zářeni těles pevných.

Tělesa pevná náleži ve smyslu předešlého odstavce povšechně do třidy prvé. Pozorovatelé dob staršich vyšetřovali jejich zářeni v rozkladu spektrálním, uživajíce branolú a čoček z kamenné soli, při čemž studovali hlanně otázku, jaká jest relativni intensita tohoto záření, indikovaná thermoelektricky. a kam připadá maximum. Tak zkoumal S. Lamansky (1870) zářeni světla Drummondského, Tyndall (1866) a po něm Langley (1889) a B. W. Snow (1892) záření elektrickélo světla obloukového, W. W. facques (1879) zárení četných oxydủ kovủ (železa, chromu, mědi, aluminia), $P$. Desains a $P$. Curie (1886) zářeni platiny a mědi, Langley (1886) zářeni positivniho uhliku pĭi obloukové lampě elektrické, zářeni platiny a mědi, zářeni kostky Leslicovy, naplněné jednak vodou (v mezich teplot 0... $100^{\circ}$ ), jednak anilinem ( $100^{\circ}$ až $178^{\circ}$ ) a j. Všechna pozorováni tato vedla k výsledkům analogickým s těmi, jež charakterisuji záY̌eni černé. Maximum připadalo do infračervené části a pošinovalo se s rostouci teploton směrem k vlnám menším.

Zákony tohoto zářeni vyšetřoval teprve v dobè novějsi Paschen*). Pro zářeni spektralni $E$ předpokládal zákon**)

$$
E=\frac{\hat{c}}{\lambda^{\alpha}} \frac{1}{e^{\frac{i}{T}}}
$$

čili

$$
\lg E=\lg C-c \lg i-\frac{c}{\lambda T}
$$

anebo zkráceně, pro křivky isochromatické,

$$
\lg E=\gamma_{1}-\frac{\gamma_{2}}{T} .
$$

kdež jest

$$
\gamma_{1}=\lg C-a \log \lambda_{2} \quad \gamma_{2}=\frac{c}{\lambda}
$$

Pro maximum zářeni vycházi vztah
kdež jest

$$
\lambda_{\omega} T=A
$$

$$
A=\frac{c}{r},
$$

a pro integrální záření vzorec

$$
S=\sigma T^{\alpha-1}
$$

Prwní rovnici obdržíme, differencujice vẙraz pro $\lg E$ dle $\lambda$., pài čemž $T$ jest arbitrární konstanta. Vyjde pak

$$
\frac{d E}{d \lambda} \cdot \frac{1}{E}=-\frac{k}{2}+\frac{c}{\lambda_{2}^{2} T}
$$

Pro maximum jest
tudiẑ

$$
\frac{d E}{d i}=0 .
$$

čili

$$
\frac{a}{\lambda_{2}}=\frac{c}{j_{m}^{z} T}
$$

$$
\lambda_{m} T=\frac{c}{e}
$$

tedy

$$
\lambda_{m} T=A
$$

Dosadime-li tuto speciâlni hodnotu do rovnice pro $E$, obdrżime

$$
E_{m}=\frac{C}{A^{u}} T^{\varepsilon} e^{-\pi}
$$

${ }^{*}$ ) Wied. Ann. 58, pag. 455 , 1896 a 60 , pag. $662,1897$.
**) Užíváme podle přikladu, kterỳz dali Lummer a Pringsheime (viz niže), pro zâr̃eni têles do prvè tr̂idy náležejicich têhoz̃ oznac̃eni jako pro tēlesa absolutnê černá, aby mnohé analogie tím vice vynikly.
anebo
kdez̀ jest

$$
E_{m}=B T^{\alpha},
$$

j

$$
\begin{aligned}
B & =\frac{C}{A^{\alpha}} e^{-\alpha} \\
C & =B A^{\alpha} e^{\alpha}
\end{aligned}
$$

cili
Integrälní emissi obdržime integrujíce funkci

$$
\int_{0}^{\infty} E(\lambda, T) d \lambda,
$$

při čemz̃ jest $T$ arbitrárni konstanta. Poloz̃íme-li

$$
\lambda T=u
$$

vyjde

$$
\begin{gathered}
E(\lambda, T)=\frac{C T^{\alpha}}{u^{\alpha}} \frac{1}{e^{\frac{c}{u}}} \\
d \lambda=\frac{d u}{T},
\end{gathered}
$$

tudiž

$$
S=C T^{\alpha-1} \int_{v}^{\infty} E(u) d u
$$

Omezený integral jest určité číslo. Spojíme-li je s konstantou $C$ v jedinou konstantu $\sigma$, obdržíme

$$
S=\sigma T^{\alpha-1}
$$

Zảkon, který Wien theoreticky odvodil pro zárení černé, jest specialisací zákona Paschenova pro

$$
\alpha=\Sigma
$$

Paschen určil pro řadu látek konstanty svého zákona, i jest zajímavo jeho výsledky srovnávati, aby vynikly rozdíly, které ve třidě prvé zářicích těles se vyskytuji.

Konstanty zákona Paschenova.

Látka	$\alpha$	C	$c$	$\frac{C}{\alpha}$
Kysličnik železnatý .	$5 \cdot 61$	1946000	10470	2609
Kysličnik mědnatý .	5.55	1611000	14245	2562
Lampová čerǔ . . .	5.53	1566000	14500	2623
Uhlí . . . . . ।	5.09	1009000	13670	2606
. až	$5 \cdot 58$	1687000	13830	2505
Platina . . . . . .	$6 \cdot 42$	614700	15000	2336

Z čísel těchto zajímá nejvice exponent $c$.

Pro zářeni tělesa absolutně černého jest

$$
\varepsilon=5 .
$$

Pro záření těles v tabulce uvedených jest

$$
a>5,
$$

nejvíce odchylnou je hodnota pro platinu

$$
\alpha=6 \cdot 4
$$

Pro záření integrální jsme měli u tělesa abso. lutně černého dle zákona Stefanova

$$
S=\sigma T^{4}
$$

Zde by pro platinu následovalo

$$
S=\sigma T^{5 *}
$$

coz̆ by ukazovalo ke stonpání s teplotou daleko rychlejšimu.

Výsledky Paschenovy, pokud se platiny týče. potvrdili Lummer a Kurlbaum (1898), kteří shledali, že zářeni integrálni stoupá úměrně s pátou mocnosti absolutni teploty.

Krátce na to (1899) uveřejnili Lummer a Pringsheim práci, v niž zkoumali methodou spektrobolometrickou jednak záření tě-


Obr. 201.
Kïivky isothermické, jak je pro záreni platiny obdrželi Lummer a Pringsheim. lesa černého jednak platiny. O výsledcích této dủležité práce, pokud se týkala záření
černého, bylo již (§ 189.) jednáno *). Neméně zajimavy jsou výsledky, jež autoři obdrželi o zářeni platiny. Uživali platinového plechu, který měl tloušfku jen 0.01 mm . Byl rozežhaven elektrickým proudem. Jeho teplota $T$ byla měřena thermočlánkem Le Chatelierovým. K tomu cili byla platina složena na zpúsob skřinky, do niž byl thermočlánek vložen.

Výsledky znázorňuje velmi přehledně diagramm obr. 201. Hodnoty pozorované jsou naznačeny ležatým křižkem ( $\mathbf{X}$ ). Absorpce vodnich par a kysličniku ulličitého se pozoruje depressi přislušných hodnot zářeni. Křivka plně vytažená vyjadřuje pozorováni grafickou interpolaci, bez ohledu na tuto nahodilou absorpci. Z diagrammu byly odečteny (grafickon interpolaci) hodnoty $\lambda_{m}$ (v jednotce $\mu$ ) a $E_{m}$. Počitán součin $\lambda_{m} T=A$, který se jevil dostatečně soublasným. Zkoušen zákon $B=E_{m} T^{-\epsilon}$, při čemž se ukázalo, ̌̌e se dobrého docili souhlasu pro $\alpha=6$. O tom lze se přesvěděiti ještě lépe, když se z průměrné hodnoty $B^{*}$ konstanty $B$ počitá zpět teplota $T$ a srovnává s danou. Difference mezi oběma hodnotami pohybuji se v mezich chyb pozorovacích. O všem tom, co zde řečeno, poučuje jasněji připojená tabulka.

## Zářeni platiny.

$T$	7.	$E_{t u}$	$A=\lambda_{m} T$	$B=E_{m} T^{-6}$	$T=\sqrt[6]{E_{m}: B^{*}}$	Diff.
802	(3:20)	0.94	(2566)	$35^{44} \cdot 10^{-21}$	$804 \cdot 6$	$+2.6$
1152	2.25	$8 \cdot 40$	2592	$3595 \cdot 10^{-21}$	1158	$+6.0$
1278	2002	15779	2582	$3624 \cdot 10^{-21}$	1287	$+9^{\circ}$
1388	190	24.41	2637	$3414 \cdot 10^{-21}$	1387	- 10
1489	1.80	$36 \cdot 36$	2680	$3336 \cdot 10^{-21}$	1479	- 10\%
1689	1'39	$75 \cdot 96$	2685	$3348 \cdot 10^{-21}$	1672	$-17 \%$
1845	1.40	$137 \%$	2581	$3473 \cdot 10^{-21}$	$1844 \%$	-0.3
	Prūmér		2626	$3476 \cdot 10^{-21}$		

*) Práce, na onom mistê jiz̃ citovanâ, byla uver̃ejnẽna ve Verh. d. d. physik. Ges. pag. 215, 1899.

Na základě hodnot průměrných
při

$$
\begin{aligned}
& A=2626, \\
& B=3476 \cdot 10^{-21}
\end{aligned}
$$

$$
\varepsilon=6
$$

lze počítati

$$
\begin{aligned}
& c=\alpha A=15760 \\
& C=B A^{6} e^{6}=45980
\end{aligned}
$$

a z těchto číselných dat lze propočítati rovnici pro spektrální záření platiny

$$
E=\frac{C}{\lambda^{6}} \frac{1}{e^{\frac{c}{\lambda T}}}
$$

a srovnávati hodnoty takto vypočtené s pozorovanými. V diagrammu obr. 201. jsou tyto počitané hodnoty označeny kolečkem (०). Jest dobře viděti, že křivky počtem získané se přece jen od křivek původních dosti liší, zejména při délkách vlny znaěnějších. Snad by souhlas byl lepši, kdyby se rovnice pro $E$ modifikovala dle zákona Planckova. Autoři zkoumali též křivky isochromatické a shledali, že průběh není přimočarý, nýbrž že směrem $k$ teplotám vyššim je urychlený.

Dle všeho jest pravdě podobno, že platina v řadě pevných zářícich těles nalézá se na opačném křidle než těleso černé. Pro toto jsme měli číselnou relaci
pro platinu jest

$$
\lambda_{m} T=2940,
$$

$$
\lambda_{m} T=2630 .
$$

Pro jiné pevné látky bude

$$
2940>\lambda_{m \mathrm{~m}} T>2630
$$

Kdybychom této relace použili k účelủm thermometrickým, ke stanovení teploty $T$ tělesa zárícího, bylo by

$$
\frac{2940}{\lambda_{m}}>T>\frac{2630}{\lambda_{m}}
$$

čili

$$
T_{\max }>T>T_{\min },
$$

tak že by teplota $T$, na základě záření určená, byla mezi dvě mezní hodnoty, asi o $10 \%$ rozdilné, zařaděna. Bylo by to tedy určení taxativní, pro mnohé účely postačujicí. Předpokladem Dr. V. Strouhal: Thermika.
jest, že křivka záření vyjadřující má prủběh podobný jako křivka pro zářeni černé.

Jako přiklad takovýchto měření uváději autoři tyto výsledky:

Přibližné určení teploty $T$ z relace $\lambda_{m} T=A$.

Těleso záříci	$\lambda_{m}$	$T_{\max }$	$T_{\min }$
Lampa oblouková	$0 \cdot 7$	4200	3750
Lampa Nernstova	$1 \cdot 2$	2450	2200
Lampa Auerova .	$1 \cdot 2$	2450	2200
Žárovka . . . .	$1 \cdot 4$	2100	1875
Svička . . . . .	1.5	1960	1750
Lampa Argandská	$1 \cdot 55$	1900	1700

Z výsledkủ dalšich, jež byly získány pro tělesa třídy prvé, buđttež ještě uvedeny krátce následujici.

Sklo a křištál, v mezich teploty $200^{\circ}$ až $575^{\circ}$, ukazují maximum záření při $\lambda_{m}=4.6$ u skla a 49 u kǐišfálu, a toto maximum pošinuje se $v$ udaných mezich oněch mírných teplot jen málo, asi úměrně $T^{-6}(Z . P$. Bouman, 1895). Zářeni kamenné soli pro teploty až do $100^{\circ}$ vyšetřovali Abramczyk (1890), jakož i Rubens a AschFinass (1891). Není homogenní, nýbrž dává spektrum rozsahu asi jedné oktávy.

## § 194. Zářeni plynů a par.

Žhouci plyny a páry náleží $k$ druhé třidě̃ těles, která vydávají záření selektivni. Jako ve viditelné části spektra, tak existuji i v části infračervené jednotlivá maxima záření, která lze nalézti bud methodou fotografickou, až do malých délek vlny, nebo methodou bolometrickou po případě též radiometrickou do délek vlny libovolných. Práce nutno prováděti dle jednotlivých látek. Výsledků povšechně platných zde neni. Tato část nauky o tepelném zárení má tedy povahu speciální.

Z pozorovatelů dob staršich, kteři vyšetřovali spektra žhoucích par, buđtež uvedeni Abney (1879), H. Becquerel (1883), Snow (1892). Velmi přesná měření konali methodou radiomikrometrickou E. P. Lewis a E. S. Ferry (1895). Jejich výsledky
uvádime zde jako přiklad. V připojené tabulce znači $\lambda$ (v jednotce $\mu$ ) délku vlny, pro kterouž záření mělo své maximum (analogon jasné čáry ve spektru viditelném) a $J$ relativní intensitu těchto maxim.

Selektivní záření, jakéž jeví žhoucí páry
některých kovů.

Natrium		Calcium		Střibro		Strontium	
$\lambda$	$J$	$\lambda$	$J$	$\lambda$	$J$	$\lambda$	$J$
0.81837	60	0.76637	30	0.76884	25	1.03266	40
0.81942	25	0.85419	50	0.82740	25	1.09156	45
1.13811	35	0.86620	50				
1.14039	35						

Páry lithiové maji maximum relativní intensity 40 při

$$
\lambda=0.81263
$$

Páry thalliové podobně maximum relativní intensity 40 při

$$
\lambda=1 \cdot 15117
$$

Výsledky tyto potvrdil $H$. Lehmann (1901) methodou fotografickou, kterouž se vedle oněch maxim objevila ještě četná jiná maxima intensity slabši. Pokud methody fotografické užíti lze, jeví ovšem podrobnosti nejčetnějši.

V nejnovější době (1903) vyšetřovali W. Coblentz a W. Geer radiometricky spektrum Aronsovy lampy rtufové, a nalezli mezi $\lambda=1$ až 5 devět maxim emissnich.

Záření horkého kysličniku uhličitého a horké páry vyšetřoval spektrobolometricky Paschen (1893 a 1894). Výsledky jeho jsou tyto:

$$
\mathrm{CO}_{2}
$$

1. Slabši maximum při $\lambda=2.358$ až 3.016
2. Hlavní maximum „ $\lambda=4.009,4.799$
$\mathrm{H}_{2} \mathrm{O}$
3. Slabé maximum př̀i $\lambda=1.141$ až 1.733
4. Slabé $\quad n \quad n \quad \lambda=1.733 \quad, \quad 2.245$
5. Silnějši " $\quad n \lambda=2242 \quad n \quad 3 \cdot 272$
6. Silné $\quad \pi \quad$ II. $\quad \lambda=4800 \Rightarrow 6.250$

ธ. Silné $\quad \pi \quad$ I. , $\lambda=6.25 \quad, 8.54$.
Poloha obou hlavních maxim I. a II. měni se poněkud s teplotou.

Stejným úkolem zabývali se Rubens a Aschkinass (1898), kteří však dospěli nžívajíce hranolu sylvinového, k délkám vlny $\lambda$ ještě větším, až 20 . Kysličník uhličitý jevil ještě jedno maximum při $\lambda=14 \cdot 1$, vodní páry ještě slabé maximum při $\lambda=13 \cdot 1$.

## § 195. Záření sluneční.

Předmětem pro studium záření nejvděčnějším a nejdủležitějším jest slunce. Ohromné toto těleso nebeské vysilá do prostoru světového paprsky světla a tepla, z nichž jenom poměrně nepatrná část př̌ipadá na zemi naši. Tyto paprsky procházejí atmosférou, která zemi obklopuje a dopadají pak na pevninu i na moře. Při prủchodu atmosférou se částečně absorbují a rozptyluji; dopadajice pak na zemi, z části absorbují se poznovu a z části odrážejí. Absorpce tu i tam způsobuje zahř̛átí, v atmosféře jen velmi malé, poněvadž plyny jsou propustné, na moři a na pevnině značné; odtud zahřivá se pak atmosféra nepřímo vedením tepla, jež jest podporováno prouděním. Takovýmto zpủsobem stává se slunce hlavním zdrojem světla i tepla na zemi naší a základem všeho života.

Mésíc jest pro naši zemi zdrojem tepla velice nepatrným. Langley odhadl teplo, kteréż zemê od mẽsíce prijímá, na stotisíci dil toho tepla, které jí poskytuje slunce. Zemẽ naše sama jest téż zdrojem tepla, vysilajíc z vnitra na povrch konstantní proud tepelný. Přijme-li se za pravdé podobný gradient temperaturní $2 \cdot 8^{0}$ na 100 m a za vodivost vrstev povrchových $0.006 \frac{g}{\mathrm{~cm} \cdot \mathrm{sec}}$, lze vypočísti (§ 151.), že každỷ $\mathrm{cm}^{2}$ za sec prívádí 0.0000017 cal, tedy za 1 rok okrouhle 54 cal (Hann). Střední teplota na zemi zvýší se tím jenom o $0 \cdot 1^{0}$ az̃ $0 \cdot 2^{\circ}$ (Trabert). To vše jsou čísla tak nepatrná, že proti tepelnému účinku slunce úplnẽ mizí.

Záření sluneční zkoumáme jako každé jiné dvojím způsobem; bữ spektrálně nebo integrálně. Při zkoumání spektrálním vytvoříme hranolem nebo mřižkou spektrum a měříme bolometrem lineárnim, postupujíce od nejkratšich vln $k$ nejdelšim, relativní intensitu tohoto zářeni pro jednotlivé délky vlny. Při zkoumáni integrálnim stanovime množstvi tepelné $q$ (cal), kteréž kolmo dopadá na jednotku plochy $\left(\mathrm{cm}^{2}\right)$ tělesa černého, dokonale teplo absorbujicího, za jednotku doby. (Za tuto nevoli se zde sekunda, nýbrž minuta, aby se obdrželo číslo přehlednějši.)

První úkol náleži fysice, druhý meteorologii. Methody jsou tu i tam fysikální. To odvětvi meteorologie, které se zabývá měřenim záření integrálního, jmenujeme aktinometrií*).

Zkoumá-li se úkol podrobněji, nutno přihližeti k tomu, že slunce neni tělesem homogenním; na svém povrchu, který jest jedině pozorováui našemu přístupný, má místa intensity zářivé menší, skvrny, a v sousedství intensity větši, pochodně. Obyčejně studujeme zářeni průměrné. Dále nutno počitati s možností, že paprsky slunce, než dojdou hranic atmosféry naši, pravděpodobně prostupuji shlukem malých tělísek, kteráž jako prach kosmický, jak obrazně řikáme, slunce obklopuji nebo kolem něho krouži, jakož úkazy zodiakálního světla i skvrny slunečni a protuberance tomu nasvědčují. Nebot jest pravdě podobno, že tyto skvrny a protuberance nejsou pủvodu eruptivniho, nýbrž gravitačniho; že vznikají pádem těles anebo řícením se kosmického prachu do futosféry, kdez̆ ponenáhlu se tepelně i chemicky s touto assimiluji. Všechny tyto modifikace zářeni slunečního můžeme jen tušiti, ale nikoli vystihnouti. Konečně procházeji paprsky slunečni atmosférou naší země, a zde vykonávaji dráhu $s$, jež jest měnlivou dle postavení slunce i dle postaveni pozorovatele. Atmosféra seslabí poněkud zářeni, dle délky této dráhy $s$, zpủsobem rủzným. Tento účinek hledime pozorovánim vystihnouti a určiti počtem to množství $A$ tepla v kaloriích, kteréž by každá jednotka povrchová, $\mathrm{cm}^{2}$, tělesa Černého absorbovala za jednotku doby, na př. za jednu minutu na kraji naši atmosféry. Ćislo A nazývá se solární konstantou. Jest patrno, že lze toto číslo obdržeti jenom extrapolací, když z empirické jakési rovnice, která množstvi $q$ vyjadřuje v závislosti na dráze $s$, vypočítáme $q=A$ pro $s=0$. Každá extrapolace jest nejistou, tím vice tato zde, kde extrapolujeme z malých rozdílů v dráze $s$ až na $s=0$. Proto nelze pro $A$ než jen přibližnou hodnotu udati.

Po těchtc povšechně orientujících úvahách přejděme k úkolu, pojednati o spektrálním záření slunečním vzhledem $k$ účinkủm tepelným. Na prahu stoleti 19 tého učinil $F$. W. Herschel, zkoumaje thermometricky spektrum slunečniho zářeni, překvapující objev, že tepelný účinek tohoto záření nepřestává tam, kde konči spektrum viditelné, nýbrž že přesahuje přes barvu červenou do

[^215]té části, kteron nyní zveme infračervenou. Pracemi, jež se k objevu tomuto v prvních letech 19. století připojily, ukázalo se, že maximum tepelného účinku připadá do poloh poněkud měnlivých dle látkové povahy hranolu, kterým světlo slunce zakládáme. U spektra mřiž̌kového jest tato poloha též jinou než u hranolového.


Obr. 202.
Intensita zářeni sluneẽniho v různých částech spekira.
Intensitu slunečniho záření ve spektru zkoumali R. Franz (1857), J. Müller (1858) a j. thermoelektricky, nejdůkladněji pak a velikými prostředky S. P. Langley (1883) bolometricky. Obr. 202. ukazuje jako přiklad výsledky jeho četných měření pro spektrum hranolové v grafickém znázornění. Délka vlny jest jako úsečka udána v jednotce $0.01 u$; viditelná část jest mezi Fraunhoferovými čarami $H$ a $A$ ponechána bílou, neviditelná, t. j. ultrafialová a infračervená jest stinována. Absorpčni čáry a pruhy jsou v této části silněji vyznačeny. Nad spektrem jest sestrojena křivka udávajíci intensitu záření. Četná více méně ostrá minima odpovidají absorpčním čarám a pruhủm. Křivka čárkovaná udává intensitu záření bez ohledu na tuto absorpci.

Kdyby slunce vysilalo záření tak jako těleso absolutně černé, mohli bychom použiti relace (§ 190.)

$$
\lambda_{m} T=2940
$$

a z té počitati teplotu slunečni. Z obr. 202. vycházelo by

$$
\lambda_{m}=0.7 \mu .
$$

Spektra mřižková vedou $k$ hodnotě

$$
i_{m}=0.5 \mu .
$$

Kdybychom tuto přijali, vycházelo by

$$
T=5880 \text { (absol.) }
$$

čili

$$
t=5600^{\circ} \mathrm{C} .
$$

Teplota, kterou pro aequivalentní těleso černé vypočitáme, nazývá se často effelitioní teplotou slunce. Skutečná teplota slunce je dojista větši. Z rủzných účinkû, také z integrálniho záření, lze souditi, že činí ne méně než $6000^{\circ}$ a ne více nez̆ $9000^{\circ}$, pravdě podobně $7000^{\circ}$.

Světlo měsiční v rozboru spektrálnim, nehledime-li k absorpcím v zemské atmosféře, jeví maximum záření asi v téže poloze jako sluneční, ale vedle toho, jak Langley (1889) nalezl, ještě maximum sekundárni při $\lambda_{m}=14 \mu$, které přísluši vlastnímu záření pûdy měsiční. Vzhledem k tomu, že kostka Leslieova $\left(100^{\circ}\right)$ jevi maximum zářeni při $2=8 \mu$, počitá Langley, že by teplota půdy měsični byla v mezich $-10^{\circ} \ldots 0^{\circ}$, což jsou čísla dosti malá, nasvědčujici tomu, že absorpční mohutnost půdy měsiční je nepatrná.

Pokud se integrálního záření slunečního týče, připadají první pokusy, stanoviti toto zǎřeni kvantitativně, do druhé polovice 18tého stoleti (P. Bouguer, J. H. Lambert, R. de Saussure). Ve století 19tém konal pokusy již dokonalejši J. Leslie a zéjména J. Herschel, jenz̆ pozorováni konal na mysu Dobré Naděje (1825). Jeho methoda byla thermometrická. Pozoroval na teploměru, jak teplota stoupala na slunci a jak klesala ve stinu. Methodou kalorimetrickou určoval přímo záření slunečni C. S. Pouillet (1838). Jeho pyrheliometr ${ }^{*}$ ) znamenal na svou dobu veliký pokrok. Kalorimetrem byla cylindrická stříbrná nádoba, naplněná vodou, do niž zasahal jemný teploměr. Základna válce byla začerněna a postavena proti slunci. Ze známé kapacity přístroje, ze zvýšení teploty a z doby, po kterou pozorováno, bylo lze muožstvi tepla absorbovaného jednoduše počitati. Jako korrekci bylo nutno v počet uvésti teplo, kteréž vyzařováním se ztrácelo,

[^216]což se zjistilo pozorováním ve stínu. A. Crova (1877) na mistě vody užíval rtuti v kalorimetru železném. Jiní pozorovatelé, jako Exner a Röntgen (1879), později W. Michelson (1894), uživali s dobrým výsledkem kalorimetru ledového. J. Violle (1874) vrátil se k methodě thermometrické a pozoroval, jako J. Herschel, na teploměru se začazenou teploměrnou nádobkou, ale pokrok bylv tom, že se teploměr nalézal uvnitř duté koule s dvojitými stěnami, mezi nimiž proudila voda, aby okolí teploměru ozářeného bylo udržováno na konstantní teplotě.

Z moderních pyrheliometrủ budiž jako přiklad uveden přistroj, který udal $K$. Ångström (1886) a upravil pro ruské stanice meteorologické O. Chwolson (1894).

Spočívá na základẽ kalorimetrickém, při čemz̃ mẽření rozdílủ tepelných se dêje thermoelektricky. Obsahuje dvê stejné, kruhovité desky médẽné $a$, $a$ (obr. 203.), kteréž na stranẽ ke slunci obrácené jsou začerněny. Na straně opačné jsou vespolek spojeny drátem argentanovým $d$, a mimo to jde od každé desky měděný drát ke galvanometru. Jest patrno, że každá deska sargentanovým drátem poskytuje thermočlánek mẽd-argentan, a že oba působí proti sobě, tak že galvanometr udávả odchylku, jez̃ pr̂isluşi rozdilu temperaturnímu. Nad deskami $a, a$ jsou nahor̃e umístěna trojitá stinftka $M N, M N$, jichz̃ postavení lze jednoduchým mechanismem z pozorovacího stanu, kde se nachází galvanometr, měniti, tak ovlảdati, aby vždy jedna deska byla ozářena a druhá zastíněna. Před pozorováním postaví se prístroj proti slunci tak, aby zár̃eni dopadalo na desky $a, a$ kolmo. Pak se jedna zastíní, druhá ozáři. Za nějakou dobu ukáže galvanometr temperaturní differenci $\tau$ ve vhodné velikosti. Na to se zastínĕní vymění. Pozoruje se pak doba $\Theta$, za kterou se stejná difference temperaturní $z$ ukáže $v$ opac̃ném smyslu. Je-li $c$ kapacita desky $a, s$ její povrch, udává pokus výmẻnu tepelného množství

$$
2 c x c a l
$$

za dobu $\Theta(\mathrm{sec})$ na ploše $s\left(\mathrm{~cm}^{2}\right)$, tak že jest

$$
q=\frac{2 c \tau}{s \Theta}
$$

Tímto pyrheliometrem konají se v Pavlovsku (a Petrohradẽ) na Centrální observator̃i fysikálnẽ-meteorologické pravidelná pozorování.

V novèjší době (1899) udal K. Ångström ještě jiný pyrheliometr, tak zvaný kompensační, kterého lze ostatně použiti ke zkoumání jakýchkoli zdrojủ tepelných. Obsahuje dvě úplně stejné na jedné straně začerněné lamelly kovové, velmi tenké a úzké. Na jednu z nich dopadá záření, tak že se otepli. Druhou lze proudem elektrickým o značném effektu též otepliti a to na teplotu stejnou. Tato stejnost se urči thermočlánky proti sobě,
tudiž differenčně pủsobící, které jsou k lamellám připojeny. .Vytvoří se tedy stav stationárni. Obě lamelly stejně tepla ztráceji a stejně nabývají, jedna zářením, druhá proudem. Teplo proudem za každou sekundu dodávané lze určiti, činí

$$
Q=0.239 . r J^{2}
$$



Obr. 203.
Pyrheliometr Ångström-Chwolsonův.
kdež jest, $r$ odpor lamelly, $J$ intensita proudu. Stejného tepla dostává se druhé lamelle zářením. Je-li $s$ její plocha, činí patrně

$$
q=\frac{Q}{s} \frac{c a l}{c^{2} \cdot} \cdot \overline{s e c}
$$

což lze pak na minutu přepočísti.
Výsledky měření aktinometrických rozeznávaji se, dle různých badatelủ, od sebe velmi značně, což vzhledem $k$ obtižím extrapolace, již vytčeným, nemúže překvapiti. Pro solární
konstantu byly odvozeny hodnoty, jež se pohybuji v mezích $1 \cdot 7$ až 4, tedy značně odlehlých. Zde pak neni prûměrná hodnota pravdě nejpodobnější, nýbrž hodnoty větší, poněvadž různé zdroje chyb výsledek vždy umenšují. Proto A. Crova (1900) pokládá za pravdě nejpodobnější hodnotu

$$
A=4 \frac{\mathrm{cal}}{\mathrm{~cm}^{2} \cdot \min } .
$$

Prijmeme-li ćislo 4 crl (za minutu) pro konstantu solární, pak vysilá slunce za rok množstvi tepla $2 \cdot 1$ milliony cal na každý $\mathrm{cm}^{2}$ nas̉i zemé; tínto teplem by roztâlo 26 kilogrammű ledu, coz̄ činí ledové prisma pfí bási $1 \mathrm{~cm}^{2}$ o délce 280 metrû. Kdybychom si tedy predstavili kolem slunce ledovou kouli dutou o vnitrnim prảmẽru, kterỳ se rovná prûmẽ̌ru drảhy zemské, roztála by tato koule za rok do hloubky 280 metrư.

V novějši době (1901) zkoumal E. F. Nichols svým velice jemným a citlivým radiometrem (§ 170.) záření některých stálic a oběžnic, a nalezl na př. poměr

Wega: Arktur: Jupiter: Saturn =1:2.2:4.7:0.74.
Výsledek pro obẻ stálice je dosti prekvapujici vzhledem $k$ tomu, że Wega, v souhvézdi Lyry, od nás 20 svételny̌ch rokú vzdảlená, svití svêtlem bilym, Arktur pak, v souhvẻzdí Bootes, od nảs 163 světelnỵch rokú vzdálený, svêtlem ćervenayým.

Vzhledem k otázkám týkajicim se fysikální konstituce našeho slunce jest velmi zajímavo, co zjistil S. P. Langley, že slunečni koróna má bolometrický účinek velmi nepatrný. Z toho lze souditi, že koróna neni úkazem tepelným, nýbrž elektrickým.

O nejnovéjšich pracích v oboru energie záření pojednali Dr. J. Theurer, Casop. pro péstov. math. a fys. 17. 1888, a Dr. Frant. Záviška, ibidem 34. 1905.

## IX.

## Základové thermodynamiky.

## § 196. Úvod historický.

Obecný život vede $k$ četným zkušenostem, kteréž poukakazuji na přibuznost úkazủ mechanických a tepelných. Nástroje, jimiž řezáme, pilujeme, vrtáme a pod., jakož i tělesa, která těmito nástroji zpracujeme, zahřivaji se, někdy velice značně, tak že je nutno v práci ustáti a sečkati, az̆ nastane ochlazení. Všude tam, kde pohybu těles brání tření, anebo kde třením tento pohyb zadržujeme, vzniká teplo. Jest též známo, že národové v prvnich počátcích kultury třením si opatřovali ohen̆. Vzhledem $k$ takovýmto dennim zkušenostem jest přirozeno, že od nejstaršich dob, kdy někteři badatelé o podstatě tepla přemýšleli, dvoji se vyskytuje názor, jednak kalorický, jednak mechanický *). Názor kalorický shledával podstatu tepla v jemném jakémsi fluidu tepelném, které se zvalo „caloricum"; názor mechanický vysvětloval teplo pohybem těles a to nikoli jako celku, nýbrž nejmenšich jeho částic.

Rozvoj obou názorủ postupoval parallelně s rozvojem analogických theorii světelných. Také to jest pochopitelné, poněvadž přibuznost zjevủ tepelných a světelných, jak se jevi v záření, jest velmi blizká. Nemůže tudiž překvapiti, že Ch. Huygens (1629-1695), geniálni tvủrce undulačni theorie světla, měl též o teple názor mechanický. Vykládaje záření světla i tepla pohybem soudil zcela dûsledně, když koncentraci paprskủ tělesa se zahřívají, že z pohybu v paprscich vzniká také

[^217]pohyb v tělesích *). Velmi zřetelně vyslovují se o této otázce Lavoisier (1743-1794) a Laplace (1749-1827). Praví, že fysikové mají o podstatě tepla jednak hypothesu fluidovou, jednak hypothesu molekulového pohybu, nechtěji však rozhodnouti, které z obou náleži přednost. Jako v optice autorita Newtonova, tak v thermice autorita Blackova působila, ̌̌e theorie fluidová byla všeobecněji uznávána. Oteplování pak třením bylo vysvětlováno umenšenim tepla specifického. Když v rovnici $Q=M C t$ se stává $C$ menši, musí ovšem $t$ se státi větši.

Na prahu stoleti 19 tého vystupuje markantni osobnost hrabète Rumforda**). V arsenálu Mnichovském pozoroval s úžasem, jak veliké oteplování vzniká při vrtání bronzových děl. Bronzové piliny byly tak horké jako vařici voda. Zkoumal pak jejich teplo specifické a nenalezl umenšení žádného. Výklad změnou specifického tepla ukazoval se býti nemožným, tím více, poněvadž zásoba tepla vrtáním vznikajíiho jevila se býti nevyčerpatelnou. Aby toto teplo určil, vložil válec bronzový do dřevěné nádoby s vodou. Při vrtání ocelovým nebozezem docileno po půl třetí hodině toho, že voda se začala vařiti. Docela správně poznal, že toto teplo vzniká na účet práce koně anebo na účet potravy, kterouž kủn̆ se krmi. Přesvědčeni svému, že teplo není látkou, dal výraz pěknou parallelou: „Teplo se podobá zvučicímu zvonu, ale nikoli vlhké houbě vodu vydávajici."
O účinku svého pokusu vypravuje Rumford: >Bylo by nesnadno li-
čiti výraz překvapení a úžasu, který se zraçil na tvárich všech přitomny̌ch,
kdyż vidẽli, jak se tato veliká hmota vodní zahřivala a konec̃nẽ ve var
prîsla, ac̉ nebylo uz̃ito žádného ohnẻ. Açkoli vẻ́c sama o sobẻ nic divného neposkytovala, prece rád přiznávám, ze jsem z toho prưběhu cítil oprav-

[^218]dovou détinskou radost, kterou bych byl mêl spíse zakrýti nez̃ ukázati, kdybych byl kdy toužil po slávê vãz̃ného filosofa.s

Ty̌ž Rumford učinil již r. 1778 pozorování, jež svédećí o jeho velikém talentu pozorovacím. Konal pokusy o sile strelného prachu; dal stŕileti bud na prazdno nebo s jednou neb i nékolika kulemi. Tu pak s podivením pozoroval, że se pr̃i výstřelu na prázdno hlaveñ ruẽnice více zahr̛ála než při výstřelu s kulf. Rumford ovšem nemohl tehda podati vysvêtleni, jez̃ v tom spoĉ́ivá, że prach, když koná práci menši, vyvine více tepla.

Pokusem ještě frappantnějším ukázal Sir H. Davy (1778 až 1829) pravděpodobnost theorie mechanické. Dva kusy ledu, teploty $-1 \cdot 7^{\circ} \mathrm{C}\left(29^{\circ} \mathrm{F}\right)$, třením vzájemným roztály. Výklad změnou tepla specifického je zde naprosto nemožný, poněvadž specifické teplo vody je dvakráte větší než ledu. Když by theorie kalorická měla býti zachována, bylo by nutno předpokládati latentní teplo práce, jako existuje latentní teplo na př. páry.

V této době, kdy mechanický názor o teple vždy více pronikal, jest zjevem zajimavým a sympathickým mladý Carnot*). Byl názoru mechanickému velmi blizký. Přemýšlel o tom, jak práce teplem vzniká; hledal toho podmínky; poznal, že práce jest možnou jenom, když teplo z tělesa teplejšiho přecházi na chladnější, tedy když teplo s vyššiho temperaturního niveau přecházi na niž̌̌i. Analogie s vodou je blízkon. Také voda vykonává práci, když s vyš̌íi hladiny padá do hladiny nižši.

Množství vody se při tom neměni. Carnot soudil, že také množství tepla se neměni, a že podminkou práce je spád tepla jako spád vody. U spádu vody je výkon pracovní prostě úměrný rozdilu hladin; u spádu tepla je závislost na rozdilu temperatur složitěǰ̌i. Carnot hledá pak, kdy podmínky pro vykonání práce jsou nejpřiznivêjě̌, kdy lze očekávati maximum práce. Vymýšli zvláštni myšlenkový experiment, děj tak zvaný kruhový, o němž niže jednati budeme podrobně̌i. Shledává, že maximum práce nastane, kdy̌̌ změny temperaturní, nehledic k nahodilým ztrátám tepelným, jsou vázány jenom na změny objemové. Jinak povaha látky, která při tom práci sprostředkuje, neni rozhodujicí.

Své úvahy činil Carnot na základě představy o stálosti tepelného množství, tedy na základě theorie kalorické. O hloubce

[^219]a významu úvah těchto svědči okolnost, že se za dnủ našich s malými zmènami též na theorii mechanickou převáději.
>Carnot, jehož myšlenky ještě dnes celou thermodynamiku ovládaji a jejž dle biografie, od jeho bratra s pietou sepsané, jakoz̃ i dle denníku, kterỳ zanechal, poznáváme jakožto osobnost téź ethicky vynikajíci a milou, jest zjevem vzácným. Poskytuje nám neobyčejné zajímavý obraz genia, kterỳ bez zvláştní námahy, bez velikého upotřebování obšíných a těžkopádných védeckých prostředkũ, jenom setrením nejjednodus̃sich zkušeností
 (E. Mach.)

## § 197. Teplo jako energie, rozvoj principu o zachováni energie.

V odstavei předešlém byly vylíčeny úkazy, kteréž způsobily, že theorie kalorická v průběhu prvé polovice století 19tého vždy vice ustupovala theorii mechanické. Jest pravdě podobno, že i Carnot sám představu o stálosti tepelného množství konečně opustil a připouštěl, že teplo může prací mechanickou vznikati, ba že i o vztazích kvantitativních $k$ této přeměně se vztahujicích měl správné představy. Toto prohloubení celé otázky ve smyslu kvantitativním přispělo nemálo ke konečnému rozhodnutí, které připravovali již Séguin, Colding a dovršili v prvé polovici století 19tého Mayer, Joule a Helmholtz. Původni programm, zjistiti vztahy mezi úkazy mechanickými a tepelnými, byl v postupném rozvoji celé otázky rozšiřen a dovršen formulaci zákona o zachování energie platného pro veškeré obory fysiky a věd přírodních vůbec.
J. R. Mayer *), meškaje jako lodní lékař v Batavii, pozoroval při pouštění žilou, že venosní krev tamějšich obyvatelů jest značně červenějši než. jak bývá u obyvatelů krajin severních. Tímto úkazem byl upozorněn na souvislost mezi produkci tepla a spotřebon kyslíku $k$ oxydaci krve. Myšlenky o těchto vztazich zaměstnávaly jej na zpátečni cestě do Evropy a zpủsobily, že jeho názory nabyly rázu všeobecného, že se neomezovaly jen na obor mechaniky a tepla, nýbrž na obory fysikální

[^220]i chemické i fysiologické, na obory přirodní vůbec. Ve svém prvním pojednání, které vyšlo krátce po jeho návratu z cest*), omezil se sice ještě na vzájemné vztahy mezi úkazy mechanickými a tepelnými a zejména vypočítal zde již veličinu, kterou nyní nazýváme mechanickým aequivalentem tepla (ač v podání nikoli jasném). Za to v druhé své práci, která vyšla tři léta později **), pojednává o novém pojmu „síly" (Kraft - ve smyslu energie) v celé všeobecnosti, odvozuje mechanický aequivalent tepla a vyslovuje ve způsobu velmi duchaplném a poutavém své názory o principu, který dnes zveme principem zachováni energie. Vzhledem $k$ tomu dlužno tento spis za jeho hlavní pokládati.

Mayer a dle nêho též Helmholtz a jiní vrstevníci uz̄ívají slova ssilae (Kraft) ve smyslu nynějsího názvu senergiec. Tím mohou při ćteni jejich spisủ za dnů našich, kdy slovo »silae má význam zcela jiný, vzniknouti mnohả nedorozuměni a nejasnosti. Joule užíval označení smechanical powere Carnot a Clapeyron spuissance motrices; později teprve, po roce 1850, ujal se hlavně vlivem anglických fysikủ vhodný název energie.

Z hlavnf̂ho díla Mayerova budtez̃ zde uvedeny některé zajimavé vêty, ale se záménou slova ssílae za správný název senergiea. >Co chemie vzhledem ke hmoté, to má fysika vykonati vzhledem $k$ energii. Tuto energii v rủzných jeji formách poznávati, podmínky jejích změn zkoumati, to jest jediným úkolem fysiky, nebof stvorení nebo zničení energie jest mimo obor lidskẻho myşleni a konảni ... V pravdẽ jest jenom jediná energie. Ve vêčném str̛idání koluje v mrtvé i żivé prifrodẽ. Zde i tam není žádného zjevu bez formální změny energie. © Na jiném místẽ: »Pr̃i všech fysikálních a chemických pochodech zůstává daná energie veliçinou konstantni . . . . Processy z̃ivotní znamenají přemẽnu jak hmoty tak energie, nikdy však stvoření jedné nebo druhé . . . Energie nahromadẽná vzrûstem rostlin připadả jiné tŕ̛dê bytostí, jez̃ sobẻ zásoby loupez̃nẽ osvojují a $k$ úcelûm individuálním upotřebují. Jsou to zviríata. Żivoucí zviře pr̂ijímả stále lảtky spalné, pôcházejíci z r̂iše rostlin, aby je s kyslikem atmosféry zase spojilo. Přimẽřený této spotřebẽ jest výkon, charakterisující z̃ivot zvif̃eci: zpûsobení effektú mechanických, vykonávánf pohybủ, zvedání břemen a j. \& Mayer rozvádi tyto myšlenky ṡíre zpŭsobem velmi poutavým a tak dokonalým, jak bychom i dnes lépe učiniti nemohli.

[^221]V téže době, kdy J. R. Mayer na základě výsledkủ jinými badateli získaných, methodou vědecké spekulace došel až principu zachování energie, pracoval v Anglii J. P. Joule*) o stejném předmětu methodou zkoumání experimentálního. Již roku 1840 zabýval se úkolem stanoviti množstvi tepla. jež vzniká ve vodičich proudem galvanickým; shledal, že toto množství je u proudů z batterie pocházejícich úměrno odporu vodiče a čtverci intensity proudové (zákon Jouleův). Na to experimentoval proudy indukovanými, jež vznikly otáčenim solenoidu v poli magnetickém. Zákon jeho se osvědčil i zde. Avšak otáčení solenoidu bylo spojeno s mechanickou prací. Tím přichází Joule k otázce, zdali mezi množstvím tepla a touto prací jest určitý poměr. Zkoumá pak podobné úkoly v případech, kdy teplo vzniká mechanickou praci přímo, a přichází tak k úkolu stanoviti mechanický aequivalent tepla, kterýžto úkol řeší s velikou péčí a dủkladnosti četnými pokusy. Joule, vykonávaje tyto pokusy, stoji de facto na stanovisku principu o zachování energie, třeba by principu toho zvlást́ neformuloval.

Tento, jakoby závěrečný úkol, princip o zachování energie vědecky přesně a jasně formulovati a theoreticky odvoditi, provedl Helmholtz**). V oboru mechaniky byl tento princip znám. Jednalo se tedy o jeho rozšiření do všech oborủ fysikálnich. Pátráme-li po tom, jaké jsou poslední přičiny všech zjevủ fysikálních, přicházíme k silám, kterými na sebe působí hmoty.

[^222]Tyto sily lze však rozložiti na síly, jimiž na sebe působí jednotlivé částečky hmotné čili hmotné body, a síly tyto jsou bử přitažlivé nebo odpudivé. V obou připadech závisí však velikost i směr těchto sil jenom na poloze obou hmotných bodủ; proto musí velikost síly souviseti se vzdáleností a směr sily př̌ipadnouti do spojovaci přímky obou bodủ. Tím jeví se tyto síly jakožto centrální. Pro takové lze snadno dokázati, že živá síla a napěti, jak se tehda řikalo, čili energie pohybu a polohy, aktuální a potenciální, jak dnes řikáme, jsou vespolek ve vzájemné souvislosti, tak že jedna vzniká, když druhá zaniká, nebo jedna se zvětšuje, když druhá se zmenšuje, čili že součet, t. j. energie totální, zủstává nezměněnou. Zjednav si tak pro princip zachováni energie základ všeobecný, přecházi Helmholtz k speciálním applikacím principu, předevšim na obor tepla, ale též elektřiny a magnetismu a zkoumá jeho důsledky. Zajímavé jsou zejména jeho úvahy o magnetoindukci, v nichž odvozuje rovnici, která dnes jako Helmholtzova je všeobecně užívána*). Shledává, že tyto důsledky v žádném oboru fysikálním neodporuji zkušenostem dotud učiněným, staví tedy svůj theoreticky odvozený princip pod kontrolu empirie. „Účelem tohoto pojednání bylo vysvětliti fysikủm v největši možné úplnosti theoretický, praktický a heuristický význam zákona, jehož úplné potvrzení za jeden $z$ hlavnich úkolů nejbližši budoucnosti fysikální dlužno pokládati. ${ }^{\text {a }}$

Ze stručné této skizzy je patrno, že základ, na němž Helmholtz své úvahy theoretické budoval, byl dosti úzký; základem tím byla supposice, že všechny sily v přírodě jsou centrálni a že jich velikost závisi jen na vzdálenostech pủsobících bodủ (a nikoli na př. na jich rychlostech). Jeho pojednání bylo v kruzích vědeckých přijato tak málo vlidně jako první pojednání Mayerovo; také práce Helmholtzova nebyla přijata do Annálů Poggendorffových. V té přičině měl Joule posici výhodnější; proti jeho výsledkủm experimentálním nebylo možno činiti žádných námitek.

Z úvah těchto poznáváme, že princip, dnes jako základní celé fysiky, ba přirodnich věd vủbec uznávaný, v prvnich počátcích svého rozvoje byl přijat dosti chladně. Mayerovi přisluši zásluha, že cestou filosofické spekulace, použivaje výsledkủ tehda známých, význam principu v celé všeobecnosti správně

[^223][^224]poznal a na jednom případě též číselně odvodil. Joule postupoval cestou empirie, cestou vědeckého experimentu a položil tak základy pevné a spolehlivé, na nichž bylo lze princip zbudovati. Helmholtz vyšetřoval princip theoreticky, podal přesnou mathematickou formulaci a ukázal, že dủsledky principu nejsou nikde $v$ odporu $s$ dosavadním stavem badání vědeckého.

## § 198. Mechanický aequivalent tepla.

Teplem vzniká práce; za každou jednotku tepelnou obdržíme určité množství $J$ jednotek pracovních. Číslo $J$ nazývá se mechanický aequivalent tepla. Jeho reciproká hodnota $\frac{1}{J}$ udává naopak, kolik jednotek tepelných obdržíme za jednotku pracovni. Nazývá se kalorický aequivalent práce.

Číselná hodnota aequivalentu $J$ závisí na jednotkách, jimiž nıěříme teplo a práci. Postupem času užíváno jednotek dosti různých, zejména pro práci.

Jednotkou tepelného množstvi byla a jest kalorie, bud malá, gramm-kalorie (cal), nebo velká, kilogramm-kalorie (Cal). Práce novějši ukázaly, že tuto jednotku dlužno určitěji, než dříve se dálo, definovati (§ 61.). Dnes se užívá téměř všeobecně kalorie Maxwellovy ( $\mathrm{cal}_{15}$ nebo Cal $_{15}$ ), která je (prakticky) stejná s kalorii průměrnou $\left(0^{\circ} \ldots 100^{\circ}\right)$ čili Bunsenovou.

Pokud se jednotky pracovni týče, užívalo se v dobách dřívějšich tak zvané libro-stopy, při niž byla sila měřena vahou libry, dráha pak na stopy. Obě tyto jednotky byly však u různých národủ, ba i v různých městech velmi rozdilné. Po zavedení soustavy metrické nastoupila jako jednotka pracovní kilogrammmetr, při níž jednotkou sily byla váha kilogrammu, jednotkou dráhy pak metr. Vzhledem k tomu, že váha kilogrammu závisí na intensitě gravitačního pole, t. j. na urychlení tiže $g$, nutno, př́sně vzato, jednotku kilogramm-metr vztahovati na určitou geografickou šiřku, anebo ještě správněji, na určité místo, na kterém se měření konaji.

Vědecká jednotka práce *) jest erg nebo jeho násobek $10^{7}$. erg $=$ Joule. Proto jest se stanoviska vědeckého nejvhodnější, definovati čislo $J$ relací

$$
c a l_{15}=J . \text { Joule. }
$$

[^225]Dle nynějšího stavu vědy pokládá se za pravdě nejpodobnější hodnota
tudíž

$$
J=4 \cdot 1861
$$

$$
\frac{1}{J}=0 \cdot 2389
$$

Užívá-li se jako jednotky pracovní kilogramm-metru, máme pro přepočtení relace *)

$$
\begin{aligned}
(\mathrm{kg}) & =1000 \cdot g \cdot d y n a \\
m & =100 \cdot \mathrm{~cm}
\end{aligned}
$$

tudíž

$$
(\mathrm{kg}) m=g \cdot 10^{5} \cdot \mathrm{erg}
$$

anebo

$$
=g \cdot 10^{-2} \text { Joule }
$$

$$
\text { Joule }=\frac{100}{g}(\mathrm{~kg}) m
$$

Jest tedy v jednotce Joule

$$
J=4 \cdot 1861
$$

anebo v jednotce $(\mathrm{kg}) \mathrm{m}$

$$
J=\frac{418 \cdot 61}{g}
$$

Čislo $J$ jest tudiž urychlení gravitačnímu $g$ nepřímo úměrno, jest menší pro města, která leží severněji **).

Pro normální intensitu tiže, t. j. v geografické siiřce n $^{2} 5^{\circ}$ a při hladině mořské, jest***)

$$
g=980.606 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}
$$

tudiž

$$
J=0.42689
$$

Pro Prahu, Klementinum, jest

$$
g=981.01 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}
$$

tudíž

$$
J=0 \cdot 42671
$$

*) Aby nevzniklo nedorozumẽní, užíváme pro vảhu jednoho kilogrammu označeni ( kg ), ježto kg znači hmotu.
**) Této vêtê nesmi se ovšem rozumêti tak, jako by tepelný aequivalent sám byla velǐ̌ina měnlivá. Zdánlivá tato mẽnlivost je zaviněna nevhodností jednotky pracovní, která dle geografické polohy nabývá různých hodnot.
***) Mechanika, pag. 349, 1901.

Aby se obdržela čísla přehlednějši, jest obyčejem zde, kde se za jednotku pracovní voli kilogramm-metr, vztahovati mechanický aequivalent na velkou kalorii $\mathrm{Cal}_{15}$. Pak jest
pro normální intensitu tiže

$$
J=426.89
$$

pro Prahu, Klementinum

$$
J=426 \cdot 71
$$

Čisla zde uvedená lze pokládati za správná asi na 1 až $2 \%$ oo. Pro obyčejné úvahy, kde se nejedná o největší přesnost, postači psáti (§ 61.)

$$
\begin{aligned}
\mathrm{cal}_{15} & =4.19 \text { Joule } \\
\mathrm{Cal}_{15} & =427(\mathrm{~kg}) \mathrm{m}
\end{aligned}
$$

Označení mechanického aequivalentu tepla písmenou $J$ jest voleno dle jména Joule, jenz̃ četnými experimenty je zvlášt určil. Casto se mechanickỳ aequivalent tepla také nazývá っčíslem Jouleovýme.

## § 199. 0 methodách, jimiž se stanovi mechanický aequivalent tepla.

Mechanický aequivalent tepla byl postupem času určován od pozorovatelů četných methodami velmi různými. Zachovávajíce ve výkladu postup historický, vyliccíme tyto methody v jejich základech, přestávajíce na těch, jež jsou jednak historicky, jednak věcně nejdůležitější.

1. Zpủsobem velmi duchaplným vypočital*) J. R. Mayer dle číselných dat tehda známých mechanický aequivalent tepla. Základ jeho methody spočíval v různosti tepla specifického pro vzduch při konstantním tlaku $C_{p}$ a při konstantním objemu $C_{v}$ (§ 80.).

Opakujme jeho úvahy, ale užívejme çiselných dat nejnovéjsích.
Mêjmez̃ v krychli o stranẽ jednoho metru uzavřený vzduch, normálnf teploty $0^{\circ}$ a normálniho tlaku 1 atm . Hmota jeho jest (§ 107.)

$$
10^{6} \mathrm{~cm}^{3} \cdot 0.001293 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=1.293 \mathrm{~kg}
$$

Zahrívejme vzduch tento z $0^{\circ}$ na $100^{\circ}$ při konstantním tlaku. Specifické teplo jest pro tento prípad ( $\S 86$.

$$
C_{p}=0.2374
$$

*) V prvnim pojednáni z roku 1842 (pag. 29) je vẏpočet jen struěnẻ naznąen, $v$ druhém z roku 1845 (pag. 55 ) obsirnẻji proveden.
tudíž spotřeba tepla při onom zahr̉áti

$$
1 \cdot 293 \cdot 0 \cdot 2374 \cdot 100=30 \cdot 70 \mathrm{Cal}
$$

Když bychom týž vzduch zahřívali z $0^{\circ}$ na $100^{\circ}$ při konstantním objemu, byla by spotreba tepla menší, a to $k$-kráte, kdez̃ jest

$$
k=\frac{C_{p}}{C_{e}}
$$

Pravdě nejpodobnějši hodnota, jak v dalšim výkladu ještě uvedeme, jest pro suchý vzduch

$$
k=1 \cdot 406
$$

$$
\begin{aligned}
& \text { Cinila by tedy spotřeba tepla jen } \\
& \frac{30 \cdot 70}{1 \cdot 406}=21.84 \mathrm{Ca} 7 \text {, } \\
& \text { tudǐ̌z v prvém případẽ více o }
\end{aligned}
$$

$$
30.70-21.84=8.86 \mathrm{Cal}
$$

J. R. Mayer vystihl správnẽ, ze tato větşi spotr̃eba tepla jde na účet mechanické präce, kterouz̃ vykonává plyn, když se při konstantním tlaku roztahuje.

Abychom sobẻ tuto práci názorné predstavili, mysleme sobẻ hỡejēi stẽnu oné krychle, kterou vzduch vyplñuje, pohyblivou (obr. 204.). Na této stěnẻ spočivá tlak jedné atmosféry, kterýž na kaz̃dý $\mathrm{cm}^{2}$ činf́, v jednotce svảha kilogrammu e vyjádřeno *),


## Obr. 204.

Jak počital J. R. Mayer mechanický aequivalent tepla.

$$
1.03327 \frac{(\mathrm{~kg})}{\mathrm{cm}^{2}}
$$

tudiž na celou stěnu çtverečného metru

$$
10000 \mathrm{~cm}^{2} \cdot 1 \cdot 03327 \frac{(\mathrm{~kg})}{\mathrm{cm}^{2}}=10332 \cdot 7(\mathrm{~kg})
$$

Pr̂i zahřátí z $0^{0}$ na $100^{\circ}$ posine se tato stěna o

$$
1 \mathrm{~m} \cdot 0 \cdot 003665 \cdot 100=0 \cdot 3665 \mathrm{~m}
$$

vykoná se tudiz̃ práce

$$
10332 \cdot 7 \cdot 0 \cdot 3665=3787(\mathrm{~kg}) \mathrm{m}
$$

Srovnávajíce vykonanou práci s větší spotřebou tepla, obdržíme aequivalent

$$
\frac{3787}{8 \cdot 86}=427
$$

[^226]V rouchu moderním jeví se celá úvaha býti jednodušsí na základě relace (§ 81.)

$$
J\left(C_{p}-C_{v}\right)=R,
$$

ze kteréž lze $J$ přímo počitati. Známo jest teplo specifické pro vzduch při konstantním tlaku (§ 86.)

$$
C_{p}=0.2374
$$

a pak poměr obou tepel specifických pro vzduch

$$
\frac{C_{p}}{C_{v}}=k .
$$

Zavedouce tento poměr $k$ do hořejši relace, obdržíme

$$
\begin{gathered}
J C_{p}\left(1-\frac{1}{k}\right)=R, \\
J=\frac{R}{C_{p}} \cdot \frac{k}{k-1} .
\end{gathered}
$$

Pro poměr $k$ nalezli

C. Röntgen	$k=1 \cdot 405$,
H. Kayser	$1 \cdot 411$,
E. Wiedemann	$1 \cdot 405$
P. A. Müller	$1 \cdot 406$
Lammer a Pringsheim	$1 \cdot 402$
Webster Low	$1 \cdot 397$.

Prúměrná hodnota všech těchto výsledkủ jest

$$
k=1 \cdot 4043
$$

Kdybychom však vyloučili hodnotu poslední, která patrně jest př̌liš malá, obdrželi bychom průměrnou hodnotu

$$
k=1 \cdot 4058
$$

která se jeví býti pravdě podobnější.
Pokud se konečně týče konstanty $R$, dlužno př̌ijmouti tu čiselnou hodnotu, která je ve shodě s jednotkami, v nichž chceme aequivalent $J$ vyjádřiti.

$$
\begin{aligned}
\text { Jest totiž (pro } \frac{m}{\mu}= & N=1) \text { dle } \S \text { ธ1. } \\
R= & 82.02 \mathrm{~cm}^{3} \cdot \text { atm., } \\
& 0.08202 \mathrm{litr} . \text { atm. }, \\
& 8.310 \mathrm{Joule}, \\
& 0.8474(\mathrm{~kg}) \cdot \mathrm{m} .
\end{aligned}
$$

Počítejme $J$ přímo v jednotce Joule. Pak klademe

$$
R=8.310 \frac{m}{\mu} .
$$

Molekulovou váhu $\mu$ dlužno počitati dle pravidla směšovacího pro vzduch, který má $21 \%$ kysliku, $79 \%$ dusiku, tak že jest
t. j.

$$
\mu=0.21 .32+0.79 .28 \cdot 08
$$

$$
\mu=28.90
$$

Vzhledem k tomu, že je ve vzduchu též něco argonu (ne zcela $1 \%$, oč pak dlužno dusiku počitati méně), přijímá se obyčejně

$$
\mu=28.95
$$

Obdržíme tedy konečně pro $m=1$ gramm

$$
J=\frac{8 \cdot 310}{28 \cdot 95} \cdot \frac{1}{0.2374} \cdot \frac{1 \cdot 4058}{0 \cdot 4058}
$$

což vypočteno podává

$$
J=4 \cdot 189
$$

Výsledek je v dobrém souhlasu s číselnou hodnotou

$$
J=4 \cdot 186
$$

kterou jsme nahoře uvedli za pravdě nejpodobnějši.
Přes tento souhlas dlužno přiznati, že tato methoda, stanoviti výpočtem aequivalent $J$, není dosti spolehlivou. Dávod toho jest v konstanté k. Kdybychom byli prijali horejeji prâměr ze všech pozorování (inklusive hodnoty Webster-Low)

$$
k=1 \cdot 4043
$$

a poccitali pak $J$, obdrželi bychom

$$
J=\frac{8 \cdot 310}{28 \cdot 95} \cdot \frac{1}{0 \cdot 2374} \cdot \frac{1 \cdot 4043}{0 \cdot 4043}
$$

t. j.

$$
J=4 \cdot 199
$$

coz̃ jest hodnota o $0.25 \%$ vêtsí, ac̃ hodnota $k=1.4043$ proti $k=1.4058$ jest jen o $0.1 \%$ menši ; ale ve vzorci pricházi téź $k-1$, stoji pak vedle sebe hodnoty 0.4043 a $0 \cdot 4058$, jichz̃ procentuálnf rozdil je ovšem vetž́. Ponẽvadz̃ pak $k$ na více nez̃ $0.1 \%$ zaruc̃iti nelze, nutno pripustiti, že $J$ mưz̃e by̆ti o $0.25 \%$ chybné. Mimo to padá téz na váhu, že rovnice

$$
p v=R T
$$

má platnost jen pro plyny ideální a že by pro plyny skutečné bylo nutno užívati rovnic složitéjsích, na př. rovnice van der Waalsovy.

Počitá-li se $J$ dle starší jednotky kilogramm-metr, dlužno psáti
tudiž

$$
R=0.8474
$$

$$
J=\frac{0 \cdot 8474}{28 \cdot 95} \cdot \frac{1}{0 \cdot 2374} \cdot \frac{1 \cdot 4058}{0 \cdot 4058}
$$

což podává výsledek

$$
J=0.4272
$$



Obr. 205.
Pokusné zařizeni Jouleovo ke stanovení mechanického aequivalentu tepla.

Tento výsledek vztahuje se na malou kalorii. Obyčejně se při jednotce kilogramm-metr počitá výsledek pro velkou kalorii. Pak jest
t. j .

$$
J=1000 \cdot 0 \cdot 4272
$$

$$
J=427,
$$

jakož již dříve bylo vypočteno
2. Nejvhodnějšim základem, na kterémž přeměnu mechanické práce v teplo lze přímo kvantitativně studovati, jest tření. První, jenž na tomto základě prováděl pokusy mnohostranné a obsáhlé, byl Joule.

Při prvních pokusech použil tvaru lopatkových křidel, jež se otáčela ve vodě. Zařizení pokusu objasňuje obr. 205. Dlužno
v zařizení tom rozeznávati část kalorickou a část mechanickou. V části kalorické se měří teplo, jež prací vzniká, v části mechanické pak práce, jež se spotřebuje. Část kalorická obsahuje kalorimetrickou měděnou nádobu $A$, formy válcovité, shora kryton, spočivajíci na dřevěné podložce $g$. Do nádoby zasahá kovová osa $c c$, na níž jsou ve čtyřech $k$ sobě soumèrně v úhlu $45^{\circ}$ postavených rovinách upevněna křídla, dvě plochá a dvě lopatková, jak je v jedné rovině obr. 206. znázorňuje. Kalorimetr naplní se vodou; kǐidla se uvedou $v$ rotaci. Ale pak by se voda jako celek uvedla též v rotaci. Aby se tomu zabránilo, jsou v nádobě upevně̃ny ětyři od obvodu k ose směřujici a k sobě kolmé stěny, jež jsoủ opatřeny přiměřenými výřezy, aby ona kǐidla mohla jimi procházeti. Tim se pohyb vody jako celku znemožní, křidla prostupují vodou s velikým třenim, kterým vzniká teplo zpǔsobujíci stoupáni teploty; tato se odčítá na jemném teploměru do kalorimetru zasazeném. Cást mechanická pokusného zářeni má poskytovati a měřiti práci $k$ otáčeni oněch kǐidel potřebnou. Práce se vykonává padajícím dvojitým závažím ee, které visi na provazcích, natočených na hřidelech $b b$, jichž osy spočivaji na protitočných kladkách $d d$. Na hřidelech jsou upevněna kola $a a$, od nichž jdou provazce na válec $f$, klikon opatřený, který je zasazen


Obr. 206.
Kalorimetr Jouleúv. na válečku $d$ zakončujícím osu $e c$ kalorimetrické nádoby. Provazce od kol aa na válec $f$ jdoucí táhnou na protilehlých bodech a působi na válec $f$ momentem rotačním. Klikou se mohou provazce na válec $f$ natočiti a tím závaží ee vyzvednouti; při tomto natočení se spojení válce $f \mathrm{~s}$ osou kalorimetru uvolni. Když se má pokus provésti, pak se toto spojení pokaždé obnoví.

Měřeni vyžaduje, aby byly provedeny některé práce přípravné. Tepelná kapacita kalorimetru a všech částí ke kalorimetru přislušných vypočitá se ze hmoty a tepla specifického pro daný materiál platného. Stanoví se též závaží, kterým se celý mechanismus udrží v rovnoměrném pohybu, když kalorimetr
ještě neni vodou naplněn; tím se pak eliminuji překážky pohybu. Při vlastním pokusu nutno voliti závaži jen tak velké, aby celý mechanismus se udržoval v pohybu pokud možno rovnoměrném, anebo lépe řečeno, jen málo urychlovaném, při čemž nutno pak odpočísti práci, která se spotřebuje pro toto urychlování a pro energii pohybu tím vznikajici.


Obr. 207.
Jak určoval Joule mechanický aequivalent tepla trenim desk.

Budtez̃ ještě uvedeny některé podrobnosti pokusného zařizení. Závaží ee byla olovẽná; každé váźilo 29 angl. liber čili $13 \cdot 15 \mathrm{~kg}$. Padala s výšky 63 angl. palců čili 1.6 m . Kdyz̃ dopadla na zem, byla znovu natažena, což bylo opakováno $20 \mathrm{krát}$. Tím byl pokus dokončen. Teplota vody stoupla jen o málo více nez̃ půl stupně Fahrenheita ( 0.56 F ); malé toto zvýšení teploty jest při velkém specifickém teple vody pochopitelno. Vykládati četné korrekce, $k$ nimz̃ bylo nutno prihlízeti, jako na pr̂. vzhledem $k$ napêtí provazcû, k záření tepla a j., vedlo by přiliš daleko.

Aby docilil značnějšího zvýšení teploty, užival Joule při jiné ǐadě pokusů na místě vody raději rtuti, tedy kapaliny o malém teple specifickém. Kalorimetr a veškeré jeho části byly ovšem železné.

Joule určoval též teplo vanikajíci třením dvou desk z litiny pracovaných a $k$ sobě dobře přibroušených; $z$ nich jedna $b$ se otáčela, druhá $d$ pak se k ni nehybně přitlačovala a to za-
řizením pákovým z obr. 207. patrným. Obě desky měly formu zkomolených kuželů, a byly vloženy s celým příslušenstvím do kalorimetru. Při pohybu otřásal se celý přístroj; desky, trouce se o sebe, vydávaly tón. Oba tyto účinky bylo nutno zvláštními korrekcemi $z$ definitivních výpočtů vyloučiti.

Jak již v úvodu historickém bylo vyloženo, setkaly se pokusy Jouleovy - opačně než práce Mayerovy a Helmholtzovy - ve světě vědeckém se všeobecným uznáním. Experimenty působily většim dojmem než filosofické spekulace anebo mathematické výklady. Byly činěny návrhy na zlepšení pokusného zařizení, kterých siJoule všímal. V roce 1879 , kdy již nové názory o povaze tepla a o jeho aequivalenci $s$ mechanickou prací všeobecně byly uznávány, podnikl nové pokusy*), aby mechanický aequivalent tepla přesněji stanovil. Jeho zařízení pokusné jest znázorněno schematicky v obr. 208. Mechanická práce byla vykonávána rukou. Hořejši část jest jakoby dvojí centrifugálni apparát; k docileni stejnoměrnosti při otáčení sloužil velký setrvačnik $f$. Jednalo se pak o to, jak měřiti práci na otáčení křídel v kalorimetru vynaloženou. Zde byla provedena myšlenka nová. kterou navrhl Hirn. Kalorimetr $h$ byl postaven na tři sloupečky dře-


Obr. 208.
Pozdéjsí pokusné zařizení Jouleovo. věné upevněné na nádobě rovněž dřevěné $w$, která plovala ve vodě, jež byla nalita do nádoby $w$. Tímto zařizením byl tedy kalorimetr zcela volným a byl by se při pokusu uvedl též v rotaci jakỷmsi momentem rotačním. Tomu se však zabránilo jiným momentem rotačním, opačně působícím, který pocházel ze dvou závaží $k k$, od nichž šly provazce přes kladky na hřidel s kalorimetrem spojený, jemuž
*) J. P. Joule, New determination of the mechanical equivalent of heat, Phil. Trans. 169, 1879.
udilely rotaci opačnou. Moment této rotace lze počítati; jest to moment dvojice silové. Ty̌̌eni pủsobi také takovým momentem. Dlužno tedy pokus zařiditi tak, aby oba momenty se právě kompensovaly, t. j. aby kalorimetr zủstával v klidu.

Je-li o poloměr hřídele, $p$ sila závažím zpúsobená, jest 2op moment dvojice. Při otočeni hřidele jednou kolem, t. j. o obvod $2 \pi \rho$ vykoná se práce $2 p .2 \pi \rho=4 \pi \rho . p$, tudiž při $n$ otočení práce $4 \pi n o p$. Ćislo $n$ bylo stanoveno zvláštním počítadlem.

Tento zpúsob, měřiti mechanickou práci, byl zachov i při pozdějších velmi přesných měřeních, jež na základě tření byly provedeny. Mezi těmi vynikají zejména práce, jež (v letech 1879 až 1882) provedl Row'and *). Úprava pokusu znázorněná v obr. 209. podobala se úpravě Jouleově, vynikala však v ohledu methodickém šetřením všech jemných korrekcí, jež byly způsobeny rủznými vlivy vedlejšími. Kalorimetrická nádoba byla zavěšena na drátu. Osa, na niž byla upevněna soustava křidel, byla do kalorimetru vsazena zdola a otáčela se rychle pomocí ozubených kol, z obrazce patrných, motorem petrolejovým. Počet otoček byl registrován samočinně. Rovně̌̆ okamžiky, kdy teplota v kalorimetru dostoupila určité výše, registrovaly se samočinně. Otáčeci moment určil se z prûměru kladky $k l$ a ze závaží $o, p$ jako při úpravě Jouleově.

Zvláštnosti pokusného zařizení Rowlandova bylo, že se mechanický aequivalent tepla mohl určiti v rûzných temperaturních polohách, a že se dle výsledkủ mohlo stanoviti specifické teplo vody pro různé teploty (§ 63.), čímž práce Rowlandova nabyla významu zvẏšeného.

V novějši době prováděli přesná mě̌̌ení mechanického aequivalentu tepla na základě tření C. Miculescu (1892). Reynolds a Moorby (1898) a j.

Pro účely laboratorní a přednáškové udal (1875) Puluj**) přistroj velmi účelný a přehledný (obr. 210.), který lze na každý

[^227]centrifugální stroj umistiti. Na osu takového stroje, který je opatřen počitadlem otoček, upevní se ocelová kuželovitá nahoru se rozšiřující nádoba $k$, do níž jest zabroušena druhá podobná ocelová nádoba, kterou lze nahoře uzavřiti přiklopem. Tato


Obr. 209.
Apparát Rowlandúv.
druhá nádoba sloužící za kalorimetr, naplní se rtuti. Jeji teplotu lze měřiti jemným teploměrem do přiklopu zasazeným. Na přiklopu jest upevněn ukazovatel $g h$; od jeho konce $h$ jde šňủra přes kladku a nese mističku $S$, na niž se kladou závaží. Postavení ukazovatele $h$ pozoruje se na stupnici $\alpha_{1} \alpha_{2}$.
obor elektrotechniky. Vynikl v oborech elektrotechnických jako vynálezce četných přistrojủ (Pulujovy lampy) i jako výborný experimentátor. Jeho prístroj ke stanovení mechanického aequivalentu tepla byl vyznamenán na elektrotechnické výstavè Pariižzskè 1878.

Při provádění pokusu toči se strojem centrifugálnim tak, aby kužel vnější stáčel tř̌ením kužel vnitřni a tím i ukazovatele

gh opačně, než jej otáčí závaži na misce $S$. Podminky pokusu (rychlost otáčení, velikost závaži na misce) zařídi se tak, aby ukazovatel zủstával v poloze nullové. Pak se vypočitá práce
třením způsobená dle výrazu již v předešlém užitého

$$
w=2 \pi \rho \cdot n \cdot p
$$

kdež znamená $\varrho$ délku ukazovatele od osy až $k$ bodu, na kterém působí šňůra, $p$ váhu závaží, $n$ počet otoček určený počitadlem. Na druhé straně určí se množstvi tepla třením vznikajicího kalorimetricky, dle toho, jak stoupá teplota rtuti. Při tom dlužno ovšem kapacitu kalorimetrických částí, t. j. obou kuželủ, vzíti v počet a také korrekci vzhledem ke ztrátám tepelným, jež vznikají vedením a zářením tepla.


Obr. 211.
Jak urẽoval Hirn mechanický aequivalent tepla.
3. Velmi poučnou, ač méně přesnou, jest methoda, kterou Hirn*) stanovil mechanický aequivalent tepla na základě rázu hmot nepružných. Jeho apparat je znázorněn v obr. 211. Na provazcích (asi $3 m$ dlouhých) je zavěšen válec $A$ żelezný, o hmotě 350 kg ; naproti němu podobně hranol $M$ pískovcový, o hmotě 941 kg , který na své, k válci $A$ obrácené straně má připevněnou desku železnou $B$. Válec $A$ jest jakoby kladivem, blok $M$ jako kovadlinou. Mezi obě lze vložiti olověnou nádobku $D$, o hmotě 3 kg , uvnitř dutou, sloužící za kalorimetr. Před pokusem určí se teplota kalorimetru $D$ teploměrem do dutiny vloženým. Pak se kalorimetr dřevěnou vidlici přidrži na desce $B$, válec $A$ se odtáhne do polohy vyšší, kterou dlužno vyměřiti,
*) Gustav Adolf Hirn (1815-1890), civilni inżenýr, geniálni autodidakt, pracoval v oborech velmi četných, v geometrii, meteorologii, ve fysice, zde hlavně v thermice.
a spustí. Padaje udeři na kalorimetr, který se rázem tím otepli. Energii pohybu válce $A$ v okamžiku rázu 1̇ze počitati. Celá energie se ovšem neproměni v teplo, nýbrž jen část, kterou nutno určiti, nebof po rázu odrazi se od sebe válec $A$ i blok $M$. Množstvi tepla v kalorimetrické nádobce rázem vznikajicí urči se hned po pokusu tak, že se do dutiny naleje odměřené množstvi vody a pozoruje, jak jeji teplota stoupne. Ztráty tepelné nutno jako korrekce vyšetřiti a vziti v počet.
4. O jiných methodách budiž jen kursórně učiněna zmínka. Joule urćoval mechanický aequivalent tepla $z$ isothermické kompresse vzduchu. Joule a Hirn protlačovali vodu velkým tlakem kapillárnimi trubicemi a mě̌̌ili teplo, jež vzniklo třením vody v těchto kapillárách. Joule a po něm četni jiní pozorovatelé určovali práci elektrickou (Volt-Ampère-sec) a mě̌̌ili v kalorimetru teplo (cal) touto praci ve vodiči vznikajici. Edlund měřil aequivalent z ochlazení drátu náhle zatiženého.

Jednotlivé závěrečné výsledky, dle method různých vyjádřené v jednotce Joule a $\mathrm{cal}_{15}$, differuji dosti značně, pohybujice se v mezich

$$
J=4 \cdot 167 \ldots 4 \cdot 194
$$

Za pravdě nejpodobnějši přijímá se, jak již uvedeno, hodnota

$$
\begin{aligned}
& J=4 \cdot 186 \\
& \frac{1}{J}=0 \cdot 2389
\end{aligned}
$$

Chyba, jež by snad ještě ve výsledku tomto byla, odhaduje se nejvýše na 2 pro mille.

## § 200. Prvni hlavni věta thermodynamiky.

Budiž dán hmotný systém o vnitřní energii $U$. Tato energii mủžeme sobě mysliti jako energii molekulovou, dilem potenciální, dilem aktuální. Pokud tento systém před jakýmikoli účinky vnějšími jest chráněn, zủstává tato energie celkově konstantni. Zvýšiti se múže bử energie potenciální na ujmu aktuální nebo naopak energie aktuálni na ujmu potencialní.

Při ivádime-li však tomuto systému z vnějška teplo, nastává povšechně úkaz dvoji. Múže se tímto teplem jednak zvýšiti vnitřui energie systému, která z hodnoty $U_{1}$ stoupne na $U_{2}$;
mủže však vedle toho daný systém na účet tohoto tepla vykonati práci $W$ proti silám vnějsím.

Jest obyčejem teplo, kteréž se tělesu přivádi, počítati positivně; zároveň jest $k$ zjednodušeni výhodno, když se toto teplo, v kaloriich vyjádřené, hned násobí čislem Jouleovým a tak přepočítá na svou pracovni hodnotu $Q$. Rovněž tak jest pravidlem práci, která se proti vnějším silám vykoná, počitati positivně.

Pak jest v platnosti rovnice

$$
Q=U_{2}-V_{1}+W
$$

t. j. teplo systému přiváděné a $v$ pracovní hodnotě vyjádřené jest rovno přirůstku vnitřni energie a práci proti silám vnějšim vykonané. Tato základní věta nazývá se prvni hlavni vêtou thermodynamiky.

Zahr̛iváme-li nêjaké tēleso, zvýší se jeho teplota; zároveñ se têleso roztahuje, při čemz̄ se jednak prekonávají síly molekulové, t. j. vykonává se práce vnitřní, a současnê se prekonávají sfly vnéjsíi na têleso působíci, na př. tlak atmosférický, t. j. vykonává se práce vnējsisi (§ 69.). Zvẏsení teploty znamená zvêtšení vnitr̃ní energie aktuální, żivé sfly molekulového pohybu; práce pak vnitřní znamená zvětšení molekulové energie potenciální; obé dohromady značí $U_{g}-U_{1}$, práce vnější jest $W$. Pr̂i zahr̂ívání préchází jakési quantum tepla na př. z lázně do tělesa, kteréž vyjádr̃eno v kaloriich a násobeno c̛íslem Jouleovým dává $Q$.

Formạ́lně vhodněji vyjadruuje se prvni hlavni vêta thermodynamiky, kdyz̃ se do rovnice zavedou male zmény (difference $\Delta$ ) veličin $Q, U, \underset{\mathcal{H}}{ }$, t. j. kdyz̃ se piše pryní hlavni vêta ve zpûsobu

$$
\Delta Q=\Delta U+\Delta W
$$

Práce vnějši zález̃í často v překonávání tlaku $p$ při zmẽnẽ objemu $d v$. Zde značí $p$ vżdy tlak na jednotku povrchovou vztahovaný, dle rozmẽru
$\frac{\mathrm{F}}{\mathrm{L}^{2}}$.
Ponēvadž pak změna $d v$ má rozmẽr
$\mathrm{L}^{3}$,
značí $p d v$ rozměrovẽ
FL,
t. j. práci $d W$ pr̃i oné zmẽnẽ objemové vykonanou. Máme tedy

$$
d W=p d v
$$

kteréz̃to rovnice jsme již u plynủ užívali (§ 81.).
V rovnici

$$
Q=U_{2}-U_{1}+W
$$

Dr. V. Strouhal: Thermika.
pozorujeme daný systém ve dvou stavech, začátečním 1 a konečném 2. Práce $W$ závisí též na způsobu čili na cestẽ, kterou systém prevedeme ze stavu začátečního do stavu konečného; naproti tomu změna vnitřni energie $U_{2}-U_{1}$ jest na této cestě nezávislá. Jest stanovena prostě stavem začátečním $U_{1}$ a konečným $U_{2}$. Proto jest také na této cestě nezávislým rozdil $Q-W$, který jest roven $U_{2}-U_{1}$.

Ze všeobecné formulace prvni hlavní věty thermodynamiky vytkněme dva zvláštní případy.

1. Budiž $Q=0$. Process touto podminkou vyjádřený označujeme jakožto adiabatický (§ 84.). Pro tento máme speciálně

$$
0=U_{2}-U_{1}+W
$$

t. j. práce proti vnějším silám vykonává se na účet energie vnitřní.
2. Budiž $U_{2}-U_{1}=0$ čili $U_{2}=U_{1}$. Systém přichází do téhož stavu, ze kterého jsme vyšli. Process takový označujeme jakožto kruhový. Pak jest

$$
Q=W
$$

t. j. teplo tělesu přiváděné jeví se zcela ve vykonané práci vnější.

Processy čili děje adiabatické bývají v přírodě dosti časté. Náhlé rozpětí plynu neb páry, jez̃ děje se proti tlaku vnêjšímu, je spojeno s ochlazenim, rovnēz̃ tak náhlé prodloužení tyčí a pod. V Akustice (§ 208. 1902) vytkli jsme, že také kmity zvukové ve vzduchu (a v plynech vůbec) se dêjí tak rychle, že vyrovnávání teplot jest nemoz̃né; nedêjí se tedy isothermicky, ny̌brz̄ adiabaticky; odtud korrekce Laplaceova ve vzorci Newtonově.

Zajímavý pokus, který již̃ dříve provedl Gay-Lussac, opakoval (1844) Joule. Připravil dvẽ kovové nádoby $R$ a $E$, jez̃ byly vespolek spojeny trubici s kohoutem. Jedna z nich $R$ obsahovala vzduch komprimovaný na 22 atmosfér, druhá $E$ byla prázdná. Když se kohout otočil, proudil vzduch z nádoby $R$ do $E$, až nastala tlaková rovnováha. Rozpẽtím se tudiz̃ vzduch v $R$ ochlazoval, stlačením v $E$ oteploval. Aby zkoumal kalorimetrický effekt, vloz̃il Joule obě nádoby do společného kalorimetru s vodou. Při promíchání vody nejevila se žádná zmẽna teploty. Ochlazení se tudiz̃ kompensovalo zahr̛átím. Vzduch, kdyz̃ se rozpíná, nevykonávaje zaádné práce vnéjší, neměni své teploty; jeho energie není tudiz̃ závislá na objemu. Joule uçinil kontrolní pokus tím, że dal každou nádobu do zvláśtnîho kalorimetru. Voda v prvém kalorimetru jevila ochlazení o $2 \cdot 36^{\circ}$, v druhém zahřátí o $2 \cdot 38^{\circ}$. V mezich chyb pozorovacích potvrdil tudiz̃ tento experiment, že celkem teplo se nemění.

Věta právẽ vyslovená, że energie plynu nezávisi na jeho objemu, vyžaduje malé opravy. Jemnějši pokusy (W. Thomson) ukázaly celkové, byt nepatrné, ochlazení plynu. Dủvod toho spočívá v malŷch přitažlivẏch silách
molekulových, které jsou v rovnici stavojevné van der Waalsovẽ vyjádřeny členem $\frac{\boldsymbol{a}}{n^{2}}$ (§ 58.) představujíce molekulovou kohaesi. Když se plyn rozpíná z malého objemu na větší, překonávají se tyto síly, plyn vykonává tudiz̃ práci vnitr̃ní na účet svého tepla, nastává tedy malé ochlazení.

## § 201. Isothermické a adiabatické změny objemové u plynů.

Tlakem $p$ mění se objem $v$ plynu; a naopak dle objemu $v$ měni se napětí $p$ plynu. Děje-li se tato změna isothermicky, jest stanovena zákonem Boyle-Mariotte-ovým (§ 52.)

$$
v p=\text { const. }
$$

Děje-li se adiabaticky, jest určena rovnicí Poissonovou (§ 84.)

$$
v^{k} p=\text { Const. }
$$

Hodnota obou konstant se vypočítá, když jest dána jedna dvojice sdružených hodnot $v_{0}, p_{0}$ objemu a tlaku. Pak jest

$$
\begin{aligned}
v p & =v_{0} p_{0} \\
v^{k} p & =v_{0}^{k} p_{0}
\end{aligned}
$$

Výhodno jest zde užívati znázornění grafického. Nanášíme v rovině objem $v$ jako úsečku, tlak $p$ jako pořadnici. Každá dvojice sdružených hodnot $v, p$ určuje $v$ rovině bod; onèmi zákony jest pak dána rovnice celého pásma takovýchto bodů, t. j. rovnice křivky, kterouž zoveme v prvém připadě isothermickou čili zkrátka isothermou, $\mathbf{v}$ druhém případě adiabatickou čili krátce adiabatou. Jediným bodem ( $v_{0}, p_{0}$ ) jest již určena jak isotherma, jež jím prochází, tak adiabata. Teplota $T$, kteráž této isothermě přísluší, vypočitá se z rovnice stavojevné

$$
v p=R T
$$

v níž jest konstanta $R$ číselně podmíněna jednak množstvím plynu, t. j. počtem $N$ gramm-molekul $\frac{m}{\mu}$, jednak volbou jednotek pro objem a tlak, jak o tom jedná §51. Pro jednotky nejvíce užívané, totiž $\mathrm{cm}^{3}$ a atmosféru, jest

$$
R=82 \cdot 02 \frac{m}{\mu}
$$

Rovnici Poissonovu můžeme obdržeti v jiných formách, když na základě rovnice stavojevné zavedeme do ní teplotu $T$ a to bử na místě tlaku $p$ nebo na mistě objemu $v$. V prvém pří-
padě obdržíme na místě původní relace

$$
v^{k} p=v_{0}^{k} p_{0}
$$

formu jinou

$$
v^{k} \frac{R T}{v}=v_{0}^{k} \frac{R T_{0}}{v_{0}}
$$

čili

$$
v^{k-1} T=v_{0}^{k-1} T_{0} .
$$

V druhém případě podobně, na mistě původní relace

$$
v^{k} p=v_{0}^{k} p_{0}
$$

formu jinou

$$
\frac{R^{k} T^{k}}{p^{k}} p=\frac{R^{k} T_{o}^{k}}{p_{0}^{k}} p_{0}
$$

čili

$$
\frac{T^{k}}{p^{k-1}}=\frac{T_{o}^{k}}{p_{0}^{k-1}}
$$

anebo též

$$
\frac{T}{p^{\frac{k-1}{k}}}=\frac{T_{0}}{p_{0}^{\frac{k-1}{k}}}
$$

Máme tudiž rovnici Poissonovu v těchto třech důležitých formách:

$$
\begin{aligned}
v^{k} p & =v_{0}^{k} p_{0} \\
v^{k-1} T & =v_{0}^{k-1} T_{0} \\
-\frac{T}{p^{\frac{k-1}{k}}} & =\frac{T_{0}}{p_{0}^{\frac{k-1}{k}}} .
\end{aligned}
$$

Na základě těchto rovnic můžeme řešiti všechny únkoly ke změnám adiabatickým se vztahujici. Zejména lze počitati, jak se mění teplota $T$ plynu, když postupujeme na určité křivce adiabatické od místa k místu, hledice při tom bư k objemu $v$ nebo ke tlaku $p$.

Aby význam těchto vztahů jasně vynikl, jakož i aby se jasně poznala rozdílnost, jakou ve svém průběhu jeví adiabata oproti isothermě, jež obě týmž daným bodem procházeji, jest v následujícim propočitán konkrétní přiklad, a to pro hodnotu (zaokrouhlenou)

$$
k=1 \cdot 41
$$

jež přisluší dokonalým plynủm dvojatomovým (zejména vodiku $H_{2}, \S 86$., též vzduchu, pro který jsme hodnotu $1 \cdot 406$ uznali za pravdě nejpodobnějsí).

Jakožto bod, kterým isotherma i adiabata mají procházeti, volme jednoduše

$$
v_{0}=1, \quad p_{0}=1
$$

Počitejme pak napětí $p$ pro řadu speciálních, aequidistantních hodnot objemu $v$, totiž
jednak

$$
v=0 \cdot 1,0 \cdot 2,0 \cdot 3, \ldots 0 \cdot 9,1 \cdot 0
$$

$$
\text { jednak } \quad v=1, \quad 2,3, \ldots 9,10 \text {, }
$$

a to pro změny jak isothermické, tak adiabatické. K tomu počitejme též příslušnou teplotu $T$, volíce pro onen společný bod $v_{0}, p_{0}$ ) speciální hodnotu

$$
T=273^{\circ}, \text { t. j. } t=0^{\circ} .
$$

Výsledek těchto výpočtủ ukazuje připojená tabulka.
Změny isothermické a adiabatické v číselném znázornění pro $k=1 \cdot 41$.

$v$	$\begin{gathered} p \\ \text { isothermicky } \end{gathered}$	$\begin{gathered} p \\ \text { adiabaticky } \end{gathered}$	$\underset{\text { absol. }}{T}$	$\begin{gathered} t \\ { }^{\circ} \mathrm{C} \end{gathered}$
$0 \cdot 1$	10.000	$25 \cdot 700$	$701 \cdot 7$	$428 \cdot 7$
0.2	5.000	$9 \cdot 673$	$528 \cdot 1$	$255 \cdot 1$
03	3.333	$5 \cdot 461$	$447 \cdot 2$	$174 \cdot 2$
$0 \cdot 4$	$2 \cdot 500$	3.640	$397 \cdot 5$	124.5
0.5	2.000	$2 \cdot 657$	362.7	$89 \cdot 7$
06	$1 \cdot 667$	2.048	$336 \cdot 3$	$63 \cdot 3$
$0 \cdot 7$	1.429	1.661	$317 \cdot 4$	$44 \cdot 4$
08	$1 \cdot 250$	$1 \cdot 370$	$299 \cdot 1$	$26 \cdot 1$
$0 \cdot 9$	$1 \cdot 111$	$1 \cdot 160$	$285 \cdot 1$	$12 \cdot 1$
1.0	1.000	1.000	$273 \cdot 0$	$0 \cdot 0$
1.5	0.666	0.565	231.2	- 41.8
20	0.500	0:376	205.5	- 67.5
2.5	$0 \cdot 400$	$0 \cdot 275$	187.5	- 85.5
3.0	$0 \cdot 333$	$0 \cdot 212$	174.0	- 99.0
35	$0 \cdot 286$	$0 \cdot 171$	163.3	- 1097
4.0	$0 \cdot 250$	0.142	154.6	-1184
5	$0 \cdot 200$	$0 \cdot 103$	$141 \cdot 1$	- 131.9
6	$0 \cdot 167$	0.080	131.0	- 142.0
7	$0 \cdot 143$	0.064	$122 \cdot 9$	- $150 \cdot 1$
8	$0 \cdot 125$	0.053	116.4	- 156.6
9	$0 \cdot 111$	0.046	$110 \cdot 9$	-1621
10	0.100	0.039	106.2	$-166.8$

Z tabulky této poznáváme jasně, jak při adiabatické kompressi plynů napětí $p$ daleko rychleji stoupá než při isothermické, a rovněž tak, jak při adiabatické dilataci plynủ napětí $p$ daleko rychleji klesá než při isothermické. Zvláště poučná jsou však čísla temperaturní. Poznáváme, jak se plyn při adiabatické kompressi rychle zahřívá, a rovněž při adiabatické di-


Obr. 212.
Isotherma a adiabata.
lataci rychle ochlazuje. Stlačení na objem poloviční zpủsobuje již zahřátí z $0^{\circ}$ na $90^{\circ}$ a stlačeni na desetinu objemu již téměř $430^{\circ}$. Tím se vysvětluje účinnost pokusu, kterým se obyčejně zahřátí vzduchu při náhlé značné kompressi v přednáškách vysvětluje. Ve válci skleněném, silnostěnném, pohybuje se vzduchotěsně píst, který na své dolejši ploše ve vhodné pro-
hloubenině má hubku. Když se prudce pist stlačí pokud možná dolủ, zapálí se hubka. Předpokládáme-li, že se při tom objem vzduchu stlači na dvacetinu a že začáteční teplota vzduchu jest $t=20^{\circ}$, plyne $z$ rovnice

$$
\left(\frac{v}{v_{0}}\right)^{k-1} T=T_{0}
$$

dosadime-li

$$
\frac{v}{v_{0}}=0.005, \quad T_{0}=273+20
$$

že jest

$$
\begin{aligned}
T & =1000 \\
t & =727
\end{aligned}
$$

kterážto teplota $k$ zapáleni hubky stači.
Pokus dluz̃no činiti po tmẽ; zapáleni hubky jeví se pak zablesknutím, jež lze i z daleka pozorovati. Má-li se pokus opakovati, dluz̃no plyny pr̃i zapáleni hubky vzniklé z válce odstraniti. Vyfouknou se gummovým dmuchadlem nasazeným na trubičce sklenéné, která se vloži dovnitr̃ vâlce. Hubka i vzduch mají býti suché. Pist, aby se volnê a přece vzduchotěsnẽ pohyboval, natře se hustsím minerálním olejem.

Z předchozich čísel jest také pochopitelno, proč se recipient vývěvy pokryje mlhou, když se vzduch začne čerpati. Již při mirném rozpěti vzduchu vzniká ochlazeni, teplota klesne pod bod rosný a následkem toho páry vodní, ve vzduchu obsažené, srážejí se jako mlha na vnitřni stěně skleněného recipientu; ovšem rychle zase mizeji, poněvadž se teplota uvnitř opět vyrovnává s teplotou vnẻjši.

Adiabatickou kompressi vysvětluje se značné zahřátí proudủ vzduchových sestupujicich s výšin alpských do údoli (Föhn). Naopak adiabatickou expansí podporuje se kondensování plynủ, již před tím značně ochlazených, jak o tom na svém místě bylo pojednáno.

Na základě čiselných hodnot pro $v, p \mathrm{v}$ tabulce sestavených jest v obr. 212. provedeno přesné grafické znázorněni isothermy a adiabaty. Diagramm znázorǔuje ještě lépe než tabulka rozdilnost objemových a tlakových změn, jsou-li isothermické nebo adiabatické.

## § 202. Práce plynu při expansi isothermickẻ a adiabatickẻ.

Rozpíná-li se plyn proti tlaku $p$, vykonává vnějši práci, kterou počitáme za positivní. Naopak, když se plyn stlačuje tlakem $p$, spotřebuje práci vnějši; tuto počitáme za negativní.

Element práce jest dán součinem (§ 200.)

$$
p d v
$$

tudî̃̃ práce úhrnná integrálem

$$
W=\int_{v_{1}}^{v_{2}} p d v
$$

kdez̃ meze integrační znamenají objem začáteční $v_{1}$ a konečnỷ $v_{2}$.

1. Pr̂i změnách isothermických jest v platnosti vztah

$$
p=\frac{\text { const }}{v}
$$

Integrál nabývá tím tvaru

$$
\begin{aligned}
W & =\text { const } \int_{v_{1}}^{v_{2}} \frac{d v}{v}=\text { const }[\lg v]_{v_{1}}^{v_{2}} \\
& =\text { const } \lg \frac{v_{2}}{v_{1}} .
\end{aligned}
$$

Za konstantu můžeme klásti výrazy

$$
\text { const }=v_{1} p_{1}=v_{2} p_{2}
$$

anebo také, dle rovnice stavojevné,

$$
\text { const }=R T
$$

Pro práci, kterou plyn vykonává nebo spotřebuje, když se isothermicky zobjemu $v_{1}$ (při tlaku $p_{1}$ ) rozpíná nebo stlačuje na objem $v_{2}$ (při tlaku $p_{q}$ ), maje teplotu $T$, obdržíme tudiž výrazy

$$
W=v_{1} p_{1} \lg \frac{v_{2}}{v_{1}}=v_{1} p_{1} \lg \frac{p_{1}}{p_{2}}
$$

nebo

$$
W=v_{2} p_{2} \lg \frac{v_{2}}{v_{1}}=v_{2} p_{2} \lg \frac{p_{1}}{p_{2}}
$$

anebo

$$
W=R T \lg \frac{v_{2}}{v_{1}}=R T \lg \frac{p_{1}}{p_{2}}
$$

2. Při zmẽnách adiabatických jest v platnosti vztah

$$
p=\frac{\text { Const }}{v^{k}}
$$

Obdržime tudiz̃

$$
\begin{aligned}
W & =\text { Const } \int_{v_{1}}^{v_{2}} \frac{d v}{v^{k}}=\text { Const }\left[\frac{v^{-k+1}}{-k+1}\right]_{v_{1}}^{v_{2}} \\
& =\frac{\text { Const }}{k-1}\left(\frac{1}{v_{1}^{k-1}}-\frac{1}{v_{2}^{k-1}}\right) .
\end{aligned}
$$

Za konstantu klademe výrazy

$$
\text { Const }=v_{1}^{k} p_{1}=v_{2}^{k} p_{a}
$$

a pîseme vzhledem k tomu výraz pro $W$ ve formě

$$
W=\frac{1}{k-1}\left(\frac{v_{1}^{k} p_{1}}{v_{1}^{k-1}}-\frac{v_{2}^{k} p_{2}}{v_{2}^{k-1}}\right)
$$

Pro práci, kterou plyn vykonává nebo spotřebuje, když se adiabaticky rozpíná nebo stlačuje $z$ objemu $v_{1}$ (při tlaku $p_{1}$ a teplotě $T_{1}$ ) na objem $v_{2}$ (při tlaku $p_{2}$ a teplotě $T_{2}$ ), obdržime tudiž vzorec

$$
W=\frac{1}{k-1}\left(v_{1} p_{1}-v_{2} p_{2}\right)
$$

anebo též dle rovnice stavojevné

$$
W=\frac{1}{k-1}\left(T_{1}-T_{q}\right)
$$

Vzorec tento jest pozoruhodný. Práce při změnách adiabatických jest určena začátečni a konečnou teplotou, a to ve způsobu velmi jednoduchém, jsouc prostě úměrná rozdilu obou těchto teplot. Když se plyn adiabaticky rozpíná, ochladi se, tudiž jest $T_{2}<T_{1}$ a $W$ positivni. Naopak, když se plyn adiabaticky stlačuje, zahřeje se, tudiž jest $T_{2}>T_{1}$ a $W$ negativní. Oba pochody, za sebou provedené, se navzájem úplně kompensují.

Při mnohých úvahách jest výhodno užívati methody grafické, při níž práce se jeví ve významu geometricky jednoduchém. Patrně značí integrál

$$
W=\int_{v_{1}}^{v_{2}} p d v
$$

komplanaci plochy, která je omezena osou úseček, oběma pořadnicemi $p_{1}, p_{2}$, jež přislušeji $k$ úsečkám $v_{1}, v_{2}$, a obloukem bud isothermy nebo adiabaty, na níz body $\left(v_{1}, p_{1}\right)$ a $\left(v_{2}, p_{2}\right)$ jsou položeny.

## § 203. Princip Carnotův

S. Carnöt, o jehož významu v thermodynamice již v úvodu historickém byla zminka učiněna, hleděl vystihnouti podminky, při kterých plyn (nebo pára) svou expansí vykonává práci a při tom zpětnou kompressí se vraci do stavu pùvodnîho. Děj takový nazvali jsme kruhovým čili cyklickým. Opakujme úvahy Carnotovy ve způsobu poněkud změněném, a to na základě methody grafické a analytické, kterou udal Clapeyron a které jsme také již v odstaveích předešlých užili.
S. Carnot uveřejnil své úvahy ve spise již citovaném: Sur la puissance motrice du feu, Paris, 1824. O 10 let později zaby̌val se řešením Carnotovým Clapeyron ${ }^{*}$ ), jehoz pojednání má název zcela podobny: : Sur la puissance motrice de la chaleur, Journ. de l'école polytechn. 23, 1834. Uživaje pri svych výkladech methody grafické a analytické, uc̃inil úvahy Carnotovy názornéjsími a tím prístupnéjsími, tak ze tepre po této době pronikly do širšich kruhủ vêdecky̌ch.

Začáteční stav plynu budiž dán bodem A (obr. 213.). Položme timto bodem isothermu a adiabatu. Plyn se muzže rozpinati bử dle isothermy nebo dle adiabaty a při tom vykonává práci. Kdyby však touže cestou byl zase stlačován do stavu původniho, spotřeboval by touž práci, kterou dříve vykonal, tak že úhrnem by nevyšel pracovni zisk žádný. Jest patrno, že dlužno podmínky pokusu zaříditi tak, aby stlačování plynu se dálo snáze, t. j. př̀i menṡim napětí jeho, než se děje rozpinání. Umenšení napětí nastane povšechně ochlazením plynu. Proto nutno rozpinání isothermické kombinovati s adiabatickým, čímž teplota plynu klesne.

Necht se plyn rozpíná isothermicky podél $A B$ a pak ještě dále adiabaticky podél $B C$. Pủvodní teplota $T$ klesne adiabatickým rozpětím na niž̌̌i $T^{\prime}$. Nyni stlačujme plyn, ale nikoli touže cestou $C B A$ napřed adiabaticky a pak isothermicky, při čemž by práce plynem dřive vykonaná se opět stlačením spotřebovala, nýbrž napřed isothermicky, při teplotě $T^{\prime}$ podél isothermy $C D$, až stihneme adiabatu bodem $A$ položenou, a pak podél této $D A$ adiabaticky do původniho stavu $A$. Tím prošli jsme stanicemi 1, 2, 3, 4 do 1 , cyklus jest dovř̌en.

[^228]V předešlém odstavci jsme seznali, jak se vypočitá práce při změnách objemových plynů, a to bử isothermických nebo adiabatických, a jak se znázorní geometricky. Přihližíme-li předev̌̌im $k$ tomuto významu geometrickému, poznáváme jediným pohledem na obrazec, že práce při rozpínání plynu vykonaná (positivni), znázorněná plochou

$$
A B A_{0} B_{0}+B C B_{0} C_{0}
$$



Obr. 213.
Diagramm jednoduchého cyklu Carnotova.
jest větší než práce při stlačování plynu spotřebovaná (negativni), znázorněná plochou

$$
C D C_{0} D_{0}+D A D_{0} A_{0}
$$

a že rozdil jeví se jako plocha

## $A B C D$.

Výsledek úhrnný znamená tudiž zisk práce*).

[^229]Vizme nyní, v čem dlužno hledati aequivalent této práce ziskané. Isothermické rozpětí plynu od stanice 1 ke 2 znamená, že teplota $T$ plynů zůstala nezměněnou. To jest možno jenom tak, že plyn jest ve styku s nějakým tělesem $M$ teploty $T$ a veliké (nevyčerpatelné) zásoby tepelné, kteréž plynu při rozpínání dodává tolik tepla $Q$, mnoho-li k udržení konstantní teploty $T$ je potřebi. Podobně isothermické stlačeni plynu od stanice 3 ke 4 znamená, že jeho teplota $T^{\prime}$ zủstala nezměněnou. To lze si opět tak představiti, že plyn jest v doteku s jiným tělesem $M^{\prime}$ teploty $T^{\prime}$ a veliké (nezvětšitelné) zásoby tepelné, kteréž při stlačování ubírá plynu tolik tepla $Q^{\prime}$, mnoho-li k udržení konstantní teploty $T^{\prime}$ je potřebí. Nazveme těleso $M$ zahřivačem, těleso $M^{\prime}$ chladičem. Pak můžeme krátce říci: Plyn při vyšší teplotě $T$ přijímá od zahřívače teplo $Q$ a pak při nižsí teplotě $T^{\prime}$ vydává chladiči teplo $Q^{\prime}$.

Carnot a Clapeyron, stojíce na základním stanovisku, že množství tepelné jest neproměnitelné, domnívali se, že teplo přijaté se rovná vydanému, t. j. že

$$
Q^{\prime}=Q
$$

a hledali aequivalent oné získané práce v tom, že teplo $Q \mathrm{~S}$ vyšši teploty $T$ klesá na niz̈ší $T^{\prime}$. Carnot představuje sobě, že mechanická práce timto klesánim tepla (chute du calorique) se vykonává zcela analogicky jako př̌i vodopádu padáním vody. Zde jest vskutku množství vody neproměnlivé. Aequivalent mechanické práce spočivá jediné v padání vody (chute d'eau) s vyšší hladiny na nižši.

Avšak analogie tato nemá tu platnosti. Množství tepla není nepromẽnlivé. Poznání toto pronikalo dosti pozvolna. I sám $W$. Thomson (později lord Kelvin), vykládaje (1848) pěknou myşlenku o absolutní stupnici teploměrné *), tkvěl ještě v představě o neproměnlivosti tepelného množstvi, přes to, že Joule svými pokusy vznik tepla z mechanické práce v těch letech byl již dokázal. Stojíme-li na stanovisku, kteréz̆ formuluje prvni hlavní věta thermodynamiky, dokážeme snadno, že sice teplo s vyšši temperaturni hladiny $T$ klesá na nižší $T^{\prime}$, ale vedle toho že také jakési quantum tepla jakožto takové se ztrácí, a toto quantum že dlužno za aequivalent vykonané práce pokládati.

[^230]Stanovme práci $W_{12}, W_{23}, W_{34}, W_{41}$ vykonanou nebo spotřebovanou při přechodu ze stanice 1 do 2,2 do 3,3 do 4 , 4 do 1 . Obdržíme dle předešlého odstavce:

$$
\begin{aligned}
& W_{12}=R T \lg \frac{v_{2}}{v_{1}}, \\
& W_{23}=\frac{R}{k-1}\left(T-T^{\prime}\right), \\
& W_{34}=-R T^{\prime} \lg \frac{v_{3}}{v_{4}}, \\
& W_{41}=-\frac{R}{k-1}\left(T-T^{\prime}\right) .
\end{aligned}
$$

Patrně jest

$$
W_{23}+W_{41}=0
$$

Práce adiabatickým rozpětím 2,3 vykonaná se zase spotřebuje adiabatickým stlačením 4, 1. Zisk práce pochází tedy jenom z toho, že jest

$$
W_{34}<W_{12}
$$

t. j. že práce při isothermické kompressi za nižší teploty $T^{\prime}$ spotřebovaná je menší než při isothermické expansi za vyšší teploty $T$ vykonaná.

Zároveň jsou vzhledem k adiabatickým změnám $B C$ a $D A$ v platnosti relace ( $\S 84$.)

$$
\begin{aligned}
& \left(\frac{v_{3}}{v_{2}}\right)^{k-1}=\frac{T}{T^{\prime \prime}} \\
& \left(\frac{v_{4}}{v_{1}}\right)^{k-1}=\frac{T}{T^{\prime \prime}}
\end{aligned}
$$

tak že jest

$$
\frac{v_{3}}{v_{2}}=\frac{v_{4}}{v_{1}}
$$

čili

$$
\frac{v_{2}}{v_{1}}=\frac{v_{3}}{v_{4}}
$$

a následkem toho, nehledě ku znamení

$$
\frac{W_{34}}{W_{12}}=\frac{T^{\prime}}{T}
$$

Značí-li $J$ koefficient Jouleûv, jest

$$
\begin{aligned}
& W_{34}=J Q^{\prime} \\
& W_{12}=J Q
\end{aligned}
$$

tudiž také

$$
\frac{Q^{\prime}}{Q}=\frac{T^{v}}{T}
$$

Rovnice tato je velmi důležita. Poučuje nás, že jest $Q^{\prime}<Q$, poněvadž jest $T^{\prime}<T$, ̌̌e tedy z celkového tepla $Q$ o teplotě $T$ jen část $Q^{\prime}$ přechází na nižši teplotu $T^{\prime}$, zbytek pak $Q-Q^{\prime}$ že jako teplo se ztrácí. Jest to teplo, které se spotřebuje na vykonanou práci, jsouc ji aequivalentní. Máme pak vztahy

$$
\left(Q-Q^{\prime}\right): Q: Q^{\prime}=\left(T-T^{\prime}\right): T: T^{\prime}
$$

Carnot označil jakožto výkonnost cyklu $N$ poměr práce vykonané $W$ k teplu $Q$, kteréž dle jeho názoru s vyšsí teploty $T$ přešlo na teplotu nižši $T^{\prime}$, tedy

$$
N=\frac{W}{Q}
$$

Souhlasně s tínto výrazem stanovíme dle nynějšiho správného názoru výkonnost čili oekonomický koefficient $N$ poměrem

$$
N=\frac{Q-Q^{\prime}}{Q}
$$

kladouce za práci $W$ teplo $Q-Q^{\prime}$ této práci aequivalentni. Vzhledem k úměrnosti tepla $Q$ a $Q^{\prime}$ s teplotou $T$ a $T^{\prime}$ jest v platnosti též vztah

$$
N=\frac{T-T^{\prime}}{T}
$$

dle něhož v konkrétních případech lze lépe výkonnost počítati.
Kdyby na př. zahřívačem byla pára 100stupňová parním kotlem dodávaná a chladičem tajicí led $0^{\circ}$, bylo by

$$
T=373, \quad T^{\prime}=273
$$

tudiž

$$
N=\frac{100}{373}=0 \cdot 268
$$

přibližně

$$
N=\frac{4}{15}
$$

Na základě výrazu pro $N$, v němž teploty jsou ve vztah uvedeny s oekonomickým koefficientem pracovním $N$, stanovil W. Thomson (1848) svou absolutní stupnici temperaturní, o níž dřive učiněna zmínka. Přizpủsobme výklad o této stupnici našim nynějším zásadám thermometrickým.

K tomu cíli podržme i zde naše dvě teploty základní, totiž

$$
\begin{array}{rcc}
0^{\circ} C & \text { čili } & T^{\prime}=273 \\
100^{\circ} C & \eta & T=373
\end{array}
$$

a stanovme (jakož jsme právě v příkladu učinili) pro tyto základní teploty oekonomický koefficient $N$ dle výrazu

$$
N=\frac{T-T^{\prime}}{T}
$$

totiž

$$
N=\frac{100}{273}
$$

čili přibližně

$$
N=\frac{4}{15}
$$

K určeni stupně absolutní stupnice počítejme pak stý dil tohoto koefficientu

$$
\frac{N}{100}=\frac{4}{1500}
$$

a stanovme ex definitione, že budeme rozdil temperaturní $T-T^{\prime}$, od teploty $T=373$ počitaný, označovati jakožto rovnajíci se $x$ stupňům, když oekonomický koefficient kruhového processu zvratného, který bychom provedli mezi teplotami

$$
T \quad \text { a } \quad T^{\prime}=T-x
$$

činí

$$
N=x \frac{4}{1500}
$$

Jak patrno, poukazuje kruhový process přirozeně $k$ tomu, aby se graduace provedla od teploty $T=373$ směrem k teplotě nižší $T^{\prime}=T-x$ přes 273 až k absolutnimu bodu nullovému; ve směru opačném od teploty $T=373$ nahoru, směrem k teplotě vyšši $T^{\prime}=T+x$ vystupuje $x$ negativné ; kruhový process byl by obrácený. Číslování teploměru by ovšem bylo souhlasné jako u teploměru plynového.

Jest zajímavo, že absolutní stupnice Thomsonova jest při normálním teploměru plynovém s velkou approximaci realisována. Otázku tuto studovali již W. Thomson a Joule (1852). Za dnů našich, kdy stupnice plynová jest zákonem stanovena, nemá absolutní stupnice Thomsonova významu praktického, ale ovšem eminentní význam theoretický.

Ve výkladech tohoto odstavce odchýlili jsme se od označování všeobecně užívaného v jednom ohledu, totiž v označování teplot $T, T^{\prime}$ a množství tepelných $Q, Q^{\prime}$. Zde se piše v knihách $T_{1}, T_{2}$ a $Q_{1}, Q_{2}$. Ale také v označování má se šetríti urçitého principu. Při označení objemů a tlakủ ( $v_{1}, p_{1} ; v_{2}, p_{2} ; v_{3}, p_{3} ; v_{4}, p_{4}$ ) znamenaji indexy 1, 2, 3, 4 stanice
$A, B, C, D$, ve kterých má plyn onen objem nebo onen tlak. Dle zásady koncinnity znamenalo by analogicky $T_{1}, T_{2}$ teplotu, kterou má plyn ve stanicich 1, 2. Zde však mả se ozuačiti teplota, kterou plyn má mezi stanicemi 1 a 2 a podobné mezi stanicemi 3 a 4. Mohlo by se psáti $T_{12}$ a $T_{34}$ a podobně $Q_{12}, Q_{34}$ (jako jsme psali $W_{12}$ a $W_{34}$ ). Volili jsme kratší označeni $T, T^{\prime}$ a podobně $Q, Q^{\prime}$.

Zavedeni tělesa $M$ (zahřivače), kteréz̃ teplo vydává, aniz̃ by jeho teplota $T$ klesala, a podobnẽ tẻlesa $M^{\prime}$ (chladiče), kteréż teplo prijijímá, aniž by teplota $T^{\prime}$ stoupala, připadá nám v prvém okamžiku cizím, nezvyklým. Tu však připomeñme si analogii jezera, jehož hladina neklesá, kdyz̃ z něho konev vody nabereme, a nestoupá, když do něho konev vody přilejeme.

## § 204. Processy zvratné a nezvratné.

Kruhový process Carnotův, o němž v předešlém odstavci bylo jednáno, uvádí se jako typický přiklad processů, kteréž nazýváme zvratnými čili reversibilními. Jsou to processy takové, kteréž mohou probihati též v pořádku obráceném. Processy, při nichž pořádek průběhu obrátiti nelze, nazývají se nezvratnými čili irreversibilními *).

Probíhají-li při kruhovém processu Carnotově změny v pořádku 12341 , přijímá plyn od zahřivače teplo $Q$ při teplotě $T$ a vydává chladiči teplo $Q^{\prime}$ při nižší teplotě $T^{\prime}$, při čemž se teplo $Q-Q^{\prime}$ ztrací a za to mechanická práce získává. Při postupu opačném, v pořádku 14321 , přijímá plyn teplo $Q^{\prime}$ od chladiče při teplotě $T^{\prime}$ a odevzdává zahřívači teplo $Q$ při vyšší teplotě $T$, při čemž jest toto odevzdané teplo o $Q-Q^{\prime}$ větší než přijaté, kterýžto zisk tepla se uhrazuje mechanickou prací.

Zisk práce v případě prvém pochází odtud, že se plyn při napětí povšechně větším rozpiná a při menším stlačuje. Spotřeba práce v případě druhém jest zase tím odůvodněna, že se plyn při napětí povšechně menším rozpíná a při větším stlačuje.

Dlužno však jasně sobě uvědomiti, jaký jest vlastně základ toho, že process Carnotův lze obrátiti. Pravíme, že plyn mezi $A$ a $B$ se rozpiná. To jest možno jenom tak, že jest jeho napětí větší než vnějši tlak. Pak zase pravime, že při obrácení

[^231]pochodu plyn mezi $B$ a $A$ se stlačnje. Ale to by zase vyžadovalo, aby naopak vnější tlak byl větší než napětí plynu. Má-li jedno i druhé býti možným, musíme si mysliti, že v prvém případě jest vnější tlak jen o nekonečně málo menší, v druhém připadě podobně o nekonečně málo větší než napětí plynu, což vlastně znamená, že vnějši tlak a napěti plynu jsou stejné. Ale pak nenastane fakticky ani rozpinání plynu ani stlačování, jedno i druhé jest jen myšlené, vskutku jest rovnováha. A podobně má se věc v dalším průběhu mezi stanicemi $B$ a $C, C$ a $D, D$ a $A$. Poznáváme z toho, že možnost, onen process obrátiti, v tom spočívá, že process ten vůbec nenastane, že jest rovnováha, a že si jen myslíme, jaký by jeho průběh byl, kdyby nastal, při čemž vzhledem k rovnováze jest jednostejno, zdali si myslíme, že process probíhá $v$ jednom nebo $v$ druhém smyslu.

Podobně jako s napětím má se věc s teplotou. Má-li změna od $A$ do $B$ býti isothermická, musi plyn od zahřivače teplo přijímati. Ale to je možno jen, když jeho teplota je nižší. Při zpátečnim pochodu má plyn zahřívači teplo odevzdávati; to zase je možno jenom, když je teplota jeho vyšší. Má-li býti jedno i druhé možným, dlužno si mysliti, že teploty jen o nekonečně málo se liší, což jest fakticky totéž, jako že jsou stejné. Tedy jako dříve jsme byli vedeni $k$ rovnováze ve smyslu mechanickém, jsme zde vedeni $k$ rovnováze ve smyslu tepelném.

Touto úvahou docházíme výsledku důležitého. Tak zvaný zvratný dĕj Carnotův neni vůbec dějem; změny, o nichž při výkladu jednáme, jsou jen myšlené. Carnotův princip jest principem rovnováhy.

Výsledek tento má platnost všeobecnou pro každý děj zvratný. Jen proto lze si v myšlenkách představiti, jako by se dál v jednom nebo druhém smyslu, poněvadž se fakticky neděje ani v jednom ani v druhém smyslu, poněvadž jest rovnováha. Jakmile by děj v jednom smyslu fakticky pokračoval, jak tomu ve skutečnosti bývá, pak nemúže se obrátiti, smysl jest již určen, děj jest nezvratným.

Jest dobře poukázati k zajímavé analogii v oboru mechaniky. Jest to princip virtuálných posuvů nebo virtuálných rychlosti*), jehož užíváme u strojů.

[^232]Dr. v. Strouhal: Thermika

Mějmež na př. kolo na hřídeli. Břemeno $Q$ jest v rovnováze se silou $P$. Nenastane tedy žádné pošinutí, žádná rychlost. Ale múžeme si mysliti, jako bychom kolo otočili, až přijde zase do své púvodní polohy. Zde pak jest též jednostejno, zdali si myslíme otočení ve smyslu jednom nebo ve smyslu drahém; proto jest to jedno, poněvaď̌ fakticky otočeni ani v jednom ani v druhém smyslu nenastane. Při tom myšleném pošinuti břemeno $Q$ stoupne o $b$, sila $P$ klesne o $a$, anebo naopak.

Relace

$$
Q b=P a
$$

udává pak podmínku rovnováhy, ale při tom lze z ní přece souditi na podminky pracovni, jaké by byly, kdyby stroj v určitém smyslu se vskutku pohyboval.

Podobně jest děj Carnotủv dějem toliko myšleným, kterýž vzniká, když sobě myslíme podmínky pokusu, jež jsou vlastně podmínkami rovnováhy, nekonečně málo pozměněny, buđ̛ ve smyslu jednom nebo obráceném; tím objasnime sobě podminky pracovní, jež by nanejvýš byly dosažitelné, kdyby dĕj ve skutečnosti v určitém - a pak ovšem nikoli zvratném - způsobu postupoval.

Rozpínání plynu ve smyslu určitém - a tudiž nezvratném - nastane, když vněǰ̌í tlak o konečný rozdil se stane menším než napětí plynu. Nejzazšim případem bylo by, kdyby vnější tlak se stal nullovým, kdyby plyn (na př. otočením kohoutu, kterým se plyn v nádobě udržuje) se uvedl ve spojení s prostorem prázdným. Vyličili jsme již dříve (§ 200.), jaký prủběh v ohledu thermickém tento děj má; jest extrémním přikladem dějủ nezvratných.

Mějmež v cylindrické nádobě, nahořé pohyblivým pístem opatřené, směs kapaliny a jeji nasycené páry. Jest rovnováha, vypařování a zkapalŭováni přestalo, anebo, chceme-li rovnováhu ve smyslu dynamickém si mysliti, vypařování a zkapalňování se vzájemně vyrovnávají. Zde jest dána možnost processu zvratného. Mysleme si nádobu vloženou do lázně o konstantní teplotě. Pošinujeme-li v myšlenkách nekonečně málo pist vzhûru, zyýši se vypařování. kapalina chladne a přijímá teplo z lázně. Když naopak v myšlenkách nekonečně málo pist pošineme dolủ, zvýši se zkapalňování, kapalina se zahřívá a odevzdává lázni teplo dříve přijaté. Process jest tedy zvratný, ale jen proto, že vůbec nenastane, že celý děj jest jen myšlený.

Kdybychom píst náhle odstranili, probíhal by process v určitém směru skutečně a nebyl by již zvratným.

Vzájemné vyzařováni tepla u davou těles proti sobě postavených anebo vzájemné vedení tepla u dvou těles se stýkajícich jest processem zvratným, pokud jest rovnováha ve smyslu dynamickém, t. j. pokud teploty těles jsou stejné. Mưžeme si je mysliti nekonečně málo rozdilné, a pak bud v jednom smyslu nebo ve smyslu obráceném. Jakmile je však rozdil teplot konečuý, nastane děj ve smyslu určitém a není zvratným.

Mějmež těleso pevné, spočívajicí na vodorovné drıné pủdẽ. Jest rovnováha. Mysleme si těleso nekoneěně málo pošinuto; při tom vzniká třením teplo. Zde však nelze ani v myšlenkách process obrátiti. Tření jest typickým přikladem processů nezvratných. Podobné přiklady poskytuji úkazy diffuse v tělesech pevných, kapalných i plynných. Podobně úkazy takové, při nichž rovnováha sice jest, ale labilní, jako na př. přechlazení kapalin. Rovněž úkazy výbušné (explosivni) nebo zápalné, spojení elektrického proudu, výboj elektrických kondensátorủ a pod.

Prijimeme-li, jakoz̃ se nyni často dẽje, mechanickíy názor svétovỳ, t. j. snažime-li se vestkeré zjevy fysikâlni vysvétlovati pohybem molekulovym nebo atomovỳm, po prípadé pohybem elektronú, pak vznikả dosti znac̃ná obtî́ pri otazzee, proc̃ nêkteré dęje, jako na pr̂, třeni, diffuse a j., rozhodnẽ jsou nezvratnými. Dēje ćistẽ mechanické jsou totiž vždy zyratny̆mi, a dēje jiné, jež mechanicky vysvétlujeme, maji býti nezvratnými. 0 rozlusténí tohoto rozporu pokusil se Boltzmann *) na základé počtu pravdêpodobnosti. Formule, kterou rozzeséní záhady podal, vyznívá v ten smysl, że theoreticky jsou všechny processy zvratné, ale u nékterych vede obrácení processu k déjủm, jichž pravdêpodobnost jest nekoneěnẽ malou.

## § 205. Rozšiřený princip Carnotův.

Význam vztahủ, odvozených při zvratném processu Carnotově, vynikne lépe, když tento jednoduchý process provedeme ve zpúsobu složitějsím a všeobecnějšim. Volme větší počet stanic, postupujice od stanice začáteční 1 (obr. 214.) po isothermách (v obrazci čárkovaně kreslených) a po adiabatách

[^233](v obrazci plně kreslených) ke stanicim 2345678 a zpět k začáteční 1 . Tento složitější process můžeme rozložiti v řadu jednoduchých, když prodloužíce adiabaty až k průsekům $a, b$ s isothermami, postupujeme v cyklech $12345 b 3,3 b 67 a$, a 781 .


Obr. 214.
Diagramm cyklu složitējšiho.

Pro jednoduchý cyklus 34503 jest v platnosti relace

$$
\frac{Q^{\prime}}{T^{\prime}}-\frac{q_{\mathrm{r}}^{\prime}}{T^{\prime \prime}}=0
$$

Podobně pro jednoduchý cyklus $a 23 b 67 a$

$$
\frac{q_{2}}{T}-\frac{q_{2}^{\prime \prime}}{T^{\prime \prime}}=0
$$

Konečně pro jednoduchý cyklus 1 a 781

$$
\frac{q_{1}}{T}-\frac{Q^{\prime \prime \prime}}{T^{\prime \prime \prime}}=0
$$

Přihližejice ke vztahům

$$
\begin{aligned}
q_{1}+q_{2} & =Q \\
q_{1}^{\prime \prime}+q_{2}^{\prime \prime} & =Q^{\prime \prime}
\end{aligned}
$$

a sečtouce ony relace pro cykly jednoduché, obdržíme pro daný složitý cyklus

$$
\frac{Q}{T}+\frac{Q^{\prime}}{T^{\prime}}-\frac{Q^{\prime \prime}}{T^{\prime \prime}}-\frac{Q^{\prime \prime \prime}}{T^{\prime \prime \prime}}=0
$$

Z výsledku tohoto lze souditi, že pro každý sebe složitějši zvratný process, který se děje po isothermách a adiabatách, obdržíme všeobecně vztah formy

$$
\Sigma \frac{Q}{T}=0
$$

kdež symbol summační naznačuje summaci algebraickou, při níž dlužno teplo přijímané počitati positivnĕ, odevzdávané pak negativné.

Je-li počet stanic veliký a jich vzdálenost velmi malá, stávají se hodnoty $Q, Q^{\prime}, Q^{\prime \prime}, \ldots$ velmi malými; označujeme je pak jako malé tepelné přírůstky $\Delta Q$, positivní nebo negativní. Teploty $T, T^{\prime \prime}, T^{\prime \prime}, \ldots$ liší se pak od sebe velmi málo, ale jednotlivě jsou jakkoli velikẏmi.

Pišeme tedy výsledek takového zvratného processu ve formě

$$
\Sigma \frac{\Delta Q}{T}=0
$$

Múžeme pak pokročiti ještě dále, až ke krajnímu případu, kdy počet stanic je nekonečnê veliký a kdy ve svém pásmu tvor̂í křivku v soữadniéch ( $v, p$ ), která naznačuje, jak kruhový process zvratný postupuje. Pak přejdou konečné přírůstky $\Delta Q$ v nekonečné malé $d Q$ a summace v integraci. Máme tedy pro kruhové processy zvratné relaci velmi dûležitou

$$
\int \frac{d Q}{T}=0
$$

## § 206. Druhá hlavni věta thermodynamiky.

Studium dějủ kruhových vedlo již Carnota k odvození věty, kterouž význam těchto dějủ ještě vice vyniká. Při ději kruhovém určitého daného plynu ziskává se práce $W$ tím, že - dle názoru Carnotova - určité množstvi tepla $Q$ přechází (padá) s vyššího tepelného niveau $T$ na nižšíi $T^{\prime}$. Carnot vystihl správně, že při týchž poměrech, t. j. týmž teplem $Q$, nelze žádným jiným plynem nebo paron zjednati práci $w$ větši nebo menši, nýbrž vždy jen stejnou. Nebot, kdyby bylo na pĭ. $w<W$, provedli bychom process prvý přímo, process druhý obráceně. Při prvém bychom práci $W$ vyziskali, při druhém práci $w$ vynaložili. Resultát byl by zisk práce $W-w$ a to $z$ ničeho; nebot obě tělesa přijdou do stavu pủvodního, a také zahřívač i chladič totéž teplo $Q$, které při prvém processu vydal, resp. přijal, při
druhém zase přijímá, resp. vydává Zisk práce z ničeho znamenal by však, že perpetuum mobile by bylo možným.

Tento dủsledek Carnot odmitá jakožto absurdni *). Nemůže však též býti $w>W$, nebof bychom došli téhož výsledku, kdybychom oba processy kruhové provedli proti sobě, ale oba ve smyslu opačném než dříve. Nezbývá tudiž nežli že jest $W=w$.

Nelze upříti, že dedukce Carnotovy jsou na první pohled přesvědčivé, ale jich základ neni správný. Víme, že věc není tak jednoduchou, jak Carnot předpokládal. Při processu kruhovém nepřechází (nepadá) jenom teplo s vyššiho tepelného niveau $T$ na nižší $T^{\prime}$, nýbrž část jeho též se spotřebuje jako aequivalent práce vykonané. Jest tudiž třeba v tomto smyslu dedukce Carnotovy revidovati a přihlédnouti, za jakých podminek bychom došli téhož výsledku, jehož správnost jest velice pravdě podobnou.

Tuto revisi provedl (1850) Clausius**) a po něm (1851) W. Thomson ***). Oba poznali, že jest nutno vývody Carnotovy doplniti jakousi větou fundamentálni a axiomatickou, kteráž má význam vědeckého postulátu. Formulovali ji rủzně, Clausius dříve, $W$. Thomson mảlo později ; dnes označujeme ji jakožto druhou hlavni větu thermodynamiky.

Mějmež dvě tělesa $K, k$, kteráž vykonávají process kruhový mezi týmiž teplotami $T$ zahřívače a $T^{\prime}$ chladiče. Veličiny k jednomu tělesu se vztahujicí označme velkými, k druhému pak malými písmenami, ale jinak souhlasně dle označení v §̧ 203. Obdržíme přehledně:

Teploty	Těleso $K$	Těleso $k$
$T$	$Q$	$q$
$T^{\prime}$	$Q^{\prime}$	$q^{\prime}$
	$N=\frac{Q-Q^{\prime}}{Q}$,	$n=\frac{q-q^{\prime}}{q}$.

*) Podobnẻ odrodil Simon Stevinus (1548-1620) četné vêty o rovnovaize mechanické na základě zásady, že perpetuum mobile jest nemožné. (Hypomnemata mathematica, Lugduni Batavorum 1608.)
${ }^{* *)}$ Rudolf Clausius (1822-1888), proslulý theoreticky fysik, habilitoval se na université Berlinskė, kdez̃ byl učitelem na taméjsí délostřelecké a inz̃enýrské skole, pûsobil pak jako professor fysiky na polytechnice v Curychu (1857-1867), pak ve Wurzburku (1867-1869) a na to v Bonnu, kdez̃ setrval az̃ do konce svého z̃ivota. Prvni jeho pojednání, v nēmz̃ doplñuje úvahy Carnotovy ve smyslu moderním, má název: Ueber die bewegende Kraft der Wärme, Pogg. Ann. 79. 1850.
***) Základní jeho dilo má název: On the Dynamical Theory of Heat, 1851.

Jedná se - ve smyslu Carnotově - o důkaz, že jest

$$
n=N
$$

t. j. oekonomický koefficient zvratného kruhového processu neni závislý na povaze dané látky.

Proveđ̛̣e v myšlenkách oba processy souhlasně. Pak zahřívač vydává teplo $Q+q$, chladič př̌ijímá teplo $Q^{\prime}+q^{\prime}$. Ztráty tepla $Q-Q^{\prime}$ a $q-q^{\prime}$ jdou na účet vykonané práce W a w. Mysleme si však jeden z obou processů, na pǐ. tělesem k vykonaný, opačně. Pak zahřívač vydává teplo $Q-q$, chladič přijímá teplo $Q^{\prime}-q^{\prime}$; při tom jde ztráta tepla $Q-Q^{\prime}$ na účet práce vykonané $W$, a zisk tepla $q-q^{\prime}$ na účet práce spotřebované $w$.

Až dosud nestanovili jsme pro oba processy žádných bližšich podmínek. Hledajíce takových, volme je tak, aby v rovnici

$$
\begin{equation*}
n=N \tag{čili}
\end{equation*}
$$

$$
\frac{q-q^{\prime}}{q}=\frac{Q-Q^{\prime}}{Q}
$$

o jejiž platnost se jedná, byly bud čitatele nebo jmenovatele obou zlomků stejné.

1. Volme tedy především

$$
w=W
$$

t. j. vynaložme na zpětný process $u$ tělesa $k$ jenom tolik práce, kolik jsme jí u tělesa $K$ získali. Jest tedy také

$$
q-q^{\prime}=Q-Q^{\prime}
$$

Pak jedná se o to dokázati, že jest též

Dejme tomu, že by bylo

$$
q=Q
$$

Pak by byl rozdil

$$
q>Q
$$

$Q-Q$
negativní; to by znamenalo, že by zahřívač vydal celkem negativní teplo, tudiž že by prỉjal teplo. Dle rovnice, z uvedenézplynoucí,
byl by pak rozdíl

$$
\begin{gathered}
Q^{\prime}-q^{\prime}=Q-q \\
Q^{\prime}-q^{\prime}
\end{gathered}
$$

též negativní; to by znamenalo, že by chladič přijal celkem negationí teplo, tudíz, že by vydal teplo. Výsledek pokusu byl by
tedy ten, že by určité quantum tepla z chladiče, t. j. z teploty $T^{\prime}$ přešlo na zahřívač, t. j. na teplotu $T$; vše ostatní by zůstalo nezměněno.

Kdybychom vyšli od druhé možnosti

$$
q<Q
$$

pak by bylo třeba oba processy prováděti proti sobě, ale oba obráceně než dříve, a opět bychom došli výsledku, že jakési množství tepla by z chladiče, t. j. z teploty nízké $T^{\prime}$ přešlo na zahřívač, t. j. na teplotu vysokou $T$, a vše ostatní by zủstalo nezměněno.

Poznáváme již, že dủkaz věty

$$
n=N
$$

souvisí s tím, zdali možnost takového přechodu připustíme nebo zamitneme.

Clausius vyslovil (1850) jakožto postulát thermodynamiky axiomatickou větu: Teplo nemůže samo sebou od studenějšiho tělesa préjíti na teplejší *). Přijmeme-li tuto větu, pak jest

$$
n=N
$$

t. j. výsledek Carnotův jest i dle moderních názorů správný.

V pozdějších letech dal Clausius větě své jinou formulaci, kterou také vysvětlil, jak rozuměti dlužno výrazu ,samo sebou", jehož užil při formulaci prvé.

Clausius rozeznává fysikální pochody čili proměny dvojiho způsobu, positivní a negativní. Positivní mohli bychom označiti též jakožto přirozené, negativní jakožto nepřirozené.

## Positivní proměny jsou na př.:

Proměna práce v teplo.
Proměna tepla s vyšsí teploty na nižši.
Diffuse plynủ ve směs.
Negativni proměny jsou na př.:
Proměna tepla v práci.
Proměna tepla z nižší teploty na vyšši.
Rozloučení plynů z jich směsi.
Jenom positivní proměny ději se samy sebou. Negativní proměny nedějí se nikdy samy sebou. Každá negativni proměna

[^234]vyžaduje kompensace, kteráž je dána současnou proměnou positivní.

Při zvratném processu Carnotově přeměňuje se teplo v práci, zároveň část tepla přechází s vyšši teploty na nižši. Prvá proměna jest negativní, současně druhá, ke kompensaci, positivní. Při obráceném processu Carnotově proměňuje se práce v teplo a zároveň přechází část tepla $z$ nižší teploty na vyšsí. Prvá proměna jest positivní, a kompensuje současnou proměnu druhou, která je negativni. Třenim, rázem a pod. vzniká teplo; tato proměna je positivní a nevyžaduje kompensace. Vedením tepla a zářením přecházi teplo $s$ vyšší teploty na nižší. Také tato proměna jest positivní a nevyžaduje kompensace.
2. Pokračujme v úvahách dřivějších, které se týkaly oekonomického koefficientu $N$ a $n$ kruhových dějů dvou těles mezi teplotami $T$ a $T^{\prime}$. Zařidme podmínky pokusu tak, aby bylo

$$
q=Q
$$

t. j. aby se zahřívači tolik tepla $q$ vrátilo při processu druhém, kolik tepla $Q$ vydal při processu prvém. Jeho zásoba tepelná se tedy neměni. Jedná se pak o to dokázati, zdali jest

$$
q-q^{\prime}=Q-Q^{\prime}
$$

Dejme tomu, že by bylo

$$
q-q^{\prime}<Q-Q^{\prime}
$$

tudiž

$$
\begin{gathered}
n<N \\
w<W
\end{gathered}
$$

Oběma processy proti sobě vedenými bychom tedy získali práci

$$
W-w
$$

a to tím, že by bylo

$$
q^{\prime}<Q^{\prime}
$$

t. j. že bychom chladiči při processu druhém více tepla $q^{\prime}$ ubrali, než jsme při processu prvém $Q^{\prime}$ jemu přivedli. Práce $W-w$ byla by tedy ziskána teplem $q^{\prime}-Q^{\prime}$ čerpaným ze zdroje tepelného o nižši teplotě.

Téhož výsledku bychom došli, kdybychom předpokládali

$$
q-q^{\prime}>Q-Q^{\prime}
$$

Bylo by pak třeba oba processy vésti sice proti sobě, ale každý ve smyslu obráceném.

Poznáváme tedy, že rovnice

$$
n=N
$$

jest anebo není platná, dle toho, zdali odmítneme nebo připustime možnost, že by práci bylo možno získati teplem ubíraným z tělesa na nižši teplotě se nalézajícího. To by tedy byla přímá přeměna tepla v práci, tedy proměna negativni, bez kompensace. Taková jest však dle věty Clausiovy nemožnou. Pak tedy jest

$$
n=N
$$

t. j. výkonnost zvratného kruhového děje Carnotova není závislou na tělesu, které kruhovým dějem probihá.

Snadno lze pochopiti, že tato výkonnost je určitou, danými teplotami $T$ a $T^{\prime}$ stanovena, že neexistuje žádná větši a také ne žádná menší. Mysleme si pochody, jak jsme je na dvou rủzných tělesich $K$ a $k$ právě vyličili, provedené na témz̃e tělesu na př. na témže plynu. VŠe, co jsme řekli, lze opakovati. Jest vyloučen případ
právě tak, jako

$$
\begin{aligned}
& n>N \\
& n<N
\end{aligned}
$$

což znamená, že vykonnost $N$ jest určitá a závislá jenom na daných teplotách $T$ a $T^{\prime \prime}$.

Význam druhé hlavní vêty thermodynamiky vynikne lépe, když ji porovnáme s první hlavní vêtou. Tato vyslovaje aequivalenci rưzných druhủ energie, speciálnế aequivalenci mechanické práce a tepla. Promèny práce v teplo používá se, aby se aequivalent stanovil. Dle toho zdálo by se, že by se také opačné promẽny, totiz̃ tepla v práci mohlo pouz̃iti, aby se aequivalent určil, a to bezpodminečně. Ale druhá vêta praví, ze to możné neni. Teplo nelze vûbec bezpodmínec̃nẽ v práci promẽniti, lec̃ s určitou kompensaci. To jest dojista překvapujici. Tím se vlastnẽ prvá vêta thermodynamiky omezuje, anebo, lépe řec̃eno, doplĩuje a vysvétluje. Rủzné druhy energie jsou svým obnosem aequivalentní, ale jich preména neni vz̃dy moz̃nou bez jakési kompensace.

## § 207. Pokračováni. Formulace W. Thomsonova.

Krátce po tom, kdy Clausius formulaci své věty hleděl princip Carnotův v souhlas uvésti s názory modernimi, zabýval se též $W$. Thomson stejným úkolem. Dobř̌e vystihl jádro věci, že rủzné druhy energie jsou sice vespolek aequivalentní, ale že jich vzájemná proměna neni vždy bezpodminečně možnou. Ze-
jména jest to v platnosti o proměně tepla v práci. Není-li zároveň možný současný přechod tepla ve smyslu Carnotově, s vyššiho niveau na nižši, není proměna možnou. Pro přechod tento nutno však miti tělesa, jež jsouce chladnějši mohla by onen přechod jako chladiče umožniti. Proto pravi W. Thomson: „Jest nemožno prostřednictvím neoživeného hmotného agens ziskati mechanický výkon z jakési části hmoty, když by byla ochlazena pod teplotu nejchladnějšiho z předmětů okolnich **). Jest patrno, že věta Thomsonova vyjadřuje totéž, co Clausiova, a že přiklad 2. v předešlém odstavci projednávaný, dle něhož pouhé ubírání tepla z chladiče nemůže býti zdrojem práce, jest jenom jiným výrazem věty Thomsonovy.

Této větě lze dáti jinou formulaci, která jest slovně zajimavá, ač poněkud umělá. Dle prvé hlavni věty thermodynamiky jest perpetuum mobile vyloučeno. Mechanická práce není myslitelna bez úhrady. Ale tonto úhradou nemůže býti prostě teplo. Nebof jinak mohl by nèjaký stroj pracovati tak, že by ubíral teplo moři nebo zemi, kde je zásoba tepelná (prakticky) nevyčerpatelná. Takový stroj byl by pak též perpetuum mobile.

Rozeznáváme-li tedy jedno i druhé jménem perpetuum mobile prvého způsobu a druhého způsobu, múžeme říci: Obě hlavni věty thermodynamiky vyjadřuji, že perpetuum mobile jak prvého, tak druhého způsobu jest vyloučeno.

Zajímavějši a významem svým hlubši jest však výklad jiný. Práci na základě úhrady tepelné lze jen získati současným přechodem tepla $s$ vyšsiho temperaturniho niveau na nižši. Využitkováni tepla $k$ účelủm pracovním, které jest podmíněno rozdíly temperaturnimi, patrně se stále znesnadǔuje tím, že tyto rozdily temperaturni se právě tím využitkovánim vyrovnávaji. Zásoba pracovni v teple obsažená se tím stále umenšuje. Poněvaď̌ pak všechny proměny rozmanitých druhů energie
${ }^{\text {*) }}$ V pűvodnim jazyku zní jeho vêta takto:
sIt is impossible, by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects. \& K tomu pridává: sIf this axiom be denied for all temperatures, it would have to be admitted, that a self-acting machine might be set to work and produce mechanical effect by cooling the sea or earth with no limit but the total loss of heat from the earth and sea, or, in reality, from the whole material worldc. Dlužno upozorniti, že se vždy jedná nikoli o jednotlivy výkon pracovni, nỳbrž o práci stálou, jakou vykonává nêjaký stroj cyklem kruhovým.
vždy $z$ části vedou na energii tepelnou, lze říci, že zásoba pracovní vủbec, která jest ve světě obsažena, se umenšuje. Nikoli, že by se ztrácela - to by se přičilo prvé hlavni větě thermodynamiky - ale nelze ji k účelům pracovním využitkovati. W. Thomson označuje tento zjev jakožto dissipaci energie, tedy nikoli ztrátu, nýbrž jeji rozptýleni v určitém směru přeměňovacim, t. j. jeji proměnu v teplo teploty stejnoměrné a stále klesající.

## § 208. Vyznam entropie.

Odvodili jsme pro zvratné kruhové processy relaci

$$
\Sigma \frac{\Delta Q}{T}=0 .
$$

V prûběhu kruhového processu př̌ijímá na př. plyn od zahřivačů různých teplot množství tepelné $\Delta Q$ (positivní) a zase odevzdává chladičủm též rủzných teplot množstvi tepelné $\Delta Q$ (negativní). Dělíme-li každé množství $\Delta Q$ teplotou $T$ zahřívače nebo chladiče, obdř̌íme veličiny

$$
\frac{\Delta Q}{T}
$$

positivni a negativni, jichž součet jest pro zvratný kruhový process nullovým. Při tom jest teplota plynu vždy jen nekonečnẽ málo rozdilná od teploty těles, zahřivajicích nebo chladících, s nimiž se plyn stýká. Vzhledem k tomu jest vlastně rovnováha, process jest pouze myšlený, čili, jak se vyjadǐujeme, probihá nekonečně zvolna.

Že výraz

$$
\Sigma \frac{\Delta Q}{T}
$$

jest nullovým, plyne $z$ povahy processu kruhového zvratného. Kdyby byl od nully rozdilnẏm, na př. positivnim ( $>0$ ), provedli bychom process kruhový v myšlenkách obrácené, a pak by týž výraz se stal negativním $(<0)$, což ovšem jest nemoz̆no.

Jinak má se však věc, když process není zvratný. Zde jest v platnosti výraz

$$
\Sigma \frac{A Q}{T}<0
$$

Dảkaz provésti všeobecně jest nesnadno. Ale na přikladech lze objasniti, že vskutku onen součet jest negativním.

Dlužno upozorniti, že při processech nezvratných. jak se v přírodě dějí, neni již teplota plynn na jedné straně a zahǐivače nebo chladiče na druhé straně nekonečně málo rozdílnou, nýbrž konečně; právě proto process probihá v určitém smyslu. Teplota $T$ v uvedeném výrazu není pak teplotou plynu, nýbrž. oněch těles, s nimiž se plyn stýká.

Při styku plynu se zahřivači jest teplota plynu o něco nižší, tudiž positivní elementy $\Delta Q$ oné summy $\Sigma$ o něco menši. Při styku s chladiči jest naopak teplota plynu o něco větší, tudiž negativni elementy $\Delta Q$ summy $\Sigma$ o něco větši. $Z$ obou přičin jest summa menši než nullová. Když se plyn rozpiná, překonává vnèjší tlak, který je o něco menši; tim vykonává menší práci, spotřebuje proto méně tepla, tudiž jsou opět positivni elementy $\Delta Q$, ubírané zahř̌ivačủm menši. Naopak, když se plyn stlačuje, jest vnější tlak větši, tím i práce vynaložená větší, tím i vznikajíci teplo chladičủm odevzdané větší, tudiž opět negativní elementy $\Delta Q$ větši. $Z$ obou přičin jest summa ェ menší než nullová. Také tření, nárazy a pod. maji týž účinek; nebot bử se pak zahřívačủm za teplo třením vznikajicí méně tepla ubirá anebo se chladičům o to větší teplo odevzdává.

Přestávajíce tudiž na tomto vysvětlení, ač neni dủkazem všeobecným, pišeme pro nezvratné processy kruhové

$$
\Sigma \frac{\Delta Q}{T}<0
$$

Když tedy spojíme kruhové processy zvratné i nezvratné, obdržime důležitou relaci

$$
\Sigma \frac{\Delta Q}{T}=0
$$

Užívajíce ve smyslu počtu differenciálního integrace pišeme předchozi výraz ve formẽ

$$
\int \frac{d Q}{T} \overline{<} 0
$$

Tento výraz pokládá se za mathematickou formulaci druhé hlavní vêty thermodynamiky. Položíme-li funkei za symbolem integračním

$$
\frac{d Q}{T}=d S
$$

a sledujeme-li process, zvratný nebo nezvratný, mezi stavem $A$ a $B$, obdržíme všeobecněji

$$
\int_{A} \frac{\stackrel{B}{d Q}}{T} \overline{<} S_{B}-S_{A}
$$

Pro $B=A$ následuje výraz dřívéj̉̉í. Funkci $S$ nazývá Clausius entropii * têlesa. Při processu zvratném se entropie nemẽní. Zmẽny stavu, při nichz̃ entropie zůstává konstantní, nazval Gibts zmẻnami isentropickými. Prì processech nezvratných entropie stoupá, coz̃ znamená, ze se zvẻtšuje ta část energie, která dalsí přeměny již není schopna. Clausius chtē̃e označiti tuto tendenci, jak se jeví při skutečny̌ch promẽnách prírodních, vyslovuje vêty.

1. Energie světová jest konstantni.
2. Entropie světová tíhne k maximu.

Vêta vyjadřuje totéz̃, co W . Thomson označil jako dissipaci energie. Process svẻtový smêrưuje ke stavu, v němz̃ ochlazeni těles, jež jest s pr̃eměnou energie tepelné spojeno, klesne na jakousi míru nejniz̃zi, čimz̃ dalşi přeméñování tepla $v$ energii mechanickou bude vyčerpáno; entropie dosáhne maximální, lépe rec̃eno, své mezní hodnoty.

Výklady dosavadní byly jen povšechnê orientační. Stojíme vlastnẽ jakoby na prahu theoretické thermodynamiky. Dalsí jeji rozvoj dál se za použiti celêho apparátu vyşi mathematiky a výklad jeho nález̃i do fysiky theoretické. Cetní badatelé, jako Rankine, Boltzmann. Ostwald, Mach, Wald, C. Neumann, Le Chatelier a j., hleděli hluboko vniknouti do úkolủ thermodynamických a nẻkter̄í z nich vymýsleli nové formulace oné druhé vêty.

Ale i z toho, co zde uvedeno, lze porozumêti, że druhá hlavní vêta thermodynamiky, obyčejné vêtou Clausius-Thomsonovou zvaná, má význam hluboký, kterýz není omezen na obor thermiky, nýbrž zasahá do všech oború fysikálních. Jest pravda, dogmatický ráz této vêty y prvním okamžiku zaráží. Není proto divu, że se proti ní činily se strany éetných fysikû námitky. Tak na pri. namital Rankine (1852), ze lze koncentraci paprskủ tepelných (zrcadly nebo čočkami), na př. slunec̃ních, dociliti teplot velmi vysokẏch bez kompensace. Správně však upozornil Clausius, že by musilo býti dokázáno, zdali teplota y takovém ohnisku vznikajíci jest vêtší nez̃ teplota zdroje, od něhoz̃ tepelné paprsky vycházeji, tedy na pr̃. slunce. Přii této prílez̃itosti to bylo, kdy Clausius upozornil na úcinek prostredí a odvodil zảkon, který již Kirchhoff znal a kterẏ se nyní obyčejné Kirchhoff-Clausiovẏm nazývá (§ 183). Také jiné námitky byly vyvráceny, tak zue není pochybnosti, że żádnỳ úkaz prrirodni neodporuje druhé hlavní vętě thermodynamiky, alespoñ pokud se týce svẽta anorganického. Úkazy svêta organického jsou ještę v mnohém ohledu neprozkoumané a záhadné, tak že nelze poslední slovo promluviti. Pokud se však svêta anorganického týće, poskytuje druhá hlavní vêta thermodynamiky stanovisko, se kterěho s jasnéjsim porozumẽním lze nazirati na všechny úkazy přírodní, tak četné, tak rozmanité, v nichz̃ však prece se zraçi spolec̃ná určitá tendence hlubokého vẏznamu svêtového.
*) Y pojednâni. v němź Clausiuus tohoto vỳrazu ponejprv uživá (Pogg. Ann. 125,1865 ) pravi: >Utvoril jsem slovo entropie úmyslnè podobným slovu energie. nebof obé veliçiny, které témito slovy maji by̆ti označeny, jsou svỳm významem fysikálnim sobẻ tak přibuzné, že jakăsi stejnost v označení se mi zdála býti odúvodnénou. e Budiz̃ podotéeno, że vẏraz energie zavedl W. Thomson.

## Abecední seznam

A bsolutni bod nullový 129
Absolutni bod varu 361
Absolutní stupnice temperaturni 638
Absolutni teplota 128
Absorpce 525
Absorpce integrální
u téles pevných 531
u kapalin 532
u plynủ a par 533
Absorpce kovová 539
Absorpce spektrální
u te̋les pevných 540
u kapalin 543
u plynủ a par 546
Adiabata 630
Adiabatické změny 627
Advance 40
Aequivalent kalorický práce 610
Aequivalent mechanicky tepla 610
Airy-ho kompensace 88
Andrewsovy pokusy o zkapalnění plynû $35 \check{8}$
Anisotropie tepelná 73
Anomalie vody 105
Avogadrova hypothesa 324
Blackúy kalorimetr ledový 175
Bod mrazu 7, 10
Bod nullový maximálne deprimovany 21
Bod tavení a tuhnutí 242
Bod varu 7, 11, 13
Bolometr 43, 503
Bottomleyǔv pokus 264
Boyle-Mariotte-ũv zákon 127
Bunsenủv ledoyý kalorimetr 175
Bunsenova methoda pro hutnotu
plynû 323

Cailletetovy pokusy o zkapalnění plynú 362
Carnelley-ûv vztah 245
Carnotův princip 634
Celsiova stupnice 8
Cerné záře̛ení 550
Daltonûv zákon 287
Davyho ochranná lampa 469
Densimetry 93
Des̃toměry 329
Dewarovy nádoby 371
Diathermansie 525
Diathermometr 475, 487
Differenciálni galvanometr 504
Dilatometry 91
Dispersnf křivky 523
Dissipace energie 652
Dulong-Petitủv zákon 192
Dumasova methoda pro hutnotu par 316

Emisse integrální 548 \# zákony 558
„ spektrálni 548
n zákony 564
Endothermické reakce 415
Energie, princip zachovảní 606
Entropie 654
Evaporometry 336
Exothermické reakce 415
Fahrenheitova stupnice teploměrná 7
Faradayovy pokusy o zkapalnění plynủ 354
Gray-Lussac-úv zákon 125
Gay-Lussac-Hofmannova methoda pro
hustotu par 318
Grahamovo kyvadlo rtutové 84

Harrisonovo kyvadlo mřižkové 82
Hirnúv apparát 623
Hutnota par 312
Hygrograf 351
Hygrometrie 328
Hygrometr Daniellův 342
" Regnaultủv 344
" vlasový 350
Hypsothermometr 32
Ingenhouszův přistroj 454
Intensita deště 329
Interferenční methoda pro stanovení roztažnosti 64
Irreversibilní processy 640
Isentropické změny 654
sobarické zmẽny 124
Isochorické zmẽny 125
Isotherma 630
Isothermické změny 627
Jenské sklo normální 21
Joule-Koppúv zákon 203
Joule-ủv apparát 616
Kalibrace teploměrů 15
Kalorie Bunsenova 158
„ Maxwellova 158
" Regnaultova 158
Kalorifer 210
Kalorimetr elektricky 211
n ledovy 173
„ parní 179
" thermochemicky 418
Kalorimetr na chladnuti 181

$$
\text { " na kapalný vzduch } 401
$$

$\because \quad$ na směsování 167
Kalorimetrickả bomba 421
Kapacita tepelná 160
Kapaliny přehřáté 295
Kapalnění 270
Kirchhoff-Clausiova vêta 552
Kirchhoffủv zâkon 548
Kladívko vodní 405
Koefficient absorpce 531
Koefficient roztaz̃nosti $48,555,90$

$$
\geqslant \quad \text { pravý 49, } 91
$$

" $n$ prûměrný 49, 90
Kondensace plynú 353

Kondensační vlhkoměry 342
Kondukce tepla 435
Konstanta stavojevné rovnice 129
Konvekce tepla 436
Kritická hustota 361
Kritická teplota 354, 361
Kritický specifický objem 361
Kriticky tlak 354
Kruhový process 626
Kryofor Wollastonủv 404
Kyslic̄ník uhlicitý, pokusy 433
Kyvadlo kompensované 81
Lambertův zákon 514
Lamellové methody 475
Latentni teplo 243
Led, výroba 406
Leslieova kostka 513
Lindeũv apparát 370
Meyerova methoda pro hutnotu par 321

Negativní proměny 648
Neumannův zákon 196
Nezvratné dèje 640
©bjem têles pr̂i tavení 257
Odraz diflusní 516
Odraz vybíravý 519
Oekononický koefficient 638
Ombrometry 329
Páry nasycené 270
Páry přehráté 275, 277
Permanentní plyny 362
Personovo pravidlo 386
Pictetovy pokusy 362
Planckúy zákon 568
Platina, záření 592
Positivní proměny 648
Pošinovací zákon Wienúv 562
Proudění tepla 436
Pr̃echlazení kapalin 253
Prúteplivost a pråhlednost 526
Psychrometr 345
Psychrometr aspiračnf 348
Pyrheliometr Angström-Chwolsonův 600

## Pyrheliometr kompensační 600 Pouilletův 599

Pyrometr Fery-ûv 46
" Hempelův 44
" Holbornůy a Kurlbaumův 45
Wannerův 44
Radiometr 511
Réaumurova stupnice 8
Reflexe selektivní 518
Regenerativni princip 369
Reversibilní processy 640
Rosný bod 339
Rowlandúy apparát 621
Rozpínavost plynư 127
Roztaz̃nost délková 53
objemová 47
Roztoky, bod mrazu 268

## bod varu 299

Rtuf, roztažnost 96
„ teplo specifické 214
Sféroidálni slav 297
Skok temperaturní 493
Skupenské teplo 242
Slitiny, bod tavení 247
Sloupcové methody 471
Smẻsi mrazivé 431
Smési par 282
Solárni konstanta 597
Souhlasné stavy plynů 377
Spád temperaturni 438
Specifické teplo pravé 162
$\# \quad$ průměrné 162
Stefanŭv zákon 559
Strömerova stupnice 8

Têleso absolutnẻ černé 550
Tepelna kapacita 160
Teplo specifické 156
, skupenské 380
Teplo tavení 380, 385
" vypãovací $389,392,397,399$
Teploměr kovový 86
n lihový 31

Teploměr pentanový 31 petrolaetherový 31
„ plynový 24, 141
„ rtufový 4, 30
" toluový 31
Teplomẽr hypsometrický 32
n kalorimetrický 43
n manipulační 5
, normální 5
Teplomèr maximální 33 minimální 33
Teplota absolutní 27, 128
platinová 41
Teplota na základê záření 585
Teplota slunce effektivní 599
Thermobarometr 32
Thermoćlánky 36, 38
Thermograf 35
Thermochemie 409
Thermosloup 498

$$
\begin{array}{ll}
\% & \text { lineární } 500 \\
\text { plos̃ný } 500
\end{array}
$$

Tlak a tavení 263
Tyndallúv pokus 195
van der Waalsova rovnice 150
Var kapalin 290
Vedení tepla 435
Vlhkost absolutni 337
relativní 337
Voda, roztažnost 110
\# specif. teplo 163
Vodní páry nasycené 303
\ýkonnost cyklu 638
$\backslash$ ypařování 270
Wheatstoncúv mústek 505
Wienûv zákon 561
Záření integrální 530
n sluneční 596
n spektrální 530
n våbec 495
Zkapalnění plynứ 353
Zvratné dẻje 640

## Chyby tiskové.

(Prvni čislo udává stránku knihy, druhé rảdek, na to následuje ĉtení chybné a naposled je uvedeno čtení správné.)
223.
6 zdola
850
0.10321
čti §51,
224.
8 shora
0.10321
> 0-101321.


[^0]:    *) K nêkterỷm výjiinkám od tohoto pravidla zde ovšem prozatim neprihližíme.

[^1]:    ${ }^{\text {*) }}$ ) Viz E. Mach, Die Prinzipien der Wârmelehre, 2. vyd. 1900, pag. 6., kdež podán obširný a zajimavỳ historický výklad (pag. 3-39) o rozvoji thermometrie.

[^2]:    *) Daniel G. Fahrenheit (1686-1736) narodil se v Gdansku, žil ršak hlavnẽ v Hollandsku, kde hotovil fysikálni přistroje, zejména tlakomêry a teplomêry. Pred nim již navrhoval Carlo Rinaldini, professor filosofie a mathematiky na université Pisanské, pouzuiti teplot, při nichz̄ voda mrzne a vře, za základni, jak E. Mach ve spise již citovanêm uvádi. Přes to má Fahrenheit nepopiratelnou zásluhu, że véc skutečné provedl a tak kolem roku 1714 první teploméry vespolek dobřee souhlasici sestrojil, pûvodnẽ lihové, pozdèji téz̄ rtutové. Methodu svou uverejejnil v roce 1724 v pojednảni ve Philosophical Transactions.
    **) Tedy tolik, jako stupnūu ủhlových v polokruhu, shoda sotva obmýslená, nýbrž nahodilá.

[^3]:    *) Viz Mechaniku, pag. 523, 1901

[^4]:    *) Viz Mechaniku 1. c.

[^5]:    *) Srovnej Mitteilungen der kais. Normal-Eichungs-Kommission, II. Reihe Nro. 12, pag. 149, 1902 Berlin.
    ${ }^{* *)}$ Viz Mechaniku, pag. 521, 1901.

[^6]:    *) Viz na př. F. Kohlrausch, Prakt. Physik, 1905. Tab. 14 a), Valouch, Logarithmickė tabulky, pag. 142, 1904.

[^7]:    *) Aspoñ zpravidla, Jsou vs̊ak také teplomèry, přì nichž chod kalibru jest vyrovnán dēlením, jez̃ pak neni rovnomèrné.
    **) Mechanika, pag. 47, 1901. Takorẏch príistrojū jednodus̊sich, s odẽitáním bud lupou nebo (slabým) mikroskopem, uvádi se dosti mnoho. V laboratořich, kde se kalibruji teplomēry jiz̀ hotové, postači přistroje improvisované üplnê.

[^8]:    *) Mitteilungen der kais, Normal-Eichungs-Kommission, Berlin, II. Nro,

[^9]:    - Označeni smaximum depresses jest jiz̃ vseobenẽ zavedeno, ač zde nejde vlustnè o maximum ve smyslu mathematickém, nẏbrż o limitu, o mez, prées kterou uicínek nesahít.
    **) Oznac̉ováni $=$ nullového lrodu jest prijato (z pojednáni francouzských) dle slova séroc - nulla.
    ***) Thiesen, Scheel und Sell, Thermische Ausdehnung. Zeitschrift far Insfrumentenkunde 16. pag. 58. 1896.

[^10]:    *) L. Marchis, Journ. de phys. (3) 4, pag. 217, 1895.

[^11]:    ") E. Rimbach, Zeitschrift for Instrumentenkunde 10, pag. 153, 1890.

[^12]:    *) Teplomẽr heliorý.

[^13]:    Dr. V. Stroubal: Thermika.

[^14]:    ๆ) Mechanika, \$ 343, obr. 259, 1901.

[^15]:    ${ }^{\text {* }}$ ) Takẻ nēkdy $p_{p}$, méně vhodnẽ.
    ${ }^{* *}$ ) Nejnovéjsíi data viz Travaux et Mémoires de Bureau international des poids et mesures. Tome XII. 1902. P. Chappuis a J. A. Harker. Platnost uvedeného vzorce o konstanté $\delta=1.54$ udána v mezích $-23^{\circ}$ až $450^{\circ}$.
    ***) anebo též methodou Wheatstoneova mûstku.

[^16]:    *) Člen kubický postači úplnẽ; jen výjimečnẽ, u nẽkterẏch kapalin, připojuje se jestê člen $D$. a $^{+}$

[^17]:    *) Dobře jest podloz̃iti napríć dvẽ tenkẻ sklenéné tyčinky, aby tyê nespočivala celou plochou na lineailu, a učiniti opatreni, aby s lineâlu nespadla.

[^18]:    *) Mechanika, § 31, pag. 47, 1901

[^19]:    ${ }^{*}$ ) Rozmėry 2.5 cm a 0.4 cm jsou souhlasné s rozmèry, jez̃ byly voleny pro platinovỳ métre des archives.
    **) Hippolyte Louis Fizeaus (1819-1896), prosluly fysik i astronom, clen Bureau des Longitudes v Pařizii. Methodu popsal v Ann. de chim. et de phys. sv. 2, pag. 143, 1864, pozdèji ješté sv. 8, pag. 335, 1866.
    ***) Arnost Abbe ( $1840-1905$ ), professor astronomie a reditel hvézdârny na université v Jené, rynikl pracemi svỳmi v oboru praktické optiky jako reeditel proslulé firmy Karel Zeiss y Jenẻ. Založil snadaci Karla Zeisses z prostredkù flastnich k ưčelûm védeckẏm i sociálnim.
    †) Obsirnỳ popis, kterǧz zde ovšem v plném rozsahu nelze rekapitulovati, jest obsaz̃en v Zeitsclır. f. Instrum.-Kunde, roc̃nik 13, pag. 365, 1893. Pokud rsak vyklad zde podan, vztahuje se k tomuto modelu nejnovéjsimu.

[^20]:    *) Nêkteré se ovšem odrázeji také na hořěži ploše kryciho skla. Aby tyto paprsky $z$ vlastniho pole interferenẽniho vysly, brousi se horejsi rovina kryciho skla ponêkud sikmo, jak již uvedeno, v ühlu $20^{\prime}$; malý tento sklon však stači aby - ve vétši vzdálenosti - tyto paprsky se oddêlily stranou od têch, jez̃ vespolek interferuji.
    ${ }^{* *}$ ) Koefficient, kterým se rozdil dráhovẏ přepočitává na rozdil fasový, jest $\frac{2 \pi}{i}$, kdez̃ znači 2 délku vlnitou. Paprsek, na prostředi hustším odraženỳ, vrací se ve fasi opačné, tedy s fasovỵm rozdilem $\pi$. Viz Akustiku, § 28, pag. 85, 1902.

[^21]:    
    ${ }^{\text {**) Užíváme tẻhoz̃ označení, jako v pojednáni Pulfrichové nahor̃e citovaném. }}$

[^22]:    ${ }^{*}$ ) K. Scheel, Verl. d. d. physik. Ges. 5, pag. 3. 1907.

[^23]:    *) Eilhard Mitscherlich (1794-1863), professor chemie na universitē Berlinské, původnẽ orientalista. Přislušná pojednảní vyšla v Rozpravách akademie Berlínské a v Annalech Poggendorffovychch, v letech 1824, 1825 a 1827.
    **) Friedrich Pfaff (1820-1886), professor geologie v Erlangách. Studoval téz̃ v Praze. Práce jeho o tomto předmêtu jsou uveřejněny v Pogg. Annalech, svazek 104 a 107 , roku 1858 a 1859 .

[^24]:    *) Srovnej Mechaniku, § 18, pag. 26, 1901.
    **) Mechanika, § 338, pag. 513, 1905.

[^25]:    *) Viz tabulku y Mechanice, pag. 456. Méni-li se s, mẻni se ovšem též k, ale velmi nepatrně. Jak se $s$ měni teplotou, ukazuje tabulka pag. 459.

[^26]:    *) Yohon Harrison, hodinár londýnský (1693-1776), vynálezce chronometru (,,time-keeper ${ }^{f 4}$, jak stroj tento pûvodné nazval). Za posledni velmi dokonaly̆ stroj z roku 1761 obdrżel velkou čist ceny 2000 Lstrl., kterou anglicky parlament stanoril na nejlepsi zpûsob určovati zemépisnou délku na mor̉i.

[^27]:    *) Na hore Mount Hamilton (1283 m) ve státu (nikoli poloostrové) Kalifornii bliže San Francisca (j. v.); zaloz̃il ji James Lick (1796-1876) roku 1874. Ve vy̌kresu kyvadla jsou orsem viděti jen nádoby drě. Závés jest kreslen tak, jak ho vidi pozorovatel v roviné ky̌ráni, kterāz̃ tedy jest kolmả k rovinê nákresné.
    ${ }^{* *}$ ) Vílec pro rtư mivai průmêr značnéjasi, tak że hmota rtuti prevládá.

[^28]:    *) V letech $1872-1875$ providèl také autor redukci tohoto prìstroje.

[^29]:    *) Mechanika, pag. 469 a 471, 1901.

[^30]:    -) Prísné szato též průmérnêho Pro malé intervally tepelné, jichà zde uživáme, lze rsak koefficient * za konstantni pokládati.

[^31]:    *) F. Kohlrausch ve své Lehrbuch der prak. Physik pise vs̃ude $3 \beta$, kde my nahor̃e psali $x$; ale jeho zpűsobem psani soumèrnost výrazŭ trpí, coz̃ jest pochopitelno, ponéradż se drê rủzué roztaz̃nosti, objemová a lineárni, kladou vedle sebe.

[^32]:    ${ }^{*}$ ) Obyčejnẻ kapaliny zahrưiváme tak mirnẽ, že koefticient $x$ i zde za konstantni lze pokládati.

[^33]:    ") Henri Regnault (1810-18i8). slavný chemik a fysik, prednaisel v letech 1817-1854 chemii na Ecole polytechnique a fysiku na College de France vPařizí, od roku 1854 byl ředitelem proslulé továrny na porculán v Sèvres, Eteréhožto postaveni se za války nêmecko-francouzskẻ vzdal. Prislus̃nể pojednání mả název: Sur la dilatation absolue de mercure, a vyslo v Mém. de lacad. des sciences 21. 1847 v Parizizi.

[^34]:    *) Dimitrij Ivanovic Mendėlejev (1834-1907), slavný chemik ruský, ředitel normálniho cejchovniho ủstavu v Petrohradè.

[^35]:    *) Journ. de phys. 4, pag. 12, 1905.

[^36]:     tedy nepravidelnost.

[^37]:    *) Landolt a Bürnstein, Tabulky 1905.

[^38]:    *) Marek Väclavz, narozenỳ 1853 v Bechyni v Čechách, pracoval jako adjunkt internacionálniho ustavu pro miry a vảhy 'v Bréteuilu v letech 1878-1883 na zakladech absolutni soustavy mèr, stal se pak 1883 inspektorem, 1890 vrehnim inspektorem c. k. norm. cejch. kommisse ve Vídni, kdez̃ od roku 1904 żije v. v.

[^39]:    *) Mechanika, pag. 619, 1901.

[^40]:    *) Mechanika, pag. 527, 1901.

[^41]:    *) Yacques Al. Charles (1746-1823), professor fysiky na konservatorii >des Arts et Métierss v Parizizi, vynálezce ballonû (aerostatû) vodikem plnẻnẏch.
    **) Fohn Dalton (1766-1844), slavnỳ fysik a chemik anglický, púsobil v Manchestru jako professor na New-College; svou theorii atomovou stal se zakladatelem moderní chemie; objevil téź nevidomost barev (ədaltonismusc), poznav tuto anomalii zrakovou sám na sobẽ.

[^42]:    *) Louis Foseph Gay (1778-1850), zvaný Lussac, kteréžto prijmeni prijijal jeho otec dle svého statku v okolí St. Leonhard; přednášel jako professor chemii na skole polytechnické a fysiku na Sorbonně v Pariiži, jsa prìi tom zaméstnán tẻz̃ v chemické a manufakturní praxi. Príslus̃nẻ jeho pojednáni má nadpis: Recherches sur la dilatation des gaz et des vapeurs. (Ann. chim. 43, 1802.)

[^43]:    *) Mechanika, pag. 523 a 137, 1901.

[^44]:    *) Viz na pr̈. F. Kohlrausch, Prakt. Physik, pag. 81, 1905.
    **) Zeitschrift for Elektrotechnik 10, pag. 630, 1904.
    ***) Tak se hodnoty tyto uver̃ejnily v Beibl. d. Ph. 30, pag. 77, 1906.

[^45]:    *) Filip Folly (1809-1884), prolessor fysiky na universite Mnichovské.
    **) Leopold Pfaundler (* 1839), nyní professor na universitẽ ve Štyrském Hradci (dfive v Innsbrucku).

[^46]:    *) Pierre Chappuis (* 1855), pûvodnè attaché, pak celen čestný onoho ústavu, a konečnẽ professor fysiky na secole Centr. d, arts et manuf.c. Nyni žije na odpočinku v Basileji.

[^47]:    *) Mechanika, pag. 513, 1901.
    **) Mechanika, pag. 349, 1901.

[^48]:    *) Mechanika, pag. 533, 1901, (podle Bureau des longitudes v Pařizi). Viz *) Mec
    téz pag. 349.

[^49]:    ${ }^{3}$ ) van der Waals Fan, * 1837 v Leydenu, jest professorem fysiky na université v Amsterodamu a to jiz̃ od roku 1877, kdy byla universita založena. Jeho dissertace, ${ }^{v}$ nizz̃ ona stavojevná rovnice jest obsažena, mai nảzev: 0 spojitosti stavu kapalného a plynného ( 1873 , hollandsky).

[^50]:    *) フ̛iri Vilém Richmann (1711-1753), syn švédskèho setnika, professor a çlen akademie v Petrohradẽ; byl zabit bleskem, kdyz̃ se při bour̃ce přibliz̃il hromosvodnému isolovanému vedeni, jeż na svém domê ke studiu elektřiny atmosférické dal zar̆iditi.

[^51]:    *) Yosef Black (1728-1799), narozen v Bordeaux. Rodièové jelo pocházeli ze Skotska; proto poslali syna na studie do Anglie. Studoval medicinu a chemii na université v Glasgowẽ, pak v Edinburku, kde dosáhl hodnosti doktorské. Roku 1756 stal se na universitê v Glasgowê professorem chemie a nástupcem svêho drivéjsiho uéitele, slavnêho lékaře Dra. Cullena. Pozdêji byl povolán na universitu v Edinburku. Byl to, jak E. Mach pravi, muz̃ velikẻho dûmyslu a dústojnỳ nástupee slavného I. Newtona.
    **) E. Mach, Principien der Wärmelehre, pag. 157, 1900.

[^52]:    *) Uvádime zde ty, jez̃ priijali Börnstein a Scheel do tabulek LandoltBornsteinovýcḩ, pag. 393, 1905, a jeż uvádi jakoz̃to nejspolehlivéjsí téz F. Kohlrausch v nejnovéjsím vydáni Prakt. Plysik, pag. 195, 1905.

[^53]:    ${ }^{\text {* }}$ ) Při tom se ovšem ukāze, jak veliky̌ jest rozdil v obsahu tepelném tẻchto par a par vodnich. Tyto se kondensuji nesnadno, ony vsak při malèm teple skupenském snadno, tak że nutno ostře fopiti, aby se prostor na teplotu téchto par prohr̛al. Jde-li o experimenty skolni, a neni-li zvláşini zahřivaci apparát po ruce, mưže se têleso perné, na pir. kovová koule, zahřivati tėż ve vařici vodè; kdyz̃ se vytâhne ven, odssaje se kapka vody pijavỳm papirem a têleso se vloži do kalorimetru. Srovnej niže pokus Tyndallóv.

[^54]:    *) Mémoires de l'Academie, 1780 .

[^55]:    *) Robert Bunsen ( 1811 -1899), od roku 1852 professor chemie v Heidelberku. Přislus̃né pojednáni uveřejnèno v Pogg. Ann. 141, pag. 1, 1870; 142, pag. 616, 1871. Jak O. D. Chroolson ve sré thermice uvádi, znal základni myslenku kalorimetru Bunsenova ruskỷ fysik Hermann již zuačné dříve, totiž roku 1834, a upravil téz̃ vhodnỳ apparait.

[^56]:    *) lépe do vývêvy vodní, je-li po ruce.

[^57]:    *) Mechanika, pag. 523. 1901.

[^58]:    *) Heinrich Friedrich Weber (*1843) jest nyni professorem fysiky na polytechnice a ředitelem velkẻho fysik. elektrotechn. ústavu v Zorichu, jenz̃ jeho návodem byl vystavẽn. Prislušná pojednáni o specif. teple $B, S i, C$ pocházeji jiz z roku 1872 a 1875 a byla uverejnēna v Pogg. Ann. sv. 147 a 148.

[^59]:    ") Ve Zpráväch cis. Akad. Videñské, 114, pag. 65̃, 1905.

[^60]:    ${ }^{\text {a }}$ ) Ann. de chim. et de phys. 10. pag. 395. 1819 pod titulem: Recherches sur quelques points importants de la theorie de la chaleur. Oba autori byli professorovẻ fysiky na skole polytechnické v Parizizi; Petit, (1791-1820) byl mlads̃i, ale zâhy zemr̃el ve vêku 29 let, Dulong (1785-1838), jenž byl pûvodnê profchemie na Faculté des sciences, stal se pak na polyt. skole jeho nástupcem.

[^61]:    *) v Marburku, návodem prof. Richarze; viz Wien-Planck Ann. d. Ph. 22, pag. 99. 190 .

[^62]:    ${ }^{*}$ ) Fames F̛oulc ( $1818-1889$ ) v pojednáni $>$ On specific heats ( 0 specif. teple) Phil. Mag. (III.) 25. 1844. Po nèm (1848) tèz̄ Alphonse Woestyn v pojednáni Sur les chaleurs spécifiques, Ann. chim. phys. (III.) 23. 1848.
    **) Herrmann Kopt (1817-1892), vynikajici fysikảlni chemik, poslednê professor chemie na univ. v Heidelberku. Přislušná pojednáni pod názvem Specif. Wärme starrer und flassiger Körper vyşla v Liebigovych Annalech chemie, svazek 126. a suppl. svazek III. 1863 a 1864 .

[^63]:    *) Srovnej: Dr. Boh. Kučera, Pokroky fysiky za rok 1906 pag. So.
    Dr. V. Strouhal: Thermika.

[^64]:    *) Podrobnosti viz ve Zprárách cis. Akademie Videñské 100, 1891; téz̃ v Thermice Pfaundler-Lummerovẽ, pag. 345, 1898, která tvor̂i III. dil (2. oddêleni) známého dila Moller-Pfaundler, Lehrbuch der Physik, (III. vydáni).

[^65]:    *) Údaje veliçiny $d$ dle Thomsona (z r. 1871) vztahuji se k staršim čislům molekulovým, dle nichž bylo $\mathrm{H}_{2} \mathrm{O}=18, \mathrm{NaNO}_{s}=85$; dle téchto čisel bylo nutno téz̃ výpočet provésti.

[^66]:    *) Označeni obou tepel specifickẏch dēje se dle zásady, že index pr̃i $C_{p}$ nebo $C_{v}$ oznac̃uje veličinu, jez̃ se nemẽni, tedy konstantu, ovšem arbitrárni. Srovnej § 56.

[^67]:    *) V definici normálniho tlaku atmosférickẻho ( $76 \mathrm{~cm} \mathrm{Hg} 0^{\circ}, \mathrm{Om}_{\mathrm{m}}, 45^{\circ}$ ) jest totizz velikost plochy nechána libovolnou; tlak na jakoukoli plochu jest takový, jako váha udanêho sloupce rtufového pủsobici na této vodorovné mys̊lené plose za normální intensity tiz̃e.

[^68]:    *) Práce tyto vys̊ly ve 26 . svazku Rozprav akademie Pařiz̄ské, z roku 1862 , pod názvem: Recherches sur les chaleurs spécifiques des fluides élastiques,
    **) Eilhard Wiedemann (* 1852), syn Gustava Wiedemanna (1826-1899), nyni professor fysiky na univ. v Erlangách. Zminěná práce byla jeho spisem habilitačnim (na universitê Lipské) a vyšla téż roku 1876 v Pogg. Annalech fysiky, ve svazku 157, krátce pred tim, nez̃ jeho otec (rokem 1877 počinajíc) přejal jich redakci, kterou vedl do r. 1899.
    ***) Silvio Lussana (* 1862), professor fysiky na univ. v Sienẽ.

[^69]:    *) Yohon Y̛oly, jehož jméno bylo již uvedeno při vẏkladu kalorimetru parniho (§66.), uveřejnil vy̆sledky svých méreni ve dvou pojednánich s titulem: Specific heats of gases at const. volume, Phil. Trans. London, a to ve sv. 182. (1891), pro vzduch, CO a H , a ve sv. 185 (1894) pro $\mathrm{CO}_{2}$.

[^70]:    *) Mechanika, pag. 527. 1901.
    **) Odtud název $\alpha$ privativ. ১ıa-paivo přecházim, procházim, jako «̀vca- $\beta$ ciro vysfupuji (Anabasis).

[^71]:    *) Simeon Denis Poisson (1781-1840), professor polytechn. skoly a university v Pařizì, jeden z nejplodnējšich spisovatelû a badatelū své doby; napsal pres 300 pojednáni vêdeckỷch, vêtšinou o problémech analylické mechaniky. Od Napoleona byl povýsen do stavu slechtického

[^72]:    ${ }^{*}$ ) Akustika, pag. 209 a 205, 1902. Srovnej tėż Mechaniku, pag. 584, 1901.

[^73]:    *) Akustika, pag. 357, 1902.
    **) Charles Bern, Desormes (1777-1862), s poc̃átku učitel chemie na polyt. skole v Pariizì, pak továrnik chemicky̌ch produktû; zủčastnil se téz̃ żivota politickẻho. Clément ( $\dagger$ 1841) byl jeho zef a společnik obchodni. Pojednáni jejich má název: Du zéro absolu de la chaleur et du calorique specifique, Journ. de phys. 89, 1819.

[^74]:    *) Kdyz̃ se však jod ve zkumavee pod kyselinou sírovou zvolna zahřivá, iaví se bez rypařováni, jevi tedy také prechod určitý.

[^75]:    ${ }^{*}$ ) Ber. d. physik. Ges. Berlin 1906, pag. 57.
    **) Wien-Planck, Ann. d. Ph. 22, pag. 44, 1907.

[^76]:    *) Ber. d d. phys. Ges. 4. pag. 93, 1906. Viz též J. v. Panayeffi, Wied. Ann. 18, pag. 210, 1905, kde jest takẻ uvedeno grafickẻ znázornẽni oné závislosti. Zde přestáváme na reprodukei dat nejnovéjšich.

[^77]:     váni, jez̃ zavedl Frederick Guthric (1833-1886), poslednê professor fysiky v Londýnê.

[^78]:    ${ }^{*}$ ) Zpúsob tento, velice jednoduchý, osvęde̛il se nejlépe; má tu ry̌hodu, że, když pokus byl proveden, proužek papiru se snadno odvine a sűl ztuhlá ode skla (nožikem) odloupne; po pripadê se pomûže mírným zahřátim sklička ze spoda. Soli lze pak použiti $k$ pokusu novêmu.

[^79]:    ${ }^{*}$ ) Barus Karel, * 1850 , od r. 1895 prof. fysiky na Brown-universitẽ r Providence (U. S. A.).

[^80]:    ${ }^{*}$ ) Physik. Z. 6, pag. 186, 1905. Obširnêji Ber. d. d. physik. Ges. 3, pag. 403, 1905. Jeho výsledkūm byla zde dána přednost pred Koppovỷmi, ponēvadz̃ jsou z doby nejnovej̧si a ponẽvaď̌ jsou prepočteny na specifickẏ objem, tudiz̃ veličinu, která má pro sebe urěitỹ již význam.

[^81]:    *) Ve své Organ. chemii udává B. Raýman, pag. 57 , bod tavení $65^{\circ}$, J. Horbaczewski, pag. 85 , souhlasnè $69^{\circ}$, coz̃ od ủdajû Hessovẏch se značnê liši.

[^82]:    *) Podržujeme zde označení, od nich uživané.
    ${ }^{* *}$ ) Vyñata z Beiblâtter 12, pag. 177, 1888. Chyba tam obsažená ( $\alpha$ a $\alpha^{\prime}$ jsou zamēnēny) jest zde ovsem opravena.

[^83]:    *) gelare zmrznouti, re-gelare roztáti; tedy regelace roztani ledu tlakem, pỉi čemz̃, kdyz̃ tlak povoli, led znovu zmrzne. Pojmenování to navrhl Sir Joseph Hooker, jak J. Tyndall udává.

[^84]:    ${ }^{*}$ ) Tammann volí pro tlak jedničku: váha kilogrammu na $\mathrm{cm}^{2}$, tedy tak zvanou snovouk atmosféru, jez̃ jest proti stheoretickéc o $3 \frac{1}{3} \%$ menší.

[^85]:    * K pokusu tomuto hodi se dobře váhy demonstračni, popsané v Mechanice (1901), pag. 231, obr. 125., na nichz̃ zmẽnu rovnováz̃né polohy lze i z daleka sledovati.
    **) Mechanika, pag. 530, 1901.

[^86]:    *) lat. saturare, nasytiti, naplniti.
    **) Logicky me̊li bychom páry zváti nasycujicimi, saturujicimi, jak se v nomenklatữe francouzské vskutku řiká (la vapeur saturante). U nás však se pojmenováni snasycená páraء (dle némeckého gesättigter Dampf) již ujalo, snad proto, že jest kratşi.

[^87]:    *) Přísnê vzato s odečtenim $\frac{1}{13 \cdot 6}$ výsky sloupeçku vodniho, a redukovanỳ na normální teplotu rtuti, totiz̃ nullovou, podobnẽ jako prỉ odečtení barometrickém.
    ${ }^{\text {** }}$ ) Nesmi ovšem v prostoru býti obsaženo néjaké, byt i malé, množství vzduchu, také nutno cekati, az̃ se pokaždé teplota s okolím vyrovná. Pokus pro ủcely prednášek provede se vẏhodnêji trubicí, která obsahuje pảry sirouhlikové, poněvadz̃ zde napêtí par jest vēť̌i, tak že se jeví zřetelnēji.

[^88]:    *) Lépe nez̃ vyvařování; viz Mechaniku, pag. 511, 1901.

[^89]:    *) Benzol je v diagrammu vynechán, ponẽvadz̃ příslus̃ná křivka se při $70^{\circ}$ protíná s křickou alkoholu, čimz̃ diagramm se komplikuje.

[^90]:    *) Na křivku pro ammoniak pozorovací materiál (jdouci jen do $-30^{\circ}$ ) $\checkmark$ mezich dany̌ch nestači,

[^91]:    *) V diagrammu, jenž mēl obsahovati předevsím všechny plyny dřive permanentnimi zvané, pohřes̃uje se křivka pro kysliẽnik uhelnatỹ; avšak pozorovâni pro teploty, při nichz̄ napêti jde pod 10 atm., neexistuji. Wroblecwski pozoroval při nejnižší teplotē - $1575^{\circ}$, kde napêti jest jiziz $14 \cdot 22 \mathrm{~atm}$.

[^92]:    *) Dimitrij Konowalow (* 1856), nyní professor na université Petrolıradskė. Jeho dissertace doktorskả, kterou pracoval ve Strassburku r. 1881, má název: Ueber die Dampfspannung der Flassigkeitsgemische, Wied. Ann. d. Ph. 14, pag. 34 a 219,1881

[^93]:    *) Fohn Dalton (1766-1844), působil jako professor mathematiky a fysiky na New-College a pozdêji jako vicepraesident literární a filosofické společnosti (Litterary and Philosophical Society) v Manchestru, odkudż konal mnohé cesty do jiny̌ch čelných mẻst anglických, por̃ádaje přednášky. Přislušné prvni pojednání (On the constitution of mixed gases etc. Mem. Manch. Soc.) pocházi z roku 1801. Dalton vynikl jako zakladatel theorie atomové. Poznal tēz̄ nevidomost barev (daltonismus).
    **) Thomas Henry (1734-1816), byl lékárnikem a vedle Daltona praesidentem oné Spolec̃nosti literárni a filosofickė v Manchestru.

[^94]:    *) Boris Borisovič Golicyn (franc. Galitzine), * 1862, pracoval na onom thematu v laboratorii prof. F. Kohlrausche a Wienera ve Strassburku a podal elaborát 1890 jakoz̃to dissertaci doktorskou. Byl pozdêji prof. fysiky na univ. v Dorpatu a v Petrolıradẻ. Práce vyşla têž ve Wied. Ann. 41, pag. 588 a 770,1890 , odkud je tềz reprodukovân obr. 106. v cástečném pozmẽněni.

[^95]:    *) Srovnej ủpravu podobnou v prístrojich obr. 7. a 52.

[^96]:    *) Viz B. Kíucera, 0 uživáni pernẻ kyseliny uhličitẻ püi fysikảlnich demonstracich. Časop. pro pest. math. a fys. 31, pag. 34, 1902.

[^97]:    *) Srovnej F. Kohlrausch, Prakt. Physik, pag. 184, 1905

[^98]:    *) Tyto methody se tu i tam zovou tonometrické, od reckého चeivo napinám; vzhledem vs̃ak $k$ tomu, že slovo đóvos, tón, má význam akustický vs̃eobeenẽ prìijaty̌, nejevi se ono pojmenováni ve významu, okterỳ zde jde, vhodným. Methody tonometrické jsou ty, jimiž se me̛ríi tôn, t. j. určuje se jeho vy̌ška. Lepší jest již pojmenováni tensimetrické, od latinskẻho tensio napêti; vadi vsak shoda zvuková se slovem densimetrické, od latinskẻho densus hustý, tudî̀ methody hustomêrné, coz̃ je ovs̃em vẏznam zcela jinỷ.

[^99]:    ${ }^{*}$ ) 0 této otázce veden byl v letech osmdesáty̌ch spor; Kahlbaum popiral shodu, Ramsay a Young ji hájili. Shoda výsledkủ pokládă se dnes za nejcitlivêjsí dûkaz o čistotê praeparâtû.
    ${ }^{* *}$ ) Slovo, utvořené dilem z latinského bullio -ire, bublati, vřiti (slovo onomatopoietické), dilem z reckèho tor- a нiţ̌or.

[^100]:    *) Zeitschr. des ōsterr. Ingen.- u. Archit.-Vereines 1906, Nro. 46.

[^101]:    *) Zeitschr. f. Instrum.-Kunde 1906, pag. 291.
    ${ }^{* *}$ ) L. Holborn u. F. Henning, Specifische Wärme von Gasen, Wien-Planck, Ann. d. Plı. 23, pag. 809-845, 1907. Práce vyšla mezi tiskem této knihy, tak že jeji výsledky nemohly již na svém mistě býti uvedeny. Podržujeme označení, jehoz̃ autor̃i uživaji. Práce byla provedena ve fysikãlnẽ technickẻm ústavu v Charlottenburku.

[^102]:    *) Tlak čili váhu sloupce rtufovêho dlužno vztahovati na normální intensitu $g^{*}$ gravitā̃iho pole naši zemé, t. j. na intensitu v siř̃ce geograf. $45^{\circ}$ při hladinê mor̃e. Viz Mechaniku, pag. 523, 1901. Konstanta $\mathrm{g}^{*}=980 \cdot 606 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}$.

[^103]:    ${ }^{*}$ ) Viz na př. F. Kohlrausch, Prakt. fysika, pag. 618, 1905, aneb Mil. Valouch, Logar. tabulky, pag. 135.
    **) 0 vẏznamu slova hutnoty neb hutnosti viz Mechaniku, pag. 97, 1901. Chemikové naşi dávaji vêtsinou prednost slovu hutnota (ač zni podobnê jako slovo hustota, jehoz̄ ry̌znam jest však jinỳ). Viz na pr̃. K. Preīs, Anorg. chemie, pag. 86, 1902, podobnẻ 7 . Horbacsezoski, Anorg. chemie, pag. 24, 1904, ač zase pag. 10 význam slova odchylnê vykládà. B. Raýman ve své Chemii organickẻ pag. 7, 1895 (a 1896) uživá názvu hutnost.

[^104]:    *) Zriidka bývají pozorováni tak přesná, aby se tlak, vyjádřený vahou sloupce rtufového, musil redukovati na normálni intensitu tize. Index (1) upozorñuje na teplotu a tlak, jez̃ se od obycejnẏch pomẽrû odchyluji.
    **) Fean Baptiste Dumas (1800-1884), ${ }^{\text {ºn }}$ původnẽ farmaceut v Żenevé, pozdéji professor chemie na Sorbonnẽ v Parízizi, 1849-1851 ministr orby a obchodu, od roku 1868 stálý tajemnik Pařiz̃zké akademie.
    ***) August Vilém Hofmann (1818-1892), slavnỳ chemik, pûsobil jako professor chemie na univ. v Bonnu a pak na Royal-College of Chemistry v Londy̌nê, konečně od roku 1868 na universitê v Berlinẽ.
    $\dagger$ ) Viktor Meyer (1848-1897), byl professorem chemie v Zarichu, pak v Göttinkách a od roku 1889 jako nástupce Bunsenův v Heidelberku, kde téz̃

[^105]:    ${ }^{*}$ ) nikoli s plochým dnem jak bývaji sklenēnè bañky; nebof ballonek, jak z dalšiho jest patrno, musi vydrżeti vnéjsi pretlak atmosférický; plochá stêna dolejsi mohla by se thakem tim promáciknouti.

[^106]:    *) Jak později bude vyloženo, lze $\sigma$ vypsati z tabulky, když se za argument tlakový vezme $b-\frac{3}{8} c$; napētí par c urči se hygrometricky. Dluz̃no $\sigma$ s touz̃e presností ure̛iti jako váhu páry netto $M$.
    **) K tomu jest z̃ádoueno, aby bylo kapaliny do ballonku vêtši mnoz̃ství vpraveno, a aby stěny ballonku, jak nahoře předepsảno, byly kapalinou opláchnuty.

[^107]:    ${ }^{*}$ ) který se obdrži, když se provede déleni $\left(1+\alpha t_{1}\right):(1+\alpha t)$, a když se
    ${ }^{* *}$ ) Viz Mechaniku, podilu, v nichž přicházeji mocnosti $\alpha^{2}, \alpha^{3}$ atd. jest snazŞi a zajímavějsi nṑ kdyz̀ se pro na př. F. Kohlrausch nez kdyz̀ se pro $\boldsymbol{A}$ odvodi komplikovaná formule. Viz nas̃e, jez̃ souhlasí F. Kohlrausch poińáenim pri stanoveni specif. limoty vůbec užívaným. tak że váha $M_{1}$ znac̃í váhu o pr̂ipadé, kdy vzduch parami se úplně nevypudi, připadu zpûsobem již naznac̃eným se vyhnouti.

[^108]:    *) Viz Mechaniku, pag. 511, 1901.

[^109]:    ${ }^{*}$ ) ještê lépe v lázni pískovẻ; vrstva pisku jest v železné misce, která se plamenem zahřivá; var jest tu klidnéjsí a neni nebezpeči, że by koule praskla.

[^110]:    ${ }^{*}$ ) Z toho následuje, že pojmenováni shutnotas, coz̃ jest jen modifikace ${ }_{* *}$ hustota, není vhodné. Srovnej, co o tom řečeno v Mechanice, pag. 97, 1901. ${ }^{* *}$ ) Amadeo hrabě Avogadro di Quarenzo e Ceretto (1776-1856), žil v Turinê, kdez̃ vystudoval práva a promovoval ; jako autodidakt vênoval se vẽdám přirodnim a stal se professorem fysiky na université v Turinu. Zákon Avogadrúv datuje se z roku 1811.

[^111]:    *) Podobnẽ u bromu a chloru.

[^112]:    *) K. Preis, Anorg. chemie, pag. 169, 1902.

[^113]:    *) Meteorol. Z. 23, pag. 460, 1906 a 22, pag. 99, 1905. Kdyby intensitou $4 \frac{\mathrm{~mm}}{\mathrm{~min}}$ pršelo 2 hodiny, napršelo by tolik vody, jako v Praze ji spadne za celý rok.
    **) Z řeckého ör ß̧oos ó dešf.

[^114]:    *) 久uév -óvos it sníh.
    ${ }^{* *}$ **) Meteorolog. Zeitschr. 23, pag. 337, 1906.
    ***) Novêjsisi z nich byl postaven ${ }^{21}$, 1898 .
    trubička je şirší, slouží ještẽ k pozorováníz 1898 ; druhý starši, jehož odtoková dát roztáti.

[^115]:    *) Dr. Fr. Augustin, Die Niederschlāge in Prag, Meteorolog. Z., Svazek k jubileu Hannově vydaný 1906, pag. 90. Pojednáni obsahuje četná data podrobnêjs̃i, zejmẻna téz̃ rozdêlení srážek dle jednotlivỷch mẽsicũ, z nichz̃ vysvitá, że kvêten jest měsíc na srážky nejbohatši, po nęm pak cerervenec. Nêkdy bývá červenec na pryẻm místé, jako na př. v roce 1907.

[^116]:    *) Z řeckého ī́os stejný, vio nechati prs̉eti, ò $\vartheta \varepsilon o ̉ ; ~ v i \varepsilon є ~ b u ̊ h ~ d a ́ v a ́ ~ p r s ̌ e t i, ~$ zt prşi; od toho známé souhvêzdí Hyady.
    **) Dle novějjich dat Augustinových.
    ***, Dr. Vasa Ruvarac, Die Abfluss- und N
    Dr. A. Penck, Untersuchungen über Verdunstung und agsverhāltnisse von Bōhmen. flächen. Arbeiten des geograph. Inst. der k. k. Univ Wien von grösseren Landferät Dra. Frejlacha ve Véstniku č. akademie. Univ. Wien. Heft 4. Viz téz̄ rejest tēz̃ deşfopisná mapa Čech.

[^117]:    tinskẻho, který jde podél Karlovy ulice. Viz Pozorování na livẽzdárnẽ Praz̃ské, ročnik 54. (1893), predmluva. Přičina nespolehlivosti byla v tom, ze do vody padaji saze z blizky̌ch komínú a zanási se prach, čimz̃ vỳsledky váz̃ení se stávají
    pochybnỳmi.

[^118]:    *) Výraz smaximální neni zde minên ve smyslu mathematickèm; snad by spise se mohlo İici limitní, aẽ i toto slovo v mathematice má význam jiný.

[^119]:    *) slovo sbode v tẻmz̃e smyslu jako bod varu, bod tavení a pod.
    **) Mnemotechnicky jest zajímavo poznamenati, że čisla $E$ a $M$ jsou sobẽ dosti blizká, zejména při obvyklẏch teplotách laboratorních a že také při vys̊ssich teplotách ani od téchto císelných teplot nejsou mnoho rozdilná, na pr̃.

[^120]:    *) Fohn Frederic Daniell (1790-1845), professor chemie na král. koleji V Londýnẽ zaloz̃ené roku 1831. Pojednáni o hygrometru připadá do roku 1820. Ty̌ż badatel sestrojil článek po nêm zvaný, pripadající do roku 1836 .

[^121]:    *) Ann. de chimie et phys. (3), 15, pag. 129, 1845.

[^122]:    

[^123]:    *) Arnost Ferd. August (1795-1870) byl professorem a pak ředitelem gymnasijním v Berlinẽ. Přislus̃né pojednáni uveřejnil v Pogg. Annalech V. 1825 a XIV. 1828.

[^124]:    *, Viz Meteorolog. Z. 21, pag. S, 1904.
    **) Dr. R. Assmann, Zeitschr. f. Instr.-Kunde 1892, I. Přistroj dodává R.

[^125]:    $\left.{ }^{*}\right)$ Viz Meteorolog. Z. 1898, pag. 152
    **) Meteorol. Z. 24, pag. 335, 1907.

[^126]:    *) Viz referát Dra. Kužmy: >0 zkapalñováni plynû.\& Żiva 11., pag. 202 a násl. 1901.
    ${ }^{* *}$ ) Michael Faraday (1791-1867), slavný experimentátor. Prvni pojednáni nadepsané: On the condensation of several gases into liquids (Phil. Trans.) datuje se z roku 1823, druhé z roku 1845; obẽ uveřejnèna têz̃ v Ann. chim. et phys. (2) 22,1823 a (3) $15,1845$.

[^127]:    ${ }^{\text {2 }}$ ) Tento pokus cinil ponejprv, H. Davy, ale trubice explodovala.

[^128]:    *) Toto císlo 2790 atm . udává Andrews; viz niže.
    ${ }^{* *}$ ) Charles Cagniard de la Tour (1776-1859), inženýr-geograf, pozdêjji attaché ministerstva vnitra v Pařizii, znám jest ve fysice jako konstruktér sireny (1819) dle něho zvané. Pojednáni vztahujicí se $k$ předmẽtu, o nêmz̃ se $v$ našem textu jedná, má nâzev: Exposé de quelques résultats obtenus par l'action combinée de la chaleur et de la compression sur certains liquids, Ann. chim. et phys. 21. 1822, 22. 1823 a jesté 23. 1823.

[^129]:    *) Diagramm jest rỳsován - odchylně, nez̃ jak jest v původnim pojednáni - tak, že objem jest uisečkou a tlak por̃adnicí, v soullasu s isothermami plynû, v obr. 47. pag. 136 znázorněnými. Tyto isothermy plynové jsou zde rýsovány čärkované.

[^130]:    *) Na hor̃ejšim toku Seiny jihovýchodně od Pařiz̃e.

[^131]:    *) Louis Paut Cailletet (* 1832), spolupracovnik svého otce v żelezárnách v Chatillonu na řece Seinẽ. Apparát ke zkapalnẽni plynú dal vypracovati u firmy Ducretet v Pařizĩ. Pojednání přislus̃né obsaženo jest v C. R. de l'Acad. des sciences $85,1877$.
    ${ }^{* *}$ ) V principu nebyla ovšem neznámou. Jak v § 123. uvedeno, užíval náhlého rozpêti kysličniku uhličitého jiz̃ Thilorier a docilil tím ochlazení tak značnẻho, ze kysliẽnik ztuhl na snih.

[^132]:    *) Raoul Pierre Pictet (* 1846), od r. 1879 professor industr. fysiky na univ. v Żenevè. Zpráva o jeho pokusech obsažena v tẻmže svazku 85. 1877. C. R. Dne 22. prosince 1877 telegrafoval akademii : >Oxygène liquéfié aujourd'hui sous 320 atmosphères et 140 de froid par acide sulfureux et carbonique accouplése a na to 24. prosince 1877: seconde expérience parfaitement réussie. Nombreux assistant:. Aujourd'hui mêmes résultats que samedi. Communiquer à M. Dumas.s

[^133]:    *) Zygmunt Wróblewski, narodil se r. 1845 v Grodnu (na Rusi) studoval r. 1862 v Kijevé, byl 1863 do Sibiře vypovézen, 1869 ammestorán, studoval pak 1869-74 v Berlinẽ, Heidelberku a v Mnichovẽ, kdez̃ byl promován. Habilitoval se 1876 ve Strassburku, pracoval vêdecky v Parizizi, Londẏně, Oxfordu a Cambridgi a stal se roku 1882 professorem na université Krakovské, kdez̃ již 1888 následkem osudnẻ nehody (převržením petrolejovẻ lampy) zemr̃el. Práce vêdecké, velmi četné, provedl dilem sám, dilem společně s Olszewskim.
    ${ }^{* *}$ ) Karel Stan. Olszewski, narodil se 1846 v Broniszówê v Haliči, studoval 1866-1872 v Krakovè a v Heidelberku, kdez̃ promoval; stal se pak 1876 mimořádnẙm a 1891 řádny̌m professorem chemie na universitê Krakovskẻ. Jeho činnost vèdeckâ jest velmi obsáhlá. Jest téz̃ přespolnim ĉlenem českẻ akademie.

[^134]:    ${ }^{*}$ ) Sir F̛ames Dewar, * 1842 (ve Skotsku), od roku 1879 professor chemie na Roy. Instit. v Londýnẽ, badatel mnohostranný, zejména v oboru thermiky a optiky.

[^135]:    *) Thomson a Joule, Phil. Trans. Roy. Soc. p. 579, 1862.
    **) Karel P. Linde, * 1812, stal se 1868 mimorảdnỳm a 1872 řádným professorem na vysoké skole technické v Mnichové, kterêhoz̃to mista se 1890 vzdal, aby se cele vênoval podnikům technickỳm. - V Anglii současnê a nezávisle užil Hampson regenerativniho principu pro zkapalnêni vzduchu.

[^136]:    *) $V$ sedēni Par̃iz̄skẻ akademie vèd dne 13. Cervna 1898 d'Arsonval demonstroval tekutý vzduch a podával zprávu o apparátu Lindeovẽ, pr̃i cemz̀ reklamoval pro sebe prioritu o základni mys̊lence oněch nádob, že totiž vakuum jest nejlepši isolator tepla. Podobné nádoby navrhoval jiz̃ r. 1888 k účelủm lékařskẙm. Isolačni vlastnost vakua znali ostatnẻ již Dulong a Petit.

[^137]:    \%) F. Kohlrausch ve své Prakt. fysice, tab. 12a) (1905), udảvai tento tlak $\checkmark$ metrech ( $m$ ) sloupce rtufovèho $\mathrm{Hg}_{\mathrm{g}} \mathrm{O}^{\circ}$.
    **) Jest sestavena podle dat obsažených v tabulkảch Landolt-Börnsteinových 1905. Tamtéž jsou i jména pozorovatelû́ a literatura predmětu uvedena.

[^138]:    *) Landolt a Börnstein udávaji $22410 \mathrm{~cm}^{3}$; srovnej poznámku o tom v § 50 .

[^139]:    *) Proto uživáme také týchž označeni $p, v, \ell$, upozornujice jen hvẽzdičkou, že jde o zvlás̃tní vyčislení techto veličin.
    **) Návrh ěiní pani Kristina Meyerova rozenai Bjerrumova, v Rozpravách dánskê akademie vêd, math.-přirod. obor, řada 9, 3. 1900.

[^140]:    *) Strauss, Journ. d. russ. phys.-chem. Ges. 12, pag. 207, 1880, 14, pag. 511, 1882.

[^141]:    *) Na př. Landolt-Börnsteinovy 1905, z nichž data zde uvedená jsou téz̃ vyinata.

    Dr. v. Strouhal: Thermika.

[^142]:    *) Charles Person (* 1801), prof. fysiky na univ. v Besançonu. Přislus̃ná pojednání, Recherches sur la chaleur latente de fusion, jsou obsaz̃ena v Ann. chim. et phys. 3 . rada, $21,1847,24,1848$ a 27,1849 . Rok úmrti nemohl autor
    zjistiti.

[^143]:    *) Filīp Vilèm Brix (1817-1899), poslednẽ vrchní inženýr telegrafniho ưadu v Berlíné. Pojednáni jeho sUeber die latente Wārme der Dàmpfe verschied. Plossigkeiten bei deren Siedepunkte vyslo v Pogg. Ann. 55, pag. 341, 1842.

[^144]:    *) Marcellin Berthelot (1827-1907), slavný chemik francouzskỷ, 1886-1887 ministr vyučování, 1895-1896 ministr vnējšich zâlez̃itosti, vẻdecky neobyčejné činný, jemuž̃ roku 1901 jakoz̃to nestoru svèmu věnovali chemikovè vs̃ech národû medailli ke zvêénění jeho zásluh vêdecky̌cl. Přislus̃né pojednáni vys̊lo v C. R. 85, pag. 647, 1857, téz̃ Journ. d. phys (1), 6, pag. 337, 1877.

[^145]:    *) F. Henning, Verdampfungswärme des Wassers, Ann. der Phys. 4. F. 21, pag. 849,1906 . V práci té srovnává (pag. 871) výsledky vlastni s têmi, jichz̃ doşli hlavné Regnault a Griffiths.

[^146]:    ${ }^{*}$ ) Na pf̄. Landolt-Börnsteinovy, 1905. Velmi obşirnẽ jest také ve Winkel-

[^147]:    *) Emile Mathias, * 1861 v Pařizii, professor fysiky na lyceu v Marseillu a pak na univ. v Toulouse. Přislušné pojednáni má název: Chaleur de vaporisat. d. gaz. liquéfiés, Ann. chim. et phys. 21, 1890.

[^148]:    ${ }^{*}$ ) Regnault zabýval se téz̃ pracemi o tomto předmẽtu; jeho pozorovac vỳsledky byly však z největsi části při oblẻhảni a dobyti Par̃iže v roce 1870 zničeny.

[^149]:    *) Ann. der Phys. (4), 20, pag. 423, 1906. Ber. der d. phys. Ges. 5, pag. 175, 1907. První práce provedena ve fysik. lab. vys. skoly techn. v Darmstadtu, druhá ve fysik. ústavu vys. skoly techn. v Cảchách.

[^150]:    ${ }^{\text {* }}$ ) Reckẻ otorzeiov, $\tau$ ó znači hlásku jakoz̃to základ slov; zde znači zâkladni cásti, elementy, z nichz̃ se skládaji lumoty.

[^151]:    *) Označeni toto zavedl Berthelot.
    **) Název zabarveni jest obrazný, vzatý z optiky (skládáni barev), podobnẽ jako nẻmecké Wärmetōnung je prijijato z akustiky.
    ${ }^{* * *)}$ Germain Henry Hess, $=1802$ v Żenevé, dostal se jižz v útlém mládi ( 3 let) s rodiči svỳmi do Ruska, kdez̃ se stal doktorem lèkařstvi a podniknuv 1827-1829 rêdeckou cestu na Sibiř, professorem chemie na université v Petrohradẽ, kdez̃ zemr̃el r. 18̃0. Pr̂islus̃né pojednảní (Recherches thermochimiques) vyslo ve Zprávách Petrohradské Akademie r. 1840, téz̃ v pokračováni r. 1841, 42 a 43.
    i) Że zákon Hessûv z principu o zachováni energie následuje, poznal prrni a vyslovil fulius Thomsen.

[^152]:    Dr. V. Strouhal: Thermika.

[^153]:    *) Pierre A. Favre (1813-1880), chemik v Pařīz̃i, poslednê professor na universitẽ, F̛ean Th. Silbermann (1806-1865), fysik, pûsobil téz̃ na université Pařĩiské. První práce obou téchto badatelû, kteří se vzájemné doplñovali, vysly pod názvem: Recherches sur les quantités de chaleur dégagées dans les actions chimiques et moléculaires, Ann. chim. et phys. 34, 36, 37, 1852-1853.

[^154]:    *) Tabulka je vyǒlata z Thermiky Pfaundler-Lummerovy, pag. 435, 1898.

[^155]:    *) Z řeckẻho örooos stejnomérný, aorxizos rozmanitý, mẽnlivý.
    *) Adolf Fick (1829-1901), proslulý fysiolog na universitê ve Wurzburku.

[^156]:    *) Latinský název kondukce pocházi od con- a ducere, spolu vésti.
    ${ }^{* *}$ ) Latinský název konvekce, od con- spolu a vehere vésti, jest obrazný a naznačuje, jako by teplo s cástečkami proudicími se spolu rozvádélo.

[^157]:    *) E. Mach, Wārmelehre 1900. Guillaume Amontons (1663-1705) žil v Parizzi a pracoval mnoho v thermometrii (poznal na př. účinek teploty na výs̊ku sloupce barometrického), v hygrometrii a v meteorologii. foh. Lambert (1728-1777) žil v Berlinê, podal mnoho prací mathematických, fysikálnich i astronomických.
    **) Slavný Benjamin Franklin (1706-1790) zabýval se úkazy tepelnými méně, daleko vice, jak známo, úkazy elektrickẏmi. fan Ingenhousz čili IngenHouss (1730-1799) byl rodem Hollanđan, ale żil hlavnẽ v Anglii jako lékař; byl téz̃ povolán ke dvoru cisaře Josefa II. (kde očkoval jeho dceru a dva arcivévody) a byl vyznamenán titulem cis. têlesného lékaře (s platem 600 Lib . sterl.). Také on zabýval se mnoho úkazy magnetickými i elektrickými; o vodivosti tepelné pojeduává v práci, jež má název: Sur les metaux comme conducteurs de la chaleur. Journ. phys. 34, 1789.

[^158]:    *) Yohann Tobias Mayer (1752-1830), prof. math. a fys. na univ. v Erlangen a Göttingen.
    **) Y̌ean Baptiste Biot (1774-1862) přednášel jako professor mathematiku, fysiku i astronomii na université Pařižské, byl jako astronom členem Bureau des longitudes; on a Arago prodloužili mêreni poledniku Pařižského přes moře az̃ k místu Mola na ostrůvku Formentera. Jeho çinnost byla velice rozsáhlá. Pracoval téz̃ o četných otázkách optických; on a Arago objevili polarisaci chromatickou. Byl zastáncem (poslednim, ale velmi závaz̃nẏm) emanačni theorie svétla. Ona práce o vodivosti tepelné datuje se z roku 1816.
    ***) Yean Baptiste Fourier ( $1768-1830$ ) navstěvoval vojenskou skolu svého rodnẻho mésta Auxerre (na řece Yonne), vstoupil do klástera St.-Benoít sur Loire; vystoupiv r. 1789, stal se professorem mathematiky ve svém rodişti. Ǔéastnil se v boữlivy̌ch dobǎch republiky života politickeho; krâtky čas byl professorem v Parǐizi a pak odcestoval do Egypta s výpravou, kterou r. 1798 podnikl Napoleon, pr̃i niz̀ byl jeho sekretárem a historiografem. Po návratu byl praefektem v rûzných departementech, od r. 1816 žil v Pařizi jako stály̆ tajemnik akademie a vênoval se svým studiím. Jeho slavný spis: Théorie analytique de la chaleur, 1822, byl poctēn cenou akademie Parizizské. Takẻ dals̄i jeho práce byly hlavnẽ $z$ oboru thermiky.

[^159]:    *) Moz̃no vzhledem $k$ tomu tyê pr̃edpokládatio prûrezu nekonečnẽ velikẻm, Předpoklad tento má vice ráz mathematicky̌. Fysikálnẽ postači predpokladati tyč - velkêm prúríezu, v nêmž jest s malou vnitřní ploskou.

[^160]:    *) Při vẏkladech těch zjevů tepelnỷch, kteréž maji prúbēh żasový, vzniká velmi nemilá závada tim, z̃e pro označeni teploty (temperatury) a času (tempus) se užívá téze pismeny $t$. Mnozi autorové (na př. E. Mach) podrz̄ují pro čas označení $t$ a priijimaji pro teplotu označení $u$. Jest vs̃ak přece nesnadno, kdyz̃ v celé knize $t$ znači teplotu, zde náhle touže pismenou značiti čas; proto zde pro čas uz̃ito oznac̃eni $\Theta$.

[^161]:    *) César Despretz (1792-1863), professor fysiky na Sorbonnẽ v Pařiži. Prvni jeho pokusy o vodivosti tepelné datuji se z r. 1821, pozdéjsi z r. 1827, 1839 a 1842.

[^162]:    *) Gustav Wiedemann (1826-1899), poslednê professor fysik. chemie na univ. Lipskê, znảmỳ redaktor Annalû, jez̃ vydával od r. 1877. Ona práce pocházi z roku 1853, kdy byl G. Wiedemann jeste soukr, docentem na univ. v Berliné. Tamtéż byl Rudolf Frans professorem gymnasijnim a téz soukr. docentem na université. Präce vys̊la v Pogg. Ann. d. Ph. u. Ch. (4) 89, pag. 497, 1853. Nêkteré doplükovẻ práce provedl pozdẹji G. Wiedemann sám, ve svazku 95. , pag. 337,1855 (o zinku) a ve svazku 108., pag. 393, 1859 (o slitinách).

[^163]:    *) Data o zinku jsou vyñata z pojednáni z roku 1859 (vẏse citovaného) kdy byi G. Wiedemann v Basileji.

[^164]:    *) Yames David Forbes (1809-1868), professor přirodnich vêd na université v Edinburku. Přislus̃né pojednáni má název: Experim. inquiries into the laws of the conduction of heat in bars etc. Edinb. Roy. Soc. Trans. 23, 24, 1864 a 1867 . Forbes byl téz̄ geolog a znamenitý alpinista, konal první studie o pohybu ledovcû̃ ve smyslu kvantitativním.

[^165]:    *) Henry Harreau de Senarmont (180s-1:62), professor mineralogie na Êcole des Mines a pozdēji professor fysiky na École polytechn. v Parizizi. Pojednáni má název: Mémoires (I\&II) sur la conductibilité des substances cristallisées pour la chaleur, Ann. chim. et phys. (3), 21, 1847 a $22,1848$.

[^166]:    *) Dle tabulek Landolt-Bōrnsteinovẏch, 1905.

[^167]:    *) Sir Benjumin Rumford, hrabè (17:3-1814), proslulý ve službách vojenskȳch neménê nez̃ v pracich vêdecky̌ch, zejména o teple jednajicich, zakladatel (1500) Royal Institution v Londýnė. $O$ jeho vy̌namu v zakladnich otazkảch thermodynamiky budeme justē jednati.

[^168]:    ${ }^{4}$ ) Despretz, C. R. 7, pag. 933, 1838. Pogg. Ann. 46, pag. 340, 1859. Ann, chim. et phys. 61, pag. 506, 1839.

[^169]:    *) Alphons Bergzt * 1860, r. 1889 praeparator u prof. Lippmanna, od r. 1899 prednáši na Sorbonnê geofysiku a meteorologii. Pojednáni má název >Conductibilité therm. du $H_{\delta}$ et de quelques métaux $, ~ C . ~ R . ~ 105, ~ 1887, ~ 106 ~ a ~ 107, ~ 1888 ; ~ J o u r n . ~$ d. phys. 7, 1888.

[^170]:    ") Richurd Wachsmuth, Untersuchungen auf dem Gebiete der inneren Wärmeleitung, Wied. Ann. 48, pag. 158, 1893. Práce provedena v Lipsku v laboratorii prof. \&. Wiedemanna jako dissertace 1892.

[^171]:    *) Lamella jest deminutivum od lamna (tedy vlastné lamnella), coz̃ jest zase stažená forma misto lamina a znamená tenkỳ listek, tenkou desku, dřevênot neb kovovou.

[^172]:    ${ }^{*}$ ) Heinrich Friedrich Weber, * 1843, od r. 1875 v Curychu professorem theor. a techn. fysiky a reditelem fysik. ústavu, kterỳ za jeho rizeni byl zbudovän. Prvni práce pocházeji z roku 1850, dals̄i z roku 1885. Vysetióoval přes 50 kapalin
    **) Christion Christiansen, * 1843, docent a od roku 1886 professor fysiky

[^173]:    क) Leo Gractz, * 185̌6, professor fysiky na université v Mnichovè. Práce vysla ve Wied. Ann. d. Ph. 18, pag. 79, 1883 a $25,337,1885$.

[^174]:    *) Zdali tou męrou, jak Winkelmann nalezl, neni jeştẽ dosti zabezpečeno ; srovnảni jeho čísel s čísly, která Jăger obdržel, poukazovalo by ke zmênám menšim.

[^175]:    *) Fosef Stefan (1835-1893), narozen v Korutanech (ve Sv. Petru u Celovee), od r. 1863 professor fysiky na universitě Videñskè, kdez̃ se téz̃ svêho času (1858) habilitoval, vynikajici theoretik a neméné experimentátor. Přislušnẻ präce vysly ve Zprávách akademie Videñské, roc̃nik 1872, pag. 45 (Untersuchungen aber die Wärmeleitung in Gasen) a roc̃nik 1875, pag. 69 (Relative Bestimmung der Wärmeleitungsvermögen verschiedener Gase). Z tohoto druhẻho pojednáni jest vyňat obrazec v textu reprodukovaný. Třeti pojednáni vyşlo v roc̃níku 1876, pag. 438.

[^176]:    ${ }^{\text {* }}$ ) Pogg. Ann. d. Ph. 156, pag. 177, 1875. Kundt (August) byl v té dobẽ fádným, Warburg (Emil) mimořádným professorem na universitê ve Strassburku.

[^177]:    ${ }^{*}$ ) $\bar{O}$ této otázce jednal téż theoreticky Oberbeck, Wied. Ann. 7, pag. 271, 1879.
    **) Adolf Winkelmann, * 1848, jest od r. 1886 professorem fysiky na universitẽ Jenské. Známa jest obširná jeho Rukovêf fysiky (Handbuch der Physik), kterouz̃ spolupưsobenim ěetných odbornikủ vydává. Nyní vycházi druhẻ vydání. V otárkách vedeni tepla se týkajicich účastnil se četnými pracemi.
    ***) August Schleiermacher, * 1857, professor fysiky na techn. skole v Karlsruhe. Práce o záření tepelnẻm vys̊la ve Wied. Ann, 26, pag. 287, 1885, o vedení tepelném ve Wied. Ann. 34, pag. 623, 1888.

[^178]:    *) Z latinskẻho radiare záriti, pủvodnẽ ovšem ve smyslu záření svẽtelného (astra, sidera) a jemu podobného (o lesku, aurum, arma a j.). Názvu toho užil ponejprv s̃védský chemik Karel Vilém Scheele (1778) ve svém spise >0 svêtle a ohnic.

[^179]:    *) Miska taková se nazývala scaphium, tò oxcéqqiov. Plutarch Num. 9.
    **) Fan Findrich Lambert (1i28-1777); viz pag. 437.
    ***) Marc Auguste Pictet (1752-1825), professor a poslednẽ ředitel hvẽzdárny v Żenevè.

[^180]:    *) Pierre Prevost (1751-1839), poslednè professor filosofie a fysiky na akademii ve svém rodném méstẽ v Żenevẽ. Od nêho pocházi pokus pozorovati ủčinek zářeni svičky na teploměr skrze vrstvu proudici vody, prii kteréž tedy nebylo pochybnosti, že se sama neotepluje.
    **) Ehrenfried W. hrabe Tschirnhausen (1651-1708), mathematik a fysik nikoli z povoláni, ale ze záliby, podobně jako jeho vrstevnik Otto z Guericke ( $1602-1686$ ).
    ***) Fohn Leslie (1766-1832), prof. mathem. a fysiky na univ. v Edinburku. 0 jeho teplomẽru byla zmínka učinẽna v § 55., pag. 145. Také Rumford sestrojil teplomér podobný.

[^181]:    *) V novém lutẻm vydáni (1907) III. svazku známé uẽebnice Maller-Pouillet-ovy, kteréż obstaral Pfaundler s četnỳmi spolupracovniky, scházi již oddil o teple zárivém, který byl vradén do nauky o svêtle.
    **) Dil druhý jeho Fyssiky jedná o Akustice a o Energii zárivè, t. j. tepelné

[^182]:    *) Peter Lebedew, Vacuum-Thermoelemente als Strahlungsmesser, Drude's Ann. der Ph. 9, pag. 209, 1902.

[^183]:    ${ }^{*)}$ C. Baur, Ein neues Radiometer; Wied. Ann. 19, pag. 12, 1883. Práce vznikla na popud Helmholtzủv. Baur neznal praci Langleyových, upozorñuje vsak, z̀e prioritu v konsirukci má $F$. Svanterg, kterỳ již roku 1851 (Pogg. Ann. 24, pag. 416,1851 ) přistroj popsal. Přes to múże se Langley za vynálezce bolometru uznati, poněvadz̃ přistroj ten k vědeckým účelūm uplatnil.
    **) Knut fan Angström (* 1857 ), nyní prof. fysiky na université v Upsale. Konal mnohé práce o záření infračerveném zejména slunec̃nim, kteréż publikoval
    v akademii Upsalské.

[^184]:    ${ }^{*}$ ) Wied. Ann. 37, pag. 529, 1889.
    ${ }^{* *}$ ) 0 . Lummer a F. Kurlbaum, Bolometrische Untersuchungen, Wied. Ann. 46, pag. 204, 1892.

[^185]:    *) 0 podrobnostech dalšich nutno se poučiti z citovanẻho pojednáni pũvodního, z nêhoz̃ tuto podán krátkỳ výtah.

[^186]:    *) E. Warburg, G. Leithäuser a Ed. Yohansen, Ueber das Vakuumbolometer, Ann. der Phys. 24, pag. 25, 1907.
    **) E. Pringsheim, Ueber das Radiometer, Inaug.-Dissert. Berlin 1882.
    ***) Wied. Ann. 18, pag. 32, 1883.
    †) Ernest Fox Nichols, Wied. Ann. 60, pag. 401, 1897. Dle tohoto pûvodniho pojednání jsou kresleny oba horejesi obrazce.
    $\dagger \dagger)$ Proužky slidové se zrcätkem vâzai dohromady 7 mg .

[^187]:    *) Fan F. Lambert, viz pag. 437. Zákon krátce >cosinusovýe zvaný jest obsaz̃en ve spise: Photometria sive de mensura et gradibus luminis, colorum et umbrae. Aug. Vind. 1760.

[^188]:    *) Práce byla provedena $v$ laboratoři prof. Ḱundta ve Strassburku a vyšla ve Wied. Ann. 26, pag. 253, 1885. V tẻto práci užival autor bolometru, popsaného v § 169., obr. 177. a 178.
    ${ }^{* *}$ ) Z lat. seligere, vybirati.

[^189]:    *) E. Hagen u. H. Rubens, Über Beziehungen des Reflexions- und Emissionsvermögens der Metalle zu ihrem elektrischen Leitvermögen. Drude's Annalen 11, pag. 873, 1903.

[^190]:    *) Barvivo tmavomodré, náležejici mezi tak zvané induliny; nigrosin čili modř Coupierova vzniká z anilinu a nitrobenzolu dle rovnice

    $$
    2 \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}+\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2}=\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3}+2 \mathrm{H}_{2} \mathrm{O} .
    $$

[^191]:    *) Kamenná sùl jest, jak známo, krystallisovaný chlorid sodnatý NaCL, sylvin krystallisovaný chlorid draselnaty̆ $K C L$, kterỳ se hojnẽ vyskytuje v dolech ve Stassfurtu a v Kałuszu, téz̃ v Americe. Kazivec (fluorit) jest fluorid vápenatý $\mathrm{CaF}_{2}$; čirý, bezbarvý je dosti vzácný. Vseechny tři minerály krystallisuji v soustavẻ tesseralni, v krychlich často velikẏch.
    **) Rozmêr zvolen jest poněkud vêtşi než u jiných diagrammû, v tẻto knize provedených, aby bylo moz̃no delku vlny jesté na desetiny mikronu a index lomu na tretí místo decimálni z diagramma vyčisti, coz̃ jest tim vice žádoucí, ponẽvadz̃ tabulky nejsou dle postupujíci dèlky vlny pravidelnê usporádány. Spektrum viditelné, od $\lambda=0.4$ az̃ $0.8 \mu$, tvoři v diagrammu jen nepatrnou část.

[^192]:    *) Předchúdcové jeho byli G. Mariotte, P. Prevost, F. Leslie a j. Melloni zavedl nomenklaturu dosud uz̃ivanou, rozeznávaje têlesa diathermanní a athermanni; od nêho pocházi téż název thermochrose, tepelná barva.

[^193]:    *) Malá, olejová lampa s knotem průřezu ĉtverě̃ného, bez cylindru.

[^194]:    *) K porozuměni tohoto čisla 2.6 mm budiz̃ uvedeno toto: Melloni pracoval v Neapôli. Mérou délkovou byla tam tehda stopa, zvaná palma, která se délila na 10 decimi po 10 centesimi. Tato stopa byla $=264 \mathrm{~mm}$. Melloni volil tedy za tlousstku dessticek centesimo stopy Neapolské.

[^195]:    *) Byl r. 1854 v Portici zachvácen cholerou

[^196]:    *) Wied. Ann. d. Ph. 65, pag. 271. 1898.

[^197]:    *) Dèlka jeji byla 4 angl. stopy ( $=1 \cdot 22 \mathrm{~m}$ ), průmẽr 3 angl. palce $(=7 \cdot 6 \mathrm{~cm}$ ). Apparát Tyndallûv jest v jeho spise $>0$ teplé v přednášce dvanácté podrobnẽ popsản a se všemi podrobnostmi pokusu zobrazen. Tyndall sàm označuje svou methodu jakožto kompensačni.
    **) 0 plynech těchto pravi Tyndall: I prostředky nejvétšimi a methodami nejcitlivéjšimi nepodarilo se mi stanoviti rozdil mezi kyslikem, dusikem, vodikem a vzduchem. Absorpce tẻmito plyny jest neobyčejnẻ malá, bezpochyby jestê mensí, než jak jsem ji predpokládal. Cím lẻpe jsou plyny ty vyčistěny, tím vice bliz̀i se jich ưčinek prostoru prázdnému. A kdo mūže tvrditi, že nejlepsí vysus̃ovaci prístroj jest dokonalý? Nevíme ani, zdali z nejčistši kyseliny sirové nepřejde nẻco påry do plynû̃ kyselinou procházejicich, čimz̃ absorpce se jevi vêtşi nez̃ vskutku jest. Kohouty nutno tukem mazati a tak je moz̃no, że vzduch jimi proudici se v miře třebas jen malẻ znečisti. Budiž však tomu jakkoli, tolik je jisto, že čim čistejjsí ony slabê působici plyny si zjednáme, tim vice stoupaji -ohromné zde uvedené rozdily v absorpci.

[^198]:    *) t. j. adhaesio vaporis, prilnuti (kondensované) páry ke stěnám trubice.

[^199]:    *) Hermann Wilhelm Vogel (1834-1898), professor fotochemie a spektr. analyse na vys. škole technickẻ v Charlottenburku.

[^200]:    ${ }^{*}$ ) Edmond Becquerel (1820-1891) a jeho syn Henry Becquerel (* 1852), jenz̃ jest od r. 1895 prof. na polyt. skole v Parizzi, prosluli mnohỳmi pracemi zejména optickými. Henry Becquerel objevil paprsky dle něho nazvané.
    ${ }^{* *}$ ) Dle jeho návodu pracoval v jeho laboratori L. Fomm a uver̃ejnil výsledky ve své dissertaci Phosphorophotographie des Sonnenspektrums, Mnichov 189.

[^201]:    *) Netřeba připominati, že slovu spovrche nesmi se rozumêti ve smyslu geometrickém. Povrch ovšem záréní nevysilá, nýbrż têleso jako hmota; zárení má tedy svůj pûvod ve vnitru têlesa, af vzniká z jeho energie tepelné nebo chemické anebo elektrickẻ.

[^202]:    $\left.{ }^{*}\right)$ E. Wiedemann, Wied. Ann. 37, p. 183, 1889.

[^203]:    *) Jak patrno, přenáśime slovo sbarvas, v označeni skřivky isochromatickéc
     nežli urǎitá delka viny 2 , kterou se v optice vyznacuuje sbarvac viditelná, v thermice neviditelná.

[^204]:    *) V optice se vykládá, že exponent lomu $n$ jest nepřimo úměrný rychlosti $v$, jakou zárení se v daném prostredi síri. Součin $n v$ jest konstantou a znamená rychlost, jakou se sirií zárení ve vakuu, resp. ve vzduchu, dle toho, zdali jest $n$ exponent absolutni nebo relativni vzhledem ke vzduchu.

[^205]:    *) Maryan ryt. Smoluchowski, Journ. de Phys. (3) 5, pag. 411, 1896, C. R. 123, pag. 230, 1896.
    ${ }^{* *}$ ) E. Mach, Principien der Warmelelıre, pag. 146, 1900.

[^206]:    *) Nêkteři autorové označuji emissi integrálni stejnou pismenou $c, E$ jako spektrálni, ale prịpojuji index $T$, pissice $c_{T}$ nebo $E_{T}$. Ale dle zásady $\vee$ § 57 . vytčené znači index arbitrárni konstantu. Proto by dle toho znamenalo $e_{T}$ nebo $E_{T}$ isothermu při záreni spektrálnim.

[^207]:    *) Francesco Rossetti (1833-1895), poslednẽ prot. fysiky na université Paduanskè. Spis má nảzev: Indagini sperimentali sulla temperatura di sole, Roma, R. Accad. Linc. Mem. 2. 1878.
    **) Jules Violle (* 1841), vynikajici fysik francouzskẏ. Přislus̃né pojednání má název: Radiation du platine incandescent, loi du rayonnement, Paris, C. R. 88 a 92,1879 a 1881.

[^208]:    *) Vladimir Alexandrovic Michelson, (* 1860), nyni professor fysiky a meteorologie na vysokẻ škole zemẽdêlské bliže Moskvy.

[^209]:    ${ }^{*}$ ) Louis Friedrich Paschen ( ${ }^{*} 1865$ ), od r. 1901 r̀. professor fysiky v Tubinkách, znamenitý experimentátor. Práce obou badatelû uver̃ejnẽny jsou v témz̃e svazku Wied. Ann. d. Ph. 58, pag. 455 , resp. 662, 1896.

[^210]:    ${ }^{*}$ ) Otto Lummor (* 1860), jeden z nejçinnéjšich badatelú ríŝského fysikálnétechnického ústavu y Charlottenburku. Jeho spolupracovniky byli $F$. Kurlbaum, E. Pringsheim, E. Fahnke, E. Gehrke a E. Brodhun.

[^211]:    *) Práce byla provedena ve fysikálnẽ-technickém řissském ủstavu v Charlottenburku. 0 výsledcich práce podal praesident ústavu $F$. Kohlrausch Berlinské akademii zprávu dne 24. listopadu 1898. Práce má název: Die Vertheilung der Energie im Spectrum des schwarzen Körpers, Verì. d. d. physik. Ges. pag. 23,
    1899. Z tohoto pojedoáni vyñat tėż obr. 196 .

[^212]:    *) Práce má název: Die Vertheilung der Energie im Spectrum des schwarzen Korrpers und des blanken Platins. Verh. d. d. physik. Ges. pag. 215, 1899.
    **) 0 záteni platiny bude jednáno pozdêji.

[^213]:    *) Práce mả název: Ueber die Strahlung des schwarzen Körpers for lange Wellen; Verh. d. d. physik. Ges. pag. 163, 1900.

[^214]:    *) Celé spektrum mélo úhlovỳ rozsah $5^{\circ}$, sahalo od $2=0.6$ až $7 \mu$. Spektrálni bolometr zaujimal z onêch $5^{\circ}$ ćili $300^{\circ}$ jen $5^{\prime}$, tedy 60 tý dil.

[^215]:    
    

[^216]:    

[^217]:    *) O historickėm rozvoji zâkladních pojmũ a vêt thermodynamických jedná zpúsobem velice poutavým $E$. Mach ve svèm spise: Die Principien der Wärmelehre 2. vyd, 1900, pag. 211-346. Velmi pêknẽ a olšínê jedná o têchto otázkách tèz $\mathcal{F}$. Tyndall ve svỳch přednáskách o teple. Z obou tẽchto spisủ jsou prifijata nêkterá data v tomto odstavci obsažená.

[^218]:    *) $\geqslant \ldots$ on voit que quand la lumière est ramassée, comme par des miroirs concaves, elle a la vertu de bruler comme le feu, c'est-à-dire qu'elle desunit les parties des corps; ce qui marque assurement du mouvement, au moins dans la vraye Philosophie, dans laquelle on conçoit la cause de tous les effets naturels par des raisons de mechanique . \& Traité de la lumière. Leide 1690 .
    ${ }^{\text {**) }}$ ) Vlastni jeho jméno jest Sir Benjamin Thompson. Narodil se r. 1753 ve Woburnu, ve státu Massachusetis v Sev. Americe, r. 1772 byl učitelem v Rumfordu (nyni Concord) a kdyz̃ r. 1774 vypukl boj o svobodu Severoamerickẏch kolonii proti Angličanům, vstoupil do slużeb anglicky̌ch, pozdêji po ukončení onoho boje 1753 mírem ve Versaillu, r. 1784 do sluz̃eb bavorských, kdez̃ jako reorganisátor armády dosâhl vysokých vojenskẏch hodnosti. R. 1799 byl od kurfirsta Karla Theodora Falckėho povẏṡen do stavu hrabéciho s titulem hrabè Rumford. Zemr̃el r. 1814 v Auteuilu. V Mnichovẽ byl mu postaven pomnik, kterỳ modelloval Zumbusch.

[^219]:    ${ }^{*}$ ) Nicolas L. Sadi Carnot (1796-1832), druhý syn slavnẻho státnika, stratéga a mathematika francouzského Lazara N. N. Carnota (1753-1823). Byl z̀ákem ŝkoly polytechnickẻ v Par̃iz̄i, nac̃ez̃ vstoupil r. 1813 do vojska, stal se inženýrem-kapitãnem, ale ve vêku jeştê mladèm 39 let zemr̃el na choleru. Slavný jeho spis mả název: Réflexions sur la puissance motrice du feu et sur les machines propres à dévelloper cette puissance. Vyšel r. 1824 v Parizizi.

[^220]:    *) Yulius Robert Mayer narodil se 1814 v Heilbronnu, studoval medicinu na université v Tubinkách, pozdéji v Mnichovê a v Parižĩi. Roku 1840 vykonal jako lodni lékar̃̀ ve sluz̄bách hollandskỷch cestu na Javu, kdez̃ v Batavii nêjakou dobu se zdržel. Vrätiv se 1841 usadil se ve svém rodném mēstẽ jako lêkar̃. Jeho dalši żivot nebyl prost mnohẻho strádání a rozmanitỹch útrap, kteréż na krátkou dobu i jeho duseveni stav rozrušily. V posledních však letech jeho żivota dostalo se mu vs̃estranného uznáni a zadostučinêni za dřivêjs̄i přikoři. Zemřel r. 1878.

[^221]:    *) Pojednáni má název: Bemerkungen aber die Kräfte der unbelebten Natur, Liebigs Annalen, 42, 1842. Mayer zaslal tuto práci Poggendorffovi, jenz̃ ji vs̃ak do svých Annálû́ fysiky a chemie nepřijal. Tato vée se Poggendorffovi vytýká jako dủkaz, że významu práce Mayerovy nepochopil. Zde však takẻ má platnost známé: tout comprendre c'est tout pardonner. Pojednáni Mayerovo nebylo prosto mnohých vad. Mayer nebyl fysikem. Véty jako: ssila je prostorová difference ponderabilnich objektǔ́ zarázely svou nejasnosti. Proto také tato prvni publikace Mayerova neuçinila ve védeckém svêtê dojmu židnểo.
    **) Práce má název ne právê stastný a srozumitelnŷ: Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel, Heilbronn, 1845.

[^222]:    *) Fames Prescott Foule narodil se r. 1818 v Salfordu (u Manchestru), kdez̃ zil jako majitel velkého závodu pivováreênélıo. Ve fysice pracoval ze záliby a proslul jako experimentátor. Při nêkterỳch vẏzkumech plynủ se ty̌kajicich byl William Thomson (lord Kelvin) jeho spolupracovnikem. Zemřel r. 1889 ve svém rodném mẽsté. K uctẽni jeho památky byla praktická jednotka práce dle nêho pojmenována.
    ${ }^{\circ *}$ ) Hermann L. F. von Helmholtz narodil se r. 1821 v Postupimê, studoval lékařstvi v Berlínẽ, zde stal se 1842 assistentem v Charité, 1843 voj. lékar̃em v Postupimè, 1848 učitelem anatomie a assistentem prí anatomickém museu v Berliné, r. 1849 professorem fysiologie a všeob. pathologiev Královci, roku 1855 v Bonnu, r. 1858 v Heidelberku, vrátil se pak r. 1871 do Berlína jako professor fysiky a stal se r. 1888 reditelem řisského fysik. techn. ustavu v Charlottenburku. Zemřel r. 1894. Úspéchy Helmholtzovy mèly základ v jeho neobyčejné všestrannosti. Byl fysiologem a fysikem, ale tễ̃ mathematikem, byl theoretikem a prí tom znamenitým experimentátorem. Jeho cinnost vêdecká byla velmi rozsáhlá, v mnohých oborech (akustiky, optiky, zejména v otázkách fysiologickẏch) epochální. Ale nejen pro vêdu, nẏbrž i pro umẽni (hudbu, maliřstvi) jevil hluboké porozumẽni. - Spis, v nèmz̃ (v 26. roce svého vêku) formuloval princip o zachování energie, má název: Ueber die Erhaltung der Kraft, vyšel r. 1847.

[^223]:    *) F. Koläzek, Elektr̄ina a magnetismus, p. 295, 521, 533, 1904.

[^224]:    Dr. v. Strouhal: Thermika.

[^225]:    ${ }^{*}$ ) Mechanika, pag. 140, 1901.

[^226]:    *) Mechanika, pag. 523, 1901.

[^227]:    *) Henry Rowland (184S-1901), od r. 1876 professor fysiky na Hopkinsově universitê v Baltimoru, vynikajíci badatel a experimentãtor. Práce, jez̃ vyşla v jazyku italskẻm, byla vyznamenána cenou >Instituto Veneto< (král. ustav pro vèdy a uměni, založený r. 1838) a medailli Rumfordovou. Známy jsou Rowlandovy velice jemné optické míižky, ryté na kovu, konkávni, jez̃ na 1 mm obsahuji až 6000 čárek.
    **) Fan Puluj, narozen 1845 v Hrymalovẽ v Haliči, (Rusín), habilitoval se r. 1877 na universitê Videñskè, odkud byl r. 1884 povolân za professora fysiky a elektrotechniky na něm. techniku do Prahy. Od r. 1902 zastupuje výhradně

[^228]:    *) Benoit Clapeyron (1779-1864) byl praktickỷ inženỳr, pûsobil 10 let v Petrohradé ( $1820-1830$ ), načez̃ se vrátil do Pařiže, svèho rodného mésta, a rỉdil tu mnohé dưležité práce stavebni, jako stavby mostû, żeleznic a j. Uveřejnil ¿etné vèdecké práce významu technického.

[^229]:    *) Budiž zde upozornẽno, že obr. 213., aby byl zřetelnějsím, není kreslen správnẽ. Adiabaty jsou rẏsovány přikřeji nez̄ vskutku jsou, jak z obr. 212. jasnê vysvitá, Kdyby se obr. 213. rýsoval správnẽ, jevila by se plocha $A B C D$ táhlejşi a uẑsí. Ponēvadž se jednã jen o skizzu schematickou, jest obyčejem k presnému prûběhu isotherm a adiabat nepṛihližeti.

[^230]:    ${ }^{*}$ ) ve spise On an Absolute Thermometric Scale, Phil. Mag. 33, pag. 313. Tehda byl W. Thomson (* 1824) ve vêku 24 let. Byv r. 1846 jmenovăn prof. fysiky na univ. v Glasgowé, zemřel ve vêku 82 let koncem r. 1907.

[^231]:    *) Latinské názvy reversibilis a in-reversibilis jsou utvořena od reverto, obrátiti (častêji revertor vrátiti se), subst. reversio, návrat. V ces̃tinẻ uživá se téz̃ názvû dēje převratné a nepřevratné. O povaze têchto dẻjủ pojednal Dr. 7. Theurer r çlánku 0 thermodynamice déjũ neprẽevratných, Časop. pro pěst. math. a fys. 35. pag. 89 a násl. 1905.

[^232]:    *) Mechanika, § $153 ., 1901$.

[^233]:    *) Ludvik Boltamann (1844-1906), jeden z nejprednějsich theoretických fysikủ, jehoz̃ práce zejména o mechanické theorii plynû jsou základnimi. Pûsobil jako professor fysiky na université ve Styrskėm Hradci, v Mnichovê, v Lipsku a ve Vidni.

[^234]:    *) Výraz >samo sebouc neni tak nesrozumitelný, jak se nêkdy tvrdivã. Znamená to bez nėjaké kompensace, na př. tefelné nebo mechanické nebo jakékoli jiné.

