Tunelový jev

Tunelový jev je jedním z projevů fyziky mikrosvěta. Ukazuje, že se na malých škálách řídí fyzikální veličiny zcela jinými zákonitostmi, než se kterými se běžně setkáváme. Pokud bychom chtěli popsat tunelový jev analogií s naším světem makroskopických těles, odpovídal by následující představě:

Máme několik kuliček a házíme jimi na zeď. Ze zákonů Newtonovské mechaniky je jasné, že se kuličky budou od zdi odrážet a za zeď se nemohou žádným mechanismem dostat. Přesto by se malá část kuliček, pokud by se chovaly jako mikroskopické částice s uplatněním kvantových efektů, objevila na druhé straně zdi. Kuličky tedy mají malou pravděpodobnost výskytu za bariérou.

Ve fyzice mikrosvěta si zeď představujeme jako potenciálový val pro částici pohybující se v prostoru (například v blízkosti jádra). Uvažujme pro jednoduchost jednorozměrný model, rozšiřitelný v praxi na mnoho sféricky symetrických problémů. Čím vyšší je směrnice křivky U(x) , tím větší síla na částici působí (podle 3. Newtonova zákona působí i částice na zdroj pole, ten ale považujeme za mnohokrát hmotnější než částici, takže se toto působení neprojeví). V oblasti potenciálového valu se navíc částice podle klasické fyziky vyskytovat nemůže. Potenciálová křivka v místě valu totiž značí velikost potenciální energie částice a na přímce E vidíme celkovou mechanickou energii částice, která je daná součtem potenciální a kinetické podle vzorce E = U + T . Jelikož má být U > E , musí být kinetická energie T < 0 , což není možné. Situaci ukazuje následující obrázek:

tunnel_barrier.jpg

Řešíme-li kavantověmechanický model nalétávající částice na takovouto bariéru, můžeme ze Schrödingerovy rovnice vypočíst tzv. koeficient tunelového průchodu bariérou :

tunneling_koeficient.jpg

Závislost T je exponenciální, koeficient je velmi citlivý na změnu proměnných: hmotnosti m , rozdílu (U(x) - E) a tloušťky bariéry l .

Vyšetřujeme-li tunelování elektronů při povrchu reálného kovu zjistíme, že se dle Sommerfeldova modelu vyskytují pod hladinou Fermiho energie (E) podle určité rozdělovací funkce a k tunelování nedochází (viz obrázek a). Pokud však ke kovu přiložíme například homogenní elektrické pole, získá rázem povrchová bariéra vůči vakuu konečnou délku a elektrony mohou z hladiny E tunelovat (obrázek b).

tunnel_barrier_metal.jpg tunnel_barrier_metal_with_field.jpg

Nyní si představme, že k takovému povrchu přiblžíme jiný atom. Nutně tím změníme průběh potenciálu a tím i ovlivníme pravděpodobnost tunelování elektronů z povrchu. Právě tohoto efektu využívá STM . Přiblížíme hrot na takovou vzdálenost, že dojde k praktickému překryvu elektronových orbitalů. Tím se dramaticky zvyšuje pravděpodobnost tunelování a můžeme pozorovat tok tunelového elektrického proudu. Názornou představu o tomto mechanizmu si můžeme udělat z následujícího obrázku:

tunneling_with_adsorbat.jpg