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New summation technique for rapidly divergent
perturbation series. Hydrogen atom in magnetic field
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The perturbation series for the ground state energy of the hydrogen atom in the
external magnetic field is summed via the sequence transformations. The formula
for the large-order behavior of the partial sums of the series is derived. From this
formula a new general sequence transformation is suggested. This transformation
contains free parameters that can be further optimized. It is shown that if the
renormalization approach is used, the optimal choice of these parameters leads to
the previously suggested Weniger transformation2@3 American Institute of
Physics. [DOI: 10.1063/1.1541119

[. INTRODUCTION

The hydrogen atom in a constant magnetic field is an elementary but tricky problem, and great
deal of effort has been devoted to the solution of this proliese, e.g., Refs. 1-20 and references
therein. It is of special interest from the point of view of the summation of the divergent pertur-
bation series. Searching for the solution of the Sdhnger equation,
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————+g(x2+y2)

> y=Ey, M

in the form of the Rayleigh—Schdinger perturbation series in the powers of the intensity of the
constant magnetic field

1 * BZ n
E=—§+n§l En(§> : (2)
it appears that the perturbation coefficieBtsbehave for large as—*
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It means that the serigg) diverges for everyB|>0. Moreover, because of the peculiar logarith-
mic behavior of the energy for high magnetic fietdge series is known to be one of the most
difficult summable divergent series encountered in physics. Particularly, it is Knthan the
series is not efficiently summed by the Paalgproximants, the most widely used summation
technique(see, e.g., Refs. 21-P3Some time ago a new method for the summation of the
divergent series, the so-called Weniger summation, was introddéedhis method was com-
bined with the renormalization appro&tland succesfully applied to the one-dimensional anhar-
monic oscillator$* Since there have been only a few attempts to sum the series for the hydrogen
atom in the magnetic field®’ we apply the Weniger summation technique to this problem to
better understand its advantages and drawbacks.

The article is organized as follows. In Sec. I, the large-order behavior of the partial sums of
the serieq?) is derived. On the basis of this behavior a new general sequence transformation is
suggested. This transformation contains free parameters that can be further optimized. In special

1(1+0(1/n)). (3
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cases, both previously suggested L&%#{?®and Wenigef*?° sequence transformations are ob-
tained. In Sec. lll, the renormalization of the energy and the coupling constant is made. In the final
section, Sec. IV, discussion of the results and a few general remarks on the sequence transforma-
tions are made.

II. SEQUENCE TRANSFORMATIONS

On the basis of some heuristic arguments we suggest in this section a new sequence transfor-
mation. We shall proceed in an intuitive way and arguments given here should serve only as a
basis for more rigorous treatment.

For the sake of simplicity, we replace the coefficieBtsof the serieg2) by their large-order
behavior(3) and consider the partial sums of such a series

SmZE an, (4)
n=0
where
B2\" 1
an:c:(—1)”+1(?> 2n+ 5! (5)

andC= (4/m)%"?.

Obviously, the partial sum&) have no limit in ordinary sense and, consequently, the sum of
the seriea,, does not exist in ordinary sense. Nevertheless, we can try to give some meaning to
the sum of such a series. Namely, we can try to fit the partial gdjrte a finite number of terms.

The most natural way of doing it is to write the systeml afquations

Sm=Co@m+Ci@m_1+ " +C_28m_1+2+S, m=n—I+1,..n, (6)

for | unknown coefficientgg,cq,...,c,_» ands. As discussed below, the coefficiemthas the
meaning of the generalized sum of the series. Since the index of the coeféigient, has to be
greater or equal to zero, and since the smallest value isfn— I + 1, we take as the integer part
of (n+3)/2.

Now, we extend the meaning of the limit to the sequened "*(2n+3)!. Particularly, if
we say that such a sequence exhibits “regular oscillations” and its generalized limit is zero, then
the divergent regular oscillatiortsa; are singled out by the transformati®®) and the remaining
constant terns approaches with increasimgthe generalized sum of the seriE§_,a,, .

This transformation yields nothing but Pagigproximantgn,n] and[n—1,n] for n even and
odd, respectively. This is most easily seen by transforming the system of Equégjotusthe
system of equations for computing the Paggroximants[see, e.g., Eq3.10 in Ref. 24.

However, the Padsummation(6) does not work efficiently enough for the series with the
coefficients growing like £ 1)"(2n)! (see, e.g., Ref.)2which is also our case. The transforma-
tion (6) for such a series is not able to single out all of the regular oscillations and a more efficient
method has to be found.

Let us insert the explicit form of the coefficierdag, Eq.(5), into the system of the equations
for the partial sumg6). Then, this system can be rewritten into the form

77_2

Sm=C(—1)""(2m+ 1/2)! (B/ )™
; B?(2m— ) (2m—3

CotCy

77,4

Ly — _3 _s _z
B*(2m—3)(2m—3)(2m—3)(2m—3

| +s. (7)

For largem, the partial sums,,, behave as
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e nym ame 2B g S L. S, 8
Sm=C(~1) M3\ 7 N T AR B ®)
where the coefficientd; can be obtained from the coefficierdsby expanding Eq(7) into the
asymptotic series in the powers of /- 1). If we fitted the partial sums,, to the infinite number
of the coefficientsc; or d;, there would be no difference between the sequefigesnd (8).
However, if we fit the partial sums;, to afinite number of the coefficients; or d;, the sequence
transformation(8) accounts better for the large-order behavior of the partial sggnthan the
transformation(7).

On the basis of these considerations we suggest a new generalized sequence transformation

dy dy di—»
Sm=2am| do+ + +...+ +s,
moEMTOT (mtay)  (m+gy)(m+a,) (m+qy)(m+4gz)...(m+q-2)
€)
m=n,...,n+1-1,
whereq;,i=1,2...,1—2, are arbitrary coefficients that have to be determined from some addi-

tional requirement and denotes the index of the first partial sum taken into account. In principle,
it can be arbitrary; however, for fast convergence of the method it is convenient to take it close,
but not necessarily equal, to zefgee below.

Equations(9) represent a system ofequations fol unknownsd,,dq,...,d,_, ands. It is
remarkable that, regardless of the particular form of the coefficigntshe system of equations
(9) can be solved in the closed form, namely

SIo(— DI =DV (= 1= DHITLZEG +Nn+0)(S) 0~ S0)/8j 41
SIS DIA= DY (I=1= T3 +n+q) a4

s=s,+ (10

This can be interpreted that the sum of the series isithgartial sum plus a correction involving
partial sums of higher order. This result, which is the main result of this article, was derived by
generalizing the procedure for derivation of the Lé¥iand Wenige?* transformations. In special
casegy;=1 andq;=i, the Levin and Weniger transformations are obtained, respectively.

IlI. RENORMALIZATION

In this section, the renormalization of the energy and the coupling constant is discussed.
Proceeding similarly as in Ref. 26, we make the scaling transformatierfl— «)X, y
—(1—k)y andz—(1— «)z. Equation(1) then becomes

V2 1-x B?

(1— k)2 —?—T+§(1—K)4(X2+y2) y=E. (12)
Introducing the renormalized coupling constantrelated to the coupling consta® via the
equation
B2 _ K 17
8 A "2
and the renormalized enerdsk
Er(k)=(1-«)’E(B) (13

we get from Eq(11)
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TABLE I. The energie€ obtained by the summation of the ordinary series
for the hydrogen atom in the magnetic field. The sequence transformation
(10) for Weniger @;=i) and quadratic ;=i°) choices of the coefficients

g; and the Padapproximants are compared. Only the numbers stabilized for
| from 70 to 79 in Eq(10) are displayed. The constamin Eq. (10) was set

to zero. “-" means that no stabilization was achieved.

B Weniger Quadratic Pad®9,40 Pade[39,39
0.6 —0.4274622877 —0.427462287 —0.4274619 —0.4274626
1.0 —0.33116 —0.331168 —0.33105 —0.33128
2.0 - —0.0221 —0.00648 —0.03868
Ve 1 x2+y? 1 c 14
- ——+xk +=| |¢y=Egry.
2 4 o |V=Er¥

The advantages of the renormalization approach were discussed in detail in Refs. 24, 26, and

29-32 and can be summarized as follows. First, the originally unbounded interval of the magnetic

fields B e (0,) is shrunk to the intervak € (0,1). Second, in contrast to the ordinary enegy

the renormalized enerdyg remains finite at the point=1 corresponding t8— . The constant

4 in the denominator of Eq12) is the result of the optimization procedure suggested in Ref. 26.
The renormalized energ¥g(«) can be expanded into the power series in the coupling con-

stantx,

1 o0
Er=— =+ 2>, b«". (15)
2 i=1
Proceeding analogously to Refs. 32 and 33 we find that the coeffidigriishave for largen as

b, 1
lim E— = F . (16)
n—o —N

Therefore, the rate of the divergence of the coefficiéntsalthough somewhat milder, is essen-
tially the same as that of the coefficiers.

IV. RESULTS AND DISCUSSION

In this section, we discuss the application of the sequence transforniafioto the serie$2)
and(15).

The perturbation coefficients,, andb,, can be calculated either by using thé4@) algebraic
formulation of the perturbation thedry® or the Bender—Wu difference equation method described
in Appendix D of Ref. 2. We calculated 80 coefficierig and b, in the rational form using
MAPLE. The coefficientsa; in Eq. (10) were set toa;=E;,;B/** or aj=b;, 1« ** for j
=0,1,2... and the partial sunss were calculated via Eq4). The zeroth-order coefficient fwas
added to the surs at the very end of calculations in both the ordinary and renormalized cases.

The results obtained with the sequence transformdtiGhfor different choices of the coef-
ficientsg; are compared to those obtained via the Pagjeroximants in Tables | and 1. We found,
in agreement with the earlier observation made in the case of the sextic anharmonic oétillator,
that except for the fields smaller th&r0.2 the Levin transformationg{=1) fails to sum the
series(2). The same is true also in the renormalized case. To find the reason for this failure we
replaced the actual values of thg coefficients by the values given by the large-order fornti8ja
In this case the Levin choice of the coefficientsyields the best results. Therefore, we believe
that the reason for failure of the Levin transformation to sum the s&jes that the large-order
formula(3), and consequently also the large-order form{8)ais only asymptotic, i.e., holds only
for a sufficiently largem. To remain valid for small values @h, the serie¢8) has to be truncated
after few terms. The smallen, the sooner the serig8) has to be truncated. Therefore, it is
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TABLE Il. The energiesE obtained by the summation of the renormalized series for the hydrogen atom in the magnetic
field. The sequence transformatiohO) for different choices of the coefficient; and n is compared with the Pade
approximants and the results obtained in Ref. 12 with completely different nonperturbative method. The displayed numbers
are stabilized fot from 70 to 79 and fot from 65 to 74 forn=0 andn=5 respectively.

B Weniger (=0)  Quadratic (=0)  Weniger 6=5)  Quadratic (=5) Pade Ref. 12

0.6 —0.4274622877571 —0.42746228 —0.4274622877571—0.42746228775 —0.427462 —0.42746227877
1.0 —0.331168896 —0.331168 —0.3311688967  —0.33116889 -0.331 —0.33116889
2.0 —0.022213 —0.0221 —0.022213 —0.02221 —0.02 —0.0222139
3.0 0.3354 0.335 0.33546 0.33548 0.33 0.33546
10.0 3.253 3.26 3.252 3.254 3. 3.252
20.0 7.79 7.8 7.78 7.8 7. 7.784

important for efficiency of the sequence transformati®nthat the contribution of the individual
termsd; /[ (m+q4) (M+q,)---(m+q;)] in Eq.(9) decreases for smath with increasing. This is
better accomplished by the Weniger choige i than by the Levin choicg;=1. The decrease has

to be moderate; if the growth of the coefficieqtss too large(e.g., quadratig the contribution of

the termdd; /[ (m+q;)(m+qy)---(m+q;)] in EqQ. (9) is suppressed with increasingnot only for
smallm, but also for largem. Then we fit the partial sums,, only to few constantsl; and the
transformation9) becomes inefficient again. This is well illustrated in Tables | and Il. We see that
if the coupling constanB or « is sufficiently small, i.e., either the external magnetic field is small
or the renormalization is made, the Weniger chajcei provides the best results. However, if the
coupling constant is too large, the Weniger transformation becomes also unstable and the best
result yields the quadratic choicg=i2.

Further, we note that the efficiency of the Weniger sequence transformation with respect to the
Padeapproximants decreases with the increasing value of the coupling constant. Indeed, in the
case of the ordinary series the Weniger transformation for the Betd.2 gives the result
—0.490 381565034 762 584 774 394 74 which is by ten orders more accurate than the result pro-
duced by the Padapproximants. However, f@= 1.0, the Weniger transformation is only by two
orders better than the Padpproximantgsee Table )l

The results displayed in Table Il show that the results of the summation depend slightly on the
choice ofn in Eq. (10). Particulary, it is seen that better results for the seti&sare achieved for
n=>5 than forn=0. The reason for it is the following. Due to the termn i the interaction part
of Eq. (14), the first fewb,, coefficients in Eq(15), and consequently also the first few partial
sumss,, behave irregularlyfor detailed discussion see Ref.)3Therefore, it is better to start
with n around 5 when these irregularities do not play significant role.

As it is seen from Table I, the results obtained by the sequence transforniejcagree with
the results given in Ref. 12 obtained by a completely different nonperturbative method based on
the rigorous Kato inequalities for the operators in the Hilbert space. The only disagreement is for
the fieldB=0.6. Since otherwise our results agree with these results, the result given in Ref. 12
for B=0.6 contains probably a typographical error.

We also compared our method with the Borel summation and order dependent mapping
(ODM) performed in Ref. 7. For this purpose we considered only the first 62 perturbation coef-
ficients as in Ref. 7. The comparison shows that the Weniger method yields results of similar
accuracy as the Borel summation up to the field strelg#20.0. It is of the same accuracy as
ODM up to the field strengtB=1.0. For larger fields, it yields worse results than ODM. How-
ever, it is due to the fact that we did not incorporate into our method behavior of the energy for
very large magnetic fieldsMoreover, the method given in this paper is both conceptually and
technically simpler than those given in Ref. 7.

It is worth remarking the question whether the sef@sdoes uniquely define the ener§y
=E(B?). If the serieq2) is the Stieltjes series, then it doesee, e.g., Refs. 21 and)22n such a
case[n—1,n] and[n,n] Padeapproximants provide monotonically decreasing upper bounds and
monotonically increasing lower bounds to the exact eigenvalue. Moreover, if the coefficients of
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the series do not grow more rapidly than 1)"(2n)! (which is also our cagethen the sequences
[n—1,n] and[n,n] converge to the same value. We do not know the rigorous proof that the series
(2) is a Stieltjes one. However, the numerical results indicate strongly that this is really the case.
Particularly, if the zeroth term of the series is excluded, them] and[n—1,n] Padeapproxi-
mants provide lower and upper bounds to the en&@§?) (see Table | and Ref.)2The renor-
malized serieg15) is not the Stieltjes series. However, it was shown in Ref. 32 on an analogous
problem of the one-dimensional anharmonic oscillator that the serf@<onsists of a divergent
Stieltjes part and a rapidly convergent péhe rate of the convergence is geometric

Summarizing, we found in this article the large-order behavior of the partial sums of the
strongly divergent perturbation series. On the basis of this behavior a new general sequence
transformation containing free parameters that can be subject of further optimalization was sug-
gested. This sequence transformation was applied to the problem of the hydrogen atom in the
constant magnetic field. Numerical analysis shows that for small values of the coupling constant,
the best choice of the parameters leads to the previously suggested Weniger transformation. Such
small values of the coupling constant can be achieved even for large fields, by utilizing the idea of
the renormalization. Although most of our discussion was restricted to the summation of the series
for the ground state energy of the hydrogen atom in magnetic field, we believe that suggestions
made in this article are of much broader importance. Particulary, they show that even violently
diverging series behaving as-(L)"(2n)! can be summed to accurate and realiable results.
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