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Abstract

In previous work (Skila L and Cizek J 1996 J. Phys. A: Math. Gen. 29
L129, 6467), a new method of calculating perturbation energies for one-
dimensional problems based on the linear dependence of the perturbation
wavefunctions on the perturbation energies has been suggested. It is shown
in this letter that this method can be extended to multi-dimensional problems
and the linearity can be used not only at a boundary point but also at an arbitrary
point inside the integration region. Degenerate eigenvalues are also discussed.
The resulting perturbation theory is very simple and can be used at large orders.

PACS numbers: 03.65.—w, 31.15.Md

In this letter, we are interested in the perturbation theory for the bound states of the Schrodinger
equation

Hy (x) = Ev(x). (1)

As usual in the perturbation theory, we assume the Hamiltonian, wavefunction and energy in
the form

H = Hy + AH,, ®)
Y=o+ AP+ A+ 3)
and
E=Ey+AE +\Ex+---, 4)

where A is a perturbation parameter. Using these assumptions in the Schrodinger equation (1),
we get the well-known equations for E, and v,,:
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Hoyro = Eoro 5)

and
HoYy + HiYoy = Y Eithni, n=1.2,.... (6)
i=0

We note that 1/ denotes the unperturbed wavefunction of the Hamiltonian Hy. Depending on
the problem in question, it can be the ground-state or the excited-state wavefunction.

Despite the well-known formulations that can be found in any textbook on quantum
mechanics, there is one property of the perturbation theory which has been noticed [1, 2]
and used [3-8] only recently. It has been shown in the one-dimensional case [1,2] that the
value of the perturbation wavefunction v, (x) at an arbitrarily chosen point x depends on the
perturbation energy E, linearly. This linear dependence makes it possible to determine the
exact perturbation energies from the values of v, (x) for two arbitrarily chosen perturbation
energies E, by simple calculation [1,2]. In this way, the functions v, which are not
quadratically integrable are used to calculate the exact perturbation energies E, and, in the
next step, the corresponding exact perturbation functions ,.

This method has a few advantages. In contrast to the usual formulation of the perturbation
theory, this method based on the computation of v, from equation (6) for a given energy E,
can easily be programmed for arbitrarily large orders of the perturbation theory. For example,
200 perturbation energies necessary for finding the large-order behaviour of E,, were calculated
in [7]. Further, by solving equation (6) numerically, both the discrete and continuous parts of
the energy spectrum are taken into account and the perturbation energies E, can be calculated
even in cases where only a few bound states exist. The linear dependence of ¥, (x) on the
energy E, makes it possible to avoid the usual shooting method and reduce the computational
time substantially. Finally, we note that only the wavefunctions are needed in this method and
no integrals have to be calculated.

The aim of this letter can be formulated as follows. First, it is shown that this method can be
extended to multi-dimensional problems. Further, it is shown that the point x mentioned above
need not be just a point sufficiently distant from the potential minimum as assumed in [1, 2],
but can be an arbitrary point inside the integration region obeying conditions discussed below.
This is advantageous from the point of view of the numerical stability of the method. Finally,
the method is extended to degenerate energies. As examples, the perturbation energies for two
coupled harmonic oscillators and two coupled Morse oscillators are calculated.

First we discuss anon-degenerate multi-dimensional case. We assume that the perturbation

functions v; and perturbation energies E; are already computed fori = 0, ...,n — 1. The
solution of equation (6) can be written as
YUn(En, x) = E,F(x) — fu1(x), n=12..., )
where
F(x) = (Ho — Eo)”'Yo(x) ®)
and
n—1
fam1(¥) = (Ho — Eo)™ <H1 Ynor (¥) = Y Eﬂ//n—i(x)>- ©))
i=1

The general solution of equation (6) can contain also a term ¢, ¥ (x) in the right-hand side of
equation (7), where ¢, is an arbitrary constant. For the sake of simplicity, we assume ¢, = 0
here. As seen from equation (7), the perturbation function v, (E,, x) depends on the energy
E, which is not yet known and the point x = [xy, ..., xy] in N-dimensional space.
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Equations (7)—(9) show that the structure of the perturbation functions is very simple. It
follows from equation (7) that the function v, (E,, x) is a linear function of the energy E,,.
Further, it is seen that F(x) is a function independent of n. We note also that, except for the
case where E,, is the exact perturbation energy, ¥, (E,, x) is not quadratically integrable and
has no physical meaning.

The functions F(x) and f,_;(x) are calculated from equations (8) and (9) numerically
with the conditions F(x;) = 0 and f,,—;(x,) = 0, where x; are points in the boundary region
sufficiently distant from the potential minimum. The same boundary conditions are used for
the function o (x).

We note that the function F(x) which would diverge in the exact calculation has large
but finite values in numerical calculations. The functions v, (E,, x) for the exact perturbation
energy E, are quadratically integrable. Therefore, we can assume that they obey the condition

[ (En, x)| < |F(x)]. (10)
It follows from equations (7) and (10) that the functions v, (E,, x) also satisfy the condition
[V (En, X)| K [ fu1(X)]. (11)
Therefore, we can neglect ¥, (E,, x) in equation (7). The formula for the energy E,, then reads
E,,: fnfl(-x). (12)

F(x)

This equation can be used at an arbitrarily chosen point x inside the integration region—except
for the points where the conditions (10) and (11) are not obeyed.

If the perturbation energy E, is calculated from equation (12), the corresponding
perturbation function v, (E,, x) can be found from equations (7)—(9).

Now we clarify the principle of our method in more detail. In order to eliminate the
divergence in calculating F(x) from equation (8), we replace the Hamiltonian Hy by Hj + 14,
where § is a small real number. Then, the function F(x) can be written as

1
Fx) = Z9o(x). 13)

In the first order n = 1, we expand the function in the parentheses in equation (9) into the
eigenfunctions of Hy:

Hy o (x) = botho() + Y bjp; (x). (14)
J

Here, ¢; are the eigenfunctions of H, which obey the equation Hyg; = &;¢; and are different
from vro; the b; are constants. Now, applying the operator (Hy — Eo) ! to equation (14) we
obtain

1 ’ 1
fol) = “hovo(x) + ; LI (15)

E

where £; # E(. By substituting equations (13) and (15) into (7) we get

_ E, — by / 1 -
Yi(Er,x) = = (x) - ; mbm(x). (16)

In order to obtain a quadratically integrable function ¥, the energy E; must equal by. For
6 — 0, the constant by can be calculated from equations (13) and (15):
_ Jo)

CF()

a7

1=bo
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This result is an independent proof of equation (12) for n = 1. By substituting E; = by into
equation (16) it can also be shown that the function v is orthogonal to ¥(. In a similar way,
the correctness of equation (12) and the orthogonality of the functions v, to vy can be proven
at all higher orders.

In numerical calculations, the sum in equation (15) is much smaller in absolute value than
the first term but it cannot be neglected. Therefore, the energy E| computed from the equation

Er(xo) = 2200 (18)
F(xo)
depends slightly on the choice of the point xo. Calculating ¥; from equation (7) forn = 1 we

get the function

_ Jolxo) F(x) — fo(x) F(xo)

Yi(Er, x) = (19)
F(xo)
This shows that the function v, calculated in this way equals zero at the point xg:
Vi(Er, x0) = 0. (20
Therefore, the usual orthogonality condition (y|¢;) = O is not fulfilled in numerical

calculations. It can easily be shown that this result can be extended to all functions ,.
As shown in [6], such functions can have in some cases a simpler form than the usual
perturbation functions. If necessary, the functions v, can be made orthogonal to ¥y by the
usual orthogonalization procedure.

Itis seen from equation (13) that equation (10) is fulfilled everywhere inside the integration
region except for the points where ¥y(x) = 0. Therefore, the point x used in the calculation of
the energy (12) should be sufficiently distant from the points where the function v (x) equals
Zero.

The standard formula of the non-degenerate perturbation theory can be derived in the
following way. It is seen from equations (8), (9) and (12) that

n—1
E,(Hy — Eo)~'%o = (Hy — Eo)”" (Hl Yno1— Y E,«/fn_,). 1)
i=1
Multiplying this equation by (Hy — Ej) and supposing that the functions 1, obey the conditions
(Volvn) =80n,n=0,1,..., we get after simple calculation the well-known formula
Ey = (YolHiln—1). (22)

This confirms the correctness of equation (12).

Our method is a remarkable example of calculating the perturbation energies E, from the
values of the functions F(x) and f,_;(x), which are not quadratically integrable. Comparing
with the standard formulation of the perturbation theory, large-order calculations are simple in
our method. To determine E|, the values of F(x) and fy(x) at just one point x are sufficient.
To determine E, forn = 2,3, ..., only the value of f,,_;(x) at the point x is to be computed.
Therefore, this method of calculating E,, is much faster than the usual shooting method.

We note that the zero-order function 1, has to be found only for the state for which the
perturbation corrections are calculated. In contrast to the case for usual perturbation theory,
other zero-order energies and wavefunctions are not needed in the calculation.

Now we discuss the first-order perturbation correction to a degenerate eigenvalue Ej.
Assuming that the energy Ej is dy-times degenerate and the corresponding zero-order function
Yo in equation (6) is replaced by the linear combination

do . )
j=1
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it follows from equation (6) that equation (7) can be generalized as

do

Y1 (Er,x) = E12a<“F<f>(x> Za“) o/ (), (24)
where
FU(x) = (Hy — Eo) ™' (x) (25)
and
W (x) = (Hy — Eo) "Hiyrd” (x). (26)

It is seen from equation (24) that ¥ (E;, x) depends on E; linearly as in the non-degenerate
case. Therefore, by analogy with the non-degenerate case, we can derive the formula for the
perturbation energy E:

leo (j)f(j)(x)
S ay FO@)

Here, fo(j )(x) and FY(x) are known, E; and aéj ) are to be found. To find E; and aéj ) we
exploit the fact that the energy E| is a constant and use equation (27) at dy different points

E, = 27)

X = X1, ..., Xq, inside the integration region. Then, the solution of the equations
dq (J) (1) o ,U) £() do () £(])
Zoz (x1) leol 0 f (x2) o 2101 0 f (xdo) (28)
1 1 T
Y a 3”F<f>(x1> Y0 ag FO (x) > a FO (xq)

yields dj sets of the coefficients a(j ). dy values of the energy E| are given by equation (27)
and the corresponding perturbatlon functions equal

([0 . .
v =Y aiyg. (29)
j=1

The usual formulation of the first-order degenerate perturbation theory can be derived
from equation (27) as follows. We substitute equations (25) and (26) into (27) and get for a
point x

Y ag” (Ho — Eo) " Hyyg” (x)

NS o= By ) .
Multiplying the numerator and denominator by (Hy — Ey) we get
di ) ()
E = Zz’odi ao’(jf;(ﬂj)’(;;) (31)
and
E i: i’y (x) = Zag”H v (x). (32)
j=1

Further, multiplying this equation from the left side by the complex conjugate function xp( D*(x),

integrating over x and assuming orthonormality of the functions woj ) (x), the standard secular
problem is obtained:

dy

> (Wi — Exsipag’ =0, i=1,....d, (33)
j=1
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where

Wii = (W | H 1y ") (34)

Higher orders of the degenerate perturbation theory can be discussed in the following
way. It is assumed that the energy Ej is dp-times degenerate. In the first-order calculation
described above, dj functions y; corresponding to dy values of the energy E; are obtained. If
the degeneracy is removed only partly, some of the energies £ may be equal. For each of these
functions 1|, we make the second-order calculation and d functions ¥, with the corresponding
energies E, are obtained. In this way, we continue until the (n — 1)th order is reached. Now
we want to calculate the perturbation energy E, and the corresponding perturbation functions
¥, (E,, x). By analogy with the first-order calculation we assume

do n—1 dy

Yn(Ey, x) = E, Za(J)F(f)(x) Y a7, n=2,3,..., (35)
i=1 j=1
where
FD(x) = (Hy — Eo) 'y’ (x), (36)
and
fP(x) = (Ho — Eo) ' Si 1 Hi — En )0 (x). (37)

These equations yield

n—1 d (j) )
i Z/Ol i i ()

E, = n=273,.... (38)
1
YO ag PO (x)

Here, a(j ) is one set of the coefficients calculated from equation (28) and a(j ) for i =
1, ..., n — 2 are the corresponding coefficients. The coefficients a(’ )1 are to be found. Then,
the solutlon of the equations

) £() —1 4 ) £ —1 \d ) £
Z Z/ 1 t/fj(x) Z?:l Z(jol t/fj(x) Z?:] Z;Ol llf,(xlo)

i = 1 = 1
Y& ad" FO (xy) Y a FU)(x) YO ag FO(xg,)

(39)

at dy different points yields the coefficients an »J =1,...,do. The corresponding energy
E, is given by equation (38) and the perturbation functlon equals

Za(J) (J) (40)

This calculation has to be performed for all the sets of the coefficients a ) obtained from
equation (28).

It is seen that our formulation of degenerate perturbation theory is simpler than the usual
formulation [11] and can be used at large orders. _

Assuming the normalization of the functions I/fé') and the orthogonality of the functions

w,fj) to wéi), k=1,...,n— 1, we obtain from equations (35)—(38)

Z(xp(’)m e = E,al, i=1,...,do. 41)

J=1

This equation is a generalization of equation (22) to degenerate case.
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Table 1. Perturbation energies E, for the ground state of the Hamiltonian (42). Ej is the exact
zero-order energy.

n E,

2
—0.750 000 000
—0.937 50000
—0.0234375000
—0.0133056640
—0.000315 348 30
—0.013279491
0.0240443106
—0.074 303 068 7
9  0.234920366
10 —0.84554255
11 3.34568731
12 —14.494 654 8
13 68.195859
14 —346.32541
15 1888.18252
16 —11000.3994
17 68201.932
18 —448367.10
19 31154240
20 —22813412.6

0 N0 N R WD —O

As an example of using our method, we first calculated the perturbation energies for the
ground state of two non-linearly coupled harmonic oscillators [9, 10]:
H=—a—2—8—2+x2+x2+k(x2x2—x2—x2) (42)
ox>  ax2 ) 1%2 1 2)-
To compute ¥, from equation (6) in the region x; € [—11, 11], x, € [—11, 11], we used
158 x 158,160 x 160, 162 x 162, 164 x 164 grids of points, assumed that the functions
¥, equal zero at the border of this region and solved the corresponding system of difference
equations in double-precision accuracy in Fortran. To eliminate the effect of the non-zero
steps of the grids, the perturbation energies were extrapolated to an infinitely dense grid by
means of the Richardson extrapolation. The ground-state perturbation energies are shown in
table 1. Only the digits which agree in the calculations for the points x = [0, 0] and [1, 1]
are shown. These results agree also with an independent calculation made by means of the
difference equation method suggested in [10]. The dependence of the results on the choice of
the point x is small.

As a second test, we chose a more difficult problem with only one bound state of the
Hamiltonian H, where the standard perturbation theory yields the first-order correction E;
only. The perturbation energies were calculated for the ground state of two coupled Morse
oscillators:

R
ax?  dx?
The integration region x; € [—12,20] and x, € [—12,20] was used. The ground-state
perturbation energies are shown in table 2. Only the digits which agree in the calculations for
x = [4, 4] and [5, 6] are shown. The value of E; = 0.25 was verified by analytic calculation.
The decrease in accuracy of the energies E, with increasing n is due to the fact that the

H = +(1—e™2+(1—e™)?+1(1—e )21 —e ™). (43)
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Table 2. Perturbation energies E, for the ground state of the Hamiltonian (43). Ej is the exact
zero-order energy.

E,

N

312

0.2500000
—0.069 635

0.03903
—0.0366

0.0920
—0.611

6.43
—89.2

1550

Nl o Y I A S )

functions 1, spread with increasing n rapidly, and get out of the integration region. These
results show that, in contrast to the case for standard perturbation theory, our method can be
used for calculating higher-order perturbations even in the case of only one zero-order bound
state.

It is obvious from tables 1 and 2 that both perturbation series fail to converge and are
asymptotic series only.

We verified that equations (27) and (28) yield correct numerical results for the
Hamiltonian (42) and dy = 2, 3. Further results will be published elsewhere.

Summarizing, the method described in this letter is simple and efficient alternative to the
usual formulation of the perturbation theory. It can be used for one-dimensional as well as
multi-dimensional problems and for non-degenerate as well as degenerate eigenvalues. Its
main advantages are easy calculation of the large-order perturbations and the possibility of
finding the perturbation corrections even in cases where only a few zero-order bound states
exist.
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