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WKB Approach to Calculating the Lifetime of Quasistationary States
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A novel WKB approach to calculating the lifetime of quasistationary states in the potential wells of the
form V �x� � P�x� 2 mQ�x�, where P�x� is the radial part of the potential for the spherically symmetric
harmonic oscillator or the hydrogen atom and Q�x� is a polynomial, is suggested. In this approach,
the usual explicit procedure of the asymptotic matching of the perturbative and WKB wave functions is
avoided and a simple formula for the imaginary part of the energy is found. The leading and the first
correction terms for the imaginary part of the energy and the related lifetime are analytically calculated.

PACS numbers: 03.65.Sq
The WKB method is one of the oldest approximate
methods of quantum mechanics. Despite this fact the stan-
dard formulation of the WKB method is difficult to use.
The usual explicit procedure of the asymptotic matching
of the perturbative and WKB wave functions in the in-
termediate region leads to very tedious and difficult cal-
culations [1–5]. This procedure must be repeated for
different potentials from the very beginning and no gen-
eral WKB formulas for measurable physical quantities are
known. In this approach, the higher order calculations are
very difficult.

In this Letter, we suggest a modified approach illustrated
in the calculation of the lifetime of the quasistationary
states of the Schrödinger equation,

�2d2�dx2 1 V �x��c�x� � Ec�x� , (1)

for the potential wells of the form

V �x� � P�x� 2 mQ�x� . (2)

Here, P�x� � ax22 1 x2 is the radial part of the po-
tential for the spherically symmetric harmonic oscillator;
Q�x� �

Pm21
i�0 aix2�m2i� is the perturbation potential. We

assume that 0 , m ø 1 is a small constant so that the
0031-9007�00�84(25)�5683(4)$15.00
potential V �x� is a smooth function without large oscilla-
tions. A similar problem also appears in the case of the
hydrogen atom, where P�x� � ax22 2 x21 and Q�x� �Pm22

i�0 aixm2i21. Here, we assume m $ 2, a0 � 1, and
a � l�l 1 D 2 2� 1 �D 2 1� �D 2 3��4, where l is the
orbital quantum number and D denotes the number of
space dimensions [6]. Some problems of this type have
been studied from the point of view of quantum field theory
(see, e.g., Refs. [4,7,8]) as well as nonrelativistic hydrogen
atom in constant electric field (see, e.g., Refs. [1–3,8]) or
models of quark confinement [5,9].

Because of the form of the potential, there is a small
probability that the particle escapes through the poten-
tial barrier to infinity. Therefore, the energy E � ReE 1

i ImE has a small imaginary part ImE , 0. In this Letter,
we first suggest a simple and straightforward way of cal-
culating the WKB wave function for the potentials (2). We
then derive a general formula for ImE and related lifetime
t � 21��2 ImE�. By using this approach, the usual dif-
ficulties of the WKB method are avoided and calculations
are greatly simplified. For the problems mentioned above,
we then find general analytic formulas for ImE and ReE.

The imaginary part of the energy is calculated from the
equation (see, e.g., Ref. [4])
ImE �
1
2i

limx!`�c�x� ���dc��x��dx��� 2 c��x� ���dc�x��dx����R`

0 jc�x0�j2dx0
. (3)
© 2000 The American Physical Society 5683



VOLUME 84, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 19 JUNE 2000

h

-

d

e

-

ir

e
is
d
-

n

)

f

The wave functionc�x� for small x inside the poten-
tial barrier is calculated in thenth order of the Rayleigh-
Schrödinger perturbation theory (RSPT)

c
�n�
RSPT�x� �

nX
i�0

ci�x�mi . (4)

Since the dominant contribution to the norm of the quas
stationary wave function is given by smallx, we replace
c�x� in the integral

R
`
0 jc�x0�j2 dx0 by c

�n�
RSPT�x� [1,4].

The numerator in Eq. (3) is calculated by means of t
WKB wave function,

c
�n�
WKB�x� � K exp

"
1

m1��m21�

11n�m21�X
i�0

Si�x�mi��m21�

#
,

(5)

whereK is a normalization constant discussed below.
To calculatec �n�

WKB
�x� we suggest a new simple ap

proach. For the sake of simplicity, we discuss here only t
case of the perturbed harmonic oscillator. The domina
contribution to the numerator in Eq. (3) comes from th
regionV �x� . ReE, wherex2 � mx2m [1–5]. To make
these terms of the same order inm, we perform the scaling
x � m21��2�m21��u in Eq. (1), which then becomes

m2��m21� d2

du2 c � �u2 2 u2m 2 �E0 1 a1u2�m21��

3 m1��m21� 1 . . .�c . (6)

Here, the RSPT expansion of the real part of the ener
ReE � E0 1 E1m 1 E2m2 1 . . . was used. By search-
ing for the solution of this equation in the form (5) an
comparing the terms of the same power ofm1��m21�, we
obtain equations from which theSi terms can easily be
calculated. Here, we give the resulting expressions for t
first two terms only:

S0�u� � 2
Z u

u0�1 2 u02�m21��1�2 du0 1 s0 (7)

and

S1�u� � 2
1
4

ln�u2 2 u2m�

2
E0

4�m 2 1�
ln

1 1 �1 2 u2�m21��1�2

1 2 �1 2 u2�m21��1�2

2
a1

2
�1 2 u2�m21��1�2

m 2 1
1 s1 , (8)

wheresi are integration constants. These solutions co
respond to the wave going through the barrier to infinit
The form of our WKB wave functionc

�n�
WKB is the same

as that obtained by taking the first2 1 n�m 2 1� terms of
5684
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the usual WKB expansion and expanding them up to th
nth order ofm. However, our approach is much simpler.

We now suggest a simple new method of the asymp
totic matching of the functionsc

�n�
RSPT�x� and c

�n�
WKB�x�.

These functions must equal in an overlap region of the
mutual validity defined by the inequalities ReE ø x2 ø
m21��m21�. Therefore, the logarithm of these functions ex-
panded up to thenth order ofm must be asymptotically
(for largex) equal:

11n�m21�X
i�0

Si�x�m�i21���m21� � lnc
�n�
RSPT�x�

1

11n�m21�X
i�0

Aim
�i21���m21�

1 O�1�x2� , (9)

where we have introduced

11n�m21�X
i�0

Aim
�i21���m21� � 2 lnK . (10)

The right-hand side of Eq. (9) can be considered as th
asymptotic expansion of the left-hand side. Generally, th
expansion containsx-dependent terms, constant terms, an
terms negligible in the overlap region. Henceforth, we nor
malizec

�n�
RSPT�x� in such a way that the asymptotic expan-

sion of lnc
�n�
RSPT�x� does not contain a constant additive

term in any order ofm. Furthermore, we putsi � 2A
�0�
i ,

whereA
�0�
i , is a constant term of the asymptotic expansio

of Si�x� for the bound state potentialV �x� � P�x�. This
choice of the normalization ofc

�n�
RSPT�x� and constantssi

leads toK � 1 for m � 0 so that the asymptotic matching
is also obeyed in this case. Then, it follows from Eq. (9
that Ai is a constant term of the asymptotic expansion of
Si�x� in the overlap region. Since theSi�x� depend on
m andx via the variableu � m1��2�m21��x and all of the
termsAi, i fi 1, do not depend onx andm, it is seen that
all Ai, i fi 1, can be calculated as the constant terms o
the expansion ofSi�u� nearu � 0 andsi � 0 for i fi 1.
To calculateA1 we return to the variablex,

S1�x� � 2
1
4

ln�x2 2 mx2m�

2

∑
E0

4�m 2 1�
ln

4
u2�m21�

1
a1

2�m 2 1�
1 O�u2�

∏xm1��2�m21��

, (11)

and get

A1 � 2
E0

4�m 2 1�
ln

4
m

2
a1

2�m 2 1�
. (12)

Here, we puts1 � lnm��4�m 2 1��.
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By calculatingK from Eq. (10), we obtain from Eq. (5)
the WKB approximation of the wave functionc�x� needed
in the numerator of Eq. (3):

c
�n�
WKB�x� � exp

"
11n�m21�X

i�0

�Si�x� 2 Ai�m�i21���m21�

#
.

(13)

Taking into account the asymptotics of the WKB wav
function for x ! `,

c
�n�
WKB�x� � exp

(
11n�m21�X

i�0

�Ci 2 Ai�m�i21���m21�

)

3
exp�im1�2xm11��m 1 1� �1 1 O�1�x2���

�2i�1�2m1�4xm�2 ,

(14)

whereCi denotes a constant term of the asymptotic ex-
pansion of Si�u� for u ! `; we obtain from Eqs. (3)
and (14) the final formula for the imaginary part of the
energy ImE:

ImE � 2
exp�2Re

P11n�m21�
i�0 �Ci 2 Ai�m�i21���m21��R`

0 jc
�n�
RSPT�x0�j2 dx0

.

(15)

The real part of theC1 term equals zero.
For m � 2, 3 all of the Si�u� terms can be calculated

analytically. Form . 3 the numerator in Eq. (15) can be
calculated fori fi 1 as follows: We split theSi�u� term
into two partsSi�u� �

R
bi�u� du 1 Di�u�, where the first

term obeys the condition
R1

0 bi�u� du , `. Since thebi

terms are real foru , 1 and purely imaginary foru . 1,
we can write

Re�Ci 2 Ai� �
Z 1

0
bi�u� du 1 Re�Vi 2 Pi�, i fi 1 ,

(16)

where Pi and Vi denote the constant terms of the ex
pansion ofDi�u� near zero and infinity, respectively. If
the integrals in theSi�u� terms cannot be calculated ana
lytically we integrate them by parts until Eq. (16) can
be used.

Our formula (15) has the following advantages. Firs
a general result similar to Eq. (15) has not been know
till now and any problem had to be solved from the ver
beginning. Second, the explicit asymptotic matching of th
functionsc

�n�
RSPT�x� andc

�n�
WKB�x� is avoided. Further, this

formula offers a systematic way of performing calculation
to an arbitrary order ofm1��m21�. Finally, the advantage
of Eq. (15) is that it uses only the minimal information
necessary for the calculation of ImE.
-

,
n

e
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To illustrate the use of Eq. (15) we first consider the pe
turbed harmonic oscillator. For this problem, we obtaine
from Eq. (15),

ImE � 2
2ea1��m21�

K! G�2N 2 K�

µ
4
m

∂2N��m21�

3 e2dm21��m21�
�1 1 R1m1��m21� 1 R2m2��m21�

1 . . .� , (17)
where

d �
G� 1

m21 �G� 3
2 �

�m 2 1�G� 3m21
2�m21� �

, (18)

N � K 1 l�2 1 D�4 is the principal quantum number,
andK � 0, 1, . . . denotes the radial quantum number. Fo
m � 2, the first correction coefficient equals

R1 � 2
17N2

2
2 3N 1

3j

2
2

5
12

2 3Na1 2
a1

2
2

a2
1

4
. (19)

For m . 2, we obtained

R1 �

Ω∑
N2�m 1 1� 2 j�m 2 1� 1

m2

12
2

m
4

1
1
6

1 Na1

∏

3 �3 2 m� 2
a2

1�m 2 2�
4

1
a2�m 2 1�

2

æ

3
1

�m 2 1�2

G�m22
m21 �G� 1

2 �

G� 3m25
2�m21� �

. (20)

For m � 2 andai � 0 for i . 0 we also derived the sec-
ond correction coefficient,

R2 �
1
16

∑
578N4 2 92N3 2

442
3

N2 2 90N 1 18j2

1 �2204N2 1 100N 1 26�j 2
155
18

∏
, (21)

wherej � a�4 2 3�16. The RSPT coefficients of the
energy can be for largen calculated via the dispersion
relation [4,8,10]

En �
1
p

Z `

0

ImE�m�
mn11 dm . (22)

By inserting formula (17) into this equation, we obtain th
large-order behavior of the RSPT coefficients:

En � 2
ea1��m21�24N��m21�2�m 2 1�

pK! G�2N 2 K�
d22N2n�m21�

3 G����m 2 1�n 1 2N���

3

∑
1 1

R1d
�m 2 1�n 1 2N 2 1

1 . . .

∏
. (23)

Special cases of Eqs. (17)–(23) can be found in [1–4,7,9].
Only a slightly different derivation leads to Eq. (15) also

in the case of the perturbed hydrogen atom. The imagina
5685
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part of the energy equals, in this case,

ImE � 2
ea1���m21�N�N22N24N��m21�23m22N��m21�

4K! G�2N 2 K�
exp�22�2N�2122��m21�dm21��m21� 1 �E1�N�dm,2�

3 �1 1 R1m1��m21� 1 R2m2��m21� 1 . . .� , (24)

where the principal quantum number equalsN � K 1 l 1 �D 2 1��2, E1 � 23N2 1 a, anda1 � 0 for m � 2. The
constantd is given by Eq. (18). Form � 2, we found the coefficients

R1 � 214N5 2 12N4 2
20
3

N3 1 2Na2 (25)

and

R2 �
2
9

N2�441N8 1 261N7 1 42N6 2 540N5 2 80N4 1 9a4 1 60Na3 2 �126N4 1 45N3 1 6N2�a2� . (26)

For m � 3 andai � 0 for i . 0 we obtained

R1 � 2pN2�5N2 1 1 2 3a� . (27)

By using Eq. (22), we also derived the large-order behavior of the RSPT coefficients:

En � 2
ea1���m21�N�N22N24N��m21�23�m 2 1� exp��E1�N�dm,2�

4K! G�2N 2 K�p
�2�2N�2122��m21�d�22N2�m21�nG����m 2 1�n 1 2N���

3

∑
1 1

2�2N�2122��m21�dR1

�m 2 1�n 1 2N 2 1
1 . . .

∏
. (28)
.
2

ill
o

[1
s
e
n

A
n

The particular cases of Eqs. (24)–(28) can be found in
[5,9]. Equations (17)–(28) were also verified numerically

We note that Eqs. (17) and (24) and Eqs. (23) and (
are asymptotic series valid for sufficiently smallm and
largen, respectively.

A more detailed report, including additional results, w
be published elsewhere. Finally, we note that our meth
can also be extended to the problems such as those in
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