New Version of the Rayleigh-Schrödinger Perturbation Theory: Examples

MILOŠ KALHOUS, ${ }^{1}$ L. SKÁLA, ${ }^{1}$ J. ZAMASTIL, ${ }^{1}$ J. ČÍŽEK ${ }^{2}$
${ }^{1}$ Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague 2, Czech Republic
${ }^{2}$ University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Received 22 January 2003; accepted 10 October 2003
Published online 9 June 2004 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/qua. 20041

Abstract

It has been shown in our preceding papers that the linear dependence of the perturbation wave functions on the perturbation energies makes possible to calculate the exact perturbation energies from the values of the perturbation wave functions corresponding to arbitrarily chosen trial perturbation energies. The resulting version of the perturbation theory is very simple and can be used at large orders. In this paper, this method is applied to a few problems and its numerical properties are discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 99: 325-335, 2004

1. Introduction

n this paper, we are interested in the perturbation theory for the bound states of the Schrödinger equation:

$$
\begin{equation*}
H \psi(x)=E \psi(x) \tag{1}
\end{equation*}
$$

As usual in the Rayleigh-Schrödinger perturbation theory, we assume the Hamiltonian, wave function, and energy to be in the forms

$$
\begin{equation*}
H=H_{0}+\lambda H_{1}, \tag{2}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& \psi=\psi_{0}+\lambda \psi_{1}+\lambda^{2} \psi_{2}+\cdots, \tag{3}\\
& E=E_{0}+\lambda E_{1}+\lambda^{2} E_{2}+\cdots, \tag{4}
\end{align*}
$$
\]

where λ is a perturbation parameter. Using these assumptions in the Schrödinger equation (1), we obtain the well-known equations for E_{n} and ψ_{n},

$$
\begin{equation*}
H_{0} \psi_{0}=E_{0} \psi_{0} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0} \psi_{n}+H_{1} \psi_{n-1}=\sum_{i=0}^{n} E_{i} \psi_{n-i}, n=1,2, \ldots . \tag{6}
\end{equation*}
$$

KALHOUS ET AL.

We note that ψ_{0} denotes the unperturbed wave function of the Hamiltonian H_{0}. Depending on the problem in question, it can be the ground-state as well as excited-state wave function.

Despite the well-known formulations that can be found in any textbook on quantum mechanics, there is one property of the perturbation theory that has been noticed $[1,2]$ and used [3-9] only recently. It has been shown that the value of the perturbation wave function $\psi_{n}(x)$ at an arbitrarily chosen point x depends linearly on the perturbation energy E_{n}. This linear dependence makes it possible to determine the exact perturbation energies from the values of $\psi_{n}(x)$ for two arbitrarily chosen trial perturbation energies E_{n} by simple calculation. In this way, the functions ψ_{n} which are not quadratically integrable can be used to calculate the exact perturbation energies E_{n} and, in the next step, the corresponding exact perturbation functions ψ_{n}.

This method has a few advantages. In contrast to the usual formulation of the perturbation theory, this method based on the computation of ψ_{n} from Eq. (6) for a given energy E_{n} can easily be programmed for arbitrary large orders of the perturbation theory. For example, 200 perturbation energies E_{n} necessary for finding their large-order behaviour were calculated in [7]. Further, by solving Eq. (6) numerically, both the discrete and the continuous parts of the energy spectrum is taken into account, and the perturbation energies E_{n} can be calculated even in cases when only a few bound states exist. The linear dependence of $\psi_{n}(x)$ on the energy E_{n} makes it possible to avoid the usual shooting method and reduce the computational time substantially. Finally, we note that only the wave functions are needed in this method and no integrals have to be calculated.

The aim of this paper is to apply this method to a few problems and test its numerical properties.

2. Summary of the Method

First we discuss a nondegenerate multidimensional case. We assume that the perturbation functions ψ_{i} and perturbation energies E_{i} are already computed for $i=0, \ldots, n-1$. Solution of Eq. (6) can be written as

$$
\begin{equation*}
\psi_{n}\left(E_{n}, x\right)=E_{n} F(x)-f_{n-1}(x), n=1,2, \ldots \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x)=\left(H_{0}-E_{0}\right)^{-1} \psi_{0}(x) \tag{8}
\end{equation*}
$$

and
$f_{n-1}(x)=\left(H_{0}-E_{0}\right)^{-1}\left(H_{1} \psi_{n-1}(x)-\sum_{i=1}^{n-1} E_{i} \psi_{n-i}(x)\right)$.

The general solution of Eq. (6) can contain also a term $c_{n} \psi_{0}(x)$ at the right-hand side of Eq. (7), where c_{n} is an arbitrary constant. For the sake of simplicity, we assume $c_{n}=0$ here. As it is seen from Eq. (7), the perturbation function $\psi_{n}\left(E_{n}, x\right)$ depends on the energy E_{n} which is not yet known and the point $x=$ $\left[x_{1}, \ldots, x_{N}\right.$] in N-dimensional space.

Equations (7)-(9) show that the structure of the perturbation functions is very simple. It follows from Eq. (7) that the function $\psi_{n}\left(E_{n}, x\right)$ is a linear function of the energy E_{n}. Further, it is seen that $F(x)$ is a function independent of n. We note also that, except for the case that E_{n} is the exact perturbation energy, $\psi_{n}\left(E_{n}, x\right)$ is not quadratically integrable and has no physical meaning.

The functions $F(x)$ and $f_{n-1}(x)$ are calculated from Eqs. (8) and (9) numerically with the conditions $F\left(x_{\mathrm{b}}\right)=0$ and $f_{n-1}\left(x_{\mathrm{b}}\right)=0$, where x_{b} are points at the boundary region sufficiently distant from the potential minimum. The same boundary conditions are used for the function $\psi_{0}(x)$.

We note that the function $F(x)$ diverges in the exact calculation, however, it has large but finite values in numerical calculations. The functions $\psi_{n}\left(E_{n}, x\right)$ for the exact perturbation energy E_{n} are quadratically integrable. Therefore, we can assume they obey the condition

$$
\begin{equation*}
\left|\psi_{n}\left(E_{n}, x\right)\right| \ll|F(x)| . \tag{10}
\end{equation*}
$$

It follows from Eqs. (7) and (10) that the functions $\psi_{n}\left(E_{n}, x\right)$ also satisfy the condition

$$
\begin{equation*}
\left|\psi_{n}\left(E_{n}, x\right)\right| \ll\left|f_{n-1}(x)\right| . \tag{11}
\end{equation*}
$$

Therefore, we can neglect $\psi_{n}\left(E_{n}, x\right)$ in Eq. (7). The formula for the energy E_{n} then reads

$$
\begin{equation*}
E_{n}=\frac{f_{n-1}(x)}{F(x)} \tag{12}
\end{equation*}
$$

This equation can be used at an arbitrarily chosen point x inside the integration region except for the

NEW VERSION OF THE PERTURBATION THEORY

points where the conditions (10) and (11) are not obeyed.

If the perturbation energy E_{n} is calculated from Eq. (12), the corresponding perturbation function $\psi_{n}\left(E_{n}, x\right)$ can be found from Eqs. (7)-(9). More detailed discussion of the method is given in $[6,9]$.

The energy E_{1} computed numerically from the equation

$$
\begin{equation*}
E_{1}\left(x_{0}\right)=\frac{f_{0}\left(x_{0}\right)}{F\left(x_{0}\right)} \tag{13}
\end{equation*}
$$

depends slightly on the choice of the point x_{0}. Calculating ψ_{1} from Eq. (7) for $n=1$, we obtain the function

$$
\begin{equation*}
\psi_{1}\left(E_{1}, x\right)=\frac{f_{0}\left(x_{0}\right) F(x)-f_{0}(x) F\left(x_{0}\right)}{F\left(x_{0}\right)} \tag{14}
\end{equation*}
$$

It shows that the function ψ_{1} calculated in this way equals zero at the point x_{0} :

$$
\begin{equation*}
\psi_{1}\left(E_{1}, x_{0}\right)=0 \tag{15}
\end{equation*}
$$

Therefore, the usual orthogonality condition, $\left\langle\psi_{0} \mid \psi_{1}\right\rangle=0$, is not fulfilled in numerical calculations. It can easily be shown that this result can be extended to all functions ψ_{n}. As shown in [6], such functions can have in some cases more simple form than the usual perturbation functions. If necessary, the functions ψ_{n} can be made orthogonal to ψ_{0} by the usual orthogonalization procedure.

Therefore, the point x used in the calculation of the energy (12) should be sufficiently distant from the points where the function $\psi_{0}(x)$ equals zero.

Our method is a remarkable example of calculating the perturbation energies E_{n} from the values of the functions $F(x)$ and $f_{n-1}(x)$ which are not quadratically integrable. Comparing with the standard formulation of the perturbation theory, large-order calculations are simple in our method. To determine E_{1}, the values of $F(x)$ and $f_{0}(x)$ at only one point x are sufficient. To determine E_{n} for $n=2$, $3, \ldots$, only the value of $f_{n-1}(x)$ at the point x is to be computed. Therefore, this method of calculating E_{n} is much faster than the usual shooting method.

We note that the zero-order function ψ_{0} has to be found only for the state for which the perturbation corrections are calculated. In contrast to the usual perturbation theory, other zero-order energies and wave functions are not needed in the calculation.

Now we discuss the first-order perturbation correction to a degenerate eigenvalue E_{0}. Assuming that the energy E_{0} is d_{0}-times degenerate and the corresponding zero-order function ψ_{0} in Eq. (6) is replaced by the linear combination

$$
\begin{equation*}
\sum_{j=1}^{d_{0}} a_{0}^{(j)} \psi_{0}^{(j)} \tag{16}
\end{equation*}
$$

it follows from Eq. (6) that Eq. (7) can be generalized as

$$
\begin{equation*}
\psi_{1}\left(E_{1}, x\right)=E_{1} \sum_{j=1}^{d_{0}} a_{0}^{(j)} F^{(j)}(x)-\sum_{j=1}^{d_{0}} a_{0}^{(j)} f_{0}^{(j)}(x) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
F^{(j)}(x)=\left(H_{0}-E_{0}\right)^{-1} \psi_{0}^{(j)}(x) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{0}^{(j)}(x)=\left(H_{0}-E_{0}\right)^{-1} H_{1} \psi_{0}^{(j)}(x) \tag{19}
\end{equation*}
$$

It is seen from Eq. (17) that $\psi_{1}\left(E_{1}, x\right)$ depends on E_{1} linearly as in the nondegenerate case. Therefore, by analogy with the nondegenerate case, we can derive the formula for the perturbation energy E_{1} :

$$
\begin{equation*}
E_{1}=\frac{\sum_{j=1}^{d_{0}} a_{0}^{(j)} f_{0}^{(j)}(x)}{\sum_{j=1}^{d_{0}} a_{0}^{(j)} F^{(j)}(x)} \tag{20}
\end{equation*}
$$

Here, $f_{0}^{(j)}(x)$ and $F^{(j)}(x)$ are known, and E_{1} and $a_{0}^{(j)}$ are to be found. To find E_{1} and $a_{0}^{(j)}$, we exploit the fact that the energy E_{1} is a constant and use Eq. (20) at d_{0} different points $x=x_{1}, \ldots, x_{d_{0}}$ inside the integration region. The solution of the equations

$$
\begin{array}{r}
\frac{\sum_{j=1}^{d_{0}} a_{0}^{(j)} f_{0}^{(j)}\left(x_{1}\right)}{\sum_{j=1}^{d_{0}} a_{0}^{(j)} F^{(j)}\left(x_{1}\right)}=\frac{\sum_{j=1}^{d_{0}} a_{0}^{(j)} f_{0}^{(j)}\left(x_{2}\right)}{\sum_{j=1}^{d_{0}} a_{0}^{(j)} F^{(j)}\left(x_{2}\right)}=\cdots \\
\quad=\frac{\sum_{j=1}^{d_{0}} a_{0}^{(j)} f_{0}^{(j)}\left(x_{d_{0}}\right)}{\sum_{j=1}^{d_{0}} a_{0}^{(j)} F^{(j)}\left(x_{d_{0}}\right)} \tag{21}
\end{array}
$$

then yields d_{0} sets of the coefficients $a_{0}^{(j)}$. The d_{0} values of the energy E_{1} are given by Eq. (20), and the corresponding perturbation functions equal

$$
\begin{equation*}
\psi_{1}=\sum_{j=1}^{d_{0}} a_{0}^{(j)} \psi_{0}^{(j)} \tag{22}
\end{equation*}
$$

KALHOUS ET AL.

The usual formulation of the first-order degenerate perturbation theory can be derived from Eq. (20) as follows. Substitute Eqs. (18) and (19) into Eq. (20), and we obtain for a point x

$$
\begin{equation*}
E_{1}=\frac{\sum_{j=1}^{d_{0}} a_{0}^{(j)}\left(H_{0}-E_{0}\right)^{-1} H_{1} \psi_{0}^{(j)}(x)}{\sum_{j=1}^{d_{0}} a_{0}^{(j)}\left(H_{0}-E_{0}\right)^{-1} \psi_{0}^{(j)}(x)} \tag{23}
\end{equation*}
$$

By multiplying the numerator and denominator by $\left(H_{0}-E_{0}\right)$, we obtain

$$
\begin{equation*}
E_{1}=\frac{\sum_{j=1}^{d_{0}} a_{0}^{(j)} H_{1} \psi_{0}^{(j)}(x)}{\sum_{j=1}^{d_{0}} a_{0}^{(j)} \psi_{0}^{(j)}(x)} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{1} \sum_{j=1}^{d_{0}} a_{0}^{(j)} \psi_{0}^{(j)}(x)=\sum_{j=1}^{d_{0}} a_{0}^{(j)} H_{1} \psi_{0}^{(j)}(x) \tag{25}
\end{equation*}
$$

Further, by multiplying this equation from the left side by the complex conjugate function $\psi_{0}^{(i)^{*}}(x)$, integrating over x, and assuming orthonormality of the functions $\psi_{0}^{(j)}(x)$, a standard secular problem is obtained:

$$
\begin{equation*}
\sum_{j=1}^{d_{0}}\left(W_{i j}-E_{1} \delta_{i j}\right) a_{0}^{(j)}=0, i=1, \ldots, d_{0} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{i j}=\left\langle\psi_{0}^{(i)}\right| H_{1}\left|\psi_{0}^{(j)}\right\rangle . \tag{27}
\end{equation*}
$$

3. Examples

For the one-dimensional problems, this method has already been used with very good results (see [3-8]). For this reason, several two-dimensional problems with increasing complexity are investigated here.

3.1. COUPLED ANHARMONIC OSCILLATORS

As the first example, we discuss the problem having only bound discrete states. We calculated the perturbation energies for the ground state of two nonlinearly coupled harmonic oscillators [9-11]:

TABLE I
Perturbation energies E_{n} for the ground state of two coupled harmonic oscillators (28); E_{0} is the exact zero-order energy.

n	E_{n}
0	2
1	-0.750000000
2	-0.93750000
3	-0.0234375000
4	-0.0133056640
5	-0.00031534830
6	-0.013279491
7	0.0240443106
8	-0.0743030687
9	0.234920366
10	-0.84554255
11	3.34568731
12	-14.4946548
13	68.195859
14	-346.32541
15	1888.18252
16	-11000.3994
17	68201.932
18	-448367.10
19	3115424.0
20	-22813412.6

$$
\begin{equation*}
H=-\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}+x_{1}^{2}+x_{2}^{2}+\lambda\left(x_{1}^{2} x_{2}^{2}-x_{1}^{2}-x_{2}^{2}\right) . \tag{28}
\end{equation*}
$$

To compute ψ_{n} from Eq. (6) in the region $x_{1} \in$ $[-11,11], x_{2} \in[-11,11]$, we used a grid of points $158 \times 158,160 \times 160,162 \times 162,164 \times 164$, assumed that the functions ψ_{n} equal zero at the border of this region, and solved the corresponding system of difference equations in double-precision accuracy in Fortran. The same grid of points was used in all examples given below, only the integration region was different.

To eliminate the effect of a non-zero step of the grid the perturbation energies were extrapolated to an infinitely dense grid by means of the Richardson extrapolation. This extrapolation is substantial for increasing the accuracy of the results. The groundstate perturbation energies are shown in Table I.

Only the digits which agree in the calculations for the points $x=[0,0]$ and $x=[1,1]$ are shown. It is seen that the energies depend on the choice of the point x only very little. All digits shown in Table I also agree with an independent calculation made

TABLE II
Perturbation energies E_{n} for the ground state of two coupled Morse oscillators (29); E_{0} is the exact zero-order energy.

n	E_{n}
0	$3 / 2$
1	0.2500000
2	-0.069635
3	0.03903
4	-0.0366
5	0.0920
6	-0.611
7	6.43
8	-89.2
9	1550

by means of the difference equation method suggested in [11]. It is also seen that the method can be used at large orders. Therefore, these results are quite satisfactory.

3.2. COUPLED MORSE OSCILLATORS

As a second test, we chose a more difficult problem with only one bound state of the zero-order Hamiltonian when the standard perturbation theory yields the first-order correction E_{1} only. The perturbation energies were calculated for the ground state of two coupled Morse oscillators:

$$
\begin{align*}
& H=-\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}+\left(1-e^{-x_{1}}\right)^{2}+\left(1-e^{-x_{2}}\right)^{2} \\
&+\lambda\left(1-e^{-x_{1}}\right)^{2}\left(1-e^{-x_{2}}\right)^{2} \tag{29}
\end{align*}
$$

The integration region $x_{1} \in[-12,20]$ and $x_{2} \in$ [-12, 20] was used. The ground-state perturbation energies are shown in Table II.

Only the digits that agree in the calculations for the points $x=[4,4]$ and $x=[5,6]$ are shown. The value of $E_{1}=0.25$ was verified by analytic calculation. Decreasing accuracy of the energies E_{n} with increasing n is due to the fact that the functions ψ_{n} spread with increasing n rapidly and get out of the integration region. These results show that, in contrast to the standard perturbation theory, our method can be used for calculating large-order perturbation energies even if there are only a few zero-order bound states.

3.3. BARBANIS HAMILTONIAN

As another example of using our method we calculated the perturbation energies for the ground state of the Barbanis Hamiltonian:

$$
\begin{equation*}
H=-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}+\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\lambda x y^{2} \tag{30}
\end{equation*}
$$

Here, we used the frequencies $\omega_{x}=1$ and $\omega_{y}=1$. This Hamiltonian has been often studied as a simple model for systems with the Fermi responses such as the CO_{2} stretch bend resonance. Potential in this Hamiltonian is not bounded from below.

The ground-state perturbation energies were calculated both numerically and analytically (see Table III).

In the numerical calculation, the integration region $x \in[-11,11]$ and $y \in[-11,11]$ was used. Similarly to the preceding examples, only the digits that agree in the calculations for the points $x=[0.2$, $0.5]$ and $x=[0.6,0.8]$ are shown. Again, the energies depend on the choice of the point x only little. The numerical results agree with an independent analytic calculation made in Maple [12] with an accuracy to 6-9 digits. Due to the antisymmetry of the perturbation potential in Eq. (30), the odd-order perturbation energies E_{1}, E_{3}, \ldots equal zero.

3.4. HÉNON-HEILES HAMILTONIAN

As the last test of our method, the Hénon-Heiles Hamiltonian was used. The perturbation energies were calculated for the ground state and the first excited state of the zero-order Hamiltonian

$$
\begin{equation*}
H_{0}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} \omega_{x}^{2} x^{2}-\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{1}{2} \omega_{y}^{2} y^{2} \tag{31}
\end{equation*}
$$

with the perturbation potential

$$
\begin{equation*}
H_{1}=y x^{2}+\beta y^{3} \tag{32}
\end{equation*}
$$

The frequencies $\omega_{x}=2, \omega_{y}=1.3$, and the parameter $\beta=-1$ corresponding to a very flat and shallow potential minimum were used. Similarly to the Barbanis potential, the perturbation potential is not bounded from below.

The analytic energies and wave functions of the Hénon-Heiles potential can be calculated as follows.

First, we express the eigenfunctions of H_{0} as the products of the eigenfunctions of the harmonic os-

KALHOUS ET AL.

TABLE III
Perturbation energies E_{n} for the ground state of the Barbanis Hamiltonian (30); E_{0} is the exact zero-order energy.*

n	$E_{n}^{\text {num }}$	$E_{n}^{\text {an }}$
0	2	2
2	-0.1041666665	$-\frac{5}{48}=-0.104166666667 \ldots$
4	-0.0322627314	$-\frac{223}{6912}=-0.0322627314815 \ldots$
6	-0.02298880368	$-\frac{114407}{4976640}=-0.0229888036908 \ldots$
8	-0.024159131	$-\frac{346266143}{14332723200}=-0.0241591313924 \ldots$
10	-0.0326818070	$-\frac{2360833242959}{72236924928000}=-0.0326818070580 \ldots$
12	-0.05343610684	$-\frac{12969801730008377}{242716067758080000}=-0.0534361068462 \ldots$
14	-0.1019221649	$-\frac{124680261346275858491}{1223288981500723200000}=-0.101922164944 \ldots$
16	-0.2217101989	$-\frac{10935414749213048671720261}{49323011734109159424000000}=-0.221710199048 \ldots$
18	-0.541404172	$-\frac{4441356782637499756905980351899}{8203403311617035395399680000000}=-0.541404172625 \ldots$
20	-1.46666250	$-\frac{667033238517271928733626515967166703}{454796679596048442320958259200000000}=-1.46666250754 \ldots$
22	-4.366576807	
24	-14.17768870	
26	-49.8757770	
28	-189.0381799	
30	-768.15366	

* The energies calculated numerically from Eq. (12) are denoted as $E_{n}^{\text {num }}$. The analytic energies denoted as $E_{n}^{\text {an }}$ were calculated for $n=0,2, \ldots, 20$. Odd-order perturbation energies equal zero.
cillator. For example, the ground-state zero-order wave function equals
$\varphi_{00}(x, y)=\frac{1}{5 \sqrt{\pi}} 13^{1 / 4} 5^{3 / 4} e^{-x^{2}-(13 / 20) y^{2}}$

$$
\begin{equation*}
=\varphi_{0}(x) \varphi_{0}(y) \tag{33}
\end{equation*}
$$

Analogously, orthonormal excited state wave functions corresponding to low quantum numbers can be written in the form

$$
\begin{align*}
& \varphi_{01}(x, y)=\frac{1}{5 \sqrt{\pi}} 13^{3 / 4} 5^{1 / 4} y e^{-x^{2}-(13 / 20) y^{2}} \\
&=\varphi_{0}(x) \varphi_{1}(y) \tag{34}
\end{align*}
$$

$$
\begin{align*}
\varphi_{03}(x, y)= & \frac{\sqrt{6}}{150 \sqrt{\pi}} 13^{3 / 4} 5^{1 / 4} y(-15 \\
& \left.\quad+13 y^{2}\right) e^{-x^{2}-(13 / 20) y^{2}}=\varphi_{0}(x) \varphi_{3}(y) \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
\varphi_{21}(x, y)=\frac{\sqrt{2}}{10 \sqrt{\pi}} 13^{3 / 4} 5^{1 / 4}(-1+ & \left.4 x^{2}\right) y e^{-x^{2}-(13 / 20) y^{2}} \\
& =\varphi_{2}(x) \varphi_{1}(y) \tag{36}
\end{align*}
$$

Now we discuss the ground-state perturbation problem with the zero-order wave function

$$
\begin{equation*}
\psi_{0}(x, y)=\varphi_{00}(x, y) \tag{37}
\end{equation*}
$$

After a simple but tedious calculation, $H_{1} \psi_{0}$ can be expressed as a linear combination of the eigenfunctions of the unperturbed Hamiltonian H_{0} :

$$
\begin{equation*}
H_{1} \psi_{0}=-\frac{47 \sqrt{65}}{676} \varphi_{01}-\frac{5 \sqrt{390}}{169} \varphi_{03}-\frac{\sqrt{130}}{52} \varphi_{21} \tag{38}
\end{equation*}
$$

The first-order perturbation energy equals zero:

$$
\begin{equation*}
E_{1}=\left\langle\psi_{0}\right| H_{1}\left|\psi_{0}\right\rangle=0 \tag{39}
\end{equation*}
$$

The corresponding eigenfunction can be calculated from the equation

$$
\begin{equation*}
\psi_{1}=\left(H_{0}-E_{0}\right)^{-1}\left(E_{1}-H_{1}\right) \psi_{0} \tag{40}
\end{equation*}
$$

with the result

$$
\begin{align*}
& \psi_{1}=-\frac{2}{26871} \frac{1}{\sqrt{\pi}} 13^{1 / 4} 5^{3 / 4} y\left(-1200-689 y^{2}\right. \\
&\left.+507 x^{2}\right) e^{-x^{2}-(13 / 20) y^{2}} \tag{41}
\end{align*}
$$

Higher order perturbation energies and wave functions can be obtained in a similar way. For example, the second- and third-order perturbation wave functions equal

$$
\begin{gather*}
\psi_{2}=\frac{5}{6608207466432} \frac{1}{\sqrt{\pi}} 13^{1 / 4} 5^{3 / 4}(-59250448263 \\
+94848624000 y^{2}+45306655680 y^{4}+8689293184 y^{6} \\
-5426185752 x^{2}-25233511680 x^{2} y^{2} \\
-12788016384 x^{2} y^{4}+588128112 x^{4} \\
\left.+4705024896 x^{4} y^{2}\right) e^{-x^{2}-(13 / 20) y^{2}} \tag{42}
\end{gather*}
$$

and

$$
\begin{aligned}
\psi_{3}= & -\frac{25}{652300246187820708192} \frac{1}{\sqrt{\pi}} 13^{1 / 4} 5^{3 / 4} y\left(-267842001350803600-1402374103429392171 y^{2}\right. \\
& -753269605832315520 y^{4}-152737767077163840 y^{6}-14661974436247424 y^{8}-63207691842935367 x^{2} \\
+ & 441043571586179016 x^{2} y^{2}+183753938493178560 x^{2} y^{4}+32367000170583936 x^{2} y^{6}-25884928192802328 x^{4} \\
& -55488811253153616 x^{4} y^{2}-23817226540618368 x^{4} y^{4}+2190735460104048 x^{6} \\
& \left.+5841961226944128 x^{6} y^{2}\right) e^{-x^{2}-(13 / 20) y^{2}}
\end{aligned}
$$

These functions agree very well with the numerically calculated ones and are shown in Figures 1-4.

It is seen that the ground-state perturbation functions go to zero at the boundaries of the integration region $x \in[-11,11]$ and $y \in[-11,11]$. With increasing n, the functions ψ_{n} spread out from the centre of the integration region and their absolute value goes up.

In numerical calculations, the integration region $x \in[-11,11], y \in[-11,11]$ was used. The numerical and analytical ground-state and first excited state perturbation energies are shown in Tables IV-VII.

Only the digits which agree in the calculations for the points $x=[0.2,0.5]$ and $x=[0.6,0.8]$ are shown. Dependence of the results on the choice of the point x is small, as in the preceding examples. The numerical results agree with the analytic ones with an accuracy of 6-9 digits.

Because of the antisymmetry of the perturbation potential (32), the odd-order perturbation energies

FIGURE 1. Ground-state zero-order wave function ψ_{0} for the Hénon-Heiles Hamiltonian (31, 32).

FIGURE 2. First-order perturbation function ψ_{1} for the ground state of the Hénon-Heiles Hamiltonian (31, 32).
E_{1}, E_{3}, \ldots equal zero. In numerical calculations, these energies differ from zero with an accuracy of 7-9 digits. The even-perturbation energies E_{2}, E_{4}, \ldots, are negative, and their absolute value increases rapidly with the order of the perturbation theory.

Results in Tables IV-VII indicate that the absolute values of the perturbation energies E_{n} increase with the energy difference of the excited state and the ground state.

FIGURE 3. Second-order perturbation function ψ_{2} for the ground state of the Hénon-Heiles Hamiltonian (31, 32).

FIGURE 4. Third-order perturbation function ψ_{3} for the ground state of the Hénon-Heiles Hamiltonian (31, 32).

Concluding this section, our method of solving the perturbation problem gives good results in the all investigated cases including the most difficult Hé-non-Heiles Hamiltonian. The absolute values of the perturbation energies E_{n} increase rapidly for large n.

4. Conclusions

In summary, the method described in this paper is simple and efficient alternative to the usual formulation of the perturbation theory. It can be used for one-dimensional as well as multidimensional problems and for nondegenerate as well as degenerate eigenvalues. Its main advantages are easy calculation of the large-order perturbations and the possibility to find the perturbation corrections, even in cases when only a few zero-order bound states exist. The analytic and numerical results for the investigated examples show that our version of the perturbation theory yields results with good accuracy and can be used at large orders.

The numerical results show in all investigated examples that the absolute values of the perturbation energies E_{n} increase rapidly for large n. They also indicate that the perturbation series (4) are divergent, asymptotic series in these cases. They are obviously related to different asymptotic behavior of the wave functions corresponding to the zeroorder Hamiltonian $H=H_{0}$ and the full Hamiltonian $H=H_{0}+\lambda H_{1}$ for $x \rightarrow \pm \infty$. Therefore, one should be very careful when truncating such perturbation series at low orders.

TABLE IV
Perturbation energies E_{n} for the ground state of the Hénon-Heiles Hamiltonian (31, 32); E_{0} is the exact zeroorder energy.*

* The energies calculated from Eq. (12) are denoted as $E_{n}^{n u m}$. The analytic energies denoted as $E_{n}^{\text {an }}$ were calculated for $n=0,2, \ldots$, 16. For lack of space, the analytic energies $E_{10}^{a n}, E_{12}^{a n}, E_{14}^{a n}$, and $E_{16}^{a n}$ are written as a decimal number only. Odd-order perturbation energies equal zero.

TABLE V
Perturbation energies E_{n} for the first excited [0,1] state of the Hénon-Heiles Hamiltonian (31, 32); E_{0} is the exact zero-order energy.*

n	$E_{n}^{\text {num }}$	$E_{n}^{\text {an }}$
0		59
	2.95	$\overline{20}=2.95$
2		866382925
	-2.649761	$-\frac{326966328}{}=2.64976191982 \ldots$
4		298922976349768528158125
	-13.663991	$21876695965859724804672=-13.6639909800$
6		2843031836721735275017513033168065997796875
	-130.211814	$21833900913142490840925787807662370512384=-130.211$
8	-1656.04703	-1656.04702793...
10	-25297.5508	-25297.5508014...
12	-441706.519	-441706.519216
14	$-0.85765206 \times 10^{7}$	
16	$-0.1821097391 \times 10^{9}$	
18	$-0.418283241 \times 10^{10}$	
20	$-0.103158272 \times 10^{12}$	
22	$-0.271740662 \times 10^{13}$	
24	$-0.761625748 \times 10^{14}$	
26	$-0.22644751 \times 10^{16}$	
28	$-0.712486581 \times 10^{17}$	
30	$-0.23673444 \times 10^{19}$	

[^1]TABLE VI
Perturbation energies E_{n} for the second excited [1, 0] state of the Hénon-Heiles Hamiltonian (31, 32); E_{0} is the exact zero-order energy.*

n	$E_{n}^{\text {num }}$	$E_{n}^{a n}$
0		73
	3.65	$\overline{20}=3.65$
2		1973875
	-0.1629972	$-\frac{12109864}{12}=-0.162997288821$
4		448842824539509375
	-0.403834	$\overline{1111451301420501184}=-0.403834899438 \ldots$
6		529018839425166255132197044609375
	-2.117584	$249821836546340968688607521245696=-2.11758446234$
8		733184603275850651131746100573669230477374181640625
	-15.76930	$46494404700138309284613978743410512650443068751872=-15.7693083287 \ldots$
10	-150.1364	-150.136468953...
12	-1730.805	-1730.80567546...
14	-23374.8	
16	-0.361673×10^{6}	
18	-0.63081×10^{7}	
20	-0.1224862×10^{9}	
22	-0.262120×10^{10}	
24	-0.613108×10^{11}	
26	-0.155649×10^{13}	
28	-0.426302×10^{14}	
30	$-0.1253085 \times 10^{16}$	

 12. For lack of space, the analytic energies $E_{10}^{a n}$ and $E_{12}^{a n}$ are written as a decimal number only. Odd-order perturbation energies equal zero.

TABLE VII
Perturbation energies E_{n} for the third excited [1, 1] state of the Hénon-Heiles Hamiltonian (31, 32); E_{0} is the exact zero-order energy.*

n	$E_{n}^{\text {num }}$	$E_{n}^{\text {an }}$
0		
	4.95	$\frac{39}{20}=4.95$
2		201134875
	-1.845463	$-\overline{108988776}=-1.84546411458$.
4		21515087825404789503125
	-8.85123	$-\frac{2430743996206636089408}{}=-8.85123561303$
6		694186987069655474213702464188191838828125
	-78.03980	$-\frac{8895292964613607379636432069788373171712 ~}{\text { - }}$
8	-919.9970	-919.997135266...
10	-13100.3	-13100.3815465
12	-214537.0	-214537.066115
14	-0.3931028×10^{7}	
16	-0.79242×10^{8}	
18	$-0.1737966 \times 10^{10}$	
20	-0.411554×10^{11}	
22	$-0.10463977 \times 10^{13}$	
24	$-0.28444762 \times 10^{14}$	
26	-0.823863×10^{15}	
28	$-0.2535079 \times 10^{17}$	
30	-0.826589×10^{18}	

[^2]
ACKNOWLEDGMENTS

The authors thank the GA U.K. (grant 166/00), the GA C.R. (grant 202/00/1026), the MS C.R. (grant 100-01/206053) of Czech Republic and NSERC of Canada (J. Z. is a NATO Science Fellow) for support.

References

1. Skála, L.; Čížek, J. J Phys A 1996, 29, L129-L132.
2. Skála, L.; Čížek, J. J Phys A 1996, 29, 6467-6470.
3. Guardiola, R.; Ros, J. J Phys A 1996, 29, 6461-6465.
4. Znojil, M. J Phys A 1996, 29, 5253-5256.
5. Au, C. K.; Chow, C. K.; Chu, C. S. J Phys A 1997, 30, 4133-4136.
6. Skála, L.; Čížek, J.; Zamastil, J. J Phys A 1999, 32, 5715-5734.
7. Skála, L.; Čížek, J.; Kapsa, V.; Weniger, E. J. Phys Rev A 1997, 56, 4471-4479.
8. Skála, L.; Čížek, J.; Weniger, E. J.; Zamastil, J. Phys Rev A 1999, 59, 102-106.
9. Skála, L.; Kalhous, M.; Zamastil, J.; Čížek, J. J Phys A 2002, 35, L167-L174.
10. Vrscay, E. R.; Handy, C. R. J Phys A 1989, 22, 823-834.
11. Banks, T.; Bender, C. M.; Wu, T. T. Phys Rev D 1973, 8, 3346-3466.
12. Monagan, M. B.; Geddes, K. O.; Heal, K. M.; Labahn, G.; Vorkoetter, S. M.; McCarron, J.; DeMarco, P. Maple 9 Introductory Programming Guide, ISBN 1-894511-43-3, Maplesoft, Canada 2003.

[^0]: Correspondence to: L. Skála; e-mail: skala@karlov.mff.cuni.cz

[^1]: * The energies calculated from Eq. (12) are denoted as $E_{n}^{\text {num }}$. The analytic energies denoted as $E_{n}^{\text {an }}$ were calculated for $n=0,2, \ldots$, 12. For lack of space, the analytic energies $E_{8}^{a n}, E_{10}^{a n}$, and $E_{12}^{\text {an }}$ are written as a decimal number only. Odd-order perturbation energies equal zero.

[^2]: 12. For lack of space, the analytic energies $E_{10}^{\text {an }}$ and $E_{12}^{\text {an }}$ are written as a decimal number only. Odd-order perturbation energies equal zero.

