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ABSTRACT: It has been shown in our preceding papers that the linear dependence
of the perturbation wave functions on the perturbation energies makes possible to
calculate the exact perturbation energies from the values of the perturbation wave
functions corresponding to arbitrarily chosen trial perturbation energies. The resulting
version of the perturbation theory is very simple and can be used at large orders. In
this paper, this method is applied to a few problems and its numerical properties are
discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 99: 325–335, 2004

1. Introduction

I n this paper, we are interested in the perturba-
tion theory for the bound states of the Schröd-

inger equation:

H�� x� � E�� x�. (1)

As usual in the Rayleigh–Schrödinger perturbation
theory, we assume the Hamiltonian, wave function,
and energy to be in the forms

H � H0 � �H1, (2)

� � �0 � ��1 � �2�2 � · · ·, (3)

E � E0 � �E1 � �2E2 � · · ·, (4)

where � is a perturbation parameter. Using these
assumptions in the Schrödinger equation (1), we
obtain the well-known equations for En and �n,

H0�0 � E0�0 (5)

and

H0�n � H1�n�1 � �
i�0

n

Ei�n�i, n � 1, 2, . . . .
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We note that �0 denotes the unperturbed wave
function of the Hamiltonian H0. Depending on the
problem in question, it can be the ground-state as
well as excited-state wave function.

Despite the well-known formulations that can be
found in any textbook on quantum mechanics,
there is one property of the perturbation theory that
has been noticed [1, 2] and used [3–9] only recently.
It has been shown that the value of the perturbation
wave function �n(x) at an arbitrarily chosen point x
depends linearly on the perturbation energy En.
This linear dependence makes it possible to deter-
mine the exact perturbation energies from the val-
ues of �n(x) for two arbitrarily chosen trial pertur-
bation energies En by simple calculation. In this
way, the functions �n which are not quadratically
integrable can be used to calculate the exact pertur-
bation energies En and, in the next step, the corre-
sponding exact perturbation functions �n.

This method has a few advantages. In contrast to
the usual formulation of the perturbation theory,
this method based on the computation of �n from
Eq. (6) for a given energy En can easily be pro-
grammed for arbitrary large orders of the pertur-
bation theory. For example, 200 perturbation ener-
gies En necessary for finding their large-order
behaviour were calculated in [7]. Further, by solv-
ing Eq. (6) numerically, both the discrete and the
continuous parts of the energy spectrum is taken
into account, and the perturbation energies En can
be calculated even in cases when only a few bound
states exist. The linear dependence of �n(x) on the
energy En makes it possible to avoid the usual
shooting method and reduce the computational
time substantially. Finally, we note that only the
wave functions are needed in this method and no
integrals have to be calculated.

The aim of this paper is to apply this method to
a few problems and test its numerical properties.

2. Summary of the Method

First we discuss a nondegenerate multidimen-
sional case. We assume that the perturbation func-
tions �i and perturbation energies Ei are already
computed for i � 0, . . . , n � 1. Solution of Eq. (6)
can be written as

�n�En, x� � EnF� x� � fn�1� x�, n � 1, 2, . . . , (7)

where

F� x� � �H0 � E0�
�1�0� x� (8)

and

fn�1� x� � �H0 � E0�
�1�H1�n�1� x� � �

i�1

n�1

Ei�n�i� x�� .

(9)

The general solution of Eq. (6) can contain also a
term cn�0(x) at the right-hand side of Eq. (7), where
cn is an arbitrary constant. For the sake of simplic-
ity, we assume cn � 0 here. As it is seen from Eq. (7),
the perturbation function �n(En, x) depends on the
energy En which is not yet known and the point x �
[x1, . . . , xN] in N-dimensional space.

Equations (7)–(9) show that the structure of the
perturbation functions is very simple. It follows
from Eq. (7) that the function �n(En, x) is a linear
function of the energy En. Further, it is seen that F(x)
is a function independent of n. We note also that,
except for the case that En is the exact perturbation
energy, �n(En, x) is not quadratically integrable and
has no physical meaning.

The functions F(x) and fn�1(x) are calculated
from Eqs. (8) and (9) numerically with the condi-
tions F(xb) � 0 and fn�1(xb) � 0, where xb are points
at the boundary region sufficiently distant from the
potential minimum. The same boundary conditions
are used for the function �0(x).

We note that the function F(x) diverges in the
exact calculation, however, it has large but finite
values in numerical calculations. The functions
�n(En, x) for the exact perturbation energy En are
quadratically integrable. Therefore, we can assume
they obey the condition

��n�En, x�� � �F� x��. (10)

It follows from Eqs. (7) and (10) that the functions
�n(En, x) also satisfy the condition

��n�En, x�� � �fn�1� x��. (11)

Therefore, we can neglect �n(En, x) in Eq. (7). The
formula for the energy En then reads

En �
fn�1� x�

F� x�
. (12)

This equation can be used at an arbitrarily chosen
point x inside the integration region except for the
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points where the conditions (10) and (11) are not
obeyed.

If the perturbation energy En is calculated from
Eq. (12), the corresponding perturbation function
�n(En, x) can be found from Eqs. (7)–(9). More de-
tailed discussion of the method is given in [6, 9].

The energy E1 computed numerically from the
equation

E1� x0� �
f0� x0�

F� x0�
(13)

depends slightly on the choice of the point x0. Cal-
culating �1 from Eq. (7) for n � 1, we obtain the
function

�1�E1, x� �
f0� x0� F� x� � f0� x� F� x0�

F� x0�
. (14)

It shows that the function �1 calculated in this way
equals zero at the point x0:

�1�E1, x0� � 0. (15)

Therefore, the usual orthogonality condition,
��0��1� � 0, is not fulfilled in numerical calculations.
It can easily be shown that this result can be ex-
tended to all functions �n. As shown in [6], such
functions can have in some cases more simple form
than the usual perturbation functions. If necessary,
the functions �n can be made orthogonal to �0 by
the usual orthogonalization procedure.

Therefore, the point x used in the calculation of
the energy (12) should be sufficiently distant from
the points where the function �0(x) equals zero.

Our method is a remarkable example of calculat-
ing the perturbation energies En from the values of
the functions F(x) and fn�1(x) which are not qua-
dratically integrable. Comparing with the standard
formulation of the perturbation theory, large-order
calculations are simple in our method. To deter-
mine E1, the values of F(x) and f0(x) at only one
point x are sufficient. To determine En for n � 2,
3, . . . , only the value of fn�1(x) at the point x is to be
computed. Therefore, this method of calculating En

is much faster than the usual shooting method.
We note that the zero-order function �0 has to be

found only for the state for which the perturbation
corrections are calculated. In contrast to the usual
perturbation theory, other zero-order energies and
wave functions are not needed in the calculation.

Now we discuss the first-order perturbation cor-
rection to a degenerate eigenvalue E0. Assuming
that the energy E0 is d0-times degenerate and the
corresponding zero-order function �0 in Eq. (6) is
replaced by the linear combination

�
j�1

d0

a0
� j��0

� j�, (16)

it follows from Eq. (6) that Eq. (7) can be general-
ized as

�1�E1, x� � E1 �
j�1

d0

a0
� j�F� j�� x� � �

j�1

d0

a0
� j�f0

� j�� x�, (17)

where

F� j�� x� � �H0 � E0�
�1�0

� j�� x� (18)

and

f0
� j�� x� � �H0 � E0�

�1H1�0
� j�� x�. (19)

It is seen from Eq. (17) that �1(E1, x) depends on E1
linearly as in the nondegenerate case. Therefore, by
analogy with the nondegenerate case, we can de-
rive the formula for the perturbation energy E1:

E1 �
¥j�1

d0 a0
� j�f0

� j�� x�

¥j�1
d0 a0

� j�F� j�� x�
. (20)

Here, f0
( j)(x) and F( j)(x) are known, and E1 and a0

( j)

are to be found. To find E1 and a0
( j), we exploit the

fact that the energy E1 is a constant and use Eq. (20)
at d0 different points x � x1, . . . , xd0

inside the
integration region. The solution of the equations

¥j�1
d0 a0

� j�f0
� j�� x1�

¥j�1
d0 a0

� j�F� j�� x1�
�

¥j�1
d0 a0

� j�f0
� j�� x2�

¥j�1
d0 a0

� j�F� j�� x2�
� · · ·

�
¥j�1

d0 a0
� j�f0

� j�� xd0�

¥j�1
d0 a0

� j�F� j�� xd0�
(21)

then yields d0 sets of the coefficients a0
( j). The d0

values of the energy E1 are given by Eq. (20), and
the corresponding perturbation functions equal

�1 � �
j�1

d0

a0
� j��0

� j�. (22)
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The usual formulation of the first-order degen-
erate perturbation theory can be derived from Eq.
(20) as follows. Substitute Eqs. (18) and (19) into Eq.
(20), and we obtain for a point x

E1 �
¥j�1

d0 a0
� j��H0 � E0�

�1H1�0
� j�� x�

¥j�1
d0 a0

� j��H0 � E0�
�1�0

� j�� x�
. (23)

By multiplying the numerator and denominator by
(H0 � E0), we obtain

E1 �
¥j�1

d0 a0
� j�H1�0

� j�� x�

¥j�1
d0 a0

� j��0
� j�� x�

(24)

and

E1 �
j�1

d0

a0
� j��0

� j�� x� � �
j�1

d0

a0
� j�H1�0

� j�� x�. (25)

Further, by multiplying this equation from the left
side by the complex conjugate function �0

(i)*(x), in-
tegrating over x, and assuming orthonormality of
the functions �0

( j)(x), a standard secular problem is
obtained:

�
j�1

d0

�Wij � E1�ij�a0
� j� � 0, i � 1, . . . , d0, (26)

where

Wij � ��0
�i��H1��0

� j��. (27)

3. Examples

For the one-dimensional problems, this method
has already been used with very good results (see
[3–8]). For this reason, several two-dimensional
problems with increasing complexity are investi-
gated here.

3.1. COUPLED ANHARMONIC OSCILLATORS

As the first example, we discuss the problem
having only bound discrete states. We calculated
the perturbation energies for the ground state of
two nonlinearly coupled harmonic oscillators
[9–11]:

H � �
�2

�x1
2 �

�2

�x2
2 � x1

2 � x2
2 � ��x1

2x2
2 � x1

2 � x2
2�.

(28)

To compute �n from Eq. (6) in the region x1 �
[�11, 11], x2 � [�11, 11], we used a grid of points
158 � 158, 160 � 160, 162 � 162, 164 � 164, as-
sumed that the functions �n equal zero at the border
of this region, and solved the corresponding system
of difference equations in double-precision accu-
racy in Fortran. The same grid of points was used in
all examples given below, only the integration re-
gion was different.

To eliminate the effect of a non-zero step of the
grid the perturbation energies were extrapolated to
an infinitely dense grid by means of the Richardson
extrapolation. This extrapolation is substantial for
increasing the accuracy of the results. The ground-
state perturbation energies are shown in Table I.

Only the digits which agree in the calculations
for the points x � [0, 0] and x � [1, 1] are shown. It
is seen that the energies depend on the choice of the
point x only very little. All digits shown in Table I
also agree with an independent calculation made

TABLE I ______________________________________
Perturbation energies En for the ground state of two
coupled harmonic oscillators (28); E0 is the exact
zero-order energy.

n En

0 2
1 �0.750000000
2 �0.93750000
3 �0.0234375000
4 �0.0133056640
5 �0.00031534830
6 �0.013279491
7 0.0240443106
8 �0.0743030687
9 0.234920366

10 �0.84554255
11 3.34568731
12 �14.4946548
13 68.195859
14 �346.32541
15 1888.18252
16 �11000.3994
17 68201.932
18 �448367.10
19 3115424.0
20 �22813412.6
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by means of the difference equation method sug-
gested in [11]. It is also seen that the method can be
used at large orders. Therefore, these results are
quite satisfactory.

3.2. COUPLED MORSE OSCILLATORS

As a second test, we chose a more difficult prob-
lem with only one bound state of the zero-order
Hamiltonian when the standard perturbation the-
ory yields the first-order correction E1 only. The
perturbation energies were calculated for the
ground state of two coupled Morse oscillators:

H � �
�2

�x1
2 �

�2

�x2
2 � �1 � e�x1�2 � �1 � e�x2�2

� ��1 � e�x1�2�1 � e�x2�2. (29)

The integration region x1 � [�12, 20] and x2 �
[�12, 20] was used. The ground-state perturbation
energies are shown in Table II.

Only the digits that agree in the calculations for
the points x � [4, 4] and x � [5, 6] are shown. The
value of E1 � 0.25 was verified by analytic calcula-
tion. Decreasing accuracy of the energies En with
increasing n is due to the fact that the functions �n

spread with increasing n rapidly and get out of the
integration region. These results show that, in con-
trast to the standard perturbation theory, our
method can be used for calculating large-order per-
turbation energies even if there are only a few
zero-order bound states.

3.3. BARBANIS HAMILTONIAN

As another example of using our method we
calculated the perturbation energies for the ground
state of the Barbanis Hamiltonian:

H � �
�2

�x2 �
�2

�y2 � 	x
2x2 � 	y

2y2 � �xy2. (30)

Here, we used the frequencies 	x � 1 and 	y � 1.
This Hamiltonian has been often studied as a sim-
ple model for systems with the Fermi responses
such as the CO2 stretch bend resonance. Potential in
this Hamiltonian is not bounded from below.

The ground-state perturbation energies were cal-
culated both numerically and analytically (see Ta-
ble III).

In the numerical calculation, the integration re-
gion x � [�11, 11] and y � [�11, 11] was used.
Similarly to the preceding examples, only the digits
that agree in the calculations for the points x � [0.2,
0.5] and x � [0.6, 0.8] are shown. Again, the ener-
gies depend on the choice of the point x only little.
The numerical results agree with an independent
analytic calculation made in Maple [12] with an
accuracy to 6–9 digits. Due to the antisymmetry of
the perturbation potential in Eq. (30), the odd-order
perturbation energies E1, E3, . . . equal zero.

3.4. HÉNON-HEILES HAMILTONIAN

As the last test of our method, the Hénon–Heiles
Hamiltonian was used. The perturbation energies
were calculated for the ground state and the first
excited state of the zero-order Hamiltonian

H0 � �
1
2

�2

�x2 �
1
2 	x

2x2 �
1
2

�2

�y2 �
1
2 	y

2y2 (31)

with the perturbation potential

H1 � yx2 � 
y3. (32)

The frequencies 	x � 2, 	y � 1.3, and the parameter

 � �1 corresponding to a very flat and shallow
potential minimum were used. Similarly to the Bar-
banis potential, the perturbation potential is not
bounded from below.

The analytic energies and wave functions of the
Hénon–Heiles potential can be calculated as fol-
lows.

First, we express the eigenfunctions of H0 as the
products of the eigenfunctions of the harmonic os-

TABLE II ______________________________________
Perturbation energies En for the ground state of two
coupled Morse oscillators (29); E0 is the exact
zero-order energy.

n En

0 3/2
1 0.2500000
2 �0.069635
3 0.03903
4 �0.0366
5 0.0920
6 �0.611
7 6.43
8 �89.2
9 1550
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cillator. For example, the ground-state zero-order
wave function equals

�00� x, y� �
1

5��
131/453/4e�x2��13/ 20� y2

� �0� x��0� y�. (33)

Analogously, orthonormal excited state wave func-
tions corresponding to low quantum numbers can
be written in the form

�01� x, y� �
1

5��
133/451/4ye�x2��13/ 20� y2

� �0� x��1� y�, (34)

�03� x, y� �
�6

150��
133/451/4y��15

� 13y2�e�x2��13/ 20� y2
� �0�x��3�y�, (35)

and

�21� x, y� �
�2

10��
133/451/4��1 � 4x2�ye�x2��13/ 20� y2

� �2�x��1�y�. (36)

Now we discuss the ground-state perturbation
problem with the zero-order wave function

TABLE III _____________________________________________________________________________________________
Perturbation energies En for the ground state of the Barbanis Hamiltonian (30); E0 is the exact zero-order
energy.*

n En
num En

an

0 2 2

2 �0.1041666665 �
5

48 � �0.104166666667 . . .

4 �0.0322627314 �
223

6912 � �0.0322627314815 . . .

6 �0.02298880368 �
114407

4976640 � �0.0229888036908 . . .

8 �0.024159131 �
346266143

14332723200 � �0.0241591313924 . . .

10 �0.0326818070 �
2360833242959

72236924928000 � �0.0326818070580 . . .

12 �0.05343610684 �
12969801730008377

242716067758080000 � �0.0534361068462 . . .

14 �0.1019221649 �
124680261346275858491

1223288981500723200000 � �0.101922164944 . . .

16 �0.2217101989 �
10935414749213048671720261
49323011734109159424000000 � �0.221710199048 . . .

18 �0.541404172 �
4441356782637499756905980351899
8203403311617035395399680000000 � �0.541404172625 . . .

20 �1.46666250 �
667033238517271928733626515967166703
454796679596048442320958259200000000 � �1.46666250754 . . .

22 �4.366576807
24 �14.17768870
26 �49.8757770
28 �189.0381799
30 �768.15366

* The energies calculated numerically from Eq. (12) are denoted as En
num. The analytic energies denoted as En

an were calculated for
n � 0, 2, . . . , 20. Odd-order perturbation energies equal zero.
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�0� x, y� � �00� x, y�. (37)

After a simple but tedious calculation, H1�0 can be
expressed as a linear combination of the eigenfunc-
tions of the unperturbed Hamiltonian H0:

H1�0 � �
47�65

676 �01 �
5�390

169 �03 �
�130

52 �21.

(38)

The first-order perturbation energy equals zero:

E1 � ��0�H1��0� � 0. (39)

The corresponding eigenfunction can be calculated
from the equation

�1 � �H0 � E0�
�1�E1 � H1��0, (40)

with the result

�1 � �
2

26871
1

��
131/453/4y��1200 � 689y2

� 507x2�e�x2��13/ 20� y2. (41)

Higher order perturbation energies and wave
functions can be obtained in a similar way. For
example, the second- and third-order perturbation
wave functions equal

�2 �
5

6608207466432
1

��
131/453/4��59250448263

� 94848624000y2 � 45306655680y4 � 8689293184y6

� 5426185752x2 � 25233511680x2y2

� 12788016384x2y4 � 588128112x4

� 4705024896x4y2�e�x2��13/ 20� y2 (42)

and

�3 � �
25

652300246187820708192
1

��
131/453/4y��267842001350803600 � 1402374103429392171y2

� 753269605832315520y4 � 152737767077163840y6 � 14661974436247424y8 � 63207691842935367x2

� 441043571586179016x2y2 � 183753938493178560x2y4 � 32367000170583936x2y6 � 25884928192802328x4

� 55488811253153616x4y2 � 23817226540618368x4y4 � 2190735460104048x6

� 5841961226944128x6y2�e�x2��13/ 20� y2. (43)

These functions agree very well with the numeri-
cally calculated ones and are shown in Figures 1–4.

It is seen that the ground-state perturbation func-
tions go to zero at the boundaries of the integration
region x � [�11, 11] and y � [�11, 11]. With
increasing n, the functions �n spread out from the
centre of the integration region and their absolute
value goes up.

In numerical calculations, the integration region
x � [�11, 11], y � [�11, 11] was used. The numer-
ical and analytical ground-state and first excited
state perturbation energies are shown in Tables
IV–VII.

Only the digits which agree in the calculations
for the points x � [0.2, 0.5] and x � [0.6, 0.8] are
shown. Dependence of the results on the choice of
the point x is small, as in the preceding examples.
The numerical results agree with the analytic ones
with an accuracy of 6–9 digits.

Because of the antisymmetry of the perturbation
potential (32), the odd-order perturbation energies

FIGURE 1. Ground-state zero-order wave function �0

for the Hénon–Heiles Hamiltonian (31, 32).
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E1, E3, . . . equal zero. In numerical calculations,
these energies differ from zero with an accuracy of
7–9 digits. The even-perturbation energies E2,
E4, . . . , are negative, and their absolute value in-
creases rapidly with the order of the perturbation
theory.

Results in Tables IV–VII indicate that the abso-
lute values of the perturbation energies En increase
with the energy difference of the excited state and
the ground state.

Concluding this section, our method of solving the
perturbation problem gives good results in the all
investigated cases including the most difficult Hé-
non–Heiles Hamiltonian. The absolute values of the
perturbation energies En increase rapidly for large n.

4. Conclusions

In summary, the method described in this paper
is simple and efficient alternative to the usual for-
mulation of the perturbation theory. It can be used
for one-dimensional as well as multidimensional
problems and for nondegenerate as well as degen-
erate eigenvalues. Its main advantages are easy cal-
culation of the large-order perturbations and the
possibility to find the perturbation corrections, even
in cases when only a few zero-order bound states
exist. The analytic and numerical results for the
investigated examples show that our version of the
perturbation theory yields results with good accu-
racy and can be used at large orders.

The numerical results show in all investigated
examples that the absolute values of the perturba-
tion energies En increase rapidly for large n. They
also indicate that the perturbation series (4) are
divergent, asymptotic series in these cases. They are
obviously related to different asymptotic behavior
of the wave functions corresponding to the zero-
order Hamiltonian H � H0 and the full Hamiltonian
H � H0 � �H1 for x3	
. Therefore, one should be
very careful when truncating such perturbation se-
ries at low orders.

FIGURE 2. First-order perturbation function �1 for the
ground state of the Hénon–Heiles Hamiltonian (31, 32).

FIGURE 3. Second-order perturbation function �2 for
the ground state of the Hénon–Heiles Hamiltonian (31,
32).

FIGURE 4. Third-order perturbation function �3 for the
ground state of the Hénon–Heiles Hamiltonian (31, 32).
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TABLE IV _____________________________________________________________________________________________
Perturbation energies En for the ground state of the Hénon–Heiles Hamiltonian (31, 32); E0 is the exact zero-
order energy.*

n En
num En

an

0

1.65
33
20 � 1.65

2

�0.338300661
�

4096775
12109864 � �0.338300661345 . . .

4

�0.95061029
�

1056557053570119375
1111451301420501184 � �0.950610298642 . . .

6

�5.26789699
�

1316035702524299260768279480015625
249821836546340968688607521245696 � �5.26789699698 . . .

8

�41.495774
�

58464282879382983469996471322587023716733119140625
1408921354549645735897393295254864019710396022784 � �41.4957745445 . . .

10 �414.584851 �414.584851968 . . .
12 �4969.6014 �4969.60146844 . . .
14 �69209.077 �69209.0774461 . . .
16 �1096653.64 �1096653.64936 . . .
18 �0.194809520 � 108

20 �0.38361825 � 109

22 �0.82989680 � 1010

24 �0.19576261 � 1012

26 �0.50030730 � 1013

28 �0.13776229 � 1015

30 �0.40671279 � 1016

* The energies calculated from Eq. (12) are denoted as En
num. The analytic energies denoted as En

an were calculated for n � 0, 2, . . . ,
16. For lack of space, the analytic energies E10

an, E12
an, E14

an, and E16
an are written as a decimal number only. Odd-order perturbation

energies equal zero.

TABLE V ______________________________________________________________________________________________
Perturbation energies En for the first excited [0, 1] state of the Hénon–Heiles Hamiltonian (31, 32); E0 is the
exact zero-order energy.*

n En
num En

an

0

2.95
59
20 � 2.95

2

�2.649761
�

866382925
326966328 � 2.64976191982 . . .

4

�13.663991
�

298922976349768528158125
21876695965859724804672 � �13.6639909800 . . .

6

�130.211814
�

2843031836721735275017513033168065997796875
21833900913142490840925787807662370512384 � �130.211813639 . . .

8 �1656.04703 �1656.04702793 . . .
10 �25297.5508 �25297.5508014 . . .
12 �441706.519 �441706.519216 . . .
14 �0.85765206 � 107

16 �0.1821097391 � 109

18 �0.418283241 � 1010

20 �0.103158272 � 1012

22 �0.271740662 � 1013

24 �0.761625748 � 1014

26 �0.22644751 � 1016

28 �0.712486581 � 1017

30 �0.23673444 � 1019

* The energies calculated from Eq. (12) are denoted as En
num. The analytic energies denoted as En

an were calculated for n � 0, 2, . . . ,
12. For lack of space, the analytic energies E8

an, E10
an, and E12

an are written as a decimal number only. Odd-order perturbation energies
equal zero.



TABLE VI _____________________________________________________________________________________________
Perturbation energies En for the second excited [1, 0] state of the Hénon–Heiles Hamiltonian (31, 32); E0 is the
exact zero-order energy.*

n En
num En

an

0

3.65
73
20 � 3.65

2

�0.1629972
�

1973875
12109864 � �0.162997288821 . . .

4

�0.403834
�

448842824539509375
1111451301420501184 � �0.403834899438 . . .

6

�2.117584
�

529018839425166255132197044609375
249821836546340968688607521245696 � �2.11758446234 . . .

8

�15.76930
�

733184603275850651131746100573669230477374181640625
46494404700138309284613978743410512650443068751872 � �15.7693083287 . . .

10 �150.1364 �150.136468953 . . .
12 �1730.805 �1730.80567546 . . .
14 �23374.8
16 �0.361673 � 106

18 �0.63081 � 107

20 �0.1224862 � 109

22 �0.262120 � 1010

24 �0.613108 � 1011

26 �0.155649 � 1013

28 �0.426302 � 1014

30 �0.1253085 � 1016

* The energies calculated from Eq. (12) are denoted as En
num. The analytic energies denoted as En

an were calculated for n � 0, 2, . . . ,
12. For lack of space, the analytic energies E10

an and E12
an are written as a decimal number only. Odd-order perturbation energies equal

zero.

TABLE VII ____________________________________________________________________________________________
Perturbation energies En for the third excited [1, 1] state of the Hénon–Heiles Hamiltonian (31, 32); E0 is the
exact zero-order energy.*

n En
num En

an

0

4.95
99
20 � 4.95

2

�1.845463
�

201134875
108988776 � �1.84546411458 . . .

4

�8.85123
�

21515087825404789503125
2430743996206636089408 � �8.85123561303 . . .

6

�78.03980
�

694186987069655474213702464188191838828125
8895292964613607379636432069788373171712 � �78.0398115982 . . .

8 �919.9970 �919.997135266 . . .
10 �13100.3 �13100.3815465 . . .
12 �214537.0 �214537.066115 . . .
14 �0.3931028 � 107

16 �0.79242 � 108

18 �0.1737966 � 1010

20 �0.411554 � 1011

22 �0.10463977 � 1013

24 �0.28444762 � 1014

26 �0.823863 � 1015

28 �0.2535079 � 1017

30 �0.826589 � 1018

* The energies calculated from Eq. (12) are denoted as En
num. The analytic energies denoted as En

an were calculated for n � 0, 2, . . . ,
12. For lack of space, the analytic energies E10

an and E12
an are written as a decimal number only. Odd-order perturbation energies equal

zero.
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8. Skála, L.; Čı́žek, J.; Weniger, E. J.; Zamastil, J. Phys Rev A

1999, 59, 102–106.
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