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A Wentzel-Kramers-Brillouin ~WKB! approach for calculating the lifetime of the ground state of two
coupled oscillators with the most probable escape path along one of the coordinate axes is suggested. The
WKB approximation of the wave function in the neighborhood of this path is obtained by scaling the corre-
sponding variable. An analytic formula for the lifetime is derived and numerically verified. The method is
applied to the Henon-Heiles potentials. It is shown that the WKB method can be, in contrast to the numerical
ones, easily extended to the problems of an arbitrary number of spatial dimensions.
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I. INTRODUCTION

The problem of harmonic oscillators coupled by a quartic
interaction potential is of interest from the point of view of
classical ~see e.g., @1#! as well as quantum mechanics ~see
e.g., @2–5#! and even of general relativity @6#.

Within quantum mechanics, the coupled oscillators serve
as an important model system in the study of the unimolecu-
lar vibrational energy transfer ~see e.g., @2–4#! or stationary
states of the vibrational motion of the molecules ~see e.g.,
@5#! and the energies of stationary states have been calculated
in a number of papers @7–16#.

In this paper, we investigate this problem from the point
of view of the theory of resonances @17–19#, i.e., we calcu-
late the lifetime of the ground state of two coupled oscilla-
tors

F2

]2

]x2
2

]2

]y2
1V~x ,y !Gc5Ec . ~1!

Here, the potential

V~x ,y !5P~x ,y !2mQ~x ,y ! ~2!

consists of the potential of two independent harmonic oscil-
lators

P~x ,y !5x2
1v2y2 ~3!

and the potential describing their coupling

Q~x ,y !5x4
1gx2y2

1dy4. ~4!

We assume that the coupling constant m is small, 0,m!1
and v , g , and d are real parameters.

Due to the form of the potential, the energy E5Re E
1i Im E has a small imaginary part Im E,0, which can be
calculated as a series in the coupling constant m @17,18,20–
22#. The lifetime is given by the equation t521/(2 Im E).

To express Im E as a series in the coupling constant m one
usually proceeds as follows @17,20–22#. Starting from the
time-independent version of the continuity equation for the

probability density yielding ImE as a ratio of the probability
current at infinity and the norm of the wave function, the
wave function inside the potential barrier is approximated by
the Rayleigh-Schrödinger perturbation theory ~RSPT!. Since
the dominant contribution to the norm of the quasistationary
wave function comes from the region around the origin, the
RSPT approximation can be used to calculate the norm of the
wave function. The wave function in the classically forbid-
den region and outside the potential barrier is approximated
by the Wentzel-Kramers-Brillouin ~WKB! wave function.
Then, the WKB approximation is used to calculate the prob-
ability current at infinity. The same normalization of the
RSPT and WKB approximations is guaranteed by the
asymptotic matching of these functions in the overlap region
of their mutual validity.

The most difficult step in this procedure is the calculation
of the multidimensional WKB wave function. The standard
formulation of the WKB method cannot be used for this aim.
At the zeroth order of the method one has to solve the non-
linear equation

S ]S0~x ,y !

]x D 2

1S ]S0~x ,y !

]y D 2

5V~x ,y !2 Re E , ~5!

the analytic solution of which is not known.
It was noted in @17# that to calculate Im E it is not neces-

sary to know the approximate wave function for all x and y.
The dominant contribution to the probability current at infin-
ity comes from the neighborhood of the lines of the largest
gradient of the potential, called the most probable escape
paths ~MPEP’s!. To calculate Im E it is sufficient to know
these paths and the approximation of the wave function in
their neighborhood.

In @17#, the MPEP’s were determined as a solution of the
classical equations of motion and the WKB approximation in
the neighborhood of these lines was obtained via semiclassi-
cal approximation. The analytic formula for Im E was de-
rived for the case v51. This result was rederived in @18#
using the path-integral approach ~see also @19#!.

In this paper, we shall attack the problem from a different
point of view. Due to the form of the coupling potential
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Q(x ,y), Eq. ~4!, the probability current at infinity comes
from the neighborhood of four lines y50 (x axis!, x50 (y
axis!, y5x and y52x ~see also @17#!. In this paper we will
restrict ourselves to the case when MPEP is directed along
either x or y axes, i.e., to the first or second cases. In Sec. II,
we calculate the imaginary part of the energy assuming that
the MPEP is directed along the x axis. In the neighborhood
of the MPEP we suggest a novel WKB approximation to the
wave function. This approximation is obtained by scaling
one of the variables. This is the main point of this paper. The
rest of Sec. II is devoted to elaboration of this idea. First, we
find the terms of the WKB expansion. Second, the
asymptotic matching of the RSPT and WKB wave functions
in the overlap region of mutual validity is performed in the
same way as it was done for the one-dimensional problems
@20#. Finally, we derive an analytic formula for Im E for the
ground state of the problem, Eq. ~1!. In the Sec. III, this
formula is generalized to the case of the MPEP along the y
axis, to the problems of an arbitrary number of space dimen-
sions and to the Hénon-Heiles Hamiltonians. The result for
v51 known from previous papers is obtained as a special
case. New analytic results are verified numerically by means
of the dispersion relation technique and complex scaling
method in Sec. IV. It is shown that the multidimensional
WKB method provides very accurate results for the states
having a long lifetime. In the Appendix the properties of the
special functions needed in the Sec. II are derived.

II. CALCULATION OF THE IMAGINARY PART
OF THE ENERGY

In this section we perform the calculation of the imagi-
nary part of the ground state energy at the zeroth order of the

coupling constant m . To be more concrete, we suppose that
the MPEP is directed along the x axis. The case of the MPEP
directed along the y axis is discussed later.

Performing the scaling y→y /v1/2 Eq. ~1! becomes

F2

]2

]x2
1x2

1vS 2

]2

]y2
1y2D 2mS x4

1

g

v
x2y2

1

d

v2
y4D Gc5~Re E1i Im E !c . ~6!

Now we multiply Eq. ~6! from the left by c* and inte-
grate in the plane xy . Further we take complex conjugate of
Eq. ~6!, multiply it by c from the left and integrate. Subtract-
ing the resulting two equations and integrating by parts we
obtain

E
2`

` Fc~x ,y !
]c*~x ,y !

]x
2c*~x ,y !

]c~x ,y !

]x G
2`

`

dy

1vE
2`

` Fc~x ,y !
]c*~x ,y !

]y
2c*~x ,y !

]c~x ,y !

]y G
2`

`

dx

52i Im EE
2`

` E
2`

`

uc~x ,y !u2dx dy . ~7!

Since we suppose that the dominant contribution to the prob-
ability current comes from the current along the x axis, we
neglect the second term on the left-hand side of this equa-
tion. Because of the symmetry of the potential in Eq. ~6! with
respect to the inversion x→2x , the probability current for
x→` is the same as for x→2` . Hence, the formula for
Im E reads @17#

Im E5

1

i

E
2`

`

lim
x→`

@c~x ,y !~]c*~x ,y !/]x !2c*~x ,y !~]c~x ,y !/]x !#dy

E
2`

` E
2`

`

uc~x ,y !u2dx dy

. ~8!

A. Norm of the wave function

The wave function c(x ,y) in the denominator of Eq. ~8!
can be at the zeroth order of m replaced by the unperturbed
wave function, i.e., by the zeroth-order RSPT approximation
@17,20–22#

c0~x ,y !5e2(x2
1y2)/2. ~9!

The norm of this wave function equals

E
2`

` E
2`

`

uc0~x ,y !u2dx dy5p . ~10!

B. The WKB approximation of the wave function

The probability current at infinity, the numerator of Eq.
~8!, is calculated by means of the WKB wave function
@17,20–22#. According to our assumption, the dominant con-
tribution to the probability current at infinity comes from the
neighborhood of the x axis, that is from the region y'0. In
this region, the dominant contribution to the probability cur-
rent at infinity comes from the classically forbidden region
x2'mx4 @17,20–22#. To find an approximation to the wave
function in the region of large x'm21/2 and small y'0, we
scale the coordinate x by means of the substitution x
5m21/2u . Equation ~6! then becomes
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Fm2
]2

]u2
1mv

]2

]y2Gc

5Fu2
2u4

1mS vy2
2

g

v
u2y2

2E0D1 . . . Gc .

~11!

Here, the RSPT expansion of the real part of the energy
Re E5E01mE11m2E21 . . . was used.

At this point, we would like to emphasize that the scaling
of the variable x is the crucial idea for obtaining the multi-
dimensional WKB approximation of the wave function.
More detailed discussion follows.

Searching for the solution of Eq. ~11! in the form of the
WKB wave function taken at the zeroth order of m

cWKB
(0) ~u ,y !5expFS0~u ,y !

m
1S1~u ,y !G ~12!

and comparing the terms of the same power in m we find in
the minus first order of m

]S0~u ,y !

]y
50. ~13!

Obviously, this equation has the solution

S0~u ,y !5S0~u !. ~14!

In the zeroth order of m we find

dS0

du
56 u~12u2!1/2, ~15!

where the other terms on the left-hand side of Eq. ~11! vanish
due to Eq. ~13!. Equation ~15! can be easily integrated

S0~u !5

~12u2!3/2

3
2A0 . ~16!

Here, we chose the minus sign in Eq. ~15! to get the expo-
nentially decaying solution in the classically forbidden re-
gion corresponding to the particle going through the barrier
to infinity. The integration constant was put equal to 2A0.
This constant will be determined from the asymptotic match-
ing of the functions, Eqs. ~9! and ~12!. The eikonal term
S0(u) gives the probability current along the x axis. There-
fore, it is not surprising that it has the same form as for the
one-dimensional potential V(x)5x2

2mx4 @20#.
At the first order of m we get

2
dS0

du

]S1~u ,y !

]u
1

d2S0

du 2
1vF ]2S1~u ,y !

]y2
1S ]S1~u ,y !

]y D 2G
5y2S v2

g

v
u2D2E0 . ~17!

This is the equation for the transport term S1(u ,y) which
gives the probability current in the potential well in the vi-

cinity of the x axis. The terms depending only on the variable
u can be integrated as in the one-dimensional case @20#

S1~u ,y !52

1

4
ln~u2

2u4!2

E0

4
ln

11~12u2!1/2

12~12u2!1/2

1f~u ,y !2A1 , ~18!

where the integration constant was put equal to 2A1.
Inserting Eq. ~18! into Eq. ~17! we see that the function

f(u ,y) obeys the equation

22u~12u2!1/2
]f~u ,y !

du
1vF ]2f~u ,y !

]y2
1S ]f~u ,y !

]y D 2G
5y2S v2

g

v
u2D . ~19!

The solution of this equation is searched for in the form

f~u ,y !52

f ~u !

2
y2

2

ln g~u !

2
. ~20!

By inserting this ansatz into Eq. ~19! and comparing the
terms of the same power in y we obtain the equations for the
functions f (u) and g(u)

u~12u2!1/2
d f ~u !

du
1v f ~u !2

5v2

g

v
u2 ~21!

and

u~12u2!1/2

v

d ln g~u !

du
5 f ~u !. ~22!

The functions f (u) and g(u) can be expressed in terms of
the associate Legendre functions. The explicit form of these
functions is given in the Appendix.

C. The asymptotic matching

To find the integration constants A0 and A1 in Eqs. ~16!
and ~18! we require that for u→0 the RSPT and WKB func-
tions in the zeroth order of m ~asymptotically! equal @20#

S0~m1/2x ,y !

m
1S1~m1/2x ,y !5 ln c0~x ,y !. ~23!

To get the left-hand side of Eq. ~23! accurate in the zeroth
order of m , we take the expansion of the S0 and S1 functions
near u50 @20#.

For S0(u) we take the first two terms of the expansion

S0~u !5

1

3
2

u2

2
1O~u4!. ~24!

Substituting u5m1/2x and dividing this equation by m we get
in the zeroth order of m
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S0~m1/2x !

m
5

1

3m
2

x2

2
. ~25!

To get the asymptotic expansion of S1(u ,y) we take

2

ln~u2
2u4!

4
52

ln u2

4
1O~u2! ~26!

and

2

E0

4
ln

11~12u2!1/2

12~12u2!1/2
52

E0

4
ln

4

u2
1O~u2!. ~27!

By inserting the asymptotic expansion of the functions f (u)
and g(u) for u→0, Eqs. ~A3! and ~A9! of the Appendix, into
Eq. ~20! we get also the expansion of the function f(u ,y)

f~u ,y !52

y2

2
1

v

4
ln

4

u2
1O~u2!. ~28!

By inserting these expansions, Eqs. ~26!, ~27!, and ~28!, into
Eq. ~18! and substituting u5m1/2x we get in the zeroth order
of m

S1~m1/2x ,y !5

E02v21

2
ln x2

y2

2
2

E02v

4
ln

4

m
2

ln m

4
.

~29!

By inserting Eqs. ~25! and ~29! and the ground state en-
ergy E0511v into the left-hand side of Eq. ~23! and Eq. ~9!
into the right-hand side of Eq. ~23! we obtain in the zeroth
order of m

1

3m
2

1

4
ln

4

m
2

ln m

4
5

A0

m
1A1 . ~30!

This is the equation for the integration constants A0 and
A1 we searched for. Using this equation, the WKB and RSPT
approximations have the same normalization.

We note that for the excited states with the unperturbed
energies E052Kx111v(2Ky11), where Kx ,Ky
50,1,2, . . . , it is not possible to find the overlap region of
the mutual validity of the RSPT and WKB approximations.
The asymptotics of the RSPT approximation in the zeroth
order of m reads for an arbitrary state

ln c0~x ,y !'2

x2
1y2

2
1Kx ln x1Ky ln y . ~31!

Comparing the multiplicative factors in front of the logarith-
mic terms in Eqs. ~29! and ~31! shows, quite generally, that
the RSPT and WKB wave functions overlap only for the
states with Ky50. Analogously, taking the MPEP along the y
axis we find that the RSPT and WKB approximations over-
lap only for the states with Kx50. Obviously, our WKB
approximation does not provide sufficient information about
the wave function for large distances from the x or y axes.
This approximation is able to describe the exponential but
not the power dependence of the wave function in the direc-

tion perpendicular to that of the probability current. There-
fore, it can be used for the ground state but not for a general
excited state.

D. The final formula for Im E

Taking u→` in Eqs. ~16!, ~18!, and ~20! we get the as-
ymptotics of the WKB wave function

cWKB
(0) ~x→` ,y !5expF2(

i50

1

A im
i21G

3

e im1/2x3/3~11O~1/x2!!

~2i !1/2m1/2x

e2 f (m1/2x)y2/2

g~m1/2x !1/2
. ~32!

By inserting the last equation into Eq. ~8! and using Eq. ~30!
for the constants A0 and A1 we find that

Im E~m ,v ,g !52

2

p
S 4

m D 1/2

e22/(3m)T~v ,g !@11O~m !# ,

~33!

where

T~v ,g !5 lim
x→`

E
2`

`

exp@2Re f ~m1/2x !y2#dy

ug~m1/2x !u
. ~34!

The argument of the real functions f (u) and g(u) be-
comes purely imaginary for u.1 and is real for u,1.
Therefore, the functions f (u) and g(u) become for u.1
purely imaginary, while for u,1 they are real @see the dis-
cussion after Eq. ~A6! of the Appendix#. Thus, we can write

lim
x→`

Re f ~m1/2x !5 lim
u→`

Re f ~u !5 f ~u51 ! ~35!

and

lim
x→`

ug~m1/2x !u5 lim
u→`

ug~u !u5g~u51 !. ~36!

Hence, the function T(v ,g) can be written in the form

T~v ,g !5

E
2`

`

exp@2 f ~u51 !y2#dy

g~u51 !
5

p1/2

Af ~u51 !g~u51 !
.

~37!

Using the explicit form of the functions f (u) and g(u) given
in the Appendix the last equation can be rewritten in the form
~see Appendix!

T~v ,g !5

v1/2p

G~11v ! H 2 sin@p~n2v !#
G~11n2v !

G~11n1v !J
21/2

,

~38!

where
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n52

1

2
6

~114g !1/2

2
. ~39!

The imaginary part of the energy, Eq. ~33!, was obtained
as the product of three factors. The first one, 2/p , corre-
sponds to the norm of the two-dimensional wave function.
The second one, the m-dependent part, is the probability cur-
rent for the one-dimensional potential V(x)5x2

2mx4. The
last one, T(v ,g), is the probability current in the potential
well in the vicinity of the x axis for x2'mx4. For the one-
dimensional potential V(x)5x2

2mx4 this term equals 1.
For g5v(v11), the expression in the curly brackets in

Eq. ~38! equals zero and the function T(v ,g) diverges at this
point. For g.v(v11) this expression becomes negative
and the function T(v ,g) is purely imaginary. Therefore, Eq.
~33! can be used only for

g,v~v11 !. ~40!

When approaching the critical point g5v(v11) from the
left, Eq. ~33! becomes inaccurate. It is obvious that for g
>v(v11) the assumption of the MPEP oriented along the x
axis is not satisfied.

We note that for g,v(v11) the function T(v ,g) is
monotonically decreasing with increasing v for fixed g and
monotonically increasing with increasing g for fixed v .

For v51, Eqs. ~33! and ~38! yield the formula given in
@17,18#.

Finally we note that Eq. ~33! was obtained by performing
calculations at the zeroth order of m . Therefore, the error
following from the use of this equation is of the order m .

III. GENERALIZATION

In this section we discuss possible generalizations of the
formula, Eq. ~33!.

A. MPEP along the y axis

In the preceding section we supposed that the MPEP was
directed along the x axis. Here we show that, despite the
asymmetry in the x and y variables for vÞ1, the case of the
MPEP directed along the y axis can be treated in the same
manner.

Dividing Eq. ~6! by v we get

F2

]2

]y2
1y2

1

1

v S 2

]2

]x2
1x2D

2

md

v3 S y4
1

gv

d
x2y2

1

v2

d
x4D Gc

5

E

v
c . ~41!

Thus, performing the substitutions v→ṽ51/v , m→m̃

5md/v3, E→Ẽ5E/v , g→g̃5g/d , and d→ d̃51/d we
can also use Eqs. ~33! and ~38! for the imaginary part of the
energy given by the probability current along the y axis

Im Ẽ~m̃ ,ṽ ,g̃ !5v Im ES md

v3
,

1

v
,
g

d D . ~42!

The condition for applicability of Eq. ~38!, g̃,ṽ(11ṽ),
reads in terms of the original parameters

g,

d

v3
v~11v !. ~43!

It means that the assumption of the MPEP directed along the
y axis is justified if the parameter g satisfies condition ~43!.

Summarizing, our method can be used for the potentials
Eq. ~1! if the parameter g obeys inequalities Eqs. ~40! or
~43!.

B. Formula for an arbitrary number of space dimensions

The suggested method was also applied to the simplest
nonseparable model of the D-dimensional coupled oscillators
with the MPEP oriented along one of the coordinate axes

F(
i51

D

2

]2

]x i
2

1x1
2
1(

i52

D

v i
2x i

2
2mS x1

4
1x1

2(
i52

D

g ix i
2D Gc5Ec ,

~44!

where inequalities

g i,v i~v i11 !, i52,3, . . . ,D ~45!

are assumed. Proceeding along the same lines as in the two-
dimensional case, we easily generalize formula ~33! to an
arbitrary number of dimensions

Im E~m ,v2 , . . . ,vD ,g2 , . . . ,gD!

52

2

pD/2 S 4

m D 1/2

e22/(3m)P i52
D T~v i ,g i!@11O~m !# .

~46!

The individual terms in this formula have interpretation
analogous to that in Eq. ~33!. The first one, 2/pD/2, corre-
sponds to the norm of the D-dimensional wave function, the
second one, the m-dependent part, gives the probability cur-
rent along the x1 axis and the last one, the product of the
functions T(v i ,g i) gives the probability current in the D
21 dimensional well in the neighborhood of the x1 axis.

C. Hénon-Heiles Hamiltonian

The suggested method can be also applied to the case of
the Hénon-Heiles Hamiltonian

F2

]2

]x2
2

]2

]y2
1x2

1v8
2y2

2m8~x3
1g8xy2!Gc5Ec ,

~47!

which differs from the problem Eq. ~1! in the power depen-
dence of the variable x in the interaction potential.

Proceeding similarly as in the Sec. II we obtain
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Im E~m8,v8,g8!52

1

p

4

m8
e28/(15m8

2)T~2v8,4g8!

3@11O~m8
2!# , ~48!

where the function T(2v8,4g8) is given by Eq. ~38! for v
52v8 and g54g8. Formula ~48! can be used for g8 satis-
fying the inequality

g8,v8~v811/2!. ~49!

Analogously to Eq. ~33!, the first factor in Eq. ~48!, 1/p ,
corresponds to the norm of the wave function. This term is
twice smaller than that for the problem, Eq. ~1!. This is due
to the fact that the perturbation potential in Eq. ~47! is an odd
function of x, while in Eq. ~1! it is an even function. Thus,
while for the problem Eq. ~1!, there is a nonzero probability
current both at the x→` and x→2` limits, the probability
current vanishes for the problem Eq. ~47! at x→2` . The
second (m8-dependent! term in Eq. ~48! is the same as for
the one-dimensional potential V(x)5x2

2m8x3 @23# and
gives the probability current along the x axis. The last term,
T(2v8,4g8), gives the probability current in the well in the
vicinity of the x axis for x2'm8x3.

IV. NUMERICAL CALCULATIONS

In this section we describe numerical tests of the analytic
formulas found above. This is done in two ways: using the
dispersion relation technique and by direct numerical calcu-
lation.

A. Dispersion relation

The coefficients of the perturbation coefficients of the en-
ergy

E5 (
n50

`

Enbn ~50!

for the bound state potentials V(x ,y)5P(x ,y)1bQ(x ,y),
b.0 can be at large orders calculated via the dispersion
relation @17,21,22,24#

En52

1

p
E

2`

0 Im E~ b̃ !

b̃n11
db̃ . ~51!

The dominant contribution to the integral Eq. ~51! for n

→` comes from the region m→0, m52b̃ .
Thus, we can calculate perturbation coefficients for the

energy of the bound state problems either directly from the
perturbation theory or by inserting expression for Im E , Eq.
~33!, into Eq. ~51!. This method of verification of the formu-
las for Im E can be, however, used only for the potentials in
Eq. ~1! that have bound states for m52b . In the following
paragraph we find the conditions for the parameters in Eq.
~1! following from this requirement.

The existence of the bound states for the potential
V(x ,y)5P(x ,y)1bQ(x ,y) in Eq. ~1! for x50 requires d

.0. Since the term x2y2 reaches its maximum value for x
5y and x52y we rotate the coordinate axes about the right
angle

x̃5

x1y

A2
, ~52!

ỹ5

x2y

A2
~53!

and get from Eq. ~1! an equivalent equation

H 2

]2

] x̃2
2

]2

] ỹ2
1

11v2

2
~ x̃2

1 ỹ2!1~12v2!x̃ ỹ1

b

4
@~ x̃1 ỹ !4

1g~ x̃2
2 ỹ2!2

1d~ x̃2 ỹ !4#J c5Ec . ~54!

The stability of the potential in this equation for x̃50 or ỹ
50 requires that g.2(11d). Thus, the dispersion relation
Eq. ~51! can be used only for the potentials Eq. ~1! satisfying
the conditions

d.0,g.2~11d !. ~55!

These conditions are, however, the conditions restricting the
use of the dispersion relation Eq. ~51!, not the use of Eq.
~33!.

For m going to zero, behavior of Im E described by Eq.
~33! is given by behavior of the m-dependent part
m21/2e22/(3m). Therefore, for d,v3 leading to m.m̃ @see
Eq. ~42!#, the dominant contribution to the probability cur-
rent at infinity comes from the x axis, for d.v3 (m,m̃)
from the y axis, and for d5v3 (m5m̃) we have to sum the
contributions from both MPEP’s.

Hence, by inserting Eq. ~33! with m52b̃ into Eq. ~51!
we obtain the large-order behavior of the series Eq. ~50! for
the problem Eq. ~1!

En5

4

p2
T~v ,g !~21 !n11S 3

2 D n11/2

G~n11/2!

3@11O~1/n !# , d,v3, ~56!

En5

4v

p2
T~1/v ,g/d !A3

2
~21 !n11S 3d

2v3D
n

G~n11/2!

3@11O~1/n !# , d.v3, ~57!

and

En5

4

p2
@T~v ,g !1vT~1/v ,g/d !#~21 !n11S 3

2 D n11/2

3G~n11/2!@11O~1/n !# , d5v3. ~58!
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Using MAPLE we calculated the first 50 coefficients En in
the form of the rational numbers for different values of v , g ,
and d satisfying conditions ~40! or ~43! and ~55! by the dif-
ference equation method described in @17#. Extrapolating the
ratio of the exact En coefficients and those given by Eqs.
~56!, ~57!, and ~58! for n from 40 to 50 by means of the @5,5#
Thiele-Padé approximants ~see e.g., @25#! we obtained results
shown in Table I. It is seen that for g far from the critical
value v(v11) the accuracy of Eqs. ~56!, ~57!, and ~58! is
about eight significant digits. When approaching the critical
value, the accuracy of the formulas goes down as expected.
Furthermore, it is seen that for d approaching the value v3,
the contribution of both MPEP’s has to be taken into ac-
count.

By inserting Eq. ~46! for D53 into Eq. ~51! we obtain the
large-order behavior of the series Eq. ~50! for the problem
Eq. ~44!

En5

4

p5/2
T~v2 ,g2!T~v3 ,g3!~21 !n11S 3

2 D n11/2

3G~n11/2!@11O~1/n !# . ~59!

Using MAPLE we calculated the first 50 En coefficients. Nu-
merical verification of Eq. ~59! is shown in Table II.

The numerical analysis described above indicates that
Eqs. ~56!, ~57!, ~58!, and ~59! are exact for n going to infin-
ity. This implies that Eqs. ~33!, ~42!, and ~46! are exact for m
going to zero.

B. Direct numerical solution

Formula ~48! was compared for some definite values of m
with the numerical results obtained via the complex scaling
method ~see e.g., @23,26–28#!.

It is seen from Table III that for finite values of the cou-
pling constant m8 the WKB approximation provides for g
!v(v11/2) good results close to the exact value. As it can
be expected, the agreement between direct numerical solu-
tion and the WKB method goes down with increasing value
of the coupling constant m8 and for fixed v with increasing
g . Particularly, it is seen that for v53, the WKB method
provides for m8 between 0.17 and 0.19, good results only for
g smaller than 2, i.e., only for g sufficiently far from the
critical value 10.5.

Generally speaking, the WKB method is better, the
smaller the value of Im E is. Particularly, for negative values

TABLE I. The numerical test of the formula Eq. ~33! by means of the dispersion relation technique. The
values of the multiplicative constant in Eqs. ~56!, ~57!, and ~58! obtained numerically by @5,5# Thiele-Padé

extrapolation of the ratio En /@(21)n11( 3
2 )n11/2G(n11/2)# from the interval n from 40 to 50 are compared

with the functions (4/p2)T(v ,g) for d,v3, (4/p2)@T(v ,g)1vT(1/v ,g/d)# for d5v3, and
(4v/p2)T(1/v ,g/d) for d.v3 ~denoted as WKB!. D denotes the difference of the analytic and extrapolated
values.

v g d Extrapolation WKB D

2 16/3 0 5.870 083 062 7 5.874 998 385 2 0.49131022

2 4 0 2.570 547 036 1 2.570 547 387 8 0.35131026

2 3 0 1.728 278 668 5 1.728 278 681 5 0.13031027

2 2 0 1.244 216 074 0 1.244 216 079 6 0.55731028

2 -1 0 0.564 598 208 5 0.564 598 210 4 0.19131028

3 3 0 1.222 077 569 9 1.222 077 575 5 0.55731028

5 5 0 1.205 852 575 0 1.205 852 580 6 0.55631028

11 11 0 1.193 691 669 9 1.193 691 675 5 0.55331028

2 4 18/5 2.570 547 370 9 2.570 547 387 8 0.16831027

2 4 4 2.570 547 369 6 2.570 547 387 8 0.18131027

2 4 22/5 2.570 547 364 2 2.570 547 387 8 0.23531027

2 4 16/3 2.570 547 325 6 2.570 547 387 8 0.62131027

2 4 6 2.570 641 847 9 2.570 547 387 8 20.94431024

2 4 20/3 2.569 103 774 6 2.570 547 387 8 0.14431022

2 4 8 5.529 205 877 0 5.528 620 757 0 20.58531023

3 6 27 5.589 645 087 9 5.589 665 089 7 0.20031024

4 8 64 6.069 189 272 2 6.069 174 352 0 20.14931024

10 20 1000 10.039 074 161 9 10.039 075 275 2 0.11131025

2 4 32/3 2.310 262 074 2 2.310 226 605 8 20.35431024

2 4 12 2.159 849 893 7 2.159 850 698 3 0.80431026

2 4 20 1.795 059 117 6 1.795 059 125 6 0.79431028

2 4 40 1.595 941 057 4 1.595 941 063 9 0.65531028
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of g , the method provides very good results in the wide
range of the coupling constant m8 from 0 to about decimals.
This can be easily understood, because in the case of the
negative values of g , the assumption of the MPEP directed
along the x axis is fully justified.

V. CONCLUSIONS

An alternative WKB approach for calculating the lifetime
of the ground state of the coupled oscillators was suggested.
Assuming that the dominant contribution to the outgoing
probability current comes from that along one of the coordi-
nate axes we derived an alternative analytic formula for the
imaginary part of the energy. This formula extends the
known result in the case of the same frequencies to the case
of arbitrary frequencies of the oscillators. This formula was
further generalized for an arbitrary number of space dimen-
sions and verified via extensive numerical calculations. It
was shown that for the states having a long lifetime, the
suggested method provides very accurate results.

The proposed WKB method yields very good results for
the ground-state energy. For the excited states, however, the
proposed approximations seem to be inadequate. For these
states it is not possible to find the overlap region of the
mutual validity of the RSPT and WKB approximations and
hence guarantee the same normalization of these functions.
For a general excited state we obviously also need informa-
tion about the wave function at larger distances from the x or
y axes than can be achieved by our WKB approximation.

If the parameter g is so large that none of the conditions,
Eqs. ~40! and ~43!, is satisfied, the suggested method cannot
be used as well. This is because the function T(v ,g) Eq.
~38! appearing in the final formula for Im E Eq. ~33! be-
comes purely imaginary. In this case the dominant contribu-
tion to the imaginary part of the energy comes from the lines
y5x and y52x . At a glance, this case can be treated by
introducing new variables, Eqs. ~52! and ~53!, and applying
our method to Eq. ~54! for b52m . However, for vÞ1 a
new coupling term x̃ ỹ(12v2) appears in the unperturbed
part of the Hamiltonian. This term prohibits our method from
being used for vÞ1 and g.v(11v) and g.dv(1
1v)/v3. The physical reason for this is that our method, at
least in the present form, can deal only with straight line
MPEP’s, while the discussed case presents the problem of
the curved MPEP’s @17#. The extension of our method to

TABLE II. The numerical test of the formula Eq. ~46! for D53 by means of the dispersion relation
technique. The values of the multiplicative constant in Eq. ~59! obtained numerically by @5,5# Thiele-Padé

extrapolation of the ratio En /@(21)n11( 3
2 )n11/2G(n11/2)# from the interval n from 40 to 50 are compared

with the function (4/p5/2)T(v2 ,g2)T(v3 ,g3) for fixed v252, g252 and varying v3 , g3 . D denotes the
difference of the analytic and extrapolated values.

v3 g3 /(2v3) Extrapolation 4T(2,2)T(v3 ,g3)/p5/2 D

2 1 4.452 317 804 3 4.452 318 678 9 0.87431026

3 1 3.934 556 738 0 3.934 556 713 0 20.25031027

5 1 3.661 541 187 0 3.661 541 139 6 20.47431027

5 2 13.966 288 546 8 13.966 290 855 1 0.23031025

5 1/2 2.088 597 929 7 2.088 597 936 0 0.63131028

TABLE III. Comparison of the imaginary part of the energy
Im E obtained via the complex scaling method ~denoted as CS! and
WKB approximation for the Hénon-Heiles Hamiltonian Eq. ~47!.
The last number is rounded. The numbers in the parentheses give
the percentage error of the WKB approximation with respect to the
complex scaling method.

m8 v8 g8 CS WKB @error (%)]

0.15 A2 21 0.38031029 0.39531029 ~4.2!

0.15 A2 1 0.15231028 0.16731028 ~9.9!

0.15 2 1 0.11931028 0.12931028 ~8.4!

0.15 2 2 0.20731028 0.23031028 ~11.!
0.15 2 3 0.39131028 0.45231028 ~16.!

0.17 1 1/2 0.19931026 0.22231026 ~11.6!

0.17 3 1/2 0.13831026 0.15231026 ~10.1!

0.17 10 1/2 0.12431026 0.13531026 ~8.9!

0.17 50 1/2 0.11931026 0.13031026 ~9.2!

0.17 3 7 0.15931025 0.21231025 ~33!

0.17 3 6 0.10331025 0.13031025 ~26!

0.17 3 2 0.22831026 0.25731026 ~12.7!

0.17 3 1/3 0.13131026 0.14431026 ~9.9!

0.17 3 25 0.26631027 0.27531027 ~3.4!

0.18 1 1/2 0.13631025 0.15431025 ~13.2!

0.18 3 1/2 0.94731026 0.10631025 ~11.9!

0.18 10 1/2 0.84731026 0.93631026 ~10.5!

0.18 50 1/2 0.81531026 0.899 1026 ~10.3!

0.18 3 7 0.10631024 0.14731024 ~39!

0.18 3 6 0.69131025 0.90031025 ~30!

0.18 3 2 0.15631025 0.17831025 ~14.1!

0.18 3 1/3 0.89831026 0.99531026 ~10.8!

0.18 3 25 0.18331026 0.19131026 ~4.4!

0.19 1 1/2 0.68331025 0.78931025 ~15.5!

0.19 3 1/2 0.47831025 0.53931025 ~12.8!

0.19 10 1/2 0.42831025 0.47931025 ~11.9!

0.19 50 1/2 0.41231025 0.46031025 ~11.6!

0.19 3 7 0.51931024 0.75131024 ~48!

0.19 3 6 0.34131024 0.46131024 ~35!

0.19 3 2 0.78131025 0.91231025 ~17!

0.19 3 1/3 0.45331025 0.50931025 ~12.4!

0.19 3 25 0.93431026 0.97731026 ~4.6!
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these problems will be subject of further investigations.
Since the function T(v ,g) diverges at the point g

5v(v11), the proposed method also does not provide re-
liable results for the values of g satisfying conditions ~40!
and ~43! but too close to this critical point.

In this paper we considered only the simplest case of the
interaction potential, however, for the case of the straight line
MPEP’s, the extension to the more complex polynomial po-
tentials seems to be straightforward @17#.

From the mathematical point of view, the arguments given
in this paper are rather heuristic. Nevertheless, on the basis
of agreement of analytical and numerical approaches we be-
lieve that the results of this paper are correct. Thus, from a
mathematical point of view these results represent conjec-
tures that should be rigorously proven, namely the following
ones. First, the agreement of the complex scaling method and
the WKB approximation seems to confirm the conjecture
made in @23#, that the complex scaling method works for all
potentials, not only for dilation analytic ones @29#. Second,
one should get rigorous proof of the formula Eq. ~33!, as it
was also done for the Avron formula @30# describing the
Zeeman effect in the hydrogen atom in @31,32#. Since the
latter problem can be transformed to a problem similar to the
one considered in this paper, namely to the problem of four
coupled oscillators with internal O(2)3O(2) symmetry
@33#, this could be relatively easy. The last and probably the
most difficult problem is to find the connection between the
theory of pseudodifferential operators based on the Weyl
quantitization scheme ~see e.g., @31,34,35#! and the approach
suggested in this paper. Such a connection has to exist, be-
cause our formulation of the WKB method gives essentially
the same results as the usual semiclassical one.

The main result of this paper is that the WKB method can
be easily extended to the problems with an arbitrary number
of space dimensions ~see also @17#! for the polynomial po-
tentials with the straight line MPEP’s ~or for the potentials
that can be well approximated by these potentials!. This is
not valid for any numerical method and from this point of
view, the analytic WKB method is preferable to the numeri-
cal ones.

Until now, the multidimensional WKB calculation of the
lifetime of the ground state of the coupled oscillators has
been restricted to the case of the same oscillators frequencies
only. Since the method suggested in this paper generalizes it
to a wide class of the potentials with arbitrary frequencies of
the oscillators, we believe that it is of much interest.
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APPENDIX

In this appendix we derive the explicit form of the func-
tions f (u) and g(u) and their properties used in Sec. II.

Introducing the variable w5(12u2)1/2 and inserting Eq.

~22! into Eq. ~21! after some manipulation we get

~12w2!
d2g@~12w2!1/2#

dw2
22w

dg@~12w2!1/2#

dw

1S g2

v2

12w2D g@~12w2!1/2#

50 ~A1!

and

f @~12w2!1/2#5

w2
21

v

d ln g@~12w2!1/2#

dw
. ~A2!

Equation ~A1! is the equation for the associated Legendre
functions on the cut 21,w,1 @36#. Let us note that Eqs.
~A1! and ~A2! are for v51 identical to Eqs. ~4.17! and
~4.18! of @17#. However, they are derived in a different way
here.

The physically relevant solution of Eqs. ~A2! and ~A1!
can be found from the requirement that the overlap region of
mutual validity of the RSPT and WKB approximations ex-
ists. To satisfy Eq. ~23!, we have to get on the left-hand side
of this equation the term 2y2/2 appearing in ln c0(x,y) on
the right-hand side of this equation @see Eq. ~9!#. Therefore,
f (u) in Eq. ~20! has to approach 1 for u→0, i.e.,

f ~u !511O~u2! ~A3!

and g(u) has for u→0 behaved in such a way that all the
terms proportional to ln x on the left-hand side of Eq. ~23!
cancel. The solution of Eq. ~A1! satisfying these conditions
is

g@~12w2!1/2#5G~11v !Pn
2v~w !, ~A4!

where Pn
2v(w) denotes the associate Legendre function of

the first kind @36#

Pn
2v~w !5

1

G~11v !
S 12w

11w D v/2

FS 2n ,n11,11v ,
12w

2 D .

~A5!

Here, n is the solution of the quadratic equation

n~n11 !5g ~A6!

and F(2n ,n11,11v ,(12w)/2) is the hypergeometric
function @36#.

At this point it will be useful to comment the last two
equations. First, we note that the function Pn

2v(w) is a real
function of generally complex variable w5(12u2)1/2. This
is due to the fact that n , although generally complex, appears
in the series defining the hypergeometric function in the form
of the product n(n11) only @36#. Now, since w is real for
u,1 and purely imaginary for u.1, the function Pn

2v(w)
has real values for u,1 and purely imaginary values for u
.1. From Eqs. ~A4! and ~A2! we easily see that the same
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holds also for the functions g(u) and f (u). This fact is used
in Eqs. ~35! and ~36! of Sec. II.

Second, there is a question which of the solution of Eq.
~A6!

n52

1

2
6

~114g !1/2

2
~A7!

is physically relevant. It is seen, however, that due to the
symmetry @36#

Pn
2v~w !5P

2n21
2v ~w !, ~A8!

the two solutions given by Eq. ~A7! are physically equiva-
lent. For this reason, an arbitrary of these solutions can be
taken.

Now we derive the asymptotic expansion of the function
g(u) for u→0. The hypergeometric function F(2n ,n11,1
1v ,(12w)/2) in Eq. ~A5! goes to 1 for u→0 (w→1).
Therefore, we get from Eqs. ~A4! and ~A5! that the function
g(u) behaves for u→0 (w→1) as

g~u !5S 12~12u2!1/2

11~12u2!1/2D
v/2

@11O~u2!#

5S u2

4
1O~u2! D v/2

@11O~u2!# . ~A9!

Finally, we derive the explicit form of the function
T(v ,g) needed in the final formula Eq. ~33! for Im E

T~v ,g !5

p1/2

Af ~u51 !g~u51 !
. ~A10!

Using Eqs. ~A2! and ~A4! at the point w50 corresponding to
the point u51 we can rewrite the last equation in the form

T~v ,g !5

p1/2v1/2

A2

dg~~12w2!1/2!

dw
uw50g~w50 !

5

p1/2v1/2

G~11v !
S 2Pn

2v~w50 !
dPn

2v~w !

dw
Uw50D 21/2

.

~A11!

Taking into account the properties of the associate Legendre
functions and the Gamma function @36#

Pn
2v~w50 !5

22v

Ap
cosFp2 ~n2v !G GS 11n2v

2 D
GS 11

n1v

2 D ,

~A12!

dPn
2v~w !

dw
uw505

22v11

Ap
sinFp2 ~n2v !GGS 11

n2v

2 D
GS 11n1v

2 D ,

~A13!

and

G~2z !5~2p !21/222z21/2G~z !G~z11/2!, ~A14!

the formula for the function T(v ,g) can be further simplified
to the form identical to Eq. ~38! of Sec. II

T~v ,g !5

v1/2p

G~11v ! H 2 sin@p~n2v !#
G~11n2v !

G~11n1v !J
21/2

.

~A15!
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