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New summation technique for rapidly divergent
perturbation series. Hydrogen atom in magnetic field
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The perturbation series for the ground state energy of the hydrogen atom in the
external magnetic field is summed via the sequence transformations. The formula
for the large-order behavior of the partial sums of the series is derived. From this
formula a new general sequence transformation is suggested. This transformation
contains free parameters that can be further optimized. It is shown that if the
renormalization approach is used, the optimal choice of these parameters leads to
the previously suggested Weniger transformation. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1541119#

I. INTRODUCTION

The hydrogen atom in a constant magnetic field is an elementary but tricky problem, and
deal of effort has been devoted to the solution of this problem~see, e.g., Refs. 1–20 and referenc
therein!. It is of special interest from the point of view of the summation of the divergent pe
bation series. Searching for the solution of the Schro¨dinger equation,
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in the form of the Rayleigh–Schro¨dinger perturbation series in the powers of the intensity of
constant magnetic fieldB
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it appears that the perturbation coefficientsEn behave for largen as1–4

En5~21!n11S 4

p D 5/2S 8

p2D nS 2n1
1

2D ! ~11O~1/n!!. ~3!

It means that the series~2! diverges for everyuBu.0. Moreover, because of the peculiar logarit
mic behavior of the energy for high magnetic fields,5 the series is known to be one of the mo
difficult summable divergent series encountered in physics. Particularly, it is known2 that the
series is not efficiently summed by the Pade´ approximants, the most widely used summati
technique~see, e.g., Refs. 21–23!. Some time ago a new method for the summation of
divergent series, the so-called Weniger summation, was introduced.24,25 This method was com-
bined with the renormalization approach26 and succesfully applied to the one-dimensional anh
monic oscillators.24 Since there have been only a few attempts to sum the series for the hyd
atom in the magnetic field,2,6,7 we apply the Weniger summation technique to this problem
better understand its advantages and drawbacks.

The article is organized as follows. In Sec. II, the large-order behavior of the partial sum
the series~2! is derived. On the basis of this behavior a new general sequence transforma
suggested. This transformation contains free parameters that can be further optimized. In
9620022-2488/2003/44(3)/962/7/$20.00 © 2003 American Institute of Physics
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cases, both previously suggested Levin23,27,28and Weniger,24,25 sequence transformations are o
tained. In Sec. III, the renormalization of the energy and the coupling constant is made. In th
section, Sec. IV, discussion of the results and a few general remarks on the sequence tran
tions are made.

II. SEQUENCE TRANSFORMATIONS

On the basis of some heuristic arguments we suggest in this section a new sequence t
mation. We shall proceed in an intuitive way and arguments given here should serve onl
basis for more rigorous treatment.

For the sake of simplicity, we replace the coefficientsEn of the series~2! by their large-order
behavior~3! and consider the partial sums of such a series

sm5 (
n50

m

an , ~4!

where

an5C~21!n11S B2

p2D nS 2n1
1

2D ! ~5!

andC5(4/p)5/2.
Obviously, the partial sums~4! have no limit in ordinary sense and, consequently, the sum

the series(an does not exist in ordinary sense. Nevertheless, we can try to give some mean
the sum of such a series. Namely, we can try to fit the partial sums~4! to a finite number of terms
The most natural way of doing it is to write the system ofl equations

sm5c0am1c1am211¯1cl 22am2 l 121s, m5n2 l 11,...,n, ~6!

for l unknown coefficientsc0 ,c1 ,...,cl 22 and s. As discussed below, the coefficients has the
meaning of the generalized sum of the series. Since the index of the coefficientam2 l 12 has to be
greater or equal to zero, and since the smallest value ofm is n2 l 11, we takel as the integer par
of (n13)/2.

Now, we extend the meaning of the limit to the sequence (21)n11(2n1 1
2)!. Particularly, if

we say that such a sequence exhibits ‘‘regular oscillations’’ and its generalized limit is zero
the divergent regular oscillationsciai are singled out by the transformation~6! and the remaining
constant terms approaches with increasingn the generalized sum of the series(n50

` an .
This transformation yields nothing but Pade´ approximants@n,n# and@n21,n# for n even and

odd, respectively. This is most easily seen by transforming the system of Equations~6! to the
system of equations for computing the Pade´ approximants,@see, e.g., Eq.~3.10! in Ref. 24#.

However, the Pade´ summation~6! does not work efficiently enough for the series with t
coefficients growing like (21)n(2n)! ~see, e.g., Ref. 2!, which is also our case. The transform
tion ~6! for such a series is not able to single out all of the regular oscillations and a more effi
method has to be found.

Let us insert the explicit form of the coefficientsan , Eq. ~5!, into the system of the equation
for the partial sums~6!. Then, this system can be rewritten into the form

sm5C~21!m11~2m11/2!! ~B/p!2mS c01c1

p2

B2~2m2 1
2!~2m2 3

2!

1c2

p4

B4~2m2 1
2!~2m2 3

2!~2m2 5
2!~2m2 7

2!
1...D 1s. ~7!

For largem, the partial sumssm behave as
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sm5C~21!m11S 2m1
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2D ! S B

p D 2mS d01
d1

m11
1

d2

~m11!2 1...D1s, ~8!

where the coefficientsdi can be obtained from the coefficientsci by expanding Eq.~7! into the
asymptotic series in the powers of 1/(m11). If we fitted the partial sumssm to the infinite number
of the coefficientsci or di , there would be no difference between the sequences~7! and ~8!.
However, if we fit the partial sumssm to afinite number of the coefficientsci or di , the sequence
transformation~8! accounts better for the large-order behavior of the partial sumssm than the
transformation~7!.

On the basis of these considerations we suggest a new generalized sequence transfo

sm5amS d01
d1

~m1q1!
1

d2

~m1q1!~m1q2!
1...1

dl 22

~m1q1!~m1q2!...~m1ql 22! D1s,

~9!
m5n,...,n1 l 21,

whereqi , i 51,2,...,l 22, are arbitrary coefficients that have to be determined from some a
tional requirement andn denotes the index of the first partial sum taken into account. In princ
it can be arbitrary; however, for fast convergence of the method it is convenient to take it
but not necessarily equal, to zero~see below!.

Equations~9! represent a system ofl equations forl unknownsd0 ,d1 ,...,dl 22 and s. It is
remarkable that, regardless of the particular form of the coefficientsqi , the system of equation
~9! can be solved in the closed form, namely

s5sn1
( j 50

l 21~21! j @~ l 21!!/ ~ l 212 j !! j ! # P i 51
l 22~ j 1n1qi !~sj 1n2sn!/aj 1n

( j 50
l 21~21! j @~ l 21!!/ ~ l 212 j !! j ! # P i 51

l 22~ j 1n1qi !1/aj 1n
. ~10!

This can be interpreted that the sum of the series is thenth partial sum plus a correction involvin
partial sums of higher order. This result, which is the main result of this article, was derive
generalizing the procedure for derivation of the Levin23 and Weniger24 transformations. In specia
casesqi51 andqi5 i , the Levin and Weniger transformations are obtained, respectively.

III. RENORMALIZATION

In this section, the renormalization of the energy and the coupling constant is discusse
Proceeding similarly as in Ref. 26, we make the scaling transformationx→(12k)x, y

→(12k)y andz→(12k)z. Equation~1! then becomes

~12k!22F2
¹2

2
2

12k

r
1

B2

8
~12k!4~x21y2!Gc5Ec. ~11!

Introducing the renormalized coupling constantk related to the coupling constantB via the
equation

B2

8
5

k

4~12k!4 ~12!

and the renormalized energyER

ER~k!5~12k!2E~B! ~13!

we get from Eq.~11!
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The advantages of the renormalization approach were discussed in detail in Refs. 24, 2
29–32 and can be summarized as follows. First, the originally unbounded interval of the ma
fields BP(0,̀ ) is shrunk to the intervalkP(0,1). Second, in contrast to the ordinary energyE,
the renormalized energyER remains finite at the pointk51 corresponding toB→`. The constant
4 in the denominator of Eq.~12! is the result of the optimization procedure suggested in Ref.

The renormalized energyER(k) can be expanded into the power series in the coupling c
stantk,

ER52
1

2
1 (

n51

`

bnkn. ~15!

Proceeding analogously to Refs. 32 and 33 we find that the coefficientsbn behave for largen as

lim
n→`

bn

En
5

1

4n . ~16!

Therefore, the rate of the divergence of the coefficientsbn , although somewhat milder, is esse
tially the same as that of the coefficientsEn .

IV. RESULTS AND DISCUSSION

In this section, we discuss the application of the sequence transformation~10! to the series~2!
and ~15!.

The perturbation coefficientsEn andbn can be calculated either by using the so~4,2! algebraic
formulation of the perturbation theory2,10 or the Bender–Wu difference equation method descri
in Appendix D of Ref. 2. We calculated 80 coefficientsEn and bn in the rational form using
MAPLE. The coefficientsaj in Eq. ~10! were set toaj5Ej 11Bj 11 or aj5bj 11k j 11 for j
50,1,2... and the partial sumssj were calculated via Eq.~4!. The zeroth-order coefficient2 1

2 was
added to the sums at the very end of calculations in both the ordinary and renormalized ca

The results obtained with the sequence transformation~10! for different choices of the coef
ficientsqi are compared to those obtained via the Pade´ approximants in Tables I and II. We found
in agreement with the earlier observation made in the case of the sextic anharmonic oscil24

that except for the fields smaller thanB'0.2 the Levin transformation (qi51) fails to sum the
series~2!. The same is true also in the renormalized case. To find the reason for this failu
replaced the actual values of theEn coefficients by the values given by the large-order formula~3!.
In this case the Levin choice of the coefficientsqi yields the best results. Therefore, we belie
that the reason for failure of the Levin transformation to sum the series~2! is that the large-order
formula ~3!, and consequently also the large-order formula~8!, is only asymptotic, i.e., holds only
for a sufficiently largem. To remain valid for small values ofm, the series~8! has to be truncated
after few terms. The smallerm, the sooner the series~8! has to be truncated. Therefore, it

TABLE I. The energiesE obtained by the summation of the ordinary series
for the hydrogen atom in the magnetic field. The sequence transformation
~10! for Weniger (qi5 i ) and quadratic (qi5 i 2) choices of the coefficients
qi and the Pade´ approximants are compared. Only the numbers stabilized for
l from 70 to 79 in Eq.~10! are displayed. The constantn in Eq. ~10! was set
to zero. ‘‘-’’ means that no stabilization was achieved.

B Weniger Quadratic Pade´ @39,40# Padé@39,39#

0.6 20.4274622877 20.427462287 20.4274619 20.4274626
1.0 20.33116 20.331168 20.33105 20.33128
2.0 - 20.0221 20.00648 20.03868
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important for efficiency of the sequence transformation~9! that the contribution of the individua
termsdi /@(m1q1)(m1q2)¯(m1qi)# in Eq. ~9! decreases for smallm with increasingi . This is
better accomplished by the Weniger choiceqi5 i than by the Levin choiceqi51. The decrease ha
to be moderate; if the growth of the coefficientsqi is too large~e.g., quadratic!, the contribution of
the termsdi /@(m1q1)(m1q2)¯(m1qi)# in Eq. ~9! is suppressed with increasingi not only for
small m, but also for largem. Then we fit the partial sumssm only to few constantsdi and the
transformation~9! becomes inefficient again. This is well illustrated in Tables I and II. We see
if the coupling constantB or k is sufficiently small, i.e., either the external magnetic field is sm
or the renormalization is made, the Weniger choiceqi5 i provides the best results. However, if th
coupling constant is too large, the Weniger transformation becomes also unstable and th
result yields the quadratic choiceqi5 i 2.

Further, we note that the efficiency of the Weniger sequence transformation with respect
Padéapproximants decreases with the increasing value of the coupling constant. Indeed,
case of the ordinary series the Weniger transformation for the fieldB50.2 gives the result
20.490 381 565 034 762 584 774 394 74 which is by ten orders more accurate than the res
duced by the Pade´ approximants. However, forB51.0, the Weniger transformation is only by tw
orders better than the Pade´ approximants~see Table I!.

The results displayed in Table II show that the results of the summation depend slightly o
choice ofn in Eq. ~10!. Particulary, it is seen that better results for the series~15! are achieved for
n55 than forn50. The reason for it is the following. Due to the term 1/r in the interaction part
of Eq. ~14!, the first fewbn coefficients in Eq.~15!, and consequently also the first few parti
sumssn , behave irregularly~for detailed discussion see Ref. 32!. Therefore, it is better to star
with n around 5 when these irregularities do not play significant role.

As it is seen from Table II, the results obtained by the sequence transformation~10! agree with
the results given in Ref. 12 obtained by a completely different nonperturbative method bas
the rigorous Kato inequalities for the operators in the Hilbert space. The only disagreemen
the fieldB50.6. Since otherwise our results agree with these results, the result given in R
for B50.6 contains probably a typographical error.

We also compared our method with the Borel summation and order dependent ma
~ODM! performed in Ref. 7. For this purpose we considered only the first 62 perturbation
ficients as in Ref. 7. The comparison shows that the Weniger method yields results of s
accuracy as the Borel summation up to the field strengthB520.0. It is of the same accuracy a
ODM up to the field strengthB51.0. For larger fields, it yields worse results than ODM. Ho
ever, it is due to the fact that we did not incorporate into our method behavior of the energ
very large magnetic fields.5 Moreover, the method given in this paper is both conceptually
technically simpler than those given in Ref. 7.

It is worth remarking the question whether the series~2! does uniquely define the energyE
5E(B2). If the series~2! is the Stieltjes series, then it does~see, e.g., Refs. 21 and 22!. In such a
case,@n21,n# and@n,n# Padéapproximants provide monotonically decreasing upper bounds
monotonically increasing lower bounds to the exact eigenvalue. Moreover, if the coefficie

TABLE II. The energiesE obtained by the summation of the renormalized series for the hydrogen atom in the ma
field. The sequence transformation~10! for different choices of the coefficientsqi and n is compared with the Pade´
approximants and the results obtained in Ref. 12 with completely different nonperturbative method. The displayed n
are stabilized forl from 70 to 79 and forl from 65 to 74 forn50 andn55 respectively.

B Weniger (n50) Quadratic (n50) Weniger (n55) Quadratic (n55) Pade´ Ref. 12

0.6 20.4274622877571 20.42746228 20.427462287757120.42746228775 20.427462 20.42746227877
1.0 20.331168896 20.331168 20.3311688967 20.33116889 20.331 20.33116889
2.0 20.022213 20.0221 20.022213 20.02221 20.02 20.0222139
3.0 0.3354 0.335 0.33546 0.33548 0.33 0.33546
10.0 3.253 3.26 3.252 3.254 3. 3.252
20.0 7.79 7.8 7.78 7.8 7. 7.784
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the series do not grow more rapidly than (21)n(2n)! ~which is also our case!, then the sequence
@n21,n# and@n,n# converge to the same value. We do not know the rigorous proof that the s
~2! is a Stieltjes one. However, the numerical results indicate strongly that this is really the
Particularly, if the zeroth term of the series is excluded, then@n,n# and @n21,n# Padéapproxi-
mants provide lower and upper bounds to the energyE(B2) ~see Table I and Ref. 2!. The renor-
malized series~15! is not the Stieltjes series. However, it was shown in Ref. 32 on an analo
problem of the one-dimensional anharmonic oscillator that the series~15! consists of a divergen
Stieltjes part and a rapidly convergent part~the rate of the convergence is geometric!.

Summarizing, we found in this article the large-order behavior of the partial sums o
strongly divergent perturbation series. On the basis of this behavior a new general se
transformation containing free parameters that can be subject of further optimalization wa
gested. This sequence transformation was applied to the problem of the hydrogen atom
constant magnetic field. Numerical analysis shows that for small values of the coupling con
the best choice of the parameters leads to the previously suggested Weniger transformatio
small values of the coupling constant can be achieved even for large fields, by utilizing the i
the renormalization. Although most of our discussion was restricted to the summation of the
for the ground state energy of the hydrogen atom in magnetic field, we believe that sugge
made in this article are of much broader importance. Particulary, they show that even vio
diverging series behaving as (21)n(2n)! can be summed to accurate and realiable results.
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