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Abstract
The significant role of nonlinear wave–particle interactions in the macrodynamics and 
microdynamics of the Earth’s outer radiation belt has long been recognised. Electron 
dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and 
pulsating auroras are all associated with the rapid scattering of energetic electrons by the 
whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes 
of about 1% of the ambient magnetic field. Despite the decades of experimental and theo-
retical investigations of chorus and the recent progress achieved through numerical simula-
tions, there is no definitive theory of the chorus formation mechanism, not even in the sim-
ple case of parallel (one-dimensional) propagation. Here we follow the evolution of these 
theories from their beginnings in the 1960s to the current state, including newly emerging 
self-consistent excitation models. A critical review of the unique features of each approach 
is provided, taking into account the most recent spacecraft observations of the fine struc-
ture of chorus. Conflicting interpretations of the role of resonant electron current and mag-
netic field inhomogeneity are discussed. We also discuss the interplay between nonlinear 
growth and microscale propagation effects and identify future theoretical and observational 
challenges stemming from the two-dimensional aspects of chorus propagation.
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Article Highlights

• A brief overview of the early history of chorus studies is provided, focusing on con-
cepts still used in today’s research

• A review of modern nonlinear growth theories of the parallel-propagating magneto-
spheric chorus emission is presented

• Theoretical models do not fully agree on the role of resonance current and magnetic 
field inhomogeneity

• Two-dimensional aspects of wave propagation interfere with predictions of one-dimen-
sional nonlinear theories

1 Introduction

The whistler-mode chorus emissions (Storey 1953) are one of the major drivers of local 
acceleration in the Earth’s outer radiation belt (Thorne 2010), affecting its dynamics over a 
large range of temporal and spatial scales. On the timescales of hours and days, numerical 
simulations based on the quasilinear theory of wave–particle interactions have been very 
successful in modelling the evolution of the radiation belt electron content (Horne et al. 
2005; Shprits et al. 2008; Subbotin et al. 2011). These models work with magnetospheric 
wave power distributions averaged over a broad range of frequencies and describe scatter-
ing as a stochastic process caused by successive impulses from small amplitude waves with 
random phases (Horne et al. 2003).

On the scale of minutes and below, the stochastic approach becomes insufficient. Dis-
crete, high-amplitude structures in time–frequency spectrograms, a characteristic feature 
of chorus, cause significant perturbations to resonant electron trajectories, which lead to 
particle trapping and nonlocal transport (Allanson et al. 2021). Such processes require a 
full nonlinear treatment and may result in a much faster particle energisation and losses 
than those predicted by the diffusive Fokker–Planck equations of the quasilinear theory 
(Mourenas et al. 2018). However, the efficiency of nonlinear electron acceleration through 
cyclotron resonance with a parallel-propagating chorus is limited by amplitude modu-
lations (Tao et  al. 2013; Hiraga and Omura 2020) and phase decoherence (Zhang et  al. 
2020a) within wave packets.

Various theories have been proposed to explain the formation and properties of chorus 
elements, with the hope of better modelling the wave–particle interactions and understand-
ing their impact on global radiation belt dynamics. In this review article, we start by going 
back to the early hypotheses on triggered whistler-mode emission (Sect. 2) to identify the 
fundamental principles of nonlinear chorus growth and to point out some intriguing yet 
imprecise concepts that have been since improved and incorporated into newer research. 
We then continue with a review of the three most widely used recent theories: the back-
ward wave oscillator theory with a step-like discontinuity in the electron distribution 
(sBWO, Sect. 3.1), initially proposed by Trakhtengerts (1995); the nonlinear growth theory 
(NGTO, Sect. 3.2) developed in a series of papers starting with Omura et al. (2008); and 
the self-consistent framework for chorus excitation (SCCE, Sect. 3.3) described by Zonca 
et al. (2022) and qualitatively applied by Tao et al. (2021). Finally, in Sect. 4, we consider 
the effects of cold plasma density filamentations on two-dimensional (2D) propagation 
of whistler-wave packets and discuss the limitations of 1D nonlinear growth theories in 
explaining the fine structure of chorus.
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The above-mentioned modern theories are all based on a common set of complex wave 
amplitude equations and similar ideas about the resonant electron current, yet they diverge 
in the use of mathematical notation. To avoid confusion, we spend the rest of the Introduc-
tion (Sects.  1.1 and 1.2) refreshing the basics of whistler-mode dispersion and resonant 
electron motion in order to establish a unified notation. The revised concepts also serve as 
prerequisites for the analysis of the propagation and growth of chorus emissions in Sects. 3 
and 4.

For the sake of conciseness, chorus waves generated at large wave normal angles (WNA) 
are completely omitted from this article; interested readers can look into the observational 
paper by Santolík et al. (2009), or into the review by Shklyar and Matsumoto (2009) for a 
general description of electron interactions with highly oblique whistler waves. Regarding 
the growth mechanism of these emissions, some recent hypotheses can be found in Moure-
nas et al. (2015), Li et al. (2016), and Artemyev et al. (2016) and references therein.

1.1  Characterisation of the Whistler‑Mode Chorus Emission

Chorus emissions propagate in the whistler mode, which is the right-hand polarised branch 
of the magnetised cold plasma dispersion relation (Gurnett and Bhattacharjee 2017) below 
the electron cyclotron and plasma frequencies, whichever is lower. For parallel-propagating 
waves, i.e., when the wave vector k is parallel or antiparallel to the ambient magnetic field 
B0 , the refractive index � can be written as

Here, � stands for wave frequency, �e for electron gyrofrequency, �pe is the electron 
plasma frequency, and the motion of ions was neglected. The group velocity is found to be

where the second formula results from the approximation 𝜔2
pe
≫ 𝜔(𝛺e − 𝜔) . The phase 

velocity Vp becomes equal to Vg at � ≈ �e∕2 , which is an interesting property with pos-
sible implications for the chorus power spectrum (Sauer et al. 2022).

When the wave normal angle �k = ∠(k,B0) becomes nonzero, the dispersion properties 
of whistler waves are best represented by 2D plots in the (�, �k) space, as shown in Fig. 1 
for �pe∕�e = 5 . Phase and group velocity (panels a and b) of parallel waves maximise 
at � = �e∕2 and � = �e∕4 , respectively, and quickly decrease as the WNA gets close to 
the resonance cone. As shown in all panels, the R-mode becomes evanescent above the 
resonance cone defined by �k = �res ≈ arccos(�∕�e) . The polar angle of the Poynting 
vector, �S (Fig. 1c), remains small everywhere except for high frequencies near the reso-
nance cone, suggesting that whistler wave energy propagates almost along field lines even 
without the presence of waveguides (Storey 1953; Walker 1976). At the Gendrin angle 
�G ≈ arccos(2�∕�e) , the Poynting vector stays parallel to the ambient magnetic field. The 
ellipticity of the magnetic field, EB (ratio of the minor and major axis of the polarisation 

(1)�2 =
c2k2

�2
= 1 +

�2
pe

�(�e − �)
.

(2)
Vg

c
=

2(�e − �)3∕2[�2(�e − �) + ��2
pe
]1∕2

2�(�e − �)2 +�e�
2
pe

≈
2(�e − �)3∕2�1∕2

�e�pe

,
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ellipse of the magnetic field), is equal to one across all �k at the proton plasma frequency 
and remains close to unity at higher frequencies.

Due to the strong dependence of whistler-mode dispersion properties on the plasma 
density and the WNA, studying wave propagation analytically often proves difficult. In 
practice, the propagation path is obtained numerically by integrating the ray tracing equa-
tions resulting from Hamiltonian optics [Suchy (1981), Horne (1989), and Eqs. A1–A2 in 
the Appendix]. The (Hamiltonian) geometric optics is based on the eikonal approxima-
tion,1 which requires the time scales and length scales of environmental variations to be 
substantially larger than 1∕� and 1/k, respectively, allowing for a plane-wave description 
(Bernstein 1975). For its convenience, the ray approximation represents an important step 
in the derivation of fundamental equations of the nonlinear chorus growth theories in 
Sect. 3. However, the eikonal approximation breaks down when we introduce thin density 
ducts into the plasma environment and has to be replaced by a full-wave approach to cap-
ture the effects of a strongly inhomogeneous medium (Sect. 4).

The defining characteristics of chorus waves, which differentiate them from other 
whistler-mode emissions, are their spectral features (Burtis and Helliwell 1969; Tsurutani 
and Smith 1974; Taubenschuss et al. 2015). In Fig. 2, we show a spectrogram of 10Hz to 
10 kHz electromagnetic emissions recorded during a full orbit of Van Allen Probe A. The 
two bands of intense emissions ranging from about 0.1�e0 to 0.5�e0 (lower band) and from 
0.5�e0 to 0.8�e0 (upper band), denoted by the label “A”, represent the chorus emission or 

Fig. 1  Propagation properties of whistler-mode waves in the frequency range from proton to electron gyro-
frequency, 𝛺p < 𝜔 < 𝛺e . The plasma-to-cyclotron frequency ratio is set to �pe∕�e = 5.0 . The plotted data 
were obtained by numerically solving the unapproximated cold electron-proton plasma dispersion relations 
from Stix (1992)

1 Sometimes referred to as the WKB approximation, after G. Wentzel, H. A. Kramers and L. Brillouin, 
who however worked on quantum-mechanical waves.
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Fig. 2  Electron density and wave spectrograms from a full orbit of Van Allen Probe A recorded on 29–30 
August 2014, processed by the methods of Santolík et al. (2002), Santolík et al. (2003b) and Santolík et al. 
(2010). The panels show, in order: electron plasma density, magnetic power spectral density, electric power 
spectral density, the ellipticity of the magnetic field, planarity of the magnetic field, wave normal angle and 
polar Poynting angle. The upper line in the spectrogram marks half of the electron gyrofrequency; the lower 
line follows the proton gyrofrequency, which rises into the EMFISIS frequency range only at low altitudes. 
(1) Plasmatrough: region of tenuous plasma outside the plasmasphere (2) Plasmapause: outer boundary of 
the plasmasphere. (3) Plasmasphere: cold, dense plasma co-rotating with the Earth. (A) Whistler-mode cho-
rus/exohiss. (B) Plasmaspheric hiss. (C) Equatorial noise. (D) Lightning generated whistlers, kHz radiation 
emitted from lightning strokes. (E) Instrument noise. Reprinted from Hanzelka (2022)

Fig. 3  Magnetic power spectral density from a 6-second burst mode snapshot taken during the orbit in 
Fig.  2, starting at 01:49:43.35 UT. It reveals narrow-band, rising-tone chorus elements in the lower fre-
quency band, with weaker coherent emissions in the upper band. The emission band centred on 600 Hz is 
assumed to be the result of linear growth, while the discrete elements are a product of nonlinear interaction 
between electrons and whistler waves
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exohiss. A 6-second burst mode snapshot of magnetic wave power, taken during the orbit 
from Fig. 2, is presented in the form of a spectrogram in Fig. 3. Here we observe narrow-
band spectral elements with chirping frequency (rising in this case), whose presence needs 
to be confirmed in the high-cadence burst mode data to avoid confusing chorus with exo-
hiss.2 Chorus is generated near the magnetic equator by nonlinear resonant interactions 
with energetic electrons, with wave seeds growing from anisotropy-driven instability of the 
hot electron distribution (Tsurutani and Smith 1974; Santolík 2008; Li et al. 2008).

Statistical results from the THEMIS, Cluster and Polar spacecraft have shown that cho-
rus occurs predominantly in the dayside and morning sectors at L-shells ranging from the 
plasmapause to the magnetopause, with average wave power steeply decreasing above 40◦ 
of latitude (Li et al. 2009; Bunch et al. 2012; Santolík et al. 2014b). However, these stud-
ies did not use high-resolution data to confirm the presence of discrete, chirping structures 
in the spectrograms. Taubenschuss et al. (2014) analysed over 500 burst-mode snapshots 
gathered by the THEMIS satellite and found that the lower band was divided into two main 
populations based on the wave normal angle: quasiparallel waves below the Gendrin angle 
and weaker highly oblique waves near the resonance cone. The upper band showed no clear 
division and was sometimes connected to the lower band, i.e. the spectral gap at 0.5�e 
was not always present (Kurita et al. 2012; Teng et al. 2019; Gao et al. 2019). This gap is 
commonly associated with increased obliquity and Landau damping (Omura et al. 2009; 
Li et al. 2019; Sauer et al. 2022) and thus will not appear in the theories of parallel chorus 
wave growth described in this review. As established by many observational studies (San-
tolík et  al. 2014b; Artemyev et  al. 2016; Agapitov et  al. 2018), the very oblique chorus 
waves are much less common than the parallel ones, and their origin is likely associated 
with nonlinear Landau resonant interaction near the resonance cone (Soto-Chavez et  al. 
2014; Mourenas et  al. 2015) rather than with the cyclotron resonance. Furthermore, the 
oblique, lower-band chorus consists mainly of falling tones, while risers dominate the qua-
siparallel propagation (Taubenschuss et al. 2014).

Research focusing on lower-band waves reveals a very narrow average bandwidth of 
0.01�e (Gao et al. 2014) and the frequency sweep rates ranging from about 5 ⋅ 10−6�2

e
 to 

10−4�2
e
 (Macúšová et al. 2010; Teng et al. 2017). The typical RMS magnetic field ampli-

tudes range from 0.01 nT to 0.3 nT (Li et al. 2011), with some elements occasionally reach-
ing peak amplitudes Bw > 1 nT and Bw∕B0 > 0.01 (Santolík et al. 2014a; Gao et al. 2014).

A unique feature of the lower-band chorus is the clear amplitude modulations of indi-
vidual elements, which are called subpackets (Santolík et al. 2003a, 2014a). Figure 4a, b 
shows the time series of magnetic field components corresponding to the element high-
lighted by pink lines in Fig. 3. The statistical analysis conducted by Santolík et al. (2014a) 
shows that the lengths of subpackets exhibit a large variance, with most of them falling 
between 5ms and a few tens of milliseconds. The rapid changes in instantaneous frequency 
near amplitude minima (Fig. 4c, d) hint at jumps in the wave phase. However, a smooth 
evolution of phase appears to be likely at the beginning of an element, as further demon-
strated by Crabtree et al. (2017b) and Foster et al. (2021). Based on simulations of Nogi and 
Omura (2022), the character of subpackets might be strongly related to their distance from 
the source region. However, the source region has a field-aligned width of thousands of 
kilometres (Santolík et al. 2004), complicating the definition of distance travelled from the 
source. An extended discussion is provided in Sect. 3 (see especially the phenomenological 

2 Note that some authors, e.g., Meredith et al. (2003), use the term chorus for any whistler-mode emission 
in the lower or upper frequency band, regardless of the presence of narrow-band chirping wave packets.
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model of Tao et al. (2021), reviewed in Sect. 3.3), but the detailed origin of the subpacket 
structure is currently still unclear.

Another interesting property of high-amplitude chorus subpackets is the variations in 
wave normal angle. In the source, Landau damping of waves with large �k values has not 
acted long enough to suppress such features (Hsieh and Omura 2018), and as suggested 
in Sect. 4.2, damping formulas derived from the homogeneous plasma theory (Brinca 
1972) may not even be appropriate. The spikes in obliquity arise from a mismatch in 
amplitude modulations of the perpendicular and the parallel magnetic field component, 
as seen in the right half of Fig. 4c, e. This suggests that a complete description of chorus 
formation requires a two-dimensional treatment, possibly with the inclusion of trans-
verse density irregularities that modulate the field-aligned power distribution. Such the-
ories are currently not available, but some progress has been made recently through full-
wave simulations of ducted whistler-wave propagation, which are discussed in Sect. 4.

Fig. 4  Waveforms and propagation properties of the highlighted chorus element from Fig. 3. A band-pass 
filter 0.1𝛺e0 < 𝜔 < 0.49𝛺e0 was applied before calculating the analytic signal from Hilbert transform, and 
we used the Savitzky–Golay filter to obtain the derivative of phase. a, b Perpendicular ( Bx ) and parallel ( Bz ) 
magnetic field components. c Amplitude envelopes of the two components from previous panels (red and 
blue lines) and the total magnetic field (black line). d Instantaneous frequency obtained from the analytic 
signal. e Wave normal angle computed with SVD methods (Santolík et al. 2003b). f Azimuthal angle of the 
wave vector, obtained with SVD methods
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Finally, it should be mentioned that the well-behaved chorus elements, with a very 
narrow bandwidth and nearly constant chirping rate, are not the only form of chorus. 
Examples of chorus elements with diffuse features or with oscillating tones can be 
found, e.g., in Santolík et al. (2010), Li et al. (2012) and Gao et al. (2017). The evolu-
tion of such emissions cannot be described with the quasi-monochromatic wave approx-
imation employed in all of the theories discussed in Sects. 2 and 3.

1.2  Basics of Resonant Electron Motion

A precise understanding of the phase space motion of resonant electrons is at the core of all 
theories of nonlinear chorus growth. Let us assume a parallel-propagating whistler-mode 
wave described by the following magnetic and electric wave fields:

An electron interacting with such wave is said to be in exact cyclotron resonance when its 
parallel velocity v∥ fulfils the condition

where VR is the resonance velocity, k∥ is the parallel component of the wave vector and

is the Lorentz factor evaluated at the resonance velocity. Where convenient, we will replace 
velocities v by momenta divided by the electron mass m, that is, u = �v . The formulas for 
resonance momentum and Lorentz factor then read as

and

The full set of gyroaveraged equations of motion for the cyclotron-resonant electron takes 
the form

(3)Bw = Bw(cos� , sin� , 0),

(4)Ew = VpBw(sin� ,− cos� , 0) .

(5)v∥ =
1

k∥

(
� −

�e

�R

)
≡ VR,

(6)
�R =

1√
1 − V2

R
∕c2 − v2

⟂
∕c2

(7)UR =
1

k∥

(
�R� −�e

)
,

(8)�R =

√
1 + U2

R
∕c2 + u2

⟂
∕c2.

(9)
du∥

dt
=

�wu⟂ sin �

�
−

u2
⟂

2��e

��e

�h
,

(10)
du

⟂

dt
= −

(
u∥

�
− Vp

)
�w sin � +

u∥u⟂

2��e

��e

�h
,
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The newly introduced notation is defined as follows: � is the angle between the gyrophase 
� and wave magnetic field phase, � = � − � ; �w = Bwe∕m represents a normalised wave 
amplitude; and h is the distance along a magnetic field line measured from the equator. 
The last term in each of Eqs. 9 and 10 relates to the adiabatic motion in the inhomogene-
ous background magnetic field. In Eq. 11, the term with 1∕u

⟂
 becomes relevant only at low 

pitch angles, and is often neglected. A thorough analysis of these equations of motion can 
be found in numerous papers, starting with Roberts and Buchsbaum (1964).

Equations 5 and 7 can be solved for VR and UR to obtain the resonance velocity (momen-
tum) curves

and

(11)
d�

dt
=

�e

�
−

1

u
⟂

(
u∥

�
− Vp

)
�w cos � − � +

ku∥

�
,

(12)
dh

dt
=

u∥

�
.

(13)UR(u⟂)

c
=

−ck�e + �

√
(c2k2 − �2)(1 + u2

⟂
∕c2) +�2

e

c2k2 − �2
,

(14)VR(v⟂)

c
=

ck� ∓�e

√
(�2

e
+ c2k2)(1 − v2

⟂
∕c2) − �2

�2
e
+ c2k2

;

Fig. 5  a Resonance curve VR(v⟂) based on Eq.  14 is plotted in red. Properties of the whistler wave are 
determined by wave frequency �∕�e = 0.25 and plasma frequency �pe∕�e = 5.0 . The grey region ±Vtr∕2 
shows the extent of the trapping potential and is based on Eq. 29 with �w∕�e = 0.01 . The dashed curve 
represents the speed of light circle, and the dotted vertical line connects to the point at which the resonance 
velocity reaches the speed of light. The motion of resonant particles is restricted to curves given by Eq. 16, 
plotted in blue colour for exact-resonance energies 34.6 keV and 85.7 keV . The grey patch represents the 
approximate extent of the trapping potential based on Eq. 29, magenta circles show the constant energy sur-
face, and the red line represents the resonance curve. b) Same plots as in panel a, but in the (u∥, u⟂) space
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similar formulas with a different notation can be found in Summers et al. (2012). The curve 
VR(v⟂) is plotted in red in Fig. 5a for �∕�e = 0.25 , �pe∕�e = 5.0 , and has the shape of an 
elliptical arc which touches the v2

∥
+ v2

⟂
= c2 circle at VR = Vp (the + sign choice in Eq. 14 

becomes unphysical beyond this point). In the momentum space, the curve takes on a 
hyperbolic shape; a portion of this curve is plotted in Fig. 5b.

To better understand the electron’s three-dimensional motion in the momentum 
space, we first examine trajectories in the (u∥, u⟂) space. Dividing Eq. 10 by Eq. 9, with 
the inhomogeneity terms removed, results in

This differential equation has a closed-form solution

where �0 =
√

1 + u2
∥0
∕c2 and u∥0 denotes the u∥-intercept. Curves from this family are 

ellipses with a minor (perpendicular) to major (parallel) axis ratio 
√

1 − V2
p
∕c2 and with 

their centres shifted towards positive parallel momenta by

a representative plot is shown in Fig. 5. Notice that there is no �w or �-dependence, mean-
ing that when an electron passes through a whistler wave packet, it will stay on one of these 
curves as long as the wave frequency and background magnetic field remain constant.

Since the particle trajectories in (u∥, u⟂) space lie on curves described by the ampli-
tude-independent Eq. 15, it comes as no surprise that there exists a relation to the linear 
growth formula for anisotropy-driven instability (Kennel and Petschek 1966)

where Fh is the hot electron distribution normalized by the total electron density and

is the pitch angle anisotropy in a low-velocity approximation. Under this approximation, 
the electron motion in the (v∥, v⟂) space is described by

Let us compare this curve to the isolines of a bi-Maxwellian distribution with anisotropy A, 
given by a differential equation

(15)
du

⟂

du∥
=

−u∥ + �Vp

u
⟂

,

(16)
u
⟂
=
[
u2
∥

(
V2
p
∕c2 − 1

)
+ u2

∥0

(
V2
p
∕c2 + 1

)
+ 2u∥

(
�0Vp − u∥0V

2
p
∕c2

)
− 2u∥0�0Vp

] 1

2

,

(17)
�0Vp − u∥0V

2
p
∕c2

1 − V2
p
∕c2

;

(18)�L = ��e

(
1 −

�

�e

)2

|VR|
(
A −

�

�e − �

)

∫
∞

0

Fh2�v⟂dv⟂
||||v∥=VR

,

(19)A =

∫ ∞

0
dv

⟂
v2
⟂

(
v∥
�Fh

�v
⟂

− v
⟂

�Fh

�v∥

)

v∥=VR

2VR ∫ ∞
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dv
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⟂
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|||v∥=VR

(20)
dv

⟂

dv∥
=

−v∥ + Vp

v
⟂

.
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Note that for the bi-Maxwellian distribution, temperature anisotropy and pitch-angle ani-
sotropy are identical, i.e., A = T

⟂
∕T∥ − 1 . Equating the above two differential expressions 

gives

Putting v∥ at the exact resonance defined in Eq. 5 (with � = 1 ), we arrive at

which is the marginal instability condition for anisotropy-driven whistler wave growth that 
appears in the linear growth formula from Eq. 18. This relation between the phase space 
motion of electrons and the linear theory has a clear physical meaning: electrons which 
oscillate on the isolines of the bi-Maxwellian do not change the velocity space distribution, 
the net change in particle energy is zero, and thus the waves cannot grow or be damped.

To analyse the evolution of relative phase � near resonance, let us start with the simplified 
time evolution of � as given by Eq. 11 with the 1∕u

⟂
 term removed, and define

The quantity � represents a parallel velocity shift with respect to the resonance velocity. As 
a next step, we take the time derivative of � , using the homogeneous form of Eqs. 10 and 9 
and

and obtain a pendulum-like equation

Here, it is a common approach to replace u
⟂
 by some constant mean value ⟨u

⟂
⟩ , with � 

being calculated for this mean perpendicular momentum at the exact resonance (Omura 
et al. 2008). We then proceed to make the expansion around the resonance by setting � = 0 , 
which leads to

where

(21)
dv

⟂

dv∥
= −(1 + A)

v∥

v
⟂

.

(22)Av∥ = −Vp.

(23)
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is the trapping frequency (frequency of oscillations in the trapping potential). This result-
ing pendulum equation is sometimes called the second-order resonance equation and one 
of the first application of its non-relativistic version to chorus growth was provided by 
Sudan and Ott (1971). It describes a resonant electron in the gyrating frame, where the 
perpendicular velocity vector oscillates around −Bw . As predicted by the resonance veloc-
ity formula (Eq. 14, Fig. 5a), the electrons propagate in the direction opposite to the whis-
tler wave unless there is a substantial gyroperiod dilation ( 𝛾 ≫ 1 ). With plasma and wave 
parameters typical for the Earth’s outer radiation belt, we get 𝜔tr ≪ 𝜔 , which is an impor-
tant scaling relation for chorus theories discussed in Sect. 3.

The expression for �tr can be used to define the extent of the resonance region across 
parallel velocities

Unlike in Omura et al. (2015b), Vtr represents the full width of the resonance island. The 
±Vtr∕2 region is plotted in grey in Fig. 5. However, since we are using a fixed perpendicu-
lar momentum and calculating the Lorentz factor as �R =

�
1 + U2

R
+ ⟨u

⟂
⟩2 , the grey areas 

have to be considered as an approximation of the full width of the trapping region, and it 
becomes very inaccurate at low pitch angles where the changes in u

⟂
 due to scattering 

become significant (Albert et al. 2021).
Moving to the inhomogeneous case, with the h-dependence of �e and cold plasma den-

sity included, we can repeat the approximate calculation leading to the pendulum equation 
for resonance motion (Eq. 27). Notice first that unlike in the homogeneous case, � is now 
h-dependent through k(h) and �e(h) , but also through the adiabatic changes in u∥ . For the 
purpose of analysing the second-order particle motion as a local process, we may neglect 
these slow changes as long as

This condition is always well satisfied for resonant electrons and chorus emissions in the 
Earth’s outer radiation belt. The extra terms coming from �k∕�h and ��e∕�h are not �
-dependent, so we arrive at a pendulum equation with a torque

where we introduced the inhomogeneity factor

with
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A detailed derivation of the relativistic inhomogeneity factor can be found in Omura et al. 
(2008), with the addition of the frequency change ��∕�t . We will return to chirping waves 
and the inhomogeneity factor in Sects. 2.1 and 3.2.

Let us examine the particle trajectories in (� , �) space. If we assume that the electrons 
are travelling from h > 0 towards h = 0 , where the magnetic field strength has a global 
minimum, and that density is also growing away from h = 0 , then S must be negative for 
UR negative. In Fig. 6a, we plot the trajectories and trapping region for S = −0.5 . The tra-
jectories can be expressed as a family of curves

where C is a real constant. The separatrix, which represents the boundary of the trapping 
region, has a function form

where �0 = � − arcsin(−S) is at the stable point, �1 = arcsin(−S) is at the saddle point, and 
�2 is at the right-hand boundary of the separatrix. For |S| > 1 (Fig. 6b), d�∕dt never changes 
sign, and thus particles in a strongly inhomogeneous environment never become phase-
locked. In total, we distinguish three populations of particles: trapped particles, which are 
found within the grey region of Fig. 6; untrapped particles that cross the exact resonance 
� = 0 and become strongly scattered; and untrapped particles that do not cross the exact 
resonance and experience a slow scattering process called the nonresonant diffusion. A 
quantitative theory of this type of diffusion was presented by Chen et al. (2016) and An 
et al. (2022) for the case of electron interaction with electromagnetic ion cyclotron waves.

Before we conclude this section, we should emphasise that in practice, the interactions 
of charged particles with a realistic wave field must be investigated numerically. Test par-
ticle simulations enjoy great popularity due to their low computational cost and are com-
monly used to study scattering and energisation. They either solve the set of Eqs. 9–12 (or 
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Fig. 6  Phase portrait showing the behaviour of electrons near cyclotron resonance as described by Eq. 31 
with a constant inhomogeneity factor S = −0.5 (panel a) and S = −1.2 (panel b). Particles in the trapping 
region (green arrow) oscillate around a constant phase �0 . Untrapped particles (red arrow) are not phase-
locked
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their Hamiltonian equivalent) to track trajectories of particles interacting with a plane wave 
(Bell 1984; Albert 1993; Bortnik et al. 2008), or they employ the Boris algorithm to solve 
the second-order equation of motion with Lorentz force under a more realistic wave model 
(Omura and Summers 2006; Hanzelka et  al. 2021). However, to validate the theories of 
chorus growth, self-consistent simulations are needed, which rely on the particle-in-cell 
method (Hikishima et al. 2009; Tao et al. 2017) or other approaches based on the Vlasov 
equation (Nunn 1993; Harid et al. 2014; Pezzi et al. 2019). In such codes, the hot electron 
population is evolved together with the electromagnetic field, allowing for parametric stud-
ies of chirping and subpacket formation.

2  The History of Theoretical Chorus Studies

In the first half of the 20th century and up until the end of 1950s, theories on the origin of 
natural, audio-frequency electromagnetic emissions detected by receivers on ground sta-
tions were mostly focused on the lighting-generated whistlers (Burton and Boardman 1933; 
Storey 1953). While the dawn chorus was present among the studied “musical atmospher-
ics”, they did not attract much attention until the discovery of the radiation belts (van Allen 
et al. 1958), which triggered a surge of interest in particle acceleration in the geospace. The 
importance of gyroresonant interaction between charged particles and circularly polarised 
electromagnetic waves was recognised by Helliwell and Bell (1960) and others, and their 
ideas were soon expanded into studies of whistler wave growth and damping due to cyclo-
tron resonance with electrons.

In the following paragraphs we briefly review the theoretical efforts in the 1960s and 
1970s that laid the foundation for modern theories of nonlinear chorus growth. Due to the 
sizeable amount of literature written on this topic, we direct our attention mostly towards 
physical concepts that have stood the test of time and are essential for our current under-
standing of chorus emissions. The preceding research on the nonlinear Landau resonance 
(O’Neil 1965; Al’tshul’ and Karpman 1966; Kruer et al. 1969), which influenced the devel-
opment of mathematical descriptions of the cyclotron resonance, is omitted here.

2.1  Phase Bunching, Trapping and Helical Current

In one of the early theoretical papers focused solely on chorus, Dowden (1962) noted 
that bunches of electrons are needed to produce strong and coherent (quasi-monochro-
matic) radiation at frequencies described by the Doppler-shifted resonance condition 
(Eq.  5). He assumed that this bunching happens along the field line coordinate h and 
that the motion of electrons away from (or towards) the equator is responsible for the 
rising (or falling) frequency of the emitted whistler waves. Brice (1963), and later Bell 
and Buneman (1964), analysed the effect of the v × Bw component of the Lorentz force 
and suggested that the relative phase of electrons � will have a stable point and postu-
lated phase-bunching in the gyrating frame as the dominant process that leads to coher-
ent electromagnetic emissions. Effectively, the resonant electrons represent a current 
flowing through an end-fire array, or in other words, through a travelling-wave helical 
antenna (Kraus 1949; Stenzel 1976a). Unlike in Dowden’s model, this type of bunching 
keeps the plasma density unchanged. The feedback loop between electron bunching by 
whistler waves and emission of whistler waves by the bunched electrons represents the 
basic concept of backwards-wave oscillators, whose application to chorus generation 
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will be reviewed in greater detail in Sect. 3.1. However, note that at this stage of theo-
retical development, the electron population was not divided into trapped and untrapped, 
a distinction that is essential in the modern understanding of chorus growth.

Building on the ideas of phase bunching and helical resonant current (travelling-wave 
antenna), Helliwell (1967) presented a comprehensive theory of triggered whistler-mode 
emissions. Despite stating that the “analysis is unrefined and is intended only to estab-
lish the reasonableness of the model”, Helliwell introduced and refined concepts that 
still influence modern analytical studies of chorus emission, as we will see in Sect. 3 
(Hanzelka et al. 2020; Tao et al. 2021). The fundamental idea of Helliwell’s approach 
was the so-called consistent-wave condition, which simply required that within a finite 
interaction region, the spatially variable gyrophase of resonant electrons must match the 
Doppler-shifted frequency of the whistler wave. This condition ensured that the energy 
transfer from particles to waves was maximised by maximising the coupling time. It was 
further assumed that the triggering process could quickly reach an optimal state where 
wave amplitude and resonant current within the interaction region exhibit no temporal 
variations, keeping a steady amplitude profile along the field line.

To retrieve the frequency variation from the consistent-wave condition, we must find 
the differential of gyrofrequency, particle parallel velocity and phase velocity. A com-
mon approximation in chorus theory and particle simulations is to replace the dipole 
field with a parabolic Taylor expansion around the magnetic equator, leading to a gyro-
frequency formula

where RE is the Earth’s radius, and L denotes the L-shell. Nevertheless, for the purpose of 
generality, the magnetic field and its gradient will be kept implicit in most equations pre-
sented in this review. Using the refractive index from Eq. 1 with �pe = const. (in the high-
density approximation), together with the conservation of the first adiabatic moment and 
energy of electrons, Helliwell (1967) arrived at a chirping rate

where � was the electron pitch angle at the centre of the interaction region. Furthermore, 
the interaction region was allowed to drift, adding another component to the chirping rate 
that explained some uncommon spectral shapes of chorus like hooks or inverted hooks.

Due to a spread in v∥ , the untrapped resonant electrons were supposed to become 
debunched on the order of Ttr∕4 , where Ttr is a trapping period related to the motion in 
the potential well described by the Eqs. 27 and 28 in their nonrelativistic limit. Note that 
Helliwell (1967) did not consider the nonuniformity of velocity distribution near reso-
nance or the effects of inhomogeneity on the shape of the trapping region (cf. Fig. 6), 
and assumed that the electrons start deep within the potential well and reach � = � at 
approximately the same time, thus forming a bunch. For simplicity, the first half of the 
interaction region was said to be dominated by bunching and the second half by radia-
tion. The length of the interaction region was taken to be only twice the distance covered 
by an unperturbed electron during its motion from � = 0 to � = 2� (i.e., v∥ = VR at the 
equator, but Vtr is taken to be negligibly small). The bandwidth of triggered waves was 
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related to the variation of gyrofrequency across the interaction region and the spread of 
electron streaming velocity around the resonance velocity.

Due to limited knowledge of the hot electron velocity distribution and the exaggeration 
of the phase bunching effect (Dysthe 1971), we will skip most of the discussion related to 
resonant current and radiation power presented in Helliwell (1967). The two most impor-
tant ideas are the increase of input power due to the broadening of the trapping region and 
the existence of a limiting amplitude, which is reached when the bunching time becomes 
shorter than a resonant electron’s time of flight through the interaction region. The first 
point is especially intriguing, as it portrays the growth of discrete whistler wave emissions 
as independent of anisotropy-driven instabilities, which are essential for quasilinear theo-
ries (Kennel and Petschek 1966). It is now well known that pitch-angle anisotropy is essen-
tial for the triggering process, as shown by numerical simulations and spacecraft observa-
tions (Burton 1976; Li et al. 2010; Tao 2014; Fu et al. 2014; Katoh et al. 2018). However, 
the highest linearly unstable frequency does not represent a strict upper limit for nonlinear 
frequency chirping, as demonstrated, e.g., by the simulations of Hikishima et al. (2009).

2.2  Wave Equations and Inhomogeneity Factor

As mentioned above, the trapped (phase-locked) electrons and the inhomogeneity of the 
plasma medium play a dominant role in the triggering of chorus emissions. This was rec-
ognised by Dysthe (1971) and Nunn (1971), who also presented a pendulum equation for 
oscillations around the exact second-order cyclotron resonance, similar to Eqs. 31–34.

In Nunn (1971) and the follow-up paper Nunn (1974), general formulas describing the 
nonlinear convective growth of whistler wave amplitude are derived that represent the basis 
for all chorus theories listed in Sect. 3. The derivation can be summarised as follows: Tak-
ing the Maxwell curl equations and the linearised equation of electron motion in a cold 
plasma fluid, we split the current that appears in Ampère’s law into its cold component Jc 
and hot resonant component JR and solve for the complex magnetic wave field B̃w equiva-
lent to Eq. 3. After applying a narrowband approximation, which enforces slow variation of 
the complex wave amplitudes and currents, we obtain

which can be split into

where JE and JB are components of the resonant current parallel to Ew and Bw , respec-
tively. Note that the equation for phase �NL relates to nonlinear changes, which are much 
slower than the evolution of the “cold phase” � − �NL dictated by the cold plasma disper-
sion relation. The right-hand side of Eq. 41 thus represents the convective variation of fre-
quency due to nonlinear effects. See also Karpman et al. (1974) and references therein for 
an energy density formulation of these equations.
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The transverse resonant current at distance h along the field line can be evaluated 
through the formula

where fR is the phase space density (PSD) distribution perturbed due to wave–particle 
interactions and f0 is the initial gyrotropic distribution. Finding the shape of fR and deter-
mining the contribution of trapped and untrapped particles to the resonant current is one 
of the most difficult and important tasks in nonlinear wave growth theories—this fact was 
not fully appreciated in the early descriptions of resonant particle dynamics discussed in 
Sect. 2.1. The effect of non-gyrotropy (i.e., the dependence of fR on � ) on the dispersion 
relation will be briefly discussed in Sect. 2.3 in connection to the formation of sidebands. 
Based on numerical solutions of particle trajectories near the exact resonance, Nunn (1971) 
concluded that the current would be dominated by particles trapped deep within the poten-
tial well after a few trapping periods. This limits the spread of v∥ in the helical beam, which 
means that the electromagnetic emission will have a sharply defined wavelength. Along the 
particle stream, the environment changes slowly on scales of VRTtr , and thus the nonlinear 
phase difference �NL is expected to stay nearly constant. Finally, it is noted by Nunn (1974) 
that an instability driven by pitch-angle anisotropy is necessary to trigger nonlinear growth.

So far, all the theories we described focused on how the radiation from coherent phase-
space structures drives wave amplitude growth and frequency change, but the effect of 
these changes on particles was not fully considered. Roux and Pellat (1978) noticed that 
chirping could change electron trajectories in the (� , �)-space in a way that enhances or 
reduces the tear-drop deformation of the resonance island. Vomvoridis et al. (1982) derived 
an effective inhomogeneity ratio

where S was the nonrelativistic version of the inhomogeneity factor from Eq.  32. After 
finding an optimum value of S for amplitude growth, numerically or analytically, the cor-
responding chirp rate can be derived. Furthermore, chirping waves can maintain nonzero 
Seff even at the equator where S = 0 , allowing for wave growth without magnetic field inho-
mogeneity. These were pivotal ideas, later used to develop a nonlinear growth theory of 
chorus growth in the form summarised by Omura (2021)—see Sect. 3.2 for details. For an 
extension of the quasi-monochromatic treatment of nonlinear whistler-mode wave growth 
to oblique propagation angles, see Shklyar and Matsumoto (2009).

2.3  Sideband Excitation Theories

As mentioned below Eq. 42, phase-bunching effects by both trapped and untrapped elec-
trons introduce a gyrophase dependence into the perturbed hot electron distribution. Within 
the linear theory of whistler-mode wave instabilities in a homogeneous plasma, the analysis 
starts with the integration of the PSD distribution along unperturbed particle trajectories 
(Stix 1992; Ichimaru 2004), resulting in a zeroth-order term of the Vlasov equation that 
implicitly contains the gyrotropic condition (Gurnett and Bhattacharjee 2017). In quasi-
linear theories, the broadband character of the wavefield is expected to randomise phases, 
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leading again to uniformity in � (Kennel and Engelmann 1966; Lemons et al. 2009). How-
ever, since high-amplitude whistler waves heavily perturb the electron trajectories near the 
resonance curve, and because the chorus elements are narrowband, the effects of non-gyro-
tropy should be included in the nonlinear dispersion relation for the whistler mode.

Inspired by the artificial triggering of chorus by the dashes in a Morse code signal 
(Helliwell et  al. 1964), Sudan and Ott (1971) provided a dynamical theory of whistler 
wave growth and chirping caused by non-gyrotropy. They assumed that a sufficiently long 
triggering signal at a constant frequency creates a population of strongly phase-correlated 
resonant electrons, emitting a secondary whistler wave—this is analogous to the end-fire 
helical antenna imagined by Brice (1963).3 Under a simplified model of the correlated 
population, where the variation of PSD in phase is harmonic, they found instability in side-
bands with frequency shifts �� in the order of �tr . Sudan and Ott (1971) further noted 
that the inhomogeneity of B0 is essential because as long as the correlated particles stay in 
resonance with the triggering wave, the radiated power will support amplitude growth of 
this primary wave instead of the sidebands (compare with Helliwell (1967) and their split-
ting of the interaction region into a phase-bunching half and a radiation-emitting half). The 
approximate formula for the sideband growth rate was found to be

With representative parameters ⟨v
⟂
⟩∕c = 0.4 and �pe∕�e = 4.2 , an estimated fraction of 

phase-correlated particles nR∕nc ∈ [5 ⋅ 10−6, 5 ⋅ 10−5] , and frequency � = 104 s−1 , we get 
a wave growth estimate in the approximate range from 102 s−1 to 2 ⋅ 102 s−1 . Sudan and Ott 
(1971) conclude that the numerical results obtained from Eq. 44 agree with the observa-
tions of Helliwell et al. (1964).

On the other hand, Karpman (1974) criticised the above-reviewed results on the side-
band growth rate, pointing out that the perfect phase correlation assumed by Sudan and Ott 
(1971) ( �-function in parallel velocities at VR and a cosine distribution in phases) is unreal-
istic, and claimed that the sideband growth rate should be much closer to the linear growth 
rate �L from Eq. 18. They based their arguments on the analytical computations of Bud’ko 
et al. (1972), who in turn were inspired by the exact nonlinear Landau damping theory of 
O’Neil (1965) and assumed that the distribution of resonant particles reaches an ergodic 
state. Here, the term “ergodic” refers to the mixing property of the trapped particle evolu-
tion operator: for t∕Ttr → ∞ , a coarse-grained distribution is asymptotically constant along 
phase space trajectories for any mesh size, and its value at any point can be obtained by 
averaging the initial distribution. Based on energy conservation and the ergodic theorem, 
Bud’ko et al. (1972) conclude that the maximum growth rate of the sideband is about 1.4�L , 
which is typically much less than the predictions based on Eq. 44. Karpman (1974) also 
notes that the inhomogeneity of the background magnetic field introduces an asymmetry 
between the upper and lower sidebands, explaining the dominance of rising tone elements.

Denavit and Sudan (1975) proposed a more general distribution of resonant electrons 
expressed in the form of Fourier decomposition, yet it was still assumed to be initially 
strongly concentrated near � ≈ � , leading to vanishing phase-correlation harmonics of 
order three and higher. Unlike Bud’ko et al. (1972), they worked with a set of secondary 
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3 Recall, however, that after the analytical and numerical investigations conducted by Dysthe (1971) and 
Nunn (1971), the trapped particle population is considered to play a major role in the formation of the heli-
cal current, unlike in the theories of Brice (1963) and Helliwell (1967).
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waves coupled to the primary wave instead of a single test wave. The shift between the 
mean velocity of resonant particles and the resonance velocity of the primary wave, which 
is responsible for the frequency shift of sidebands, came from the slope of the initial veloc-
ity distribution along v∥ . The dispersion relation derived by Denavit and Sudan (1975) 
shows splitting of the whistler mode determined by the primary wave’s amplitude. Depend-
ing on the inhomogeneity of B0 and the shape of the initial velocity distribution, the excita-
tion coefficient of one of the sidebands can increase, leading to a preferential rising-tone or 
falling tone structure. The resulting peak growth rate formula is

where the density of resonant particles nR2 ∝ �2
pR2

 corresponds only to the component of 
resonant current JR that contributes to the instability of magnetic field perturbations; 
Denavit and Sudan (1975) estimate nR2∕nc = 10−7 . With this estimate and the values of 
frequencies and velocities defined below Eq.  44, we get a growth rate of 1.4 ⋅ 102 s−1 . 
Despite the different power-law coefficients, there is little quantitative change for the cho-
sen representative values of input parameters.

Nunn (1986) sidestepped the difficulties of finding the analytical expression for the 
resonant particle distribution by performing a backward numerical integration of electron 
trajectories. However, as in all of the above-discussed approaches, the amplitude of the pri-
mary wave was slowly changing, and the amplitude of the secondary wave was supposed to 
be much smaller so as not to perturb the particle trajectories.

In a realistic scenario, the triggering wave (either artificial or naturally generated from 
anisotropy-driven instabilities) will experience fast growth, increasing �tr and widening the 
spectral gap between the primary wave and the sidebands. Therefore, the power radiated by 
the phase-correlated electron should create a rising-frequency fluctuation spectrum, similar 
to the continuous frequency drift assumption (Eq. 78) made by Omura and Nunn (2011). 
Furthermore, overlapping trapping potentials of the triggered wave and the primary wave 
will result in loss of phase correlation before the ergodic state sets in, making the appli-
cation of results from Bud’ko et al. (1972) to chorus growth questionable. Unfortunately, 
a self-consistent description of the frequency drift poses serious mathematical challenges 
which have yet to be fully resolved. One promising path towards a complete analytical 
description of the nonlinear chorus growth is reviewed in Sect. 3.3.

3  Modern Chorus Theories

At the beginning of this section, three points must be clarified. First, the word “modern” 
in the heading refers to the fact that the theories described below are still actively used 
in recent literature to explain observations from spacecraft and numerical experiments. 
Second, the three theories described below—the step-backwards-wave oscillator (sBWO) 
regime of chorus growth, the nonlinear growth theory of chorus by Omura et al. (NGTO), 
and the self-consistent chorus excitation (SCCE) framework—are those that we considered 
as the most prevalent in recent publications, and should by no means be considered as a 
comprehensive list. For example, the very rigorous self-consistent Hamiltonian theory of 
Crabtree et al. (2017a) was not included due to the limited number of its applications in the 
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published literature. And third, despite calling these theories modern, they often rely on the 
concepts from the 1960s–1980s described in Sect. 2, which will be frequently referenced.

3.1  Backwards‑Wave Oscillator Theory of Chorus Growth

In the inner magnetosphere, where field lines are closed, separate magnetic flux tubes can 
be viewed as resonant cavities, with the conjugate ionospheres acting as mirrors for elec-
tromagnetic waves (for unducted waves, magnetospheric reflections at higher altitudes 
may occur). Whistler wave packets bouncing between the mirrors experience amplification 
through interaction with trapped populations of energetic electrons. This concept is called 
the magnetospheric cyclotron maser and can explain the origin of certain types of elec-
tromagnetic emissions, e.g., the quasiperiodic hiss emissions (Trakhtengerts and Rycroft 
2008). However, the predicted amplification is not fast enough to explain the growth of 
chorus emissions. To achieve large wave growth, the maser must operate in a backwards-
wave oscillator (BWO) regime where the wave packets interact with a well-organised elec-
tron beam propagating in the opposite direction. In the theories of Brice (1963) and Helli-
well (1967), the beam is equivalent to the helical current formed by phase bunching. The 
BWO concept has been known since the 1950s from laboratory experiments (Kompfner 
and Williams 1953; Chow and Pantell 1960).

As shown, e.g., by Trakhtengerts (1995), the BWO regime can also be achieved when a 
step-like deformation is present in the f (v∥) distribution of hot electrons, situated close to 
the cyclotron resonance velocity for a frequency on the bottom of the chorus band. Their 
calculations demonstrated that the presence of a hiss band could lead to the formation of 
coherent wavelets near the upper frequency bound of the noise. The basic equations of the 
BWO theory of chorus generation are the same as in most theories of nonlinear whistler-
mode growth: the equations of motion for electrons in a parallel whistler wavefield (Eqs. 9, 
10, and 11) and the complex amplitude equation 39, complemented with the conservation 
of phase space density of electrons (Liouville’s theorem). Assuming a low-efficiency oper-
ation of the oscillator, the resonant current is expected to be carried mainly by particles 
near VR , and the variation of v∥ can be neglected in the evaluation of the �∕�t + v∥�∕�h 
operator of the Vlasov equation and is kept only for calculation of the resonance mismatch 
� from Eq. 24. The perturbation �f  to the hot electron distribution can then be expressed in 
simple terms.

The salient features of the theory are expressed through the evolution of a reduced dis-
tribution (Demekhov and Trakhtengerts 2008)

The integral is to be taken over a region near the resonance velocity, and it is further 
assumed that the most important contribution to the phase space evolution happens near 
v
⟂
 , and that the adiabatic changes in parallel and perpendicular velocity over the interac-

tion region length can be neglected. These considerations justify removing the equation of 
motion for v

⟂
 and writing a reduced Vlasov equation for Φ:

(46)Φ = ∫ v
⟂
�f dv∥ v⟂eq dv⟂eq.

(47)
�Φ

�t
− V∗

�Φ

�h
= −�w sin � ∫ v2

⟂
bFv

⟂eq dv⟂eq.
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Here V∗ represents the absolute value of step velocity and F  is the smooth component of 
the initial distribution function

where b denotes the height of the step deformation, neq is the equatorial hot electron den-
sity and Θ is the Heaviside function. The resonant current arising due to the perturbations 
can be expressed through Φ as

where �0(� , t, h) is the initial relative phase angle. This expression is consistent with the 
definition of resonant current from Eq. 42 for �f = fR − f0 . The resonant current enters the 
amplitude equation  39, and together with the evolution of phase and parallel velocities 
(Eqs. 9 and 11 rewritten into a convective form in an inertial frame travelling at a velocity 
corresponding to the step-like deformation), we get a system of equations describing a self-
consistent evolution of the electron distribution and whistler-mode waves. Finally, an esti-
mate of the dimension of the interaction region is needed, which can be obtained by con-
sidering the distance travelled by electrons from the equator before the B0-inhomogeneity 
and second-order resonance effects cause loss of phase correlation (Trakhtengerts 1999).

The step-BWO theory of chorus generation does not provide simple analytical esti-
mates on the amplitudes and frequencies of chorus elements, and must be instead solved 
numerically as a nonlinear hyperbolic system of conservation laws (Demekhov and Tra-
khtengerts 2005). The nonlinear growth rate to which the numerical results are often com-
pared (Demekhov and Trakhtengerts 2005; Demekhov 2017) is based on exact calculations 
of the trapped particle motion (monochromatic plane wave, homogeneous field) carried out 
by Bud’ko et al. (1972), resulting in

This relationship between growth rate and trapping frequency can be plugged into the for-
mula for the effective inhomogeneity ratio (e.g., Eq. 43) to express the chirp rate, resulting 
in the qualitative relation

However, as discussed in Sect. 2.3 when dealing with the sideband instability, the above 
growth rate formula does not include the distortion of particle trajectories caused by side-
bands/subpackets obtained from numerical solution of the sBWO reduced Vlasov equa-
tion 47. These simulation results can be successfully compared with direct satellite obser-
vations, as shown recently by Demekhov et al. (2020a).

The step-BWO theory and related simulations also successfully explained the repetition 
of chorus elements, which is a prediction outside of the scope of the theories discussed 
in Sects.  3.2 and 3.3.2, and Demekhov (2011) demonstrated the possibility of falling-
tone chorus formation in off-equatorial sources. A major shortcoming of the BWO theory 
comes from the assumption of a step-like feature in f (v∥) , which is supposed to be formed 
due to the cyclotron interaction of hot electrons with a hiss emission. The presence of low-
frequency whistler-mode hiss, as seen at around 600Hz in Fig. 3, does not always correlate 

(48)f0 = neq
[
1 − b + bΘ(V∗ + v∥eq)

]
F(v∥eq, v⟂eq, h),

(49)J̃R = −∫ ei𝜁eΦ d𝜁0,

(50)
�BWO

�tr

=
3�

32
.

(51)
��

�t
∝ �2

tr
.
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with observations of chorus elements. Furthermore, the simulation results on step forma-
tion from the hiss emission by Trakhtengerts et al. (1996) have never been experimentally 
confirmed. However, as noted by Demekhov et al. (2017) and Hanzelka et al. (2021), phase 
space density depletions caused by interaction with a chorus subpacket form a step-like 
feature in the direction perpendicular to the curve VR(v⟂) in (v∥, v⟂) space, as is introduced 
by Eq. 14 and shown in Fig. 5a. This relates the electron hole formation described later 
in Sect. 3.2 to the BWO approach. Unfortunately, this notion can be applied only to later 
stages of the chorus growth when a strong wave packet has already been formed, leaving 
the PSD perturbation processes in the initial stage of chorus growth unexplained. Note that 
both the initial PSD perturbations in (v∥, v⟂) space, as well as those linked to chorus sub-
packets still wait for a direct experimental confirmation, which might be achieved with a 
specialized design of electron analyzers (Hanzelka et al. 2021).

3.2  Nonlinear Growth Theory of Omura et al.

In a series of papers starting with Omura et al. (2008) and Omura et al. (2009), a theory 
was developed that attempts to simplify the description of frequency drift and amplitude 
growth of chorus emissions observed by spacecraft and in kinetic simulations. Applications 
of this approach have appeared in many papers from recent years: Hikishima et al. (2009), 
Nunn and Omura (2012), Summers et al. (2012), Kurita et al. (2012), Omura et al. (2015a), 
Foster et al. (2017), Katoh et al. (2018), Juhász et al. (2019), Hanzelka et al. (2020), and 
Zhang et al. (2021), to name a few. The description provided here reflects the current state 
of the theory as summarized by Omura (2021). Details concerning the oblique propagation 
of chorus (Omura et al. 2019) are left out.

3.2.1  Overview

In the NGTO, the effective inhomogeneity ratio (also called the inhomogeneity factor) 
introduced by Vomvoridis et al. (1982), Eq. 43, is derived in a relativistic form, similar to 
the formulation from Eqs. 32–34. Since the source region of chorus emissions is confined 
to about ten degrees of latitude within the equator (Santolík et al. 2004, 2005; Taubens-
chuss et al. 2016), the cold plasma density is often taken as constant, resulting in

with

The wave equations for complex amplitude are derived in a similar fashion to Nunn (1974) 
(see Eqs. 39–41 and the paragraph above them). However, the plane wave frequency and 
wave vector, defined as � = ��∕�t and k = −��∕�h , are plugged into to computation 

(52)S =
1

�2
tr�

2
R

(
csc

��e

�h
+ s�

��

�t

)

(53)s� = −�2
R

(
1 −

VR

Vg

)2

.
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before removing higher-order derivatives, resulting in a whistler-mode dispersion disper-
sion relation with a nonlinear correction term (Omura et al. 2008)

We observe that the resonant current component JE modifies the wave amplitude, and the 
JB∕Bw quantity modifies the dispersion relation. While Eq. 40 can be in principle solved 
numerically, given suitable initial conditions and knowledge of JE , Eq. 54 is more difficult 
to interpret. Omura and Nunn (2011) view the growth of chorus elements as a triggering 
process, where a strong initial wave of frequency �0 forms the resonant current and pre-
serves its spatial structure given by a fixed wavenumber k0 . Under this assumption, we can 
write in Eq. 54 k = k0 , � = �0 + �� , where 𝛿𝜔 ≪ 𝜔0 is a small perturbation in frequency. 
Solving for �� , we get

demonstrating a connection between chirping and JB . Nunn (1974) suggested that �0 must 
be changed periodically to reflect that a triggered wave has replaced the initial triggering 
wave at a higher frequency. Unfortunately, it is not obvious how to implement this stepping 
up in frequency. One approach to this issue was presented by Hanzelka et al. (2020) and 
is briefly discussed in Sect. 3.2.2. For implementation of the frequency stepping in self-
consistent numerical simulations, see Nunn (1993) and Nunn et al. (2021).

A crucial part of each nonlinear growth theory of chorus in the evaluation of resonant cur-
rent, which depends on the perturbed hot electron PSD distribution. Following Omura et al. 
(2009) and Summers et al. (2012), the initial equatorial distribution is chosen to be bi-Max-
wellian in momenta,

where

is the number density of the hot population. We point out that this distribution is chosen 
mostly for convenient integration and works well in a weakly relativistic setting, but for 
higher values of � , a two-temperature generalisation of the Jüttner distribution should be 
used, as proposed, e.g., by Kuzichev et al. (2019). However, it should also be mentioned 
that we need to model the electron distribution only in the range of momenta where the 
interaction happens. Therefore we do not need to use a sum of Maxwellians or kappa distri-
butions to represent both tail and core of the electron momentum distribution.

It is further assumed that a bi-Maxwellian can model the electron distribution along a 
magnetic field line at any distance h, within the limits of the interaction region. From Liou-
ville’s theorem, we have

(54)c2k2 − �2 −
��2

pe

�e − �
= �0c

2k
JB

Bw

.

(55)�� =
−�0Vg

2
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Bw

,

(56)feq(u∥, u⟂) =
neq

(2�)3∕2Ut∥0U
2
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u2
∥

2U2
t∥0

)
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u2
⟂

2U2
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,

(57)neq = ∫
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∞
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0
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By substituting formulas for adiabatic evolution of electron momentum into Eq.  58 and 
comparing the result with Eq.  56, we obtain the off-equatorial thermal momenta and 
density

where

and A0 is the equatorial temperature anisotropy.
Another simplification in the NGTO comes from reducing the distribution f (u∥, u⟂, h) 

to

where K is a normalisation constant. Note that restricting the resonant population to a nar-
row region along a constant u

⟂
 or pitch angle � is a common simplification in both analyti-

cal (Helliwell 1967; Denavit and Sudan 1975) and numerical (Nunn 1993; Demekhov and 
Trakhtengerts 2005) studies. By requiring that f�(u∥, u⟂, h) and f (u∥, u⟂, h) both integrate 
to the same density, n(h), and that they have the same average perpendicular momentum, 
U

⟂
(h) , we get

with

To evaluate the components of resonant current JE , JB , a factorisation

is introduced, where the simplified perpendicular distribution from Eq. 64 is used. Factor 
Q ∈ [0, 1] represents the depth of the depletion in the trapping region, gtr is the trapped par-
ticle distribution and g0 is the unperturbed distribution.

(58)

f (u∥0, u⟂0, 0) = f [u∥(u∥0, u⟂0, h), u⟂(u∥0, u⟂0, h), h]
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2Ut∥(h)
2

)
exp

(
−

u2
⟂
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)
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(59)Ut∥(h) = Ut∥0,

(60)Ut⟂(h) = W(h)Ut⟂0,

(61)n(h) = W(h)2neq,
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(64)f�(u∥, u⟂, h) =
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As a next step, the trapped particle distribution gtr is replaced by a constant 
G = f�(UR,U⟂

) . This represents a crucial point in the simplification of the resonant current 
computation, which states that the phase space density inside the trapping region is taken 
to be perfectly mixed—in other words, a waterbag model of trapped electron distribution 
is used. Recalling the shape of the boundaries of the inhomogeneous electron trap from 
Eq. 36, the components of the resonant current can now be expressed as

with

In Fig. 7, we show the plots of −JE(S) and −JB(S) as obtained from numerical integration 
of Eqs. 67 and 68. The quantity −JE∕J0 has a peak JE,max ≐ 0.98 at S ≐ −0.41 ≡ Smax , and 
−JB∕J0 attains value JB,max ≐ 1.29 at Smax . Note that −JB has a maximum at S ≐ −0.07 , 
which is however not relevant for maximisation of wave power transfer. More importantly, 
JB can be nonzero at S = 0 , indicating that variation of frequency is possible at the equator 
via Eq. 55. The change in frequency then shifts S away from zero, thus facilitating ampli-
tude growth through JE without the presence of spatial gradients of B(h); growth of chirp-
ing chorus elements in a homogeneous field has been recently successfully demonstrated 
with particle-in-cell (PIC) simulations (Fujiwara et al. 2023).

(67)JE = −J0 ∫
�2

�1

[cos �1 − cos � + S(� − �1)]
1∕2 sin � ,

(68)JB = J0 ∫
�2

�1

[cos �1 − cos � + S(� − �1)]
1∕2 cos �

(69)J0 = (2e)3∕2(mk)−1∕2�−1
R
(1 − V2

p
∕c2)1∕2QGU

5∕2

⟂
B1∕2
w

.

Fig. 7  Normalised value of the components of resonant current plotted in dependence on the inhomogene-
ity factor S. The dotted lines show the point where −JE maximises and the values of the currents at this 
point
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Unlike in Omura (2021), we allow here for G to be h-dependent, making it a constant in 
velocity space, but not in the positional space. This extension coming from Hanzelka et al. 
(2020) is important for NGTO-based wave simulations with drifting source region, and 
has impact on the boundary conditions represented by the chorus equations 71 and 74. The 
original equations can be easily recovered by setting h = 0.

The NGTO further assumes that the frequency growth of each chorus element (or 
each subpacket of the element, see Sect. 3.2.2) happens locally at a single point along 
the chosen field line at h = h0 . We call this point the source, and we assume that the 
transfer of energy from particles to waves maximises in the source, and thus JE = JE,max , 
S = Smax . By definition the strength of the ambient magnetic field minimises at h = 0 ; in 
that case, the linear growth rate for parallel whistler waves reaches its maximum at the 
equator and serves as the energy source for the naturally generated, narrowband trigger-
ing wave (Omura et al. 2008). With no convective growth, the evolution equation for the 
wave frequency is simply

The chirp rate can be then expressed at the source point h0 as

where we switched to the normalised wave amplitude �w . The trapping frequency has been 
written out explicitly to highlight the dependence of frequency on amplitude. Let us remark 
that the wavenumber k depends not only on frequency but also on the position h through 
the gyrofrequency �e(h) . Equation 71 is the first of two chorus equations and serves as an 
initial boundary condition for the transport Eq. 70.

To obtain the growth factor for the absolute nonlinear instability in the source, the 
inhomogeneous transport equation for amplitude (Eq. 40) is rewritten as

�N is the convective nonlinear growth rate. To proceed further, an estimate of the spatial 
gradient of the amplitude of a growing chorus subpacket is needed. Omura et al. (2009) 
propose that to achieve a self-sustaining nonlinear growth in the near-equatorial region, the 
spatial gradient of the wave amplitude should be approximately constant in space. Assum-
ing that the chirp does not change much due to dispersion and propagation effects (the 
whistler wave group velocity from Eq. 2 remains approximately constant near the equator 
and in the frequency interval corresponding to the lower-band chorus), we can neglect their 
contribution to S at larger distances and make an estimate

where the parabolic approximation of �e from Eq.  37 was used after the second equals 
sign. Here we must note that, in general, S = Smax does not have to hold further away from 
the source, which limits the precision of quantitative predictions of the nonlinear growth 
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theory. Finally, the second chorus equation, i.e. the initial boundary value condition for 
amplitude growth, can be stated as

with

Here ⟨u
⟂
⟩ was substituted with �RV⟂0 , which is a common simplification in the treatment 

of the inhomogeneity factor under the NGTO. Equations 40, 70, 71 and 74 can be solved 
numerically to obtain the wavefield of a parallel propagating chorus element.

To complete the description of the nonlinear growth theory, two additional parameters are 
required: the threshold amplitude at which the growth rate becomes positive and the optimum 
amplitude at which the growth saturates. The condition on absolute instability is

and by inserting the expression from Eq. 73 on the right-hand side, the amplitude for which 
the marginal instability is encountered becomes

The threshold amplitude is meaningful only in the source, so all variables are assumed to 
be evaluated at h = h0.

Let us now return to the frequency perturbation related to −JB∕Bw stated in Eq.  55. 
Introducing the assumption that the actual frequency change within a single subpacket pro-
ceeds gradually, a nonlinear transition time TN can be defined by equating

The ratio between the transition time and the trapping period is given by the dimensionless 
parameter

In the source, the left-hand side of Eq. 78 can be replaced with the chorus equation 71, 
and the JB component of the resonant current can be calculated from Eqs.  67 and 68 
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with S = Smax . After these substitutions, we can use Eq.  55 and express the normalised 
amplitude

Vlasov hybrid simulations (Omura and Nunn 2011) have shown that the optimum ampli-
tude is close to the maximum amplitude at which the wave growth breaks down.

Together, the threshold amplitude and the optimum amplitude define a range of wave 
frequencies 𝜔 ∶ 𝛺thr(𝜔) < 𝛺opt(𝜔) , in which the nonlinear growth of chorus emissions 
becomes possible. In Fig. 8, we plot �thr(�) and �opt(�) for two pairs of the free param-
eters � and Q. For (�,Q) = (0.25, 1.0) , the lowest frequency at which the growth is pos-
sible is � = 0.12�e0 , while for (�,Q) = (1.0, 0.25) , the limiting frequency increases to 
� = 0.16�e0 . The characteristic amplitudes themselves can change by more than an order 
of magnitude in dependence on the two free parameters. In general, these parameters have 
to be estimated from simulations.

3.2.2  Source Drift and Subpackets

The chorus equations of the NGTO, together with the amplitude and frequency advection 
equations, can be used to model the wavefield of a parallel-propagating rising-tone chorus 
element near the magnetic equator (Summers et  al. 2012). However, additional assump-
tions about the resonant current and the triggering process must be made to reproduce the 
subpacket structure (see Fig. 4) and to include the drift motion of source (Demekhov et al. 
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Fig. 8  Threshold amplitude and optimum amplitude in dependence on wave frequency for two pairs of val-
ues of the free parameters � , Q. The dotted black lines show at which frequency the nonlinear growth of 
chorus waves becomes theoretically possible
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2020a). These modelling efforts serve two main purposes. First, they help us understand 
the parametric dependence of various chorus properties. Second, they provide a reasonable 
approximation of the real wavefield, which can be used as an input for test-particle studies 
of electron acceleration and scattering of resonant electrons.

Hanzelka et  al. (2020) presented a model based on the NGTO that utilised the 
sequential triggering process from Shoji and Omura (2013) and ideas about resonant 

Fig. 9  a Flowchart of the generation mechanism of the subpacket structure of a whistler-mode chorus ele-
ment. The initial stage is skipped in the numerical model. b Schematic representation of the sequential 
subpacket formation model. After the wave amplitude reaches the optimum amplitude �opt at (tmax,0, h0) ∼ 
Point 0, it starts decreasing until it reaches the threshold amplitude �thr at (tend,0, h0) ∼ Point 0′′ within a 
time period �t0 . At this point the radiation emitted from (t1, h1) ∼ Point 0′ arrives, where 0′ corresponds 
with the peak resonant current which was released from Point 0. The new subpacket starts growing from 
Point 0′ . This generation process is then repeated with each subpacket (Points 1, 1′ , and 1′′ , etc.). Adapted 
from Hanzelka et al. (2020)
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current escaping upstream4 from the interaction region and emitting secondary waves 
Brice (1963); Helliwell (1967); Trakhtengerts et al. (2003). The complete scheme can 
be described as follows (see also Fig. 9): A coherent wave is formed near the frequency 
where anisotropy-driven linear growth maximises. Resonant current component JB 
starts growing and introduces a nonlinear phase shift into the wave field. Frequency 
change related to the phase shift pushes S towards Smax , JE component of the resonant 
current becomes large and commences the rapid growth of the first subpacket. During 
the growth of a subpacket, the optimum amplitude is reached at one point, which also 
marks the peak of the resonant current JE . Following Kubota and Omura (2018), the 
sign of the nonlinear growth rate �N is switched at this point, letting the wave damp 
until it encounters the threshold amplitude. This heuristic approach enforces the forma-
tion of subpackets with nearly symmetric envelopes, similar to those observed in self-
consistent simulations and in spacecraft measurements. The 3D spatial distribution of 
the current has a helical shape, making the resonant electrons act as an antenna radiat-
ing whistler-mode waves at a frequency determined by the pitch of the helix and the 
cold plasma dispersion relation. Hanzelka et al. (2020) further postulated that the con-
tinuous radiation from the antenna cannot replace the previous subpacket until its nor-
malised amplitude drops below �thr . This uniquely defines the source location (ti+1, hi+1) 
of the new subpacket in time and space,

The interval between Points (i + 1) and (i + 1)�� in Fig. 9b was denoted �ti = tend,i − tmax,i ; 
the times where the previous subpacket reaches its maximum and where it ends are called 
tmax,i and tend,i , respectively. Because the dispersive properties between source points of two 
adjacent subpackets do not change much, we use the resonance velocity and group velocity 
at (tmax,i, hi) in the calculation of the new source location. The drift velocity of the source 
can be expressed as

which is a strictly positive value. The triggering process repeats for each subpacket until an 
upper-frequency limit is reached.

Because of the overlap of resonance regions of high-amplitude subpackets, Hanzelka 
et al. (2021) introduced a resonant current suppression factor that results in more realis-
tic values of Bw . Numerical results from the model are shown in Fig. 10 for the follow-
ing initial conditions and parameters: �0 = 0.21�e0 , �f = 0.46�e0 , Bsurf = 2.52 ⋅ 10−5 T , 
Q = 0.5 , � = 0.35 , �pe = 4.2�e0 , �phe = 0.3�e0 , V⟂0 = 0.4 c , Ut∥0 = 0.16 c , L = 4.58 . In 
the numerical simulation, the linear growth stage is skipped, with each subpacket start-
ing from an amplitude slightly above the threshold value �thr . An obvious shortcoming 
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�ti,
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Vgi − VRi
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4 In this article, the terms upstream and downstream always refer to the wave frame.
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of the improved model is the lack of current suppression in the first subpacket, resulting 
from the sequential triggering scheme. Comparison of the average amplitude growth 
2 ⋅ 102 s−1 in the source of the first subpacket shows a good match with the prediction of 
sideband theory based on Eq. 44.

Unfortunately, an in-depth comparison between the model and observations is not 
possible, mostly due to two reasons. First, certain input parameters cannot be observed 
with sufficient precision. As shown by Hanzelka et  al. (2021), reliable measurements 
of phase space density in the resonance region on scales of Ttr are currently not feasi-
ble, and thus we cannot determine Q. The measurements of the hot electron distribution 
are also plagued with large uncertainties, limiting our knowledge of �phe , V⟂

 and Ut,∥ . 
Parameter � is related to the nonlinear transition time for the formation of the resonant 
current JR , and JR can be directly determined only by precise measurements of phase 
space density near the electron hole. And second, the model has seven input parameters 
(nine when counting �0 and �f ), which makes the sampling of the full configuration 
space unfeasible.

The motion of the source can be compared to multipoint measurements from the Clus-
ter spacecraft fleet (Santolík et al. 2004). It was shown that the source position fluctuates 
within 1000 to 2000 km of the geomagnetic equator, and the extent of the source ranges 
from 3000 to 5000 km . The values of latitudinal drift shown in Fig. 10d and in Hanzelka 
(2022) amount to 900 to 4600 km . However, the analysis of Santolík et al. (2004) relates to 

Fig. 10  Chorus wavefield calculated from an improved model with resonant current suppression. Time evo-
lution of the wave magnetic field amplitude Bw of a chorus element propagating along the magnetic field 
line towards positive h. Plotted for two values of latitude, �m = 0◦ (red line) and �m = 10◦ (blue line). b 
Evolution of amplitude in time and space. Dotted lines show the spatial cuts at 0◦ and 10◦ of latitude. The 
total wavefield was obtained as a superposition of the left- and right-propagating waves. Panels c and d 
show the wave frequency � and follow the format of panels a and b, with only the right-propagating ele-
ment being plotted. Reprinted from Hanzelka et al. (2021)
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a large scale motion of the source, not its motion during the formation of a single element. 
This independent motion of the sources of each separate chorus element was indirectly 
proven by Demekhov et  al. (2020a), who observed frequency differences in THEMIS 
observation of chorus elements near the equator and linked them to the bidirectional motion 
of their sources. The velocity of this upstream motion has been determined to be Vg + VR 
based on PIC simulations (Nogi and Omura 2022; Harid et al. 2022), which, according to 
Eqs. 2 and 5, becomes positive for 𝜔 ≳ 𝛺e∕2 . This result does not agree with Eq. 83. So 
far, there is no rigorous theoretical support for the conclusion of Nogi and Omura (2022), 
but the recent parametric analysis by Nogi and Omura (2023) suggests that the source drift 
and the character of amplitude modulations strongly depend on the resonant current forma-
tion process, which may have been oversimplified in the model of Hanzelka et al. (2020).

Analysing chorus subpackets (Santolík et  al. 2003a, 2014a) with theoretical and semi-
empirical models proves difficult because the exact origin of the amplitude modulations is still 
disputed. This lack of theoretical understanding becomes critical when comparing the instan-
taneous frequencies from spacecraft data with the numerical model. The jumps in frequency 
found between subpackets in Fig. 4 resemble the irregular chirp rate from the wave model in 
Fig. 10c; however, it is not apparent if these features come from the breakdown of the reso-
nance island, as assumed in the sequential triggering model, or if they are a simple result of 
wave beating with a phase mismatch. It was discovered with Bayesian spectral analysis (Crab-
tree et al. 2017b) that the initial subpackets correspond to a single chirping plane wave, but 
the later amplitude modulations are better explained as a summation of multiple plane waves. 
Wavelet analysis of several RBSP observations (Tsurutani et al. 2020) even suggests that the 
subpackets have constant frequency and that the chirping comes from discrete jumps.

We suggest that future modelling efforts should focus on removing the free parame-
ters � and Q, and the parallel theory should be updated to a quasiparallel version which 
could explain the frequency gap near �e∕2 and allow to expand the model to higher lati-
tudes. However, even such improvements might not resolve the questions about subpackets, 
which may originate not only from the nonlinear generation process but also from convec-
tive growth, superposition of multiple plane waves, and possibly from propagation effects 
in an inhomogeneous plasma (ducting) as well. Furthermore, a thorough statistical analysis 
of the subpacket structure is missing in current literature, limiting thus our ability to vali-
date theoretical and numerical results.

3.2.3  Summary

The nonlinear growth theory of Omura et al. (2008, 2009, 2015a) provides an approximate 
formula for the calculation of resonant currents arising from the non-gyrotropy near the 
trapping region, and it assigns meaning to the nonlinear dispersion relation by postulating 
that the wavenumber remains constant within a single subpacket. Using further simplifica-
tions based on self-consistent simulations of the triggering process, four new features are 
introduced: 

1. Relativistic form of the inhomogeneity ratio S, improving on the previous results of 
Vomvoridis et al. (1982).

2. Resonant current formation (and thus also the nonlinear wave growth and chirping) at 
the equator where the magnetic field gradient is zero.

3. Threshold amplitude for the onset of the nonlinear growth.
4. Optimum amplitude at which the resonant current saturates.
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With these tools, a plane-wave model can be constructed that predicts the growth of ampli-
tude and frequency of a triggered rising-tone chorus element.

The description of phase space perturbations provided by the NGTO may seem quite 
different from the sBWO theory, yet the fundamental physical concepts are the same. The 
step-like deformation assumed in Sect. 3.1 represents a local increase in pitch angle ani-
sotropy, which serves as a free source of energy for the waves: electrons from high-density 
regions above the step lose energy, while electrons from the low-density region below the 
step gain energy, resulting in a net positive power transfer to electromagnetic fields. The 
step feature erodes during the evolution of a chorus element, accessing free energy stored 
in particles at lower parallel velocities. Similarly, the electron hole in the NGTO (which 
forms only when the initial distribution is sufficiently anisotropic) increases the local PSD 
gradient along the pitch angle, and the hole propagates towards lower velocities, akin to the 
step erosion. Additionally, a small hill/clump is formed at higher velocities, representing a 
minor gradient that was suggested to be the source of weak falling-tone emissions (Omura 
et al. 2015b; Nogi and Omura 2022).

A full description of fallers and oblique propagation is so far outside of the scope of 
the theory; however, the relativistic inhomogeneity ratio can be generalised to Landau and 
cyclotron resonance with oblique whistler waves, as shown by Omura et al. (2019). A cal-
culation by Omura et al. (2009) tells us how the coherent and nonlinear damping through 
Landau resonance can contribute to creating the spectral gap at 0.5�e during propaga-
tion away from the magnetic equator, but it cannot explain existence of the gap inside the 
source (Li et al. 2019). Nevertheless, the theory cannot be used in its current state to model 
wavefields of chorus elements with higher wave normal angles, and therefore we omitted 
the discussion of oblique propagation.

Overall, the NGTO brings more clarity to the discussion of the chorus triggering pro-
cess, and it enables us to estimate the chirp rate and wave amplitudes based on the prop-
erties of cold and hot plasma in the generation region. However, it relies on a number of 
assumptions and approximations that neglect some potentially important properties of cho-
rus emissions. First of all, the emission source is modelled by a single point at the equa-
tor, while observations (see the discussion of chorus properties in Sect. 1.1) show that the 
source region extends thousands of kilometres away from the B0-minimum. The homoge-
neous phase space density distribution in the electron hole contradicts test-particle simula-
tions and PIC simulations of the trapped particle population during the initial stage of wave 
growth. The applicability of the plane wave approximation has been challenged by some 
subpacket studies, e.g., Crabtree et al. (2017b), who suggest that a chorus element is best 
represented by a superposition of multiple plane waves. The reduction of the perpendicular 
momentum distribution of electrons to a delta function and the use of averaged ⟨u

⟂
⟩ in the 

second-order resonance complicates comparison with particle simulations and decreases 
the accuracy of quantitative predictions. Similarly, the inhomogeneity factor S may deviate 
from the fixed value of −0.41 (Nunn et al. 2009), and thus the variations in the resonant 
current stemming from the dynamics of S are missing from the NGTO. Furthermore, the 
theory provides no description of the deformation/breakdown of the electron hole, which is 
expected to happen between subpackets in sequential triggering models (Shoji and Omura 
2013; Hanzelka et al. 2020). The derivation of threshold amplitude is based on the assump-
tion of constant field-aligned amplitude gradient �Bw∕�h , for which there is no clear sup-
port in self-consistent simulations. And finally, the NGTO does not provide any mecha-
nism that would explain the repetition of elements, which is one of the defining features of 
the whistler-mode chorus.
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In conclusion, it is evident that despite the advances in theoretical understanding of cho-
rus through the NGTO, a more robust theory is needed to overcome the current limitations 
and refine our knowledge of the nonlinear growth process. The recent results of self-con-
sistent particle and Vlasov simulations (Ke et al. 2017; Tao et al. 2017; Katoh et al. 2018; 
Nunn et al. 2021; Nogi and Omura 2023) should serve as guidance for such an improved 
theory.

3.3  Self‑Consistent Theoretical Framework of Chorus Wave Excitation (SCCE)

The new self-consistent chorus excitation (SCCE) framework developed by Zonca et  al. 
(2022) aims to provide a self-consistent analytical description of the interaction between 
a whistler-mode fluctuation spectrum and resonant electrons. This approach focuses on 
deriving the nonlinear response of hot electron distribution in a general “Dyson-like” 
form, which is subsequently reduced to demonstrate the salient features of chorus growth. 
Although this framework has been reviewed in detail by Chen and Zonca (2016) and the 
underlying physical and mathematical concepts go back to nonlinear Landau damping 
studies of O’Neil (1965) and Al’tshul’ and Karpman (1966), its application to chorus is 
very recent (Tao et al. 2017).

3.3.1  Overview

As a first step, Zonca et al. (2022) split the current density into cold and hot components, 
deriving a nonlinear dispersion relation equivalent to Eq. 54. Next, they formulate a com-
plex wave equation analogous to Eq. 39. However, instead of the amplitude and phase of 
the wave magnetic field, they use the wave intensity

and arrive at

with

and

where W is the nonlinear phase shift, �  is the convective growth rate, and the evaluation 
at k denotes that the given quantities correspond to the solution of the whistler-mode cold 
plasma dispersion relation D̄w(h, k(h),𝜔k) = 0 (see Eq. 1). Equation 85 given above cor-
responds to Equation (16) from Zonca et al. (2022), but we converted Gaussian units to SI 

(84)Ik(h, t) =
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𝜕k

|||||
|Ẽwk(h, t)|2

(85)W(h, t,𝜔) + i𝛤 (h, t,𝜔) ≡ kc2

𝜔2 𝜕D̄w

𝜕k
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units, switched from electric field representation to magnetic fields, and utilized the group 
velocity formula from Eq. A1. Since this form of the complex wave equation comes from 
the intensity/energy-density formulation, it retains the additional derivative of dispersion 
relation (Karpman 1974), but can be proven equivalent to the wave amplitude formulations 
used by the NGTO and the sBWO theories. The proof can be found in Zonca et al. (2021) 
and Zonca et al. (2022) and derives from the perturbed dispersion relation (modified here 
to fit our notation)

which stems from the same approximations (i.e., separable cold (=core) and hot (=pertur-
bation) currents plus slowly-varying wave fields) that were used by Nunn (1974) to obtain 
Eq. 39.

Unlike in the sideband theory (Sect.  2.3) or the NGTO (Sect.  3.2), Zonca et  al. 
(2022) do not assume a test wave at � + �� or a continuous shift in the frequency of 
a plane wave. Instead, they write the perturbation of the hot electron density �f  as a 
response to a dense fluctuation spectrum, summing over all possible wavenumbers k. 
The spectral components are always assumed to approximately fulfil the whistler disper-
sion relation. Further, they use the Vlasov equation to derive an evolution equation of 
the background distribution (zeroth summation component) f0 in dependence on Bwk 
and �fk , and another evolution equation for �fk in dependence on f0 . By formal inversion 
of the evolution operators, (�t + v∥�h)f0 can be cast in a form similar to the Dyson equa-
tion, describing the emission and absorption of whistler-mode electromagnetic oscil-
lators. The resulting Dyson-like equation captures the self-consistent evolution of the 
phase space structures and the chirping chorus element, accounting for self-interactions 
in the fluctuation spectrum.

In contrast to the sBWO theory as presented by Demekhov and Trakhtengerts (2008), 
the operator �t + v∥�h includes the perturbations to the parallel velocity of resonant 
particles, thus capturing the full nonlinear response of the PSD distribution. However, 
Zonca et  al. (2022) proceed to reduce the Dyson-like equation to a simpler form by 
assuming that the nonlinear response is dominated by electrons near the exact reso-
nance, avoiding thus the need for numerical methods and restricting the analysis to nar-
rowband emissions. Furthermore, it is assumed that the newly excited waves have such 
frequencies that the power transfer from electrons to waves is maximised; the impor-
tance of maximisation of power transfer was recognised already by Helliwell (1967) and 
later confirmed by self-consistent simulations (Katoh and Omura 2016).

Due to the complexity of the general framework presented by Zonca et  al. (2022), 
we will not review the resulting equations in detail, and we will instead focus on the 
new concepts and their relation to older theories. The growth and chirping of chorus 
emissions are shown to be associated with the aforementioned maximisation of wave 
power transfer, in agreement with the NGTO. However, instead of the excitation of dis-
crete whistler seeds, the chirping comes from the excitation of a noise spectrum, with 
the frequency of the dominant wavenumber continuously sliding towards higher val-
ues. Furthermore, the nonlinear phase shift is found to be directly associated with the 
wave intensity peak. This suggests that the connection between the continuous chirp 
rate ��∕�t and the nonlinear frequency variation �� postulated in Eq.  78 is approxi-
mately correct; however, it should be understood as a result of the power transfer peak 

(88)(D̄w + D̄1
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being nonlinearly shifted to higher frequencies and exciting different parts of the noise 
spectrum.

To take a closer look at the origin of chirping, the approach to nonlinear variations 
induced by JR must be explained in more detail. In contrast to the NGTO, the SCCE 
formalism postulates that the nonlinear phase shift W causes perturbation to both fre-
quency and wave number, which are linked through the cold plasma dispersion relation. 
This interpretation corresponds to a shift in resonance velocity

Here we introduced the dagger symbol to signify that the frequency variation �� from the 
NGTO (Eq. 55) is different from the variation ��† introduced in the SCCE theory. The fre-
quency of waves that resonate with (VR + �V

†

R
) particles then grows at a rate

and the total change in frequency across a chorus element is given by

The integral is taken over a curve in (�, t) space where the partial time derivative of ��† 
maximises; this curve, to a good approximation, follows the intensity peak curve of a cho-
rus element. Such integration is not possible within the NGTO where there is a only a 
single value of frequency at each time at a given spatial point. The integrated change in fre-
quency based on Eq. 91 agrees with the frequency change in intensity peak obtained from 
the numerical solution of the full SCCE equations (Appendix D in Zonca et al. (2022)). 
Considering Eqs. 86 and 41, SCCE and NGTO agree on the importance of JB for the chirp-
ing of chorus elements.

The new theoretical framework also reveals the connection between the nonlinear 
growth rate, trapping period, and chirping: �NL ∝ �tr , ��∕�t ∝ �2

NL
 . These proportionalities 

can be found in the earlier sideband theories (Bud’ko et al. 1972; Trakhtengerts 1999), but 
here, they have been placed on a rigorous mathematical foundation. The reduced version of 
the Dyson-like equation can be treated analytically to retrieve

where the constant 1/2 defines the optimum value of the nonrelativistic version of the 
inhomogeneity factor S as derived by Vomvoridis et al. (1982). The theory of Zonca et al. 
(2022) thus provides a fully analytical derivation of chirping in both rising and falling ele-
ments, as indicated by the ± sign.

Another interesting feature of the new approach is the treatment of the magnetic field 
nonuniformity. It is shown that the nonuniform initial hot electron distribution provides the 
energy source for the nonlinear excitation and that the B0 field can be treated as homogene-
ous. This can be contrasted with the NGTO, where the wave growth can start without any 
nonuniformity (field or electron distribution). A similar conclusion was reached based on 
the laboratory experiments and Hamiltonian theory presented by Crabtree et al. (2017a), 

(89)�V
†

R
=

1

k
(��† − VR�k

†) =
1

k

(
1 −

VR

Vg

)
��†.

(90)
��

�t
=

(
1 −

VR

Vg

)
���†

�t
,

(91)Δ� = ∫
(
1 −

VR(t
�)

Vg(t
�)

)
���†

�t�
dt�.

(92)
��

�t
= ±

1

2

�2
tr

(1 − VR∕Vg)
2
,



37Surveys in Geophysics (2024) 45:1–54 

1 3

who further suggest that a discrete nature of the wave spectrum could influence the devel-
opment of chirping tones in a homogeneous environment (compare to the sideband excita-
tion models discussed in Sect.  2.3). Nevertheless, a nonuniform ambient magnetic field 
is a critical component of chorus formation since it contributes to the symmetry breaking 
between fallers and risers, as suggested by the simulations of Wu et al. (2020).

In summary, the new theoretical framework developed by Zonca et  al. (2022) pro-
vides a rigorous rederivation of previous major results on the chorus growth mechanism 
and rejects the nonlinear phase shift as a source of frequency chirping. On top of that, it 
shows a one-to-one correspondence of chorus chirping with superradiance in free-electron 
lasers and indicates the possible application of the new description in the BWO mechanism 
(Chen and Zonca 2016). Nevertheless, at this point, wavefield calculations rely on a reduc-
tion of the Dyson-like equation and its numerical solution, which requires Savitzky-Golay 
filtering to prevent the loss of regularity in �� . And while the time–frequency spectrograms 
presented in Zonca et al. (2022) show repetition of elements and formation of subpackets, 
the large chirp rate ( > 5 ⋅ 10−4𝛺2

e0
 ) and short duration ( < 5 ⋅ 102𝛺e0 ) of each element can-

not be compared with observations (Teng et al. 2017) due to the high value of the mag-
netic field inhomogeneity parameter a = 8.62 ⋅ 10−5�2

e0
c−2 , which 103-times larger than the 

dipole field value for L = 4 . The substantial spectral width of simulated elements also does 
not match well with observations (Gao et al. 2014); however, it is similar to the simula-
tion results of Tao et al. (2017) in a B0-field with strong inhomogeneity. Furthermore, the 
current description is nonrelativistic, assumes parallel propagation in a parabolic magnetic 
field (with the field inhomogeneity being neglected everywhere but in the initial distribu-
tion function), and cannot handle discrete steps in the frequency spectrum due to the con-
tinuous limit introduced in the reduced model. Therefore, the explanation of the origin of 
subpackets, defined in the sense of Santolík et al. (2003a), is currently beyond the reach of 
the reduced model.

3.3.2  Trap‑Release‑Amplify Model (TaRA)

The Trap-Release-Amplify phenomenological model of chorus waves (TaRA for short) 
presented by Tao et al. (2021) describes the growth of chorus elements based on the qual-
itative results of the SCCE framework and PIC simulations. It also utilises the antenna 
effect introduced by Helliwell (1967), which was considered in the NGTO-based numerical 
model of Hanzelka et al. (2020); see Sect. 3.2.2. The frequency drift in the TaRA model 
arises from the selective amplification of new emissions from the broadband whistler-wave 
spectrum due to the phase-locking condition ( d2�∕dt2 ≈ 0 ), which is connected with the 
maximisation of wave power transfer. The chirp is thus partially explained due to inho-
mogeneity of the ambient magnetic field in the upstream, as originally suggested by Helli-
well (1967). This description differs from the analytical results of Zonca et al. (2022), who 
neglected �B0∕�h and recovered the frequency growth solely from the nonuniformity of 
the hot electron distribution. Since TaRA is a phenomenological model, the rate of detrap-
ping in the upstream region due to decreasing amplitude and shrinking trapping region is 
not quantified—a detailed review of this process can be found in Artemyev et al. (2018).

Unlike in the theory of Helliwell (1967), the TaRA model also acknowledges the rela-
tion of frequency shift to the particle trapping and wave amplitude as prescribed by Eq. 43 
(where Bw is hidden in the ratio S), thus taking into account the case when the s� compo-
nent of Eq. 52 dominates the sc component near the equator (note that the TaRA model 
is presented in a nonrelativistic form, but the concepts easily translate to the equations of 
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Sect. 3.2 based on relativistic particle motion). In total, three equations for the chirp rate 
are given: In the upstream,

which describes the physical origin of the chirp due to the inhomogeneity of the magnetic 
field. Electrons entering this region are already phase correlated from resonant interactions 
that have taken place further downstream. Near the equator, where �B0∕�h ≈ 0 , the chirp 
rate can be expressed as

where Smax ≈ −0.4 according to the NGTO. While Eq. 94 provides the well-known rela-
tion between chirp and trapping frequency, which appears in the sBWO theory (Eq.  51, 
obtained from the results of Vomvoridis et al. (1982) and nonlinear evolution of f inside the 
trapping region) and SCCE framework (Eq. 92, obtained self-consistently from the reduced 
Dyson-like equation), the physical origin of chirp is due to the excitation of higher frequen-
cies in the upstream region. This is consistent with the proposition of Helliwell (1967), 
who splits the interaction region into two parts, with radiation dominating the upstream 
and electron bunches forming downstream. Finally, after the whistler waves pass the equa-
tor, the field inhomogeneity and chirp have effects of similar magnitude, so

Notice that the extension of the NGTO presented in Hanzelka et al. (2020) uses a relativ-
istic version of this chirp rate formula, given in Eq. 71, thus naturally incorporating this 
TaRA concept into numerical wave models, but applies it only in the source, with S = Smax 
to maximise the power transfer.

The explanation of the origin of subpackets differs significantly from the NGTO. 
Instead of considering each subpacket as the basic unit of wave excitation (which later 
becomes the new triggering wave), in TaRA, modes at all frequencies contribute to 
the generation of new emissions. Oscillations of resonant particles in the order of �−1

tr
 

modulate the wave power transfer (Tao et  al. 2017), and this translates to amplitude 
modulations, which are further accentuated due to convective growth downstream. 
This description agrees with the conclusion of Nogi and Omura (2022), who con-
ducted PIC simulations and observed a very stable electron hole in the source region, 
which produced a single, long, weakly modulated packet that split into subpackets dur-
ing propagation. This poses difficulty for the spacecraft analysis of subpackets (San-
tolík et al. 2014a; Foster et al. 2017) by suggesting that multipoint measurements are 
required to capture the important convective evolution of the subpacket structure. Fur-
thermore, wave superposition needs to be taken into account when analysing the fine 
structure of chorus (Santolík et  al. 2004; Zhang et  al. 2020b; Nunn et  al. 2021). For 
further discussion of the possible origins of a complex subpacket structure, see Sect. 4.

We may conclude that while the TaRA model provides an interesting novel descrip-
tion of the chorus generation mechanism, there are still many contentious points, 
e.g., the role of wave superposition and the relative importance of �B0∕�h versus hot 
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electron distribution inhomogeneity. Despite the agreement between theory and simu-
lations, careful comparison with spacecraft data will be needed to show whether the 
predictions of TaRA and SCCE provide better accuracy than sBWO and NGTO.

4  Ducted Propagation Affecting the Structure of Chorus

As shown in Fig.  4 and numerous literature (Santolík et  al. 2003a, 2014a; Foster et  al. 
2017; Crabtree et al. 2017b), rising-tone chorus elements have a complex subpacket struc-
ture. The wave magnetic field exhibits amplitude modulations with highly variable length 
and depth whose structure can differ between the perpendicular components ( Bx,y ) and par-
allel component ( Bz ). These modulations are associated with irregularities in the instanta-
neous frequency and the wave normal angle. The convectively increasing modulation depth 
predicted by the TaRA model (Sect. 3.3.2) cannot well explain the amplitude drops down 
to zero, and the NGTO-based numerical wave model from Fig. 10 is too regular and relies 
on the electron hole breakdown assumption, which was not confirmed by self-consistent 
simulations (Tao et al. 2021; Nogi and Omura 2022).

One possible explanation for the inability to accurately describe the subpacket struc-
ture within theories from Sect.  3 is the reliance on a single plane wave model. As dis-
cussed by Crabtree et al. (2017b), the amplitude modulations of chorus elements may be 
better explained as a superposition of multiple chirping waves, especially at frequencies 
above � ≈ �e∕4 . One-dimensional PIC simulations, Vlasov simulations and sBWO-based 
models can reproduce observations of fast subpacket amplitude modulations and frequency 
sweep rates (Nunn et al. 2021; Zhang et al. 2021) but cannot capture the evolution of the 
wave normal angle. Considering the significant obliquity displayed by some subpackets 
in Fig. 4e and the statistics of Santolík et al. (2014a), it is possible that two-dimensional 
theory and simulations are needed to fully describe the fine structure of chorus. As dem-
onstrated with the kinetic simulations of Ke et  al. (2017), the frequency growth in two-
dimensional models can be more discrete, akin to the observational results of Tsurutani 
et al. (2020) or Foster et al. (2021). However, self-consistent simulations in more than one 
spatial dimension are computationally expensive, and the research in this area is still in the 
early stages.

Regarding the two-dimensional propagation of waves, we must also consider the effects 
of field-aligned density ducts on the chorus spectral structure. As was shown by cold elec-
tron fluid simulations of Katoh (2014) and kinetic simulations of Ke et al. (2021), a wide 
density enhancement can strongly modulate the spatial and temporal distribution of whis-
tler-mode waves. Furthermore, it was shown by laboratory experiments (Stenzel 1976b) 
and theoretical analysis (Weibel 1977; Eliasson and Shukla 2004) that high-amplitude 
whistler waves can modify cold plasma density and induce self-focusation through the for-
mation of thin filaments. Effects of wavelength-scale narrow ducts were numerically inves-
tigated by Zudin et al. (2019) for the case of ionospheric ducts and by Streltsov and Bengt-
son (2020) and Williams and Streltsov (2021) in the case of a homogeneous magnetic field 
near the equatorial region of the outer radiation belt. The difference between the wide and 
narrow ducting modes and their effects on the amplitude, frequency and propagation prop-
erties of chorus elements will be discussed in the following two sections.
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4.1  Wide Density Ducts

As follows from cold plasma theory and spacecraft observations (Carpenter 1968; Walker 
1976), whistler waves in the inner magnetosphere must be ducted to prevent attenuation 
due to Landau damping at higher wave normal angles (WNA), which was demonstrated by 
ray tracing simulations in hot plasma (Bortnik et al. 2011; Hanzelka and Santolík 2019). In 
these simulations, the ducts were assumed to have a characteristic width of multiple wave-
lengths, ensuring that the density background can be considered only weakly inhomogene-
ous and thus allowing for the use of ray optics. Observational proof of the existence of such 
wide ducts in the outer radiation belt and of their guiding effects was provided by Chen 
et al. (2021), with strong indications appearing in earlier studies (Angerami 1970; Koons 
1989; Sonwalkar et al. 1994; Bell et al. 2009; Demekhov et al. 2020b). A statistical analy-
sis by Gu et al. (2022) based on Van Allen Probes data shows a significant occurrence of 
density variations with characteristics scale < 1000 km in regions with increased whistler 
wave activity, further emphasizing the importance of density inhomogeneities in whistler-
mode propagation studies.

Let us first focus on the case of a homogeneous magnetic field. For simplicity and ana-
lytical tractability, we will assume that the duct is axially symmetric along B0 , ray oscil-
lations are small, and the peak of the density enhancement can be approximated by a par-
abolic profile as defined in Eq.  A9. It can then be shown that the lateral ray position x 
(measured from the centre of the duct) and the perpendicular wave vector component kx 
harmonically oscillate with frequency

where sduct = −1 represents density enhancement; see Appendix A for a detailed deri-
vation. As an example, consider a whistler ray with frequency � = 0.25�e in a plasma 
with �p0 = 5�e0 and a magnetic field B0 = 300 nT , oscillating in a 100 km wide duct 
( w = 50 km ). The frequency from Eq.  96 then evaluates to �HO = 1.1 ⋅ 10−2 � . In this 
case, approximately 45 wavelengths ( � = 2�∕k ≈ 12 km ) will fit between two crossings of 
x = 0 , and the subpacket duration will be 22ms . To reach durations below 10ms , which 
are common in observations (Santolík et  al. 2014a), the ratio �∕w would drop below 2, 
clearly violating the approximation of geometric optics. Also, note that while we assumed 
a parabolic density profile, corresponding to a Gaussian or other functions with a well-
defined peak, ducts may have a more rectangular shape with strong density gradients near 
the boundaries, as considered by Williams and Streltsov (2021), which again rules out the 
application of ray optics.

In a curved magnetic field, the oscillations widen and waves start leaking out at higher 
latitudes. Ke et al. (2021) studied the effects of ducts on whistlers in 2D kinetic simula-
tions and concluded that the waves remain quasiparallel and experience focusing effects, 
improving thus upon the simpler numerical models of ducted propagation by Katoh (2014) 
and Hanzelka and Santolík (2019). Hanzelka and Santolík (2022) used full-wave simula-
tions in a linearised cold electron fluid to study the evolution of amplitude modulations 
and wave normal angle in a chirping wave with a predefined subpacket structure. They 
found that the WNA does not exhibit rapid variations to the same extent as a typical chorus 
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element, but certain parts of the element can be seen by a probe as heavily attenuated. 
This effect is due to the frequency dependence of the Poynting flux direction, resulting in 
the concentration of certain frequencies along a path that does not cross the probe’s posi-
tion. Examples are shown in Fig. 11. Such profound amplitude modulations along the ele-
ment may affect analyses of multipoint spacecraft observations of chorus (Demekhov et al. 
2020a), which explain the lack of low frequencies in the spectrum as an effect of source 
drift—compare with Fig. 10. Density-induced wave focusation could also explain sudden 
drops in the amplitude of neighbouring elements in a chorus train, as suggested by Hos-
seini et al. (2021) based on full-wave simulations with lentil-shaped density irregularities.

Fig. 11  Results of propagation simulation of a modulated chorus element, adapted from Hanzelka and San-
tolík (2022). The equatorial cold current source radiates ten chorus subpackets with frequency growing lin-
early in time from 0.15�e0 to 0.50�e0 . The stationary density background in panel a shows a field-aligned 
density enhancement (duct) with relative density increase of 10% , the standard deviation �L of the Gaussian 
profile is 150 km at the equator. The white and black stars show the position of probes that measured the 
waveforms in panels c and d, respectively. b A snapshot from the wave amplitude evolution. c Amplitude 
envelope as measured by the probe on the slope of the density duct, 1�L away from the central field line. d 
Amplitude envelope as measured by the probe on the central field line. Stationary density background with 
field-aligned enhancement
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4.2  Thin Density Filaments

Theoretical and numerical analysis of whistler-mode propagation in narrow density fila-
ments with rectangular profiles shows the emergence of a new, ducted mode with different 
dispersion properties. When the characteristic width of individual filaments drops to sub-
wavelength scale, the wave energy propagates as if unducted until the walls of the filament 
bunch are reached (Zudin et al. 2019). However, when the duct width remains above this 
subwavelength threshold, the wave vector direction is significantly affected, as shown by 
the numerical simulation of lower-band chorus by Hanzelka and Santolík (2022) for the 
case of a 2D duct comb. The study also noted that the density irregularities cause a shift 
from circular towards elliptical polarisation, confirming the deviations from a homogene-
ous plasma whistler-mode dispersion relation (compare with Fig.  1, the ellipticity panel 
in particular). Note that since the eikonal approximation enters into the derivation of the 

Fig. 12  Simulation of chorus wave propagation in multiple thin ducts, adapted from Hanzelka and Santolík 
(2022) and presented in a format similar to Fig. 11. The stationary density ducts in panel a have a rela-
tive density increase of 3% , the standard deviation �L of the Gaussian profile is 15 km at the equator. The 
white and black stars show the position of probes that measured the waveforms in panels (b–d) and e-g), 
respectively. b Amplitude envelope as measured by the probe on the slope of the central density duct, 1�L 
away from the central field line, �m = 4.75◦ . c Instantaneous frequency obtained from Hilbert transform of 
the complex amplitude. d Wave normal angle obtained by the SVD methods of Santolík et al. (2003b). e–g 
Similar to b–d, but for a waveform measured by a probe on the central field line, �m = 4.0◦
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complex wave equation 39, none of the chorus theories discussed in Sect. 3 (sBWO, NGTO 
and SCCE) could explain the behaviour around strong irregularities even if the theories 
were extended to two dimensions.

The EMHD5 (Electron MagnetoHydroDynamics) simulations of Streltsov and Bengt-
son (2020) and Williams and Streltsov (2021) show formation of short subpackets in a 
homogeneous magnetic field within a smoothened rectangular duct. Hanzelka and Santolík 
(2022) investigated the propagation of a modulated chorus element in a dipole field with a 
comb of wavelength-scale Gaussian ducts, with a focus on the wave normal angle behav-
iour. It was shown that away from � = �e∕4 , where �Vg∕�� = 0 , the subpacket structure 
can change drastically, and these new amplitude modulations are accompanied by large 
and rapid variations in WNA, similar to the spacecraft observation from Fig. 4. The loss of 
regularity in amplitude modulations towards higher frequencies agrees well with the case 
studies of Crabtree et al. (2017b) and Foster et al. (2021). Two waveforms detected by two 
closely separated probes from the Hanzelka and Santolík (2022) simulations, shown here 
in Fig. 12, reveal the strong spatial variability of fine structure, which can be compared to 
the multipoint Cluster spacecraft measurements presented by Santolík et al. (2003a). Note 
also the spectral width of the element displayed in Fig. 12—due to the subpackets being 
strongly localised in time, the spectrum shows a width comparable with experimental data, 
despite using a single-wave model.

We may conclude that in the presence of thin ducts, the amplitude envelope and WNA 
exhibit significant spatio-temporal variations, which suggests that results on chorus fine 
structure obtained from 1D theories and simulations cannot be directly compared with 
spacecraft observations. Moreover, it is currently unknown if and how strong density irreg-
ularities modify the nonlinear wave growth in the source region. Because waves around 
� = �e∕2 are not guided by either density enhancements of depletions, it was conjectured 
(Bell et al. 2009) that ducting effect may be behind the spectral gap that divides chorus into 
lower band and upper band. However, such hypothesis will have to be confirmed by 2D or 
3D self-consistent simulations, which is still a very young research field.

5  Summary and Conclusions

We have reviewed the development of nonlinear chorus growth theory from 1960s up to 
the current date, with a focus on parallel-propagating lower-band rising-tone emissions. 
We have shown that many concepts that are important in modern theories have been known 
since the influential studies of Helliwell (1967) and Vomvoridis et al. (1982). Namely, the 
importance of phase-bunching and trapping, the helical antenna concept and source drift, 
and the relation between chirp rate and wave amplitude.

The three prominent theories discussed in Sect. 3 are all based on the same set of nar-
rowband complex wave equations, but they take different approaches to the computation of 
phase space density perturbations and the associated resonant current. In the sBWO model, 
a step function in parallel velocities is postulated, and the evolution of phase space density 
is solved numerically, with simplifying assumptions about the role of trajectory perturba-
tions and the velocity spread of resonant particles. The NGTO takes inspiration from kinetic 

5 This model is almost the same as the cold electron fluid simulations of Hosseini et al. (2021) or Hanzelka 
and Santolík (2022), with the only difference being the omission of the displacement current.
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simulations and assumes the formation of a homogeneous phase space density (PSD) hole 
in the trapping region, with the source region being replaced by a single point for simplicity. 
The relative importance of chirp rate and magnetic field inhomogeneity at different distance 
from the equator is used to define a threshold amplitude for the onset of nonlinear growth, 
and the nonlinear variation of frequency due to resonant current is directly linked to chirp 
rate to define an optimum amplitude, near which the growth saturates. Extension to a drift-
ing source is possible by introducing a sequential triggering model based on the upstream 
flow of phase-correlated particles (the helical antenna concept).

The most recent of the three theories, the SCCE framework and the related TaRA phe-
nomenological model, introduce some novel concepts. The nonlinear evolution of PSD 
in the resonance region is solved in a general form that assumes excitation of new whis-
tler waves from a continuous spectrum. The general result, a Dyson-like equation, can be 
reduced to reveal the relation between chirp rate and amplitude from Vomvoridis et  al. 
(1982). The chirping is linked to the spectral power peak sliding to higher frequencies in 
order to maximise power transfer, in agreement with the early ideas of Helliwell (1967). 
The TaRA model further attempts to explain the formation of subpackets through convec-
tive growth of shallow amplitudes modulations in the source which arise from the periodic 
motion of trapped electrons, as seen in 1D self-consistent simulations.

Despite the overall success in the explanation of chirp rate and amplitude growth, 
the experimentally observed large spatio-temporal variations in the subpackets structure 
escape the understanding provided by modern chorus theories. In Sect. 4, we explained the 
importance of ducting and two-dimensional effects for the formation of fine chorus struc-
ture. These findings are based on recent full-wave simulations (Zudin et al. 2019; Williams 
and Streltsov 2021; Hanzelka and Santolík 2022) and are currently not implemented in 
analytical theories of chorus growth.

We conclude that while the state-of-art theories and simulations provide a good expla-
nation for the amplitude and frequency characteristic of quasiparallel chorus elements, 
further investigations are needed to fully understand the role of resonant current and the 
aspects of two-dimensional propagation and its effect on the nonlinear growth. And finally, 
we want to acknowledge and highlight the importance of rigorous mathematical frame-
works such as the SCCE, which bring a much needed insight into the kinetic simulations 
that dominate the current research on nonlinear wave–particle interactions in the Earth’s 
inner magnetosphere.

Appendix A. Derivation of Whistler‑Mode Ray Oscillations in Density 
Ducts

The general form of cold plasma ray tracing equations reads (Stix 1992)

(A1)dr

dt
= −

𝜕D̄

𝜕k

(
𝜕D̄

𝜕𝜔

)−1

= Vg,

(A2)dk

dt
=

𝜕D̄

𝜕r

(
𝜕D̄

𝜕𝜔

)−1

= −
𝜕𝜔

𝜕r
,
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where D̄(k,𝜔) = 0 is the dispersion relation. To trace a two-dimensional trajectory of 
ducted rays propagating in a magnetised plasma, the Eqs.  (A1) and (A2) must be solved 
numerically for some general functions of density ne(x, z) and magnetic field B0(x, z) . How-
ever, with suitable approximations, the basic principles can be explained analytically on a 
homogeneous field case. Let us assume the simplified from of refractive index for oblique 
whistler waves

B0 directed along the z-axis and electron density ne dependent on the x-coordinate only. 
The nonzero derivatives of the dispersion relation

are found to be

By introducing the small-angle approximation sin �k ≈ �k , cos �k ≈ 1 , we get kz ≈ const. , 
Vgz ≈ const. , reducing the system to one dimension. The problem can be further simplified 
by using a parabolic density profile

where sduct = −1 stands for a density enhancement, sduct = 1 models a density depletion, 
and w represents a characteristic width of the duct. Finally, the ray evolution in the (x, kx) 
space reduces to an elliptical/hyperbolic motion,

where we used an additional simplification (x∕w)2 ≪ 1 and denoted the plasma frequency 
at x = 0 as �p0 . Whether the ray will be guided depends on the sign of 2� −�e and sduct.

(A3)�2 ≈
�2
pe

�(�e cos �k − �)
,

(A4)D̄(k,𝜔) = 1 −
c2k2

𝜔2
+

𝜔2
pe

𝜔(𝛺e cos 𝜃k − 𝜔)

(A5)
𝜕D̄

𝜕ckz
= −

𝜔pe[𝛺e + (𝛺e cos 𝜃k − 2𝜔) cos 𝜃k]

𝜔3∕2(𝛺e cos 𝜃k − 𝜔)3∕2
,

(A6)
𝜕D̄

𝜕ckx
= −

𝜔pe(𝛺e cos 𝜃k − 2𝜔) sin 𝜃k

𝜔3∕2(𝛺e cos 𝜃k − 𝜔)3∕2
,

(A7)𝜕D̄

𝜕x
=

1

ne

𝜕ne

𝜕x

𝜔2
pe

𝜔(𝛺e cos 𝜃k − 𝜔)
,

(A8)𝜕D̄

𝜕𝜔
=

𝜔2
pe
𝛺e cos 𝜃k

𝜔2(𝛺e cos 𝜃k − 𝜔)2
.

(A9)ne(x) = ne0

(
1 + sduct

x2

w2

)
,

(A10)
d(ckx)

d(x∕w)
= −sductR

2
yx

x∕w

ckx
, R2

yx
=

2��2
p0

2� −�e

,



46 Surveys in Geophysics (2024) 45:1–54

1 3

Recalling the group velocity definition from Eq. (A1) and combining it with the ducted 
propagation described by Eq. (A10) above, we can show that x(t) behaves like a harmonic 
oscillator. The oscillation frequency is found to be

which is the Eq. 96 from Sect. 4.1.
As a final note, we must point out the difference between ducts with small and large 

density variations. If the density gradients are small and the wave remains quasiparallel, 
positive density variations (crests) guide only lower-band waves, and negative density 
enhancements (troughs) guide only upper-band waves, as described here. However, as 
shown already by Smith et al. (1960), in deep troughs, the wave normal angle of lower-
band waves may reach the Gendrin angle and reflect back towards the center of duct. Such 
troughs can therefore guide wave energy at all frequencies larger than the lower hybrid 
frequency, but the waves will experience stronger damping due to the oblique wave vectors.
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