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ABSTRACT: Octahedra (oh) PtNiX/C catalysts are notable cathode
catalysts for proton-exchange membrane fuel cells due to their exceptional
oxygen reduction reaction activity. Here, we investigate the degradation of
oh-PtNiIr catalysts under fuel-cell conditions using operando X-ray
diffraction (XRD). Employing two accelerated stress tests with different
lower potential limits and XRD-coupled cyclic voltammetry on benchmark
Pt and oh-PtNiIr catalysts, we find that dissolution and degradation are
proportional to the extent of reduction, independent of the catalyst’s
nature. Our method identifies the optimal potential range for Pt-based
catalysts to minimize degradation without lengthy stress tests.
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The need for a hydrogen economy is becoming integral to
transitioning to a carbon-neutral future, as we try to

reduce our carbon footprint. Given the critical role of noble
metals for oxygen reduction reaction (ORR) catalysis, much
research has been dedicated to improving the catalytic activity
of Pt by modifying its electronic and structural properties via
Pt alloying with transition metals (Co, Ni, and Fe).1,2 In 2007,
Stamenkovic et al. identified the most active surface,
Pt3Ni(111), which led to the development of PtNi octahedral
nanoparticles (NPs) with 10-fold mass- and area-specific
activity gain in the rotating disk electrode (RDE) configuration
due to maximization of the surface availability of PtNi(111)
facets.1,3,4 However, transferring the activity measured in RDE
experiments to a proton-exchange membrane fuel cell
(PEMFC) and reaching stability targets remains a significant
challenge for many of the highly active PtNi binary and ternary
catalysts in the shape of nanoframes and octahedra.4

Several challenges remain in transposing the phenomenal
activity and durability reported in wet electrochemical cells of
alloy catalysts to real devices. Octahedra (oh) NPs (5−8 nm)
have a smaller electrochemical surface area (ECSA) than
commercial 2−3 nm Pt catalysts, but at the same time, the rate
constant for the ORR is at least 10 times higher than that of Pt.
Thus, octahedra must accommodate and withstand a larger
current per NP at a constant loading to produce the same
overall current at a given voltage. As a result of the higher
turnover frequency for the ORR, (oh) alloy NPs have higher

water concentration in the vicinity of the catalyst. This can lead
to local oxygen starvation due to the inhibited oxygen diffusion
to the NP surface. In addition, accommodating increased
current density (per NP) requires a well-structured boundary
that allows not only sufficient oxygen diffusion but also good
proton and electron conductivity.5

Besides the problems described above, withstanding
potential changes during PEMFC operation is perhaps the
biggest challenge because the dissolution of Ni or Pt degrades
the finely tuned structure of oh-PtNi catalysts and thus lowers
the catalytic activity. One way to stabilize the structure is to
dope oh-PtNi with a small amount of additional metal such as
Ir, Mo, or Rh.6−8 While this is a promising improvement and
the stability objectives are reached in the RDE configuration,
performance in the membrane electrode assembly (MEA)
configurations that meet the stability target following the
Department of Energy testing protocol has not been reported
yet.
It is agreed that the stability is linked to the extent of

platinum oxide growth and reduction, which leads to various
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degrees of dissolution and degradation. Up until now, much
research has focused on the Pt oxidation−dissolution link.
Many publications highlighted the influence of the upper
potential limit (UPL) in an accelerated stress test (AST),
making clear that increasing the UPL increases the extent of
oxidation and, in turn, the extent of dissolution.9−11 However,
only a limited amount of research focused on the influence of
the lower potential limit (LPL).12−14 By conducting a
thorough flow-cell experiment, Đukic ́ et al. illustrated the
importance of controlling the LPL to improve the PEMFC
catalyst’s lifetime, which they attributed to the reduction
kinetics of surface oxides,15 but direct physical evidence is
missing, and the actual mechanism between the LPL and the
stability of the catalyst in MEAs remains unknown. This is
critical for the field because meeting the catalysts’ activity and
durability targets will enable large-scale commercial adoption
of PEMFCs and the hydrogen economy.
In this work, we explore the dissolution mechanics of a

PtNiIr/C octahedral catalyst (doped with <1 atom % Ir) and
compare it with a reference commercial Pt/C catalyst. With a
focus on the LPL and reduction potentials, we investigate the
linkage between the catalyst degradation and operational
boundaries in a 5 cm2 PEMFC optimized for high-energy X-ray
diffraction (XRD) measurement. The fast acquisition rate
enabled by the high flux of EBS-ESRF allows tracking
oxidation/reduction processes during the device operation
with a high temporal resolution. We conclude that Pt and Ni
dissolution is proportional not only to the extent of Pt
oxidation but, interestingly, also to the extent of Pt reduction,
which can depend on its kinetics.
For the experiments shown in this work, we use two types of

catalyst-coated membranes (CCMs) prepared by Johnson
Matthey (JM): (i) “Pt(JM)” benchmark CCM with Pt (the
volume-weighted diameter is 2.9 nm, as determined using
XRD) on both the cathode (0.187 mgPt/cm2) and anode
(0.079 mgPt/cm2) that serves as the reference material; (ii)
“oh-PtNiIr” CCM with octahedral-shaped (oh) PtNiIr (0.100
mgPt/cm2 and 0.017 mgNi/cm2; the volume-weighted diameter
is 7.1 nm) at the cathode and Pt (0.079 mgPt/cm2) at the
anode. Loadings were measured at JM using X-ray fluorescence
after spray-coating the Nafion112 membrane.
We find that the oh-PtNiIr catalyst incorporated in the

CCM already has a different composition from the as-
synthesized oh-PtNiIr powder: Energy-dispersive X-ray
(EDX) analysis (Figure S7) shows that the oh-PtNiIr powder

has an atomic Pt:Ni ratio of 2.20, whereas the as-prepared oh-
PtNiIr CCM has a ratio of 6.35. This suggests that the catalyst
lost 57% of its Ni atomic content during ink-making and
printing. Such a high loss of a transition-metal alloying element
has been observed and discussed previously in the work of
Gatalo and Dubau.16,17 It has been pointed out that the CCM-
making process, together with the activation potential cycling,
can alter the catalyst morphology and composition to such an
extent that the catalyst is no longer the same material as was
synthesized, questioning the common approaches to catalyst
activity testing using the RDE technique.18 Our results provide
further evidence that this is also the case for multimetallic oh-
PtNiIr.
In contrast to compositional changes, the structural changes

are less noticeable in the ink-making/printing step [trans-
mission electron microscopy (TEM) micrographs in Figure
1a,b]. Qualitatively, the edges of octahedral NPs are less
pronounced in the catalyst coated on the membrane than in
the catalyst powder, indicating that loss of the octahedral shape
happened to some extent. Figure 1c shows the catalyst after
10K cycles of a standard 0.6−0.95 V AST. At the end of life
(EOL), the atomic Pt:Ni ratio is 8.33, meaning 26% of the Ni
atomic content leaches out. Thus, 2 times more Ni content
dissolved during the ink-making/printing procedure compared
to the AST. It is clear that serious attention must be focused on
adapting the ink-making/printing procedure to retain the
composition of state-of-the-art multimetallic catalysts during
the MEA preparation. From Figure 1c, we can see that Ni
dissolution itself is not the only degradation mechanism. NPs
also aggregate, coalesce, and ripen, and carbon support
corrodes.19

In laboratory conditions, catalyst degradation is typically
studied by square-wave ASTs. The U.S. DRIVE Fuel Cell
Technical Team adopted the standard of cycling from 0.6 to
0.95 V with a 3 s dwell time at both the LPL and UPL.20 This
test mimics the dynamics of the typical fuel-cell (FC)
operation with Pt dissolution and Ostwald ripening as
preferential degradation pathways.9,21,22 Even though the
mechanism of Pt degradation and dissolution as a function
of the UPL is well-known,12,23,24 the exact nature of the rather
surprising linkage between the LPL and Pt degradation is still
unclear.12,13,15,16

To study the effects of lower potentials on the aging of oh-
PtNiIr and Pt(JM) catalysts, we perform two square-wave
ASTs with different LPLs: 0.6−0.95 and 0.7−0.95 V,

Figure 1. TEM images of the oh-PtNiIr catalyst at three stages: (a) as-prepared powder; (b) as-prepared CCM; (c) EOL catalyst after 10K cycles
of 0.6−0.95 V AST. The ink-making/printing procedure leached out 57% of the Ni content and made the edges of the octahedra less pronounced.
The AST leached out only 26% of the Ni content but caused severe structural degradation.
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hereinafter referred to as 0.6 V LPL and 0.7 V LPL ASTs,
respectively. We use a custom-built 5 cm2 FC operating at 80
°C, at 80% relative humidity, and flowing H2/O2 at 200
sccm.25 Both Pt(JM) and oh-PtNiIr MEAs made from as-
prepared CCMs with Sigracet 22BB gas diffusion layers were
conditioned at constant current densities for approximately 2 h
(Figure S3). The ECSA, specific activity, mass activity, and
polarization curves are provided in Figure S5. Throughout the
10K cycles of each AST, we follow structural changes of the
catalyst with XRD (Figure S6).25 In general, we obtain three
parameters from XRD analysis: scale factor, lattice parameter,
and crystallite size.
(1) The scale factor, i.e., scattering intensity, corresponds to

the total amount of scatterers. Thus, it can be used to track
dissolution. Also, Martens et al. proposed that the scale factor
decreases at oxidizing potentials due to the formation of an
amorphous oxide layer on Pt NPs.24 On time scales where the
dissolution is negligible, the scale factor is thus a direct
indicator of the amorphous oxide growth/reduction onset.
(2) The lattice parameter is a global measure of strain. In

bimetallic systems, the changes can be caused by dissolution,
following Vegard’s law,26 or by the evolution of surface tension
due to the field effect and adsorption phenomena.27 Changes
in the lattice parameter manifest as shifts in the diffraction peak
positions.
(3) The crystallite size is the size of the coherently scattering

domain. The size of the scattering domain does not change
during aggregation, but it changes during coalescence and
ripening. Thus, depending on the degradation process, one NP
can be composed of a few such domains.28 Harsher
degradation leads, in general, to a more pronounced crystallite
size increase.
Figure 2a shows the evolution of the crystallite sizes of

Pt(JM) and oh-PtNiIr throughout 10K cycles with different
LPLs. The 0.6 V LPL AST is significantly harsher as the
crystallite sizes of the NPs increase throughout 10K cycles by
42% for Pt(JM) and 30% for oh-PtNiIr, whereas in the case of
the 0.7 V LPL AST, they increase by only 17% for Pt(JM) and
10% for oh-PtNiIr, respectively. The degradation and ripening
of the NPs are the fastest at the beginning of the AST for both
catalysts. In Figure 2b, we show the evolution of the lattice
parameter of the oh-PtNiIr catalyst for 0.6 V LPL AST
(diamonds) and 0.7 V LPL AST (stars). Ni dissolution is
substantial in the case of 0.6 V LPL AST as the lattice

parameter increases from 3.8835 ± 0.0016 to 3.8943 ± 0.0004
Å, corresponding to a (27 ± 2)% loss of the pre-AST Ni
atomic content, which is well in line with the 26% loss of Ni
measured by EDX. In contrast, in the case of 0.7 V LPL AST,
Ni loss was only (3 ± 2)% from the pre-AST Ni atomic
content. These observations agree with the previously reported
dependence of dissolution on the LPL for Pt12 and PtCo
nanocatalysts.16 Although the size increase for the oh-PtNiIr
catalyst is still substantial even for 0.7 V LPL AST, its
resistance to Ni dissolution is greatly improved. The positive
effect of increasing the LPL on the degradation extent seems to
be universal and independent of the catalyst’s nature (particle
size, composition, electrode loading, carbon support type, etc.),
even though the details (potential limits and kinetics) will
likely be different for each catalyst.
To build the connection between the LPL and dissolution

mechanism, we follow cyclic voltammetry (CV) at 50 mV/s
with XRD over several cycles (XRD-CV). The top part of
Figure 3 shows the evolution of the scale factor (brown) for
Pt(JM), while the bottom part shows the same for oh-PtNiIr.
Because the first CV cycle is clearly different from subsequent
ones due to impurity removal and reconstruction of the
surface, only the second cycle is shown (Figure S4).18 For
more details about the measurement protocol, see the
experimental section in the Supporting Information (SI).
As expected, the Pt−O reduction region in the CV profiles is

shifted toward higher potentials for oh-PtNiIr compared to the
Pt(JM) catalyst. This is a consequence of OH bond weakening,
which is related to a d-band shift induced by alloying with a
less noble metal. Similar to Stamenkovic’s work on single
crystals, we see a negative shift of the Hupd region for the oh-
PtNiIr catalyst with associated extension in the potential range
of the double-layer region with respect to Pt(JM).1 However,
assessing the actual reduction onsets just by CV is complicated
due to the convolution of multiple electrochemical processes
happening on the electrode’s surface (adsorption and place
exchange). XRD-CV offers significant perspicuity because the
scale factor onset directly corresponds to the place exchange
and the reversed process, causing degradation and dissolu-
tion.24

To unambiguously follow the growth of surface oxide, we
start the anodic sweep at 0.05 V, where the catalyst is fully
reduced (corresponding to a scattering intensity of 1 au). In
general, the XRD scale factor follows the oxidation/reduction

Figure 2. (a) Crystallite size evolution of Pt(JM) (black) and oh-PtNiIr (red/green) catalysts during 10K cycles of two square-wave ASTs. In the
case of 0.6 V AST, the Pt(JM) size increase is 42% and that for oh-PtNiIr 30%, whereas in the case of 0.7 V AST, the Pt(JM) size increase is 17%
and that for oh-PtNiIr 10%. The lines of the logarithmic function are provided to guide the reader through data points. (b) Lattice parameter
evolution of oh-PtNiIr for 0.6 and 0.7 V AST. A linear function was used to approximate the loss of Ni atomic content. The error bars correspond
to the Rietveld fit uncertainty.
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hysteresis apparent in CV. It is constant up to the onset of the
oxidation potential, after which it decreases until a reverse
potential of 1.23 V. At the beginning of the cathodic sweep, the
scale factor rests at its lowest value and starts increasing when
the potential crosses the onset of the reduction potential. After
passing a reduction region (highlighted in red in Figure 3), the
scale factor returns close to its original value, as Pt dissolution
is negligible in such a short experiment time. There is a slight
slope between the end of the reduction region and 0.05 V in
the cathodic sweep, pointing to the fact that the catalyst is not
yet entirely reduced. A small number of catalytic sites,
presumably highly oxophilic defects, are much harder to
reduce, giving rise to this slope.29,30 Nevertheless, the
reduction is ∼97% complete at the end of the reduction
region for both catalysts (Figure 3). Further, there is a slight
difference between both the oxidation and reduction onsets for
Pt(JM), but no difference is observed for oh-PtNiIr within the
0.02 V resolution limit. Note that, for the Pt catalyst, Martens
et al. showed the dependence of the hysteresis width on a scan
rate caused by slow reduction kinetics.24 The oh-PtNiIr
catalyst shows no scan rate dependence, confirming its fast
redox kinetics (see Figures S1 and S2 for more details). The
discussion of the influence of catalyst parameters, such as
particle size, shape, carbon type, loading, etc., on the observed
profiles is given in the SI. It is important to note that all of the

parameters have an impact on the lifetime durability of the
device. Nevertheless, the conclusion drawn from this work is
that catalyst degradation is much more affected by the extent
of Pt reduction in comparison to the particle size, shape,
alloying, carbon type, etc.
Finally, we connect the degradation data from ASTs with the

oxidation/reduction dynamics shown in XRD-CV. Setting the
LPL to 0.6 V during AST results in a fully reduced oh-PtNiIr
catalyst (the scattering intensity in XRD-CV reaches its fully
reduced value), while at 0.7 V LPL, the reduction is only
partial for both Pt(JM) and oh-PtNiIr. Given that the 0.7 V
LPL AST results in much less degradation, the dissolution
amount must be proportional to both the degree of oxidation
and the degree of reduction, and it is independent of the
catalyst’s nature. This result also implies that the oxophilic sites
that are more difficult to reduce (likely the uncoordinated
sites) are stable in the oxide form but are prone to dissolution
once reduced. Therefore, one of the strategies to limit the
dissolution is to keep those vulnerable sites permanently
oxidized, e.g., by altering their electronic structure by ternary/
quaternary metal doping or increasing the LPL.
Such knowledge has a direct implication for the operation of

a FC, especially for high-active shape-controlled Pt alloys.
Their activity is strongly bound to a specific crystal structure,
and the extent of surface restructuring during the reduction
will affect this activity to a larger extent than those of other
catalysts. In general, if we want to preserve high performance,
we must carefully select the operational boundaries and limit
both the lower and higher potential boundaries, regardless of
the catalyst type. In the automotive industry, where multi-
metallic catalysts will be used to lower the stack’s cost, the loss
in power density at higher LPL can be compensated for by a
more active catalyst and thus significantly higher current
densities at lower overpotentials. Moreover, operating at higher
LPLs increases the FC efficiency.
In conclusion, we have shown the practicality of the XRD-

CV technique to explain the degradation behavior and
provided further important insight into catalyst degradation
mechanisms in an operational PEMFC. We have found specific
onsets of a key crystallographic parameter (scale) associated
with the oxidation, reduction, and degradation of two types of
catalysts. By employing two ASTs with different LPLs (0.6−
0.95 and 0.7−0.95 V), we showed a strong dependence of
catalyst degradation on the LPL for oh-PtNiIr and confirmed
this dependence for Pt/C.
Combining these two results, we conclude that the extent of

degradation is proportional not only to the degree of oxidation
but also to the degree of reduction within a cycle, independent
of the catalyst’s nature. While other approaches (e.g., tuning of
the surface composition and electronic structure) to improve
stability and retain activity are important and effective at the
RDE level, they are not enough, and an operational boundary
must be set on both lower and higher potential limits. Once
the activity enhancement is transferred from a laboratory to the
device, this approach will work best for automotive
applications where a multimetallic catalyst reduces the stack’s
price, the increased exchange current density does not reduce
the power density, and operation at higher voltages increases
the FC efficiency. We think that limiting the LPL is a crucial
step for implementing alloyed catalysts into PEMFCs and FC
automotive as such. Moreover, the presented methodology can
be further developed to serve as a benchmark measurement to

Figure 3. XRD was coupled with CV. The scale factor (brown) was
obtained from XRD during CV with a 50 mV/s scan rate. The upper
half shows the results from Pt(JM) and the lower part those from oh-
PtNiIr. The cathodic dissolution region is highlighted by a red curve
that extends into a simplified diagram, where the same region is
highlighted by a red box. Black vertical dash-dotted lines mark the
potential boundaries of two types of ASTs.
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explore the operational boundaries for all kinds of Pt-based
catalysts.
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