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Deep learning for laser beam imprinting
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Abstract: Methods of ablation imprints in solid targets are widely used to characterize focused
X-ray laser beams due to a remarkable dynamic range and resolving power. A detailed description
of intense beam profiles is especially important in high-energy-density physics aiming at nonlinear
phenomena. Complex interaction experiments require an enormous number of imprints to be
created under all desired conditions making the analysis demanding and requiring a huge amount
of human work. Here, for the first time, we present ablation imprinting methods assisted
by deep learning approaches. Employing a multi-layer convolutional neural network (U-Net)
trained on thousands of manually annotated ablation imprints in poly(methyl methacrylate), we
characterize a focused beam of beamline FL24/FLASH2 at the Free-electron laser in Hamburg.
The performance of the neural network is subject to a thorough benchmark test and comparison
with experienced human analysts. Methods presented in this Paper pave the way towards a virtual
analyst automatically processing experimental data from start to end.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

With the advent of intense X-ray free-electron lasers (XFELs), new unique experimental
opportunities emerged. Most of the experiments benefit from the extraordinary beam parameters
and versatility of these sources. Ultra-short pulses and high transverse coherence allow
investigating ultra-fast processes with excellent spatio-temporal resolution utilizing, for example,
methods of coherent diffractive imaging [1,2] or two-color pump-probe diffraction techniques [3].
Using precise focusing optics, very high intensities can be achieved making the nonlinear regime
of laser-matter interactions accessible. This enabled to study nonlinear absorption phenomena
in dilute environments [4] as well as to create and probe warm/hot dense matter [5–9]. X-ray
free-electron lasers initiated a new era of laser-matter interaction research as documented, for
example, in review papers by Rossbach [10] and Bostedt [11].

In parallel to user research, an active development of X-ray free-electron lasers is ongoing.
New generation of XFELs, e.g. European XFEL [12] and LCLS II [13], targets at high repetition
rates significantly increasing data acquisition speed. This enables more complex studies aiming
at systematic variation of beam conditions, e.g. photon energy, intensity, pump-probe pulse delay,
etc. However, such studies put immense demands on photon beam diagnostics playing a crucial
role in experimental data evaluation. A proper focused beam characterization is an important
prerequisite for high-energy-density experiments aimed at nonlinear phenomena in laser-matter
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interactions. Since the studied nonlinearity is weighted by the intensity profile spanning over
many orders of magnitude, gathered experimental data, whether it be spectroscopic, diffraction
or otherwise, represent a mixture of contributions emerging from states of variable temperature.
Discrimination between the hot and cold state thus relies on a good knowledge of the beam
profile.

Unlike non-invasive online diagnostics [14,15], spatial beam characterization usually requires
full beam usage. Characterization of the focus hits obvious difficulties specific for each particular
method. Excessive radiation intensities and small focus dimensions are usually treated by
increasing the focus-to-detector distance and/or by additional beam attenuation. The latter
may be, however, accompanied by an undesirable relative increase of high-order harmonics
content. Existing indirect and semidirect methods [16–21] exploit numerical detector-to-focus
backpropagation and/or phase retrieval approaches employing Fresnel or Fraunhofer diffraction
integrals. However, the implementation of rather unknown and variable partial coherence is
required in order to avoid an underestimation of the focus [22]. A few semidirect and direct
methods avoid numerical beam propagation by introducing an in-focus scanning mask [23],
off-axis zone plate [24], or lithium fluoride crystal [25]; however, the proximity of the focus
requires a strong beam attenuation preventing damage to the inserted mask. The direct method
of ablation imprints [26–29] exploits damage to a target surface to characterize the beam, hence
less beam attenuation is needed. However, the method is off-line and laborious, requiring a
lot of human work, expertise, and data processing. All methods have specific advantages and
drawbacks stimulating further developments.

Systematic experimental studies obviously require variable beam conditions that must be
characterized. Methods of ablation imprints are nowadays used to characterize focused beams
employed in experiments [5,7,8]. However, the amount of created imprints can easily reach
thousands depending on the variability of the experiment. All imprints are investigated ex-situ
using microscopy techniques and ablation threshold contours are manually annotated with use of a
graphical drawing tablet. Although some attempts to automatize the microscopy data acquisition
have already been performed [30], autonomous image segmentation for this application remains
unsolved. A specific nature of various target surfaces and presence of intrinsic and laser-induced
surface artifacts lead to a very high variability of captured scenes. Furthermore, color schemes,
exposure brightness, resolution, and other image features depend significantly on the microscope
and camera used. Hence classical segmentation approaches often fail. On the other hand,
convolutional deep neural networks represent useful and robust analytic tools applicable in
problems with ambiguously defined initial conditions. Networks of various architectures find
utilization, for example, in microscopy [31], photonics [32], phase-retrieval [33] and bioimaging
[34–36].

Here we present the first application of a multi-layer convolutional neural network (CNN)
U-Net to real ablation imprints in poly(methyl methacrylate) (PMMA). Section 2 introduces the
theoretical basis of ablation imprints methods. Section 3 describes the beam characterization
experiment carried out at beamline FL24 at FLASH2. Section 4 introduces the U-Net architecture
and summarizes methods of network training/benchmarking. Section 5 provides a discussion of
U-Net’s performance in confrontation with human analysts and compares results of the fluence
scan method [26,28] applied to retrieved imprint data. To maintain the clarity of the text, some
details of the mathematical apparatus are summarized in Appendices.

2. Theory

The fundamental principle of ablation imprints methods resides in the fact that ablation induced
by a femtosecond X-ray laser pulse occurs above a sharply defined ablation threshold. This
leads to a formation of a sharp threshold contour that coincides with an iso-fluence beam
contour located exactly at the ablation threshold fluence Fth. Among other threshold processes,
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non-thermal melting [37] belongs to the most promising ablation processes applicable in laser
beam imprinting. As the characteristic time scale of non-thermal phase transitions is only a few
hundreds of femtoseconds [38], the ablation threshold contour is formed prior to onset of thermal
effects. Furthermore, as the threshold fluence is rather low, the ablation threshold contour usually
occurs at locations sufficiently distant from the hot beam center. These two important aspects of
the interaction protect the contour from being compromised by hydrodynamic or thermomechanic
effects and significantly extend the dynamic range of reliable application of imprinting methods.

A general laser beam freely propagating in z-direction can be described by its fluence profile
F(ρ, z) = F0(z)f (ρ, z) where the vector ρ = (x, y) denotes transverse coordinates and F0(z) is
the peak fluence at a given z-position. It follows from this definition that the maximum of the
normalized fluence profile f (ρ, z) equals unity at all z-positions along the propagation axis. As
the fluence F(ρ, z) tends to zero for |ρ | extending to infinity, iso-fluence curves form single or
multiple closed contours of well-defined area S. This makes it possible to define the beam profile
in a less general but more convenient way as [26,28]:

F(S, z) = F0(z)f (S, z), where: ∀z ∈ R : f (0, z) = 1. (1)

A connection between the definition in Eq. (1) and F(ρ, z) can be explained by introducing a
contour map function S(ρ, z) assigning each iso-fluence contour of F(ρ, z) a scalar value of the
corresponding area. Substituting the map function into Eq. (1), we get the original 2D definition
F(S(ρ, z), z) = F(ρ, z). Integrating the fluence profile over the entire transverse plane, we get the
pulse energy:

Epulse = F0(z)
∬
R2

f (ρ, z) d2ρ = F0(z)
∫ ∞

0
f (S, z) dS = F0(z)Aeff(z), (2)

being independent on the z-position due to the energy conservation law. From this identity the
definition of the effective beam area Aeff(z) follows as the "volume" below the normalized 2D
profile f (ρ, z) or as the area below the normalized f -scan curve f (S, z) at a given z-position:

Aeff(z) =
∬
R2

f (ρ, z) d2ρ =

∫ ∞

0
f (S, z) dS. (3)

The boundary condition, the solution of which determines the locus of the threshold contour and
its area at a given z-position, can be respectively expressed as: Fth = F0(z)f (ρ, z) = F0(z)f (S, z).
Therefore, an imprint (indexed by i, j) of contour area Sij created by a pulse of energy Eij at a
position zi fulfills: FthAeff(zi) = Eijf (Sij, zi). Using Eq. (2), we introduce the threshold pulse
energy Eth(zi) = FthAeff(zi) and express a normalized f (z)-scan sequence:

f (Sij, zi) =
Eth(zi)

Eij
. (4)

The sequence in Eq. (4) is constructed from raw as measured F(z)-scan imprint data {Sij, Eij, zi}

where the beam is imprinted while varying both the pulse energy and z-position. Contrary to
constant Fth, the threshold pulse energy Eth(z) is variable and must be evaluated at each zi-position
by extrapolating the measured sequence to zero contour area; hence a sufficient number of
imprints (typically hundreds) must be created at pulse energies varied between the threshold and
maximum output pulse energy of the laser source. By fixing the z-position, we recover the so
called fluence scan (f -scan) curve.

Equation (4) can be expressed in a very useful non-normalized form using a relative function:

Φ(Sij, zi) =
1

Eij
=

1
FthAeff(zi)

f (Sij, zi), (5)

which, contrary to Eq. (4), avoids the necessity of Eth(zi) evaluation. While the left-hand side of
the equation can be constructed solely from raw ablation imprint data {Sij, Eij, zi}, the right-hand
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side is proportional to the fluence profile defined in Eq. (1). A beam profile of the peak fluence
F0(z) = Epulse/Aeff(z) can be conveniently expressed as F(S, z) = FthEpulseΦ(S, z). This allows to
directly compare imprint data with a modeled or otherwise measured fluence profile F(S, z) while
the scaling factor Fth, if unknown, can be treated as a fitting parameter. The applicability of the
F(z)-scan method is limited to a z-range in which the maximum output pulse energy Emax exceeds
the ablation threshold such that Emax>FthAeff(z); otherwise the imprints are no longer visible.

3. Experimental

The experiment was performed at beamline FL24 of the FLASH2 (Free-electron Laser in
Hamburg, Germany) facility [39]. During the experimental campaign, laser beams of several
wavelengths, particularly, 18 nm, 13.5 nm, and 8 nm, were studied. The beam was focused with
use of an adaptive Kirkpatrick-Baez (KB) optical system [40] consisting of two independently
bendable elliptical mirrors which allow positioning of the focus at a desired location. Astigmatism
and coma of the focusing optics was minimized with the aid of the wavefront sensor located
approx. 4.3 m downstream from KB mirrors. The pulse energy was varied using thin-foil solid
attenuators, namely, niobium, zirconium, aluminum, and silicon. Filter combinations were always
chosen such that the relative content of the 3rd harmonic frequency stayed at reasonably low level
below 10% of the fundamental harmonic. Energy of each individual pulse was monitored with
use of a gas monitor detector [15].

Imprinting targets were composed of 5-µm thin layer of poly(methyl methacrylate) spin-coated
on silicon wafers (dimensions: 20×10 mm). Samples were mounted on an in-vacuum 4-axis
translational-rotational stage that allowed translation in directions normal to and parallel with the
laser beam and rotation around the vertical axis [30]. The interaction chamber was equipped with
a long working distance microscope intended for in-situ inspection and precise target alignment.
The center of the ultrahigh vacuum interaction chamber was located approx. 2 m downstream
from the KB optics at the expected focus position. The target holder was controlled using a
semi-automated script executing predefined exposure protocols. During the experiment, two
types of imprint scans were performed. The through-focus F(z)-scan was carried out to precisely
determine the focus position. The F(z)-scan protocol was set to scan along the beam axis
through the expected focus in 1-mm steps (40 positions in total). The z-scan was repeated at 12
attenuation levels between the estimated PMMA threshold in focus and the maximum FEL output
power. Subsequently, the fluence scan was performed at the focus and 20 mm downstream of
the focus. Fine-resolved f -scans were composed of up to 42 attenuation levels, each numbering
20 single-shot imprints. Several thousands of ablation imprints were created, representing a
sufficiently large basis for training, validation, and testing of the neural network. Irradiated
samples were inspected ex-situ using a Nomarski microscope Olympus BX51M equipped with a
Canon EOS800D digital camera. Ablation threshold contours were manually annotated using an
XP-Pen Artist 24 graphical drawing tablet. Training and testing of the U-Net script was carried
out using a desktop computer equipped with an Intel Core i7-11700 processor and 128-GB
DDR4 RAM. Parallelized computations were performed with the aid of the GeForce RTX 3080
Ti 12GB graphical processing unit (GPU).

4. Methods

4.1. U-Net architecture

Segmentation of the ablation imprint interior in microscopy images is done using a convolutional
neural network employing the deep learning U-Net architecture [35] originally developed for
biological microscopy images. The network as shown in Fig. 1 has two major parts: the encoder
(left part of the U-shape) successively aggregates semantic information, increasing the number of
channels while reducing spatial resolution in a series of steps. In each layer, a spatial convolution
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with a small learnable kernel and a ReLU (rectified linear unit) nonlinearity is applied as indicated
by blue arrows. The spatial resolution is reduced by max-pooling (red arrows), taking maximum
over 2 × 2 pixel blocks. The decoder (right part of the U-shape) then progressively interpolates
back to the original resolution by convolving with another filter (green arrow). It combines
information from previous levels with information obtained directly from the encoder at the
current level through the so-called skip connections (grey arrows). In this way, the segmentation
network can take into account both local information and the larger context. The U-Net has
been shown to produce pixel-accurate segmentations even when trained on relatively modest size
datasets.

INPUT OUTPUT

conv. 3x3, ReLU

skip connection

Encoder Decoder

max pool 2x2

up-convolution 2x2
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16 16 16 16
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32 64 64 64 64 64 64
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Fig. 1. Schematic of the U-Net architecture with an input image size N = 1024, lU = 4
descent levels, eU = 2 encoding layers per level, and kU = 16 convolution kernels in the first
level. Light blue and gray boxes represent three-dimensional matrices (multi-channel feature
maps) with dimensions indicated on the left and above the box. The left and right part of
the image depicts the encoder (contracting path) and decoder (expansive path), respectively.
Convolutions with learnable 3x3 kernels combined with the ReLU operation are indicated
by blue arrows. Red downward arrows depict the max-pooling operation halving the image
resolution. Green upward arrows represent 2x2 up-convolutions (upsampling) doubling the
image resolution. In each descent level, skip connections (grey arrows) transfer information
from encoder to decoder to better localize fine features.

There are now many variants of the U-Net architecture. As input we use square images of size
N × N. Other parameters include the number of descent levels lU , the number of encoding layers
at each level eU , and the number of convolution kernels in the first dimension kU . Higher values
of lU , eU , and kU lead to a larger and more powerful network with more parameters which is
usually capable of better segmentation results at the cost of increased memory and computational
time. It also requires more training data to avoid overfitting.

Once the shape of the network is fixed, the network is parameterized by a weight vector θ.
Given a set T={Xj, Mj} of pairs of training images (Xj) and manually annotated (ground-truth)
binary masks (Mj), the network Uθ is trained by minimizing the total loss function

∑︁
j L

(︁
Qj, Mj

)︁
quantifying the sum of differences between network predictions Qj = Uθ (Xj) (probability maps)
and ground-truth binary masks (Mj). The difference is expressed by means of the standard binary
cross-entropy loss function [41]:

L
(︁
Q, M

)︁
= −

∑︂
i∈Ω

[︁
M(i) ln Q(i) +

(︁
1 − M(i)

)︁
ln
(︁
1 − Q(i)

)︁ ]︁
. (6)

The summation is done over the set Ω of all elements (pixels indexed by i) of the mask image
M(i) and predicted probability map Q(i). The cross-entropy loss function L lends itself very
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well to the optimization task, since it is differentiable with respect to Q. The loss L achieves
its minimum L = 0 if Q(i) = M(i) for all pixels i ∈ Ω and it grows over all bounds the more Q
differs from M. It is the most popular cost function for image segmentation; it is convex and its
derivative is easy to calculate. The minimization is done using the Stochastic Gradient Descent
(SGD) optimizer with Nesterov’s momentum mU [42]. The learning rate γU is reduced when the
validation loss stops decreasing. The resulting weight vector:

θ = arg min
θ′

∑︂
(Xj ,Mj)∈T

L
(︁
Uθ′(Xj), Mj

)︁
, (7)

represents a parametrization of the trained network.

4.2. Network training

To create a sufficiently large training dataset, four human ground-truth analysts, designated as
GTA0,2,4,5, participated in manual annotation of imprint contours. In total, 2221 Nomarski
imprint images of dimensions 6000×4000 pixels were manually processed and used for training
of the U-Net network. Training imprints were created at all three wavelengths. As the size of
full-power and moderately attenuated PMMA imprints may exceed the neural network input
dimensions limited by the available GPU memory, image preprocessing is necessary. One
option is to downsample the image which, however, leads to a loss of information. Instead, we
have divided the oversized imprint into small 1024×1024-pixel square tiles and processed them
independently, as illustrated in Fig. 2. We use the fact that the most difficult image part to segment
is the object boundary. The first tile is centered at one point of the imprint (object) contour
extracted from the training mask. The center of the neighbouring tile lies at the intersection of
the imprint contour and the edge of the previous square. The imprint contour is followed in this
way until it is fully covered.

Fig. 2. Illustration of used tiling algorithm applied to large input images. Original imprint
with indicated contour and cutout squares is shown on the left side. Final cutouts are on the
right side.

Along-contour tiling makes it possible to extract highly resolved images composed of
approximately 50% of the imprint interior area and 50% of the unaltered area. Contrary to
uniform tiling, this approach is better tailored to our problem since the majority of the training
images contains the threshold contour, i.e the feature of interest. The tiling procedure extends the
training dataset (up to 7652 images) and significantly improves the performance of the training
process while maintaining the native image resolution. The reverse operation of aggregation of
individually processed (segmented) tiles is performed by simple averaging. For small imprints
that fit into a single tile, no aggregation is necessary.
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The contribution of GTA0,2,4,5 to the training dataset was 50%, 37%, 8%, 5% of tiled images,
respectively. The training dataset was split into training (89% = 6802 images) and validation
(11% = 850 images) subsets. The training process consisted of 50 epochs, each epoch numbering
6802 steps. In each epoch all training images and the corresponding ground-truth binary
masks were loaded with randomly varied augmentation significantly extending the training
data variability. Employing the Albumentation libary [43], we imposed the following set of
augmentation operations: random 90◦ rotation, horizontal and vertical flip; random change of
brightness and contrast (both up to ±15%); random change of the hue, saturation, and values
(HSV) of color components (up to ±15%); elastic deformation of images. The elastic deformation
was applied with probability of 25% whereas all other operations were applied with probability
of 50%. To compensate the effects of color changes due to illumination and material differences,
we applied contrast limited adaptive histogram equalization (CLAHE) [44].

4.3. Network benchmarking

To provide a comprehensive benchmark test of U-Net capabilities, a testing dataset R consisting
of r = 473 in-focus fluence scan imprints was independently analyzed by four ground-truth
analysts GTA0,1,2,3 and served as testing data not only for the trained network, but also to compare
the annotators among themselves. GTA1 and GTA3 did not participate in network training. None
of the testing images was used in the training process and thus remained unseen by the neural
network. Since the CNN performance may depend on its parameters, 65 network models of
varied numbers of descent levels lU ∈ {3 . . . 7} and encoding layers eU ∈ {4 . . . 16} were trained
on the same input data and studied. The models will be further designated as UNET{lU , eU}.
Based on recommendations in the literature [35,42] and initial experiments, we have set the
input image size N × N = 1024×1024 (pixels), number of convolutional kernels kU = 16, and
Nesterov’s momentum mU=0.98. Ranges of varied parameters lU and eU were mostly limited by
the available memory capacity of the GPU.

4.4. Evaluation metrics

To quantitatively assess the performance of trained U-Net models, the measurement by GTA0
was chosen as a reference (REF) to which all other analysts were related. Since all GTAs are
almost equally experienced, the analyst who generated the most of the training data was chosen
as the reference GTA. Given a trained CNN model Uθ and an input image Xj ∈ R, we compute
the prediction probability map Qj = Uθ (Xj) ∈ [0, 1] which is of the same size as the image Xj and
contains for each pixel the probability of being part of an imprint. We compare the prediction
map with the corresponding reference mask MREF

j using the relative area deviation (RAD):

δj = δ(MREF
j , Qj) =

∥Qj∥ − ∥MREF
j ∥

∥MREF
j ∥

. (8)

and Dice score:

Dj = D(MREF
j , Qj) = 2

∥MREF
j ◦ Qj∥

∥MREF
j ∥ + ∥Qj∥

, (9)

where the Hadamard operator (◦) represents an element-by-element product of image matrices
and the norm ∥M∥ =

∑︁
i M(i) is a sum over all N2 matrix elements (image pixels). To compare

the masks MGTA, as measured by other ground-truth analysts, we evaluate the RAD and Dice
score as δ(MREF

j , MGTA
j ) and D(MREF

j , MGTA
j ), respectively.

The relative area deviation (RAD) quantifies the difference between the compared and reference
mask area relative to the reference area. Therefore, zero deviation indicates a perfect match of
areas. A more general Dice score metric evaluates an overlap area normalized to a half of the
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sum of both the compared and reference mask areas and thus expresses a similarity of mask
shapes. Unity-valued Dice score thus means an identical shape of both masks implying zero
RAD but the reverse statement is not necessarily true.

Averaging over the R dataset, we obtain the mean relative area deviation (MRAD) as:
⟨δ⟩ = 1

r
∑︁

j δj. Evaluating the mean squared RAD ⟨δ2⟩ = 1
r
∑︁

j δ
2
j , we calculate the standard

deviation of the mean: σδ = (⟨δ2⟩ − ⟨δ⟩2)
1
2 . In a similar way, the mean Dice score ⟨D⟩ and its

standard deviation σD is evaluated.

5. Results and discussion

5.1. Network training

As described in Methods subsections 4.2 and 4.3, 65 network models of varied parameters were
trained using the same data. In Fig. 3(a), three validation Nomarski images (X) of PMMA
ablation imprints created at the three particular wavelengths are shown. Figure 3(b) depicts
corresponding manually annotated binary masks (M). While the black color has a value of
unity and represents the imprint interior, the white color equals zero and corresponds to an
unaltered part of the surface. Some non-Gaussian laser beams may exhibit local minima in
the fluence profile predominantly due to diffraction effects and typically out of focus. If below
the threshold, imprints may contain islands of unaltered surface imposing holes in the mask
interior, as demonstrated in Fig. 3 at the wavelength of 18 nm. Figure 3(c) displays grayscale
maps (Q = Uθ (X) ∈ [0, 1]) recovered by UNET{7, 8} model where each pixel is assigned a
probability of occurrence in the imprint interior. The resulting prediction maps are in an excellent
agreement with ground-truth validation masks indicating a good accuracy of this model. As
shown in Fig. 3(a), the intensity, color, and shape of the imprint is quite variable depending on
the microscope setting, photon and pulse energy. For example, as the photon energy approaches
the carbon K-edge, the ablated surface in the imprint created at wavelength of 8 nm becomes
considerably rougher due to an increased PMMA absorption length. On the contrary, the imprint
created at wavelength of 13.5 nm is smoother but thermally molten inside. With respect to this
variability, the U-Net network is capable of performing quite robustly.

5.2. Network benchmarking

To benchmark the performance of all studied U-Net models as well as other GTAs quantitatively,
we used an independent testing dataset R consisting of r = 473 fluence scan imprints created at
fixed in-focus position and wavelength of 18 nm. Testing images were used neither as training
nor as validation data. Since the majority of training data was provided by GTA0, the testing data
processed by this analyst served as a reference measurement to which all other analysts were
related via similarity metrics introduced in Methods subsection 4.4.

Figures 4(a) and 4(b) display mean relative area deviations and Dice scores related to GTA0
reference for all ground-truth analysts GTA0,1,2,3 and U-Net models UNET{lU , eU}. For the
purposes of completeness, zero MRAD and the unity-valued mean Dice score of GTA0 to himself
is also shown. Mean values ⟨δ⟩ and ⟨D⟩ are indicated as color boxes assigned to each particular
ground-truth analyst or U-Net model. As evident from inset bar plots, there is a clear trend in both
metrics indicating an improving performance of U-Net predictions with the number of descent
levels lU . While the MRAD tends to zero, the mean Dice score gradually approaches unity as lU
increases. On the other hand, the dependence on the number of encoding layers eU does not show
any significant trend. Furthermore, MRAD closer to zero does not necessarily imply a better
mean Dice score neither for U-Net models nor for GTAs. Hence the choice of the best model
is primarily done with regard to a more general Dice score. MRAD is applied as a secondary
criterion. Values of both metrics evaluated for all GTAs and the best three U-Net models are
sorted by Dice score in Table 1. Within standard deviations, all values are consistently similar for



Research Article Vol. 31, No. 12 / 5 Jun 2023 / Optics Express 19711

50 m

 =
 8

 n
m

(a) Nomarski (b) Ground truth (c) U-Net

 =
 1

3
.5

 n
m

 =
 1

8
 n

m

Fig. 3. (a) Nomarski images of ablative imprints in PMMA created by a focused beam
of FLASH2 tuned at 8 nm (top row), 13.5 nm (middle row), and 18 nm (bottom row). (b)
Manually annotated ground-truth images represented as binary masks (black – imprint
interior, white – imprint exterior). (c) Probability maps as recovered by the UNET{7, 8}
model. All images are in scale.

all models and analysts compared. To discriminate between models, the values are shown with
a higher 4-digit accuracy. Albeit the UNET{6, 15} model wins in the sense of the mean Dice
score, the second model UNET{7, 8} is only insignificantly worse within one standard deviation.
However, UNET{7, 8} performs much better in terms of MRAD making it the model of best
choice if compared to GTA0.

Table 1. Results of ground-truth analysts and three best performing
U-Net models and comparison to reference GTA0. Aeff and Eth denote

the resultant effective area and extrapolated threshold pulse energy and
⟨D ⟩ and ⟨δ ⟩ represent the mean Dice score and relative area deviation

related to the reference analyst, respectively.

Analyst Aeff [µm2] Eth [nJ] ⟨D⟩ ± σD [1] ⟨δ ⟩ ± σδ [%]

GTA0 95.2 ± 6.1 85.5 ± 5.8 1.000 ± 0.000 0.0 ± 0.0

UNET{6, 15} 96.3 ± 6.4 87.3 ± 6.0 0.9790 ± 0.0090 -0.84 ± 1.87

UNET{7, 8} 98.3 ± 6.5 89.2 ± 6.0 0.9789 ± 0.0101 -0.41 ± 2.31

UNET{7, 5} 97.5 ± 6.7 88.1 ± 6.1 0.9786 ± 0.0091 -0.67 ± 1.91

GTA2 101.3 ± 6.0 90.7 ± 5.5 0.977 ± 0.008 0.9 ± 1.9

GTA3 105.3 ± 6.2 94.0 ± 5.5 0.975 ± 0.008 1.0 ± 2.0

GTA1 102.6 ± 5.8 90.8 ± 5.1 0.974 ± 0.011 -0.3 ± 2.3

A graphical comparison of the UNET{7, 8} model prediction maps with reference (GTA0)
masks is presented in Fig. 5(b) for 5 different pulse energies ranging from full power down to
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(a) Mean relative area deviation

(b) Mean Dice score

Fig. 4. Mean relative area deviation in percentage (a) and Dice score (b) calculated for 65
U-Net models. Colorbars on the right side assign a color to the corresponding value of mean
relative area deviation and Dice score. Bars on the left side compare results provided by
individual GTAs whose values are also indicated as dashed lines in colorbars. Horizontal
bars next to the table show values averaged over encoding layers for a given descent level.
To better adapt the color scale, colors of some data in the Dice score table (all models with
lU = 3 and GTA0) are clipped.

nearly threshold pulse energy. Corresponding Nomarski input images are shown in Fig. 5(a).
Comparative maps depict a difference between the reference ground truth and prediction in a
shaded color representation indicated by the inset color wheel. While blue and green colors
correspond to an interior of the reference mask, red and white colors represent its exterior. The
entire color map describes four possible overlap/mismatch combinations of the reference mask
and prediction map. Denoting the value in the i-th pixel as M(i) ∈ {0, 1} for the reference binary
mask and Q(i) ∈ [0, 1] for the continuous prediction map, we can distinguish four different cases:

• TRUE POSITIVE: imprint interior correctly predicted inside the mask (M(i) = 1 and Q(i)
≥ 0.5) indicated by the green-to-blue transition

• TRUE NEGATIVE: imprint exterior correctly predicted outside the mask (M(i) =
0 and Q(i)<0.5) indicated by the white-to-red transition

• FALSE POSITIVE: imprint interior incorrectly predicted outside the mask (M(i) =
0 and Q(i) ≥ 0.5) indicated by the red-to-white transition

• FALSE NEGATIVE: imprint exterior incorrectly predicted inside the mask (M(i) =
1 and Q(i)<0.5) indicated by the blue-to-green transition

Apart from subtle deviations indicated by blueish and reddish colors, the U-Net prediction is
very accurate in a broad range of imprint sizes. To qualitatively compare the U-Net prediction
with another human analyst, a difference map between GTA1 and the reference GTA0 is shown in
Fig. 5(c). Regardless of the fact that the difference between the two GTAs acquires only discrete
values indicated by white, red, green, and blue colors, segmentations of both the GTA1 and
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M=1M=0 0.50.5

Fig. 5. (a) Nomarski testing images. (b) colored maps depicting a difference between
reference GTA0’s binary masks and probability maps recovered by UNET{7, 8} model. (c)
difference between GTA0 and GTA1. Ablative imprints were created at varied pulse energies
indicated above images. The last image was acquired with microscope objective 100×, while
the others with 50×. All images are to scale.

U-Net are of comparable quality. Furthermore, the graphical comparison of two GTAs clearly
demonstrates the subjectivity of manual contour annotation.

5.3. Fluence scan evaluation

Retrieved probability maps Q = Uθ (X) can be processed by various means to obtain threshold
contour areas of imprints. The most convenient way is to measure the contour area at a given
probability threshold, e.g. 0.5. However, more rigorous (physical) contour area evaluation
requires a statistical treatment enabling an uncertainty evaluation as described and mathematically
proven in Appendix A. In Fig. 8 the two methods of contour area evaluation are compared with
the ground-truth measurement. The mean and variance of the threshold contour area is expressed
by Eqs. (10) and (11), respectively. In the following, the physical definition of the contour
area/uncertainty will be used.

Testing data analysed by all ground-truth analysts and best three U-Net models were processed
using the fluence scan evaluation method introduced in Theory 2 and described in detail in
Appendix B. Measured areas Sj were paired with the corresponding pulse energies Ej and the
resulting sequence {Sj, Ej}

r
j=1, numbering r = 473 data points, was sorted in an ascending order

with respect to areas. Since the fluence scan was carried out at a fixed in-focus position, the
z-dependence is omitted. In order to retrieve the normalized fluence scan curve and evaluate
the effective area of the laser beam, the threshold pulse energy must be determined first. For
this purpose we construct the so-called Liu’s curve {ln(Ej), Sj}

r
j=1 [45] as depicted by black open

circles in Fig. 6. Areas plotted in Fig. 6 were measured by the ground-truth analyst GTA0. As
illustrated by the red solid line, the threshold pulse energy Eth, corresponding to zero contour
area, is evaluated using a linear extrapolation of the first n = 50 data points in the linear part of
the Liu’s curve (red open circles).

Extrapolation was performed independently for each analyst using a robust line fitting (Deming
regression) procedure outlined in Eqs. (12)-(15) in Appendix B. Contrary to the standard
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Fig. 6. Liu’s plot of imprint data analysed by GTA0. Red open circles represent a data
selection to be processed using a line fit (red solid line). Black solid curve stands for the
probability density function of the extrapolated threshold pulse energy logarithm.

method of linear regression, the line fitting procedure performs better on datasets in which
both the dependent and independent variable evince an increased measurement error. As the
method minimizes orthogonal distance between the line and data points, it is less prone to
threshold underestimation. The mean value and uncertainty of the threshold pulse energy was
evaluated using an iterative statistical approach of interpenetrating samples [46]. In total, 100000
combinations, containing a half of data points selected for fitting (⌊n/2⌋ = 25), were randomly
chosen and independently fitted (extrapolated) to obtain statistics of fitting and derived parameters.
In Fig. 6 a histogram of the threshold pulse energy logarithm ln(Eth) is shown as a black solid
curve the width of which identifies an uncertainty of the threshold value. Due to the nonlinearity
of the Liu’s curve, the number of extrapolated points n must be identified individually for each
analyst. For this purpose we look for a minimum of the mean squared normal difference (fit
goodness metric defined in Eq. (16) in Appendix B) plotted as a function of the data subset size
n ∈ {4 . . . r}. As demonstrated in Fig. 9 in Appendix B, the optimum subset size of GTA0’s data
to be extrapolated is represented by first 50 points of the Liu’s curve. All details of the threshold
extrapolation procedure are summarized in Appendix B and the resulting values are listed in
Table 1.

Following the definition in Eq. (4), the threshold pulse energy value serves as a normalization
factor for the fluence scan (sequence) curve {Sj, Eth/Ej}

r
j=1 depicted in Fig. 7. Evidently, curves

derived by independent analysts are in an excellent agreement. It follows from Eq. (3) that the
numerical integral (see Eq. (17) in Appendix C) below the f -scan curve represents the effective
area of the beam. The uncertainty of this value was evaluated using the error propagation [47]
combining uncertainties of the threshold value Eth, pulse energies Ej, and contour areas Sj, as
outlined in Eq. (18) in Appendix C. For each particular (j-th) imprint we assume a relative area
error determined via standard deviation of the mean contour area measured by all GTAs. While
the uncertainty of small close-to-threshold imprints can reach 10%, the relative area error of large
imprints drops to 1% or below and the average over all imprints is 1.5%. Uncertainty of area
prediction by U-Net was determined via the physical treatment of prediction masks described
in Appendix A. In the sense of the relative area error, it performs similarly as for GTAs and
the averaged value is 1.9%. To estimate an uncertainty of the pulse energy measurement, we
employ the fact that ablative imprints of similar areas should have been created by pulses of
similar energy. Hence evaluating the standard pulse energy deviation for imprints of area within
the 1.5-% uncertainty bins (similar imprints), we get an average relative pulse energy error of
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approx. 13%. Since the contribution of the contour area and pulse energy uncertainty to the
relative effective area error decreases approximately with

√
r, the total error is dominated by the

uncertainty of the threshold pulse energy Eth. Therefore, the reliability of this value is crucial for
effective area evaluation.

Fig. 7. Fluence scan curves derived from measurements carried out by ground-truth analysts
and best performing U-Net models. The curves are offset for clarity.

Values of resulting effective areas are listed in Table 1. All values, except for GTA3, are in a
very good agreement within the error margin. The uncertainty of manual image segmentation is
mostly determined by capabilities and current condition of each individual human analyst. Color
perception and contour identification thus may be strongly subjective which in turn leads to an
increased variability of results. Especially the threshold pulse energy extrapolation relies on
the capability of an analyst to annotate the smallest imprints. Albeit all U-Net models slightly
underestimate the prediction in terms of the imprint contour area (⟨δ⟩ ≤ 0), MRAD is gradually
approaching the reference GTA0. We may expect that deeper networks could perform even better.
Furthermore, the mean Dice score clearly surpasses other GTAs. U-Net results tend to GTA0 also
in terms of the resultant effective area. This might indicate that the contribution of GTA0 possibly
dominated the training process process making the U-Net network biased in favor of this analyst.
To prove this, an additional thorough testing of the network performance trained using datasets of
varied compositions is necessary. Moreover, in order to independently evaluate the performance
of both the U-Net models and human annotators, a precise standardized measurement of imprint
contours, e.g. using the atomic force microscopy, is required. This is, however, an extensive
topic for another systematic study which would deserve a separate article.

6. Conclusions

We applied the U-Net convolutional neural segmentation network to microscopy images of
ablative imprints in PMMA in order to extract ablation threshold contours and their areas. We
performed a comprehensive benchmark test by comparing its results with manual annotations
carried out by four independent human analysts. We may conclude that the performance of
a properly trained network can be distinguished from an experienced human analyst neither
qualitatively nor quantitatively within one standard deviation of used similarity metrics. In
some aspects, the network may perform even better depending on the size and preprocessing
of the training data and available computational capacity. Results of the image segmentation
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analysis of all human analysts and three best-performing U-Net models were processed using a
well-established fluence scan method to evaluate the effective area and fluence scan curve of
a focused beam of the FLASH2 facility tuned at 18 nm. Results are in an excellent agreement
within the evaluated error margin. All preprocessing and postprocessing routines reported in
this Paper were designed such that the ablation imprint analysis can be carried out automatically.
This makes it possible to create a virtual analyst capable to autonomously conduct laborious
ablation imprint data evaluation from start to end.

A substitution of a human analyst will enable an efficient processing of much larger ensembles
of ablation imprint data making it possible to characterize beam conditions of more complex
experiments. Furthermore, autonomously processed imprint data will make it possible to fully
employ the F(z)-scan method outlined in Eq. (5). This opens up avenues not only to better
characterize the focus and its vicinity, but also to compare other semi-direct and indirect beam
characterization methods with a direct in-focus measurement.

Appendix A: imprint area evaluation

Here we describe two approaches how to calculate the imprint area from the predicted probability
map Q ∈ [0, 1]. Both methods assume that there is only one imprint (laser shot) in one image, i.e.
that all foreground pixels belong to the imprint. The two-dimensional N × N matrix Q = Uθ (X),
representing the predicted probability map, is flattened (vectorized) into a one-dimensional
vector (of length N2) and sorted in descending order. We interpret the resulting sequence Pn as
the probability that the object area contains at least n pixels. Equivalently, Pn also represents
the probability that an iso-fluence contour of the area S = n∆S is a subset of the threshold
contour. Here ∆S is an area occupied by a single image pixel. We can therefore write P as a
discrete function of S as P(S) = P(n∆S) = Pn. Figure 8 shows such probability functions for a
ground-truth measurement PM(S) (black solid line) and U-Net prediction PQ(S) (blue solid line).

A simple approach to imprint area estimation is to find such S so that PQ(S) = 0.5. A
value enumerated for an example imprint is shown by the blue dashed line in Fig. 8. The
corresponding area is 1280 µm2. Alternatively, in order to take into account the uncertainty
of the segmentation, we can consider the numerical derivative of PQ(S), i.e. the probability
density function pQ(S) = −dPQ(S)/dS, shown as an orange solid curve in Fig. 8. The minus
sign corresponds to our choice of sorting the Q values in a descending order. From pQ(S) we
can calculate its mean value ⟨S⟩ (first order moment). It turns out that it is simply the sum over
all elements ∥Q∥ =

∑︁
i Q(i) of the prediction probability map. This can be shown using the

integration by parts:

⟨S⟩ =
∫ Smax

0
S pQ(S)dS =

∫ Smax

0
PQ(S)dS ≈ ∆S∥Q∥ = ∆S

∑︂
i∈Ω

Q(i). (10)

Here the upper integration limit Smax is the area of the processed image and Ω denotes the
set of image pixels. It follows from Eq. (10) that the mean ⟨S⟩ is equal to the area below the
cumulative function PQ(S) or to the “volume” below the predicted probability map Q. The
variance σ2

S (central second order moment) is defined by an integral:

σ2
S =

∫ Smax

0

(︁
S − ⟨S⟩

)︁2pQ(S)dS, (11)

which can be evaluated numerically, e.g. by the trapezoidal rule. For this purpose, pQ can be
calculated, for example, by taking first order finite differences of PQ. Alternatively, we can apply
per partes integration again. In Fig. 8 the mean value ⟨S⟩ and the confidence interval (⟨S⟩ ± σS)

are depicted as orange dashed line and a semitransparent orange box, respectively. The resulting
area is (1277 ± 39) µm2 which is in a very good agreement with the ground-truth area 1264 µm2

below the black curve in Fig. 8.
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Fig. 8. A comparison of different approaches to imprint area evaluation. The plot depicts
the sorted ground-truth binary function PM(S) (black solid line), predicted probability
function PQ(S) and its normalized numerical derivative pQ(S) (blue and orange solid
lines), the corresponding mean value ⟨S⟩ and confidence interval (orange dashed line and
semitransparent orange box), and predicted binary mask area at the probability level of 50%
(blue dashed line).

Appendix B: threshold extrapolation

To extrapolate the threshold pulse energy, a generalized and more robust approach of the line fit
(Deming regression) is used. Contrary to the standard method, the generalized procedure fits
the data with a line in an implicit form ax + by + c = 0 by minimizing the squared orthogonal
distance of fitted data points to that line. Given a set of n coordinate pairs {xj, yj}

n
j=1, an averaged

sum of squared differences χ2 can be defined as:

χ2(a, b, c) =
1
n

n∑︂
j=1

(axj + byj + c)2. (12)

Here the fitting parameters a, b are components of a unit vector normal to the fitted line
satisfying a condition a2 + b2 = 1 and c is a negated normal distance between the line and origin.
The minimum of the sum of squared normal differences occurs for parameters:

a =
σy√︂
σ2

x + σ
2
y

, (13)

b = −
σxsgn(σxy)√︂
σ2

x + σ
2
y

, (14)

c = −a⟨x⟩ − b⟨y⟩. (15)

Here ⟨x⟩, ⟨y⟩ are mean values of the variables, σ2
x = ⟨x2⟩ − ⟨x⟩2 and σ2

y = ⟨y2⟩ − ⟨y⟩2 are the
corresponding variances and σxy = ⟨xy⟩ − ⟨x⟩⟨y⟩ is the covariance. Using the a, b, c parameters,
the fitted line can be expressed in an explicit form y = px+ q where the slope and y-intercept read
p = −a/b and q = −c/b, respectively. More importantly, the x-intercept, i.e. the extrapolated
threshold, is xth = −c/a. Hence, applying this approach to the logarithmic Liu’s sequence, we
get Eth = exp(−c/a).

An uncertainty of the fit is estimated using an iterative statistical approach of random choice.
From the set of first n = 50 data points (the value to be justified below) a subset of ⌊n/2⌋ = 25
points is randomly selected and fitted. In total, 100000 iterations were performed to obtain a good
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statistics of derived parameters and to evaluate their means and standard deviations. Such an
approach is less sensitive to occasional outlier points occurring in data. The resulting values are:
a = (0.9999074 ± 0.0000094) ln−1(µJ), b = (−0.01359 ± 0.00069) µm−2, c = (2.462 ± 0.067),
p = (73.8 ± 3.7) µm2 ln−1(µJ), q = (181.4 ± 4.8) µm2, and Eth = (0.0855 ± 0.0058) µJ.

Due to the nonlinearity of the Liu’s curve, the result of the fit and extrapolation may depend
on the size n of the fitted dataset, i.e. the number of first points in the Liu’s curve subject to
extrapolation. In order to find the optimum n, we repeat the above mentioned approach for varied
subset sizes gradually increased in range n ∈ {4 . . . r}. In each step the minimum mean squared
normal difference, an indicator of the fit goodness, is evaluated as:

χ2
min = a2⟨x2⟩ + b2⟨y2⟩ + c2 + 2ab⟨xy⟩ + 2ac⟨x⟩ + 2bc⟨y⟩, (16)

where the angle brackets denote averaging over all n subset points and the parameters a, b, c are
the fitting parameters evaluated using Eqs. (13)–(15). In total 5000 iterations were carried out for
each subset size while performing the fits on ⌊n/2⌋ points. The minimum subset size is n = 4
since the linear fit requires at least 2 points. Figure 9 shows the calculated minimum χ-squared
averaged over all (5000) iterations as a function of n. The curve exhibits a clear minimum at
n = 50 identifying the first linear part of the Liu’s curve which can be best fitted/extrapolated by
a line.

Fig. 9. Averaged minimum squared normal difference as a function of the fitted data subset
size.

Appendix C: effective area

The effective area is numerically calculated from the normalized fluence scan (curve) sequence
{Sj, Eth/Ej}

r
j=1 sorted in an ascending order with respect to contour areas Sj. It follows from the

normalization that the point {0, 1} can be artificially added to the sequence. The effective area of
the beam is calculated by the numerical integration of the f -scan curve using, for example, the
trapezoidal rule:

Aeff =
1
2

Eth

r−1∑︂
j=0

(
1
Ej
+

1
Ej+1

)(Sj+1 − Sj), (17)

where the zeroth point was added to the sequence using values E0 = Eth and S0 = 0 µm2. The
uncertainty of the effective area ∆Aeff can be evaluated using the error propagation method [47]
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combining errors of the threshold pulse energy ∆Eth, areas ∆Sj, and pulse energies ∆Ej as:

∆Aeff =

{︄(︃
∂Aeff
∂Eth

)︃2
(∆Eth)

2 +

+

r∑︂
j=1

[︄(︃
∂Aeff
∂Ej

)︃2
(∆Ej)

2 +

(︃
∂Aeff
∂Sj

)︃2
(∆Sj)

2

]︄⎫⎪⎬⎪⎭
1
2

.

(18)

Here we use the fact that the zeroth point of the f -scan sequence is fixed and therefore its
uncertainty is zero.
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