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A novel WKB approach to calculating the lifetime of quasistationary states in the potential wells of the
form V(x) = P(x) — uQ(x), where P(x) istheradia part of the potential for the spherically symmetric
harmonic oscillator or the hydrogen atom and Q(x) is a polynomial, is suggested. In this approach,
the usua explicit procedure of the asymptotic matching of the perturbative and WKB wave functions is
avoided and a simple formula for the imaginary part of the energy is found. The leading and the first
correction terms for the imaginary part of the energy and the related lifetime are analytically calculated.

PACS numbers: 03.65.5q

The WKB method is one of the oldest approximate
methods of quantum mechanics. Despite this fact the stan-
dard formulation of the WKB method is difficult to use.
The usua explicit procedure of the asymptotic matching
of the perturbative and WKB wave functions in the in-
termediate region leads to very tedious and difficult cal-
culations [1-5]. This procedure must be repeated for
different potentials from the very beginning and no gen-
eral WKB formulas for measurable physical quantities are
known. In this approach, the higher order calculations are
very difficult.

InthisLetter, we suggest amodified approach illustrated
in the calculation of the lifetime of the quasistationary
states of the Schrodinger equation,

[—d?/dx® + V()]p(x) = E¢(x), (1)
for the potential wells of the form
V(x) = P(x) = pQ(x). 2

Here, P(x) = ax 2 + x? is the radia part of the po-
tential for the spherically symmetric harmonic oscillator;
0(x) = 3" a;x¥m=1 s the perturbation potential. We

assume that 0 < u < 1 is a small constant so that the

ImE =

L lim—a[¢ () (a9 () /dx) = §(x) (dyp(x)/dx)]

potential V(x) is a smooth function without large oscilla-
tions. A similar problem aso appears in the case of the
hydrogen atom, where P(x) = ax % — x ' and Q(x) =

" Faix™" 71 Here, we assume m = 2, ap = 1, and
a=I1(+D—-2)+ (D —1)(D — 3)/4,wherel isthe
orbital quantum number and D denotes the number of
space dimensions [6]. Some problems of this type have
been studied from the point of view of quantum field theory
(see, e.g., Refs. [4,7,8]) aswell as nonrelativistic hydrogen
atom in constant electric field (see, eg., Refs. [1-3,8]) or
models of quark confinement [5,9].

Because of the form of the potential, there is a small
probability that the particle escapes through the poten-
tial barrier to infinity. Therefore, the energy E = ReE +
i ImE has asmall imaginary part ImE < 0. In this Letter,
we first suggest a smple and straightforward way of cal-
culating the WK B wave function for the potentials (2). We
then derive a general formulafor ImE and related lifetime
7 = —1/(2ImE). By using this approach, the usual dif-
ficulties of the WKB method are avoided and calculations
are greatly ssimplified. For the problems mentioned above,
we then find general analytic formulas for ImE and ReE.

The imaginary part of the energy is calculated from the

| equation (see, eg., Ref. [4])
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The wave functiony(x) for small x inside the poten- the usual WKB expansion and expanding them up to the
tial barrier is calculated in theth order of the Rayleigh- nth order of . However, our approach is much simpler.
Schiédinger perturbation theory (RSPT) We now suggest a simple new method of the asymp-

totic matching of the functionslq(z"S)PT(x) and :/;&I)(B(x).
(n) X ; These functions must equal in an overlap region of their
Yrspr(x) = ;)‘//i(x)“ : @ mutual validity defined by the inequalities Rek x? <
= —1/(m—1) i i -
M . Therefore, the logarithm of these functions ex
Since the dominant contribution to the norm of the quasipanded up to theth order of u must be asymptotically
stationary wave function is given by smal] we replace (for largex) equal:
¥ (x) in the integralfy |y(x') dx' by yider(x) [1,4]. .
The numerator in Eq. (3) is calculated by means of the ' & " (i=1)/(m=1) (n)
> Siww = Ingrspr(x)

WKB wave function, & RSPT
Lt n(m—1) 1+n(m—1)
+n(m— (i—l)/(m—l)
(n) 1 [/ (m— + Aip
l,//v(/,KB(x) = Kexr{m Z Si(x)’ul/(m l):| , IZ() i
i=0 2
+ 0(1/x7), 9)
(5)
_ o _ where we have introduced
whereK is a normalization constant discussed below.
To calculatez/fg) B(x) we suggest a new simple ap- I+n(m—1) 1)
proach. For the sake of simplicity, we discuss here only the > AplTV e — g (10)
case of the perturbed harmonic oscillator. The dominant i=0

contribution to the humerator in Eg- (3) comes from theThe right-hand side of Eq. (9) can be considered as the
regionV(x) > ReE, wherex” =~ ux" [1-5]. To make asymptotic expansion of the left-hand side. Generally, this
these terms of the same ordeninwe perform the scaling expansion contains-dependent terms, constant terms, and

x = p~ /=Dy in Eq. (1), which then becomes terms negligible in the overlap region. Henceforth, we nor-
d42 malize zpl({'s)PT(x) in such a way that the asymptotic expan-
Mz/('"fl)ﬁ ¢ =[u? — u* — (Ey + aju®™) sion of Ingapr(x) does not contain a constant additive

. NG

X gD 4 ©6) term in any order ofw. Furthermore, we pu; A7,

whereAEO), is a constant term of the asymptotic expansion

Here, the RSPT expansion of the real part of the energ@f Si(x) for the bound state potential(x) = P(x). This
ReE = Ey + E;u + E,u® + ... was used. By search- choice of the normalization opg'ng(x) and constants;

ing for the solution of this equation in the form (5) and leads toK = 1 for u = 0 so that the asymptotic matching
comparing the terms of the same power0f "1 we is also obeyed in this case. Then, it follows from Eq. (9)
obtain equations from which th& terms can easily be thatA; isa constant term of the asymptotic expansion of
calculated. Here, we give the resulting expressions for thé;(x) in the overlap region. Since theS;(x) depend on
first two terms only: w andx via the variablex = u!/2m=Vlx and all of the
termsA;, i # 1, do not depend on and u, it is seen that
all A;, i # 1, can be calculated as the constant terms of
the expansion of;(u) nearu = 0 ands; = 0 for i # 1.

To calculated; we return to the variable,

So(u) = —/ W1 — " 12 a0 + 59 (7)

and

| $1(0) =~ 62 = ™)
Si(u) = 7 In(u? — u®™)

3 [ Ey n 4
_ Ey In 1+ (1 - u2(m71))1/2 4(m — 1) y2(m—1)
4m = 1) 1 = (1 = y2m=D)1/2 al S e
1 — 2m=1y1/2 + o —— + O )} . (11)
S el ) ® 2m — 1)
2 m— 1
and get
wheres; are integration constants. These solutions cor- E 4 a
respond to the wave going through the barrier to infinity. Al=——"2 _In— - (12)
4m—1) u 2(m — 1)

The form of our WKB wave functionp\({',ﬁB is the same
as that obtained by taking the fidt+ n(m — 1) terms of Here, we puts; = Inw/[4(m — 1)].
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By calculatingk from Eq. (10), we obtain from Eq. (5)  Toillustrate the use of Eq. (15) we first consider the per-
the WKB approximation of the wave functiaf(x) needed turbed harmonic oscillator. For this problem, we obtained,

in the numerator of Eq. (3): from Eq. (15),
2e@t/(m=1) 4 \2N/(m=1)
(0 ey - ME =~ %ITeN — K) <_>
pwks(0) = exgl > [Si(x) — AJul V0| e _
= X e du [1 +R1M1/(;n 1) +R2/~L2/(m 1)
(13) +..], (17)
o . where

Taking into account the asymptotics of the WKB wave { 3

function forx — oo, d = I'G=rG) (18)

3m—1 \ °
Contr ) (m — DI (55,=p)
+n(m—
o (x) = exp{ > - AyuliTemD N =K + 1/2 + D/4 is the principal quantum number,
i=0 andK = 0, 1,... denotes the radial qguantum number. For
exgli w26 Jm + D1 + 0(1/x)] m = 2, the first correction coefficient equals

. 9 2
(— i) 21 fxm]2 R — N sy 383
(14) 2 2 12
2
where C; denotes a constant term of the asymptotic ex- — 3Na; — % - c;—‘. (29)

pansion of S;(u) for u — o; we obtain from Egs. (3)
and (14) the final formula for the imaginary part of the For m > 2, we obtained

energy Ink: 2
R1={{N2(m+1)—§(m—1)+T—z—%+%+1\ml}
exg2ReS 0"V, — A iD= i
ImE = — — . aiflm —2)  a(m — 1)
Jo l¢rspr(x)|? dx’ X @3 =m)— 2 + 5
15 m—
o) 1 TGEDrR 20
The real part of the”; term equals zero. (m — 1)2 F(;&:?))

For m = 2,3 all of the S;(«) terms can be calculated
analytically. Form > 3 the numerator in Eq. (15) can be Form = 2 anda; = 0 for i > 0 we also derived the sec-
calculated fori # 1 as follows: We split thes;(x) term  ond correction coefficient,
into two partsS;(u) = [ b;(u)du + D;(u), where the first 1
term obeys the conditiorf(l) b;(u) du < «. Since theb; Ry = 16
terms are real for < 1 and purely imaginary for > 1, 155

we can write + (—204N% + 100N + 26)¢ — K} 1)
ReC; — A;) = [lb,(u) du + Re(V, — P;), i+ 1 where¢ = a/4 — 3/16. The RSPT coefficients of the
l l 0o l " ’ energy can be for large calculated via the dispersion
(16) relation [4,8,10]

442

[578N4 — 92N3 — TNZ — 90N + 18¢&2

where P; and V; denote the constant terms of the ex- E, = i/ Im}fi’lf) du. (22)
pansion ofD;(u) near zero and infinity, respectively. If mJoo H

the integrals in theS; () terms cannot be calculated ana- By inserting formula (17) into this equation, we obtain the
lytically we integrate them by parts until Eq. (16) can large-order behavior of the RSPT coefficients:

be used. _ _ _ e/ DN 02 (m — 1) oy
Our formula (15) has the following advantages. First, En = | _ d
7 7K!T2N — K)
a general result similar to Eq. (15) has not been known
till now and any problem had to be solved from the very X I'((m — )n + 2N)
beginning. Second, the explicit asymptotic matching of the Rid
functions¢é"s)pT(x) andgb(wnl)(B(x) is avoided. Further, this X [1 + 1 + } (23)
formula offers a systematic way of performing calculations (m = Dn +2N — 1

to an arbitrary order of.!/™ =", Finally, the advantage Special cases of Egs. (:/(23) can be found in [£4,7,9].
of Eqg. (15) is that it uses only the minimal information  Only a slightly different derivation leads to Eq. (15) also
necessary for the calculation of En in the case of the perturbed hydrogen atom. The imaginary
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part of the energy equals, in this case,

@ /lm=DN]\y=2N—=4N/(m=1)=3 | =2N/(m~1)
ImE = — ex —2(2N) "' H Vg VD (B /N)S,,

X [1+ Ryp/=D 4 Ryu¥m=0 ], (24)

where the principal quantum number equsls= K + [ + (D — 1)/2, E; = —3N? + «, anda; = 0 for m = 2. The

constantd is given by Eq. (18). Fom = 2, we found the coefficients
20
R, = —14N° — 12N* — ?N3 + 2Na? (25)
and

2
R, = 3N2[441N8 + 261N7 + 42N® — 540N° — 80N* + 9a* + 60Na® — (126N* + 45N> + 6N?)a?]. (26)

Form = 3 anda; = 0 for i > 0 we obtained
R = —a7N*(5N? + 1 — 3a). (27)
By using Eq. (22), we also derived the large-order behavior of the RSPT coefficients:

eal/[(mfl)N]N*2N74N/(m71)73(m _ I)EXF{(El/N)(Sm 2]

En —_ 2 2 —1—2/(}7’[—1) —2N—(m—l)nl" — 1 + 2
4KITQN — K)o [22N) d] (m = Dn +2N)
202N)~1=2/m=DgR, }
X |1+ . 28
[ (m — Dn + 2N — 1 (28)
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[5,9]. Equations (17A(28) were also verified numerically. [3] E. Harrell and B. Simon, Duke Math. 47, 845 (1980).
We note that Egs. (17) and (24) and Eqgs. (23) and (28)[4] C.M. Bender and T.T. Wu, Phys. Rev. ) 1620 (1973);

are asymptotic series valid for sufficiently small and T.I. Banks and C.M. Bender, J. Math. Phyk3, 1320
large n, respectively. (1972); C.M. Bender and T.T. Wu, Phys. Rev. L&,

A more detailed report, including additional results, will 461 (1971). _
be published elsewhere. Finally, we note that our methodl®! E-R. Vrscay, Phys. Rev. Left53, 2521 (1984);
can also be extended to the problems such as those in [11 E.R. Vrscay, Phys. Rev. &1, 2054 (1985).

. }6] A. Joseph, Rev. Mod. Phy89, 829 (1967); C. A. Coulson

We thank Profe_:ssor _H.J. S|Iv_erstone and Professor = 4 A Joseph, Rev. Mod. Phyag, 838 (1967).

_C- R. Handy for discussions. This work was supported [7] E. Brézin, J.C. Le Guillou, and J. Zinn-Justin, Phys. Rev.
in part by the NSERC, CFCSU, and the GACR (Grant = p 15, 1544 (1977); J. Zinn-Justin, J. Math. Phgg, 511
No. 202/00/1026). (1981).
[8] Proceedings of the Sanibel Workshop on Perturbation The-
ory at Large Order, Sanibel Conference, Florida, 1981,
edited by P.O. Léwdin and Y. Ohrn [Int. J. Quantum
Chem.21, 1 (1982)];Large-Order Behaviour of Perturba-
[1] H.J. Silverstone, E. Harrell, and C. Grot, Phys. Rev. A tion Theory, edited by J.C. Le Guillou and J. Zinn-Justin
24, 1925 (1981). See also T. Yamabe, A. Tachibana, and (North-Holland, Amsterdam, 1990).
H.J. Silverstone, Phys. Rev. Al6, 877 (1977); [9] W. Janke and H. Kleinert, Phys. Rev.4®, 2792 (1990).
H.J. Silverstone, Int. J. Quantum Chen2l, 125 [10] B. Simon, Ann. Phys. (N.Y.)58, 76 (1970); see also

(1982); H.J. Silverstone, J.G. Harris, Lizek, and C. M. Bender and T.T. Wu, Phys. Rei84, 1231 (1969).

J. Paldus, Phys. Rev. 82, 1965 (1985). [11] C.M. Bender and G.V. Dunne, J. Math. Phyf), 4616
[2] R.J. Damburg and V.V. Kolosov, J. Phys. B, 1921 (1999); R. Yaris, J. Bendler, R.A. Lovett, C. M. Bender,

(1978). and P. A. Fedders, Phys. Rev.18, 1816 (1978).

5686



