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New version of the Rayleigh–Schrödinger perturbation theory based on the linear depend-
ence of the perturbation wavefunctions on the perturbation energies is summarized. It is
shown that this method is suitable also for multidimensional problems and the linear de-
pendence can be used at an arbitrary point inside the integration region. The resulting per-
turbation theory is simple and can be used at large orders. As an example, the method is
applied to the Barbanis hamiltonian.
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THEORY

In this paper, we are interested in the perturbation theory for the bound
states of the Schrödinger equation

Hψ(x) = Eψ(x) . (1)

As usual, we assume the hamiltonian, wavefunction and energy in the form

H = H0 + λH1 (2)
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ψ = ψ0 + λψ1 + λ2 ψ2 + ... (3)

and

E = E0 + λE1 + λ2 E2 + ..., (4)

where λ is a perturbation parameter. Except for the simplest cases, these
equations cannot be solved in analytical form and approximate methods
have to be used. Using these assumptions in the Schrödinger equation (1)
we get the well-known equations for En and ψn

H0ψ0 = E0ψ0 (5)

and

H0ψn + H1ψn–1 = E ni n i
i

n

ψ −
=
∑ =

0

1 2, , , ... . (6)

We note the unperturbed wavefunction ψ0 can be the ground-state as well
as an excited-state wavefunction.

There is one property of the perturbation theory which has been no-
ticed1,2 and used3–8 only recently. It has been shown in the one-
dimensional case1,2 that the value of the perturbation wavefunction ψn(x) at
an arbitrarily chosen point x depends on the perturbation energy En lin-
early. This linear dependence makes it possible to determine the exact per-
turbation energies from the values of ψn(x) for two arbitrarily chosen
perturbation energies En by simple calculation1,2. In this way, the functions
ψn which are not quadratically integrable are used to calculate the exact
perturbation energies En and, in the next step, the corresponding exact per-
turbation functions ψn.

This method has a few advantages. First, the computation of ψn from
Eq. (6) for a given energy En can easily be programmed for arbitrary large
orders of the perturbation theory. For example, 200 perturbation energies
En necessary for finding their large-order behaviour were calculated in ref.7

Further, by solving Eq. (6) numerically both the discrete and continuous
part of the energy spectrum is taken into account and the perturbation en-
ergies En can be calculated even in cases when only a few bound states ex-
ist. The linear dependence of ψn(x) on the energy En makes it possible to
avoid the usual shooting method and reduce the computational time sub-
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stantially. Finally, we note that only the wavefunctions are needed in this
method and no integrals have to be calculated.

The aim of this paper can be formulated as follows. First, it is shown that
this method can be extended to multidimensional problems. Further, the
point x mentioned above need not be only a point sufficiently distant from
the potential minimum as assumed in refs1,2 but it can be an arbitrary point
inside the integration region obeying conditions discussed below. This is
advantageous from the viewpoint of numerical stability of the method.
First we discuss a non-degenerate multidimensional case. We assume the
perturbation functions ψi and perturbation energies Ei are already com-
puted for i = 0, ..., n – 1. Solution of Eq. (6) can be written as

ψn(En,x) = EnF(x) – fn–1(x), n = 1, 2, ... , (7)

where

F(x) = (H0 – E0)–1ψ0(x) (8)

and

f x H E H x E xn n i n i
i

n

−
−

− −
=

−

= − −



∑1 0 0

1
1 1

1

1

( ) ( ) ( ) ( ) .ψ ψ (9)

General solution of Eq. (6) can contain also a term cnψ0(x) on the right-
hand side of Eq. (7), where cn is an arbitrary constant. For the sake of sim-
plicity, we assume cn = 0 here. As seen from Eq. (7), the perturbation func-
tion ψn(En,x) depends on the energy En which is not yet known, and the
point x = [x1, ..., xN] in N-dimensional space.

Equations (7)–(9) show very simple structure of the perturbation func-
tions. It follows from Eq. (7) that the function ψn(En,x) is a linear function of
the energy En. Further, it is seen that F(x) is a function independent of n. We
note also that, except for the exact perturbation energy En, ψn(En,x) is not
quadratically integrable and has not any physical meaning.

The functions F(x) and fn–1(x) are calculated from Eqs (8) and (9) numeri-
cally with the conditions F(xb) = 0 and fn–1(xb) = 0, where xb are points at
the boundary region sufficiently distant from the potential minimum. The
same boundary conditions are used for the function ψ0(x).

We note that the function F(x) diverges in the exact calculation; how-
ever, it has large but finite values in numerical calculations. The functions
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ψn(En,x) for the exact perturbation energy En are quadratically integrable.
Therefore, we can assume they obey the condition

|ψn(En,x)| << |F(x)| . (10)

It follows from Eqs (7) and (10) that the functions ψn(En,x) satisfy also the
condition

|ψn(En,x)| << |fn–1(x)| . (11)

Therefore, we can neglect ψn(En,x) in Eq. (7). The formula for the energy En
then reads

E
f x

F xn
n= −1 ( )

( )
. (12)

This equation can be used at an arbitrarily chosen point x inside the integra-
tion region except for the points where the conditions (10) and (11) are not
obeyed.

After calculating the perturbation energy En from Eq. (12), the corre-
sponding perturbation function ψn(En,x) can be found from Eqs (7)–(9).

Now we clarify the principle of our method for the case n = 1. In order to
eliminate the divergence in calculating F(x) from Eq. (8) we replace the
hamiltonian H0 by H0 + iδ, where δ is a small real number. Then, the func-
tion F(x) can be written as

F x x( ) ( ) .= 1
0iδ

ψ (13)

In the first order n = 1, we expand the function in the parantheses in Eq. (9)
into the eigenfunctions of H0

H x b x b xj j
j

1 0 0 0ψ ψ ϕ( ) ( ) ( ) .
,

= + ∑ (14)

Here, ϕj are the eigenfunctions of H0 which obey the equation H0ϕj = εj ϕj
and are different from ψ0, bj are constants. Now, applying the operator
(H0 – E0)–1 to Eq. (14) we obtain
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f x b x
E

b x
j

j j
j

0 0 0

1 1
( ) ( ) ( ) ,

,

= +
+∑i iδ

ψ
ε δ −

ϕ
0

(15)

where εj ≠ E0. By substituting Eqs (13) and (15) into Eq. (7) we get

ψ
δ

ψ
ε δ −

ϕ
0

1 1
1 0

0

1
( , ) ( ) ( ) .

,

E x
E b

x
E

b x
j

j j
j

=
−

−
+∑i i

(16)

In order to obtain quadratically integrable function ψ1, the energy E1 must
equal b0. For δ → 0, the constant b0 can be calculated from Eqs (13) and (15)

E b
f x

F x1 0
0= =
( )

( )
. (17)

This result is an independent proof of Eq. (12) for n = 1. In a similar way,
the correctness of Eq. (12) can be proven at all higher orders.

In numerical calculations, the exact hamiltonian H0 is replaced by an ap-
proximate one and the functions F(x) and fn(x) given by Eqs (8) and (9) do
not diverge.

It can be shown that the function ψn calculated numerically from Eqs (7)
for the energy (12) equals zero at the point x0

ψn(En,x0) = 0 . (18)

Therefore, the usual orthogonality condition 〈ψ0|ψn〉 = 0 is not fulfilled in
numerical calculations. Such functions can have in some cases a simpler
form than the usual perturbation functions6. If necessary, the functions ψn
can be made orthogonal to ψ0 by the usual orthogonalization procedure. It
is shown in ref.9 that Eq. (10) is fulfilled everywhere inside the integration
region except for the points where ψ0(x) = 0. Therefore, the point x used in
the calculation of the energy (12) should be sufficiently distant from the
points where the function ψ0(x) equals zero.

The standard formula of the non-degenerate perturbation theory can be
derived in the following way. It is seen from Eqs (8), (9) and (12) that

E H E H E H En n i n
i

n

( ) ( ) .0 0
1

0 0 0
1

1 1 1
1

1

− = − −





− −
− −

=

−

∑ψ ψ ψ (19)
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Multiplying this equation by (H0 – E0) and assuming that the functions ψn
obey the conditions 〈ψ0|ψn〉 = δ0,n, n = 0, 1, ..., we get after simple calcula-
tion the well-known formula

En = 〈ψ0|H1|ψn–1〉 . (20)

It confirms correctness of Eq. (12).
Our method is a remarkable example of calculating the perturbation en-

ergies En from the values of the functions F(x) and fn–1(x) which are not
quadratically integrable. Comparing with the standard formulation of the
perturbation theory, large-order calculations are simple in our method. To
determine E1, the values of F(x) and f0(x) at only one point x are sufficient.
To determine En for n = 2, 3, ..., only the value of fn–1(x) at the point x is to
be computed.

We note that the zero-order function ψ0 has to be found only for the
state for which the perturbation corrections are calculated. In contrast to
the usual perturbation theory, other zero-order energies and wavefunctions
are not needed in the calculation.

EXAMPLE

As an example of using our method, we calculated the perturbation ener-
gies for the ground state of the Barbanis hamiltonian with the unperturbed
hamiltonian

H
x

x
y

yx y0

2

2

2 2
2

2

2 2= − + − +∂
∂

ω ∂
∂

ω (21)

and with the perturbation potential

H1 = xy2 . (22)

Here, we used the parameters ωx = 1, ωy = 1. This hamiltonian has been of-
ten studied as a simple model for systems with the Fermi responses such as
the CO2 stretchbend resonance11.

The perturbation energies are calculated both numerically and analyti-
cally (see Table I). Analytical calculations are possible due to the polyno-
mial form of the potential. The eigenfunctions of H0 are products of the
corresponding eigenfunctions of the one-dimensional harmonic oscillators.
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TABLE I
Perturbation energies En for the ground [0,0] state of the Barbanis hamiltonian (21)–(22).
E E0 0 2num an= = is the exact zero-order energy. The energies calculated numerically from
Eq. (12) are denoted as En

num. The analytical energies denoted as En
an were calculated for n =

2, 4, ..., 20. Odd-order perturbation energies equal zero

n En
num En

an

0 2 2

2 –0.1041666665 – –
5
48

= –0.104166666667...

4 –0.0322627314 – –
223

6912
= –0.0322627314815...

6 –0.02298880368 – –
114 407

4 976 640
= –0.0229888036908...

8 –0.024159131 – –
346 266 143

14 332 723 200
= –0.0241591313924...

10 –0.0326818070 –
2 360 833 242 959
72 236 924 928 000

= –0.0326818070580...

12 –0.05343610684 – –
12 969 801730 008 377
242 716 067 758 080 000

= –0.0534361068462...

14 –0.1019221649 – –
124 680 261 346 275 858 491

1 223 288 981500 723 200 000
= –0.101922164944...

16 –0.2217101989 – –
10 935 414 749 213 048 671720 261
49 323 011734 109 159 424 000 000

= –0.221710199048...

18 –0.541404172 – –
4 441 356 782 637 499 756 905 980 351 899
8 203 403 311 617 035 395 399 680 000 000

= –0.541404172625...

20 –1.46666250 – –
667 033 238 517 271 928 733 626 515 967 166 703
454 796 679 596 048 442 320 958 259 200 000 000

= –1.46666250754...

22 –4.366576807

24 –14.17768870

26 –49.8757770

28 –189.0381799

30 –768.15366



Equation (6) for the Barbanis potential was integrated numerically in the
region x ∈ [–11,11], y ∈ [–11,11]. To compute ψn in this region, we used a
grid of points 158 × 158, 160 × 160, 162 × 162, 164 × 164, assumed that the
functions ψn equal zero at the border of this region and used the method of
finite differences. The corresponding system of linear difference equations
was solved in double precision arithmetics in Fortran. To eliminate the ef-
fect of a non-zero step of the grid, the perturbation energies were extrapo-
lated to an infinitely dense grid by means of the Richardson extrapolation.
This extrapolation is substantial for increasing the accuracy of the results.

The ground-state perturbation energies are shown in Table I. Only the
digits which agree in the calculations for the points x = [0.2,0.5] and x =
[0.6,0.8] are shown. It is seen that the results depend on the choice of the
point x only slightly. The numerical results agree well with an independent
analytical calculation made in Maple shown in Table I with the accuracy
6–9 digits.

Because of the antisymmetry of the potential H1 (Eq. (22)), the perturba-
tion energies of the odd order equal zero, E2i+1 = 0, i = 1, 2, .... In numerical
calculations, the odd-order perturbation energies differ from zero within
the accuracy 7–9 digits. The even perturbation energies E2i, i = 1, 2, ... are
negative and their absolute value increases rapidly with i. It is seen that the
perturbation series for the Barbanis hamiltonian is a divergent series. Calcu-
lating the energy from Eq. (4) for small λ, the absolute values of the terms
λnEn go first down and then increase. This indicates the perturbation series
(4) is the asymptotic series. It is obviously related to different asymptotic
behaviour of the wavefunctions corresponding to the hamiltonians H = H0
and H = H0 + λH1 for x → ±∞. Further investigation in this respect is neces-
sary.

The perturbation functions following from the analytical calculations are
given by the following expressions

ψ0 =
1 1 2 1 22 2

π
e − −/ / ,x y

ψ1 = − + − −x
y x y

6
1 2 1 2 1 22 2

π
( ) ,/ /e

ψ2 = − − −1

1152
1 2 12

π
(–51 + 36 + 4 + 24 + 48 + 16 )e2 4 2 2 2 2 4y y x x y x y x/ /2 2y ,
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FIG. 2
The first-order perturbation function ψ1 for the ground state of the Barbanis hamiltonian
(21)–(22)
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FIG. 1
The ground-state zero-order wavefunction ψ0 for the Barbanis hamiltonian (21)–(22)
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FIG. 3
The second-order perturbation function ψ2 for the ground state of the Barbanis hamiltonian
(21)–(22)
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FIG. 4
The third-order perturbation function ψ3 for the ground state of the Barbanis hamiltonian
(21)–(22)
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ψ
π3

2

103 680
= −x

y y y x y(1203 + 1311 + 792 + 60 + 264 + 7922 4 6 2 2x +

− −+ 480 + 80 )e2 4 2 6x y x y x y1 2 1 22 2/ / ,

ψ
π4

2 4 61

39 813 120
611 433 350 424 66 600 7008 240= − + + + +( y y y y 8

2 2 2 2 4 2 6200 016 366 048 168 480 35 328

1920

+

+ + + + +

+

x x y x y x y

x2 8 4 4 2 4 4 4 6

4

12 864 51 456 43 008 12 800

1280

y x x y x y x y

x y

+ + + + +

+ 8 1 2 1 22 2

) ./ /e − −x y (23)

These functions agree well with the numerically calculated functions ψn
shown in Figs 1–4.

CONCLUSIONS

The version of the perturbation theory described in this paper is a simple
and efficient alternative to the usual formulation of the perturbation the-
ory. It can be used for one-dimensional as well as multidimensional prob-
lems and for non-degenerate as well as degenerate eigenvalues. Its main
advantages are the easy calculation of the large-order perturbations and the
possibility to find the perturbation corrections even in cases when only a
few zero-order bound states exist. These properties are advantageous in cal-
culating the electronic and vibrational spectra of atoms and molecules.
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