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Using the semiclassical approach for the description of the propagation of the electromagnetic waves
in optically active isotropic media we derive a new formula for the circular dichroism parameter. The
theory is based on the idea of the time damped electromagnetic wave interacting with the molecules
of the sample. In this theory, the Lambert–Beer law need not be taken as an empirical law, however,
it follows naturally from the requirement that the electromagnetic wave obeys the Maxwell equations.
Key words: Circular dichroism; Optically active media; CD spectroscopy; Quantum chemistry.

In this paper, we are interested in the theory of the circular dichroism in isotropic
media. It is well-known that the propagation of the left or right handed circularly po-
larized electromagnetic waves (LHCP or RHCP) in optically active media is different.
If the molecule absorbs at the frequency of the electromagnetic wave, the absorption of
the LHCP and RHCP waves is not equal. This effect is called the circular dichroism
(CD) and is characterized by the difference of the corresponding absorption coeffi-
cients. This difference is usually denoted as the circular dichroism parameter (see e.g.
refs1,2)

∆b = bL − bR  , (1)

where bL and bR are defined by the Lambert–Beer law

IL(z)
IL(0) = exp (−bLz)  , (2)

IR(z)
IR(0) = exp (−bRz)  . (3)
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Here, I(z) is the intensity of the wave propagating along the z axis.
The standard theories of the circular dichroism assume the electromagnetic field in

the form of the monochromatic plane wave1,2. In case of absorption, such approach is
not theoretically justified since the plane wave does not obey the Maxwell equations.
The Lambert–Beer law is taken as an empirical law1.

 The aim of this paper is to present a more consistent theory in which we assume a
damped electromagnetic wave instead of the plane wave. This approach has two advan-
tages. First, this wave satisfies the Maxwell equations. The second advantage of our
approach is that the Lambert–Beer law follows naturally from the damped wave as-
sumption.

In the next section, we summarize the semiclassical approach and introduce the basic
physical quantities. We briefly discuss difficulties of the usual approaches and intro-
duce the idea of a damped electromagnetic wave, and then we solve the Maxwell equ-
ations and derive the formula for the circular dichroism parameter. In the last section,
discussion of the results is presented. The averaging procedure of molecular quantities
is described in Appendix A. In Appendix B, an order estimate of the damping constant
is performed.

SEMICLASSICAL APPROACH

We assume that the electromagnetic waves are solutions of the Maxwell equations.
Assuming further that there are no free charges and currents in the sample the Maxwell
equations read

∇ ⋅ E = − 
1
ε0

∇ ⋅ P  ,

1
µ0

 ∇ × B − ε0 
∂
∂t

 E = ∇ × M + 
∂
∂t

 P  ,

∇ ⋅ B = 0  ,

∇ × E + 
∂
∂t

B = 0  .

To solve these equations we have to know the material relations

P = P(E,B) ,  M = M(E,B)  . (4)

In this paper, we assume linear material relations. In this case we get from the first
Maxwell equation
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∇ ⋅ E = 0  .

Therefore, we require the gauge conditions

∇ ⋅ Amac = 0 ,  ϕ = 0  , (5)

where Amac and ϕ denote the macroscopic vector and scalar potentials. In this way, we
get from the Maxwell equations the wave equation

− 
1
µ0

 ∇2Amac + ε0 
∂2

∂t2
Amac = 

∂
∂t

P + ∇ × M  . (6)

To derive the material relations (4), we proceed as follows. We assume that the
optical activity is produced by the interaction of the electromagnetic field with the
individual molecules of the sample. We are interested in the electronic states and as-
sume that the interaction among the molecules is weak and the wave functions of the
individual molecules are known. For the vibrational states, these assumptions are not
justified.

First, we calculate d and m, the quantum mechanical average of the electric and
magnetic dipole moments of the molecule interacting with the electromagnetic field.
These quantities are defined by the equation

〈 Q 〉 = 〈 ψ | Q^  | ψ 〉  , (7)

where Q denotes d or m. To calculate (7), we have to know the state vector |ψ〉. It is
the solution of the Schrödinger equation

ih− 
∂
∂t

 | ψ(t) 〉 = (H^ 0 + W
^ (t)) | ψ(t) 〉  , (8)

where H
^

0 is the Hamiltonian of the free molecule and W
^

 describes the interaction be-
tween the molecule and the local electromagnetic field in the first order of Aloc

W
^ (t) = − 

e
m

 ∑ 
i

A^ loc(ri) ⋅ p̂i  . (9)
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Here, e = –|e| and m denote the charge and mass of the electron, respectively, i runs
over all electrons in the molecule. Keeping linear terms in Aloc only, we solve Eq. (8)
in the first order of the perturbation theory. To solve Eq. (8), we expand |ψ(t)〉 into the
eigenstates |ψm(t)〉 of the free hamiltonian H

^
0 with the energies Em = h−ωm

| ψ(t) 〉 = | ψ0(t) 〉 + ∑ 
m

cm(t) | ψm(t) 〉  , (10)

where

| ψm(t) 〉 = exp (iωmt) | m 〉  . (11)

Here, |ψ0〉 denotes the ground state of the molecule. The sum over stationary states
includes the ground state, too. By inserting expansion (10) into Eq. (8) we get in the
first order

ih−c
.
n = 〈 ψn(t) | W^ (t) | ψ0(t) 〉  , (12)

where the orthonormality relations

〈 ψm | ψn 〉 = δmn (13)

are used. Integration of Eq. (12) yields

cn = 
1
ih− ∫ 

t0

t

dt′ 〈 ψn(t′) | W
^ (t′) | ψ0(t′) 〉  , (14)

where t0 is the initial time of the interaction between the field and the molecule. By
inserting expansion (10) into the definition (7) we obtain in the first order of Aloc

〈 ψ | Q^  | ψ 〉 = Q00 + 2Re 

 ∑ 

n

cnQ0n exp (−iωn0t) 

  . (15)

Here, Re denotes the real part,

Q0n = 〈 0 | Q^  | n 〉 (16)
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and

ωn0 = ωn − ω0  . (17)

In the second step, we convert the local electric and magnetic moments d and m into
the macroscopic polarization P and magnetization M. We do it by calculating average
over all orientations of the molecules and by multiplying the averaged quantities by the
number of the molecules in the unit volume

P = N 〈 d 〉
____

 ,  M = N 〈 m 〉
_____

  . (18)

Finally, we have to transfer from the local field Aloc to the macroscopic field Amac.
In this paper, we use the usual assumption1

Amac = S Aloc , (19)

where S is a phenomenological constant.

DAMPED WAVE APPROACH

The usual approach to the solution of the wave equation (6) is based on the plane wave
assumption1,2. It has two disadvantages. First, this wave does not obey Eq. (6). The
second disadvantage is that the Lambert–Beer law does not follow from the theory,
however, it must be taken as an empirical law. In this paper, we replace the plane wave
assumption by a more accurate damped wave approximation.

To perform the integration in Eq. (14), we have to assume the time dependence of the
vector potential Aloc = Aloc(r,t).

In the usual approach1,2, the following time dependence is assumed

Aloc(r,t) = Ac(r) cos ωt + As(r) sin ωt  . (20)

Then, we can write

W
^ (t) = W

^
 + exp (iωt) + W

^
 − exp (−iωt)  , (21)
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where W
^

 ± can be obtained from comparison of Eqs (21), (20) and (9). With this nota-
tion, we evaluate the integral in Eq. (14) and get10

cn = 
1
ih− 





W n0
+  

exp [i(ω + ωn0)t]
i(ω + ωn0)

 + W n0
−  

exp [i(−ω + ωn0)t]
i(−ω + ωn0)




  , (22)

where

W n0
±  = 〈 n | W

^
 ± | 0 〉  . (23)

It is seen that in case of absorption (ω = ωn0) the assumption (20) leads to

cn = 
1
ih− 




 Wn0

− (t − t0) + W n0
+  

exp (2iωt)
2iω  




  . (24)

Because of the term proportional to t – t0, this result is in contradiction with the as-
sumption (20). Therefore, this approach cannot be used in case of absorption. This
problem can be solved in two ways: either using the Kramers–Kronig relations1,3 or
taking into account the spontaneous emission2,4,5. However, these approaches are not
satisfactory since it is necessary to make rather crude approximations6.

In this paper, we find the time dependence of the solution from the heuristic con-
siderations. In case of resonance, molecules are excited to higher energy levels by the
absorption of individual photons. After very short times, molecules emit the electro-
magnetic waves and deexcitate. The electromagnetic waves propagate in all directions.
Therefore, the amplitude of the wave propagating in one direction is damped.

First we summarize the semiclassical approach. When solving the Schrödinger equa-
tion (8) we have to assume some time dependence of A which must obey the wave
equation (6). Therefore, we have to guess the time dependence of the electromagnetic
wave in advance. Thus, the wave appearing on the right hand side of Eq. (8) is not the
external wave, but the internal wave interacting with individual molecules.

We believe that the picture described above can be obtained by taking into account
the nonlinear terms in A. Therefore, we consider the wave

Aloc(r,t) = (Ac(r) cos ωt + As(r) sin ωt) exp (−κt)  , (25)

where κ is a phenomenological parameter. If we were able to solve the problem of the
propagating electromagnetic waves in the matter exactly, we would get the dependence
(25) in the limit case of the weak field. In this case, we would get κ as a function of
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parameters describing the interaction between the wave and matter. The value of κ is
estimated in Appendix B.

We assume that damping of the monochromatic electromagnetic wave is given by a
single damping factor. We note first that Aloc(r,t) is multiplied in Eq. (12) by the factor
exp (iωn0t). Further, this function of t is integrated in Eq. (14) and divided by exp (iωn0t)
(see Eq. (15)). Finally, S Aloc(r,t) is inserted into Amac, P and M in Eq. (6) and the
derivatives in this equation are performed. It follows from the resulting equation that
the time dependence (25) is the only dependence which is the solution of the wave
equation (6).

CALCULATION OF THE DAMPED WAVE

In case of the time dependence (25) we can write

W
^ (t) = exp (−κt)[W^  + exp (iωt) + W

^
 − exp (−iωt)]  . (26)

Integration of Eq. (14) with this time dependence yields

cn = 
1
ih− 




 W n0

+  
exp [i(ω + ωn0 + iκ)t]

i(ω + ωn0 + iκ)  + W n0
−  

exp [i(−ω + ωn0 + iκ)t]
i(−ω + ωn0 + iκ)  




  . (27)

By inserting this formula into Eq. (15) we obtain

〈 Q 〉 = Q00 − 
2 exp (−κt)

h−  ×

× Re 






 ∑ 

n

Q0n 



 
W n0

+  exp (iωt)(ωn0 + ω − iκ)
(ωn0 + ω)2 + κ2  + 

W n0
−  exp (−iωt)(ωn0 − ω − iκ)

(ωn0 − ω)2 + κ2  



 






  .(28)

To describe the circular dichroism it is sufficient to consider just two terms of the
Taylor expansion of the space dependence of Aloc in the molecule

Aloc(r,t) = Aloc(0,t) + r ⋅ ∇ Aloc(r,t) 


r = 0

  . (29)

Here point r = 0 corresponds to the center of the molecule. Further, we put

d = e ∑ 
i

ri (30)
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and

m = 
e

2m
 ∑ 

i

ri × pi (31)

into Q, convert these quantities into P and M (see Appendix A), convert the local field
into the macroscopic one using Eq. (19) and use the well-known relation

pn0 = imωn0rn0  . (32)

Taking the real part of the resulting expression for 〈Q〉 we obtain11

P = exp (−κt) [(α1 + ωα2)(As cos ωt − Ac sin ωt) + (β1 + ωβ2)(Bs cos ωt − Bc sin ωt) +

+ κα2(Ac cos ωt + As sin ωt) + κβ2(Bc cos ωt + Bs sin ωt)] (33)

and

M = exp (−κt)[(β3 + ωβ1)(Ac cos ωt + As sin ωt) − κβ1(As cos ωt − Ac sin ωt)]  , (34)

where

Bc = ∇ × Ac ,  Bs = ∇ × As  , (35)

α1 = 
N

3Sh− ∑ 
n

ωn0
2  | dn0 |

2 



 

1
(ωn0 + ω)2 + κ2 − 

1
(ωn0 − ω)2 + κ2 




  , (36)

α2 = 
N

3Sh− ∑ 
n

ωn0 | dn0 |
2 




 

1
(ωn0 + ω)2 + κ2 + 

1
(ωn0 − ω)2 + κ2 




  , (37)

β1 = 
N

3Sh− ∑ 
n

ωn0 Im { mn0 ⋅ d0n } 



 

1
(ωn0 + ω)2 + κ2 − 

1
(ωn0 − ω)2 + κ2 




  ,(38)

β2 = 
N

3Sh− ∑ 
n

Im { mn0 ⋅ d0n } 



 

1
(ωn0 + ω)2 + κ2 + 

1
(ωn0 − ω)2 + κ2 




  , (39)
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β3 = 
N

3Sh− ∑ 
n

ωn0
2  Im { mn0 ⋅ d0n } 




 

1
(ωn0 + ω)2 + κ2 + 

1
(ωn0 − ω)2 + κ2 




  . (40)

Here, we neglected the terms proportional to mn0 ⋅ m0n which are small.
In the limit κ → 0 when the absorption disappears we get

α1 + ωα2 = − ωα  , (41)

β1 + ωβ2 = + ωβ  , (42)

β2 + ωβ1 = − ω2β  , (43)

where α is the polarizability1

α = 
2N
3Sh− ∑ 

n

ωn0 | dn0 |
2

ωn0
2  − ω2 (44)

and β is the optical rotational parameter1

β = 
2N
3Sh− ∑ 

n

Im { mn0 ⋅ d0n }

ωn0
2  − ω2   . (45)

Using Eq. (33) for P, Eq. (34) for M and the time dependence (25) for A in the wave
equation (6) we obtain

− 
1
µ0

 ∇2 (Ac cos ωt + As sin ωt) + ε0 [(κ2 − ω2)(Ac cos ωt + As sin ωt) −

− 2κω (As cos ωt − Ac sin ωt)] = −κα1 (As cos ωt − Ac sin ωt) −

− [α2(κ2 + ω2) + α1ω](Ac cos ωt + As sin ωt) − 2κβ1 (Bs cos ωt − Bc sin ωt) −

− [β2(κ2 + ω2) − β3](Bc cos ωt + Bs sin ωt)  . (46)
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Comparing terms with the same cos ωt and sin ωt dependence on both sides of Eq. (46)
we obtain two equations. By putting As = ±iAc we can reduce these two equations into
one equation

− 
1
µ0

 ∇2 Ac + ε0(κ2 − ω2)Ac − 2iεκωAc =

−iκα1Ac − [α2(κ2 + ω2) + α1ω]Ac − 2iκβ1Bc − [β2(κ2 + ω2) − β3]Bc  . (47)

Now we search for the solution in the form

Ac = A0 exp (ik ⋅ r)  , (48)

where

| k | = 
ωn
c

  . (49)

Here, n is a refraction index, ω is a circular frequency, c is the velocity of the propaga-
tion of the electromagnetic waves and A0 is the complex amplitude of the vector poten-
tial. From the gauge condition (5) we obtain

k ⋅ A0 = 0  . (50)

Therefore, we can put the z axis along the direction of the k vector. Then we can write

A0 = (A1, A2, 0) . (51)

From Eq. (47) we get a system of two linear algebraic homogenous equations

(ε0n
2 + aRe + iaIm)A1 = i(bRe + ibIm)nA2  , (52)

(ε0n
2 + aRe + iaIm)A2 = − i(bRe + ibIm)nA1  , (53)

where
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aRe = 
ε0 (κ2 − ω2) + α2 (ω2 + κ2) + α1ω

ω2   , (54)

aIm = 
κα1 − 2ε0κω

ω2   , (55)

bRe = 
β2 (ω2 + κ2) − β3

ωc
(56)

and

bIm = 
2κβ1

ωc
  . (57)

To solve Eqs (52) and (53), the determinant of this system of equations for A1 and A2

must equal zero. The solution of this condition with respect to n is

n1,2 = 
bRe + ibIm ± √4ε0 (aRe + iaIm)

2ε0
  , (58)

n3,4 = 
−bRe − ibIm ± √4ε0 (aRe + iaIm)

2ε0
  . (59)

Here, we neglected the term (bRe + ibIm)2 in the discriminant which is quadratic in mn0.
The solutions with the minus sign in front of the discriminant in Eqs (58) and (59) are
unphysical since the amplitude of the corresponding wave would increase.

As a result, we get the left handed polarized wave

A2 = i A1 (60)

corresponding to n1 and the right handed polarized wave

A2 = – i A1 (61)

corresponding to n3.
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Calculating IL = | AL |2 and IR = | AR |2 we get the Lambert–Beer law, Eqs (2) and (3).
Rather complex expressions for bL and bR will not be given explicitly here.

The ratio of the intensities IL and IR equals

IL

IR
 = 

| AL |2

| AR |2
 = exp (−∆bz)  , (62)

where

∆b = − 
2ωbIm

ε0c
 = 

4κµ0N

3Sh−  ∑ 
n

ωn0Im {mn0 ⋅ d0n } 



 

1
(ωn0 − ω)2 + κ2 − 

1
(ωn0 + ω)2 + κ2 





(63)

is the final formula for the circular dichroism parameter.
In contrast to ref.2, Eq. (63) takes into account the summation over all states. We

note also that the second term in the brackets is not considered in ref.2. However, for ω
closed to ωn0 this term can be neglected. We emphasize that, in contrast to ref.2, κ does
not describe the natural line width but the effective line width resulting from the ab-
sorption of the electromagnetic wave by the medium.

In the usual approximate approach to the theory of circular dichroism1, the ex-
pression for ∆b reads

∆b = 
4µ0N

3Sh−κ ωIm { mk0 ⋅ d0k } (64)

for ω = ωk0 and ∆b = 0 otherwise. We see that this formula can be obtained from our
Eq. (63) as an approximation for ω = ωk0 if the second term in the brackets in Eq. (63)
is neglected and the summation in this equation is reduced to just one k-th term. It is
obvious that the approximate formula (64) can be used only if the energy levels of the
molecule are sufficiently distant. In contrast to Eq. (64) where the spectral lines have
δ-like character our equation (63) yields more realistic Lorentzian shape of spectral
lines. It is obvious that for achiral molecules with the center of symmetry the scalar
product Im { mk0 ⋅ d0k } is equal to zero (compare with ref.2). Therefore, the circular
dichroism parameter ∆b equals zero for such molecules.
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CONCLUSIONS

In this paper, we have used the semiclassical approach to derive a new formula (63) for
the circular dichroism parameter ∆b. The standard expressions for the circular dich-
roism parameter follow from our more general formula as a special case.

In our approach, we do not have to take the Lambert–Beer law as an empirical law,
however, this law follows naturally from the discussion of the possible forms of the
solutions of the Maxwell equations.

APPENDIX A

In this Appendix, we describe the averaging procedure in more detail. We follow the
procedure introduced in ref.7. We assume that the matter is isotropic. It means that the
molecules have all possible spatial orientations. We limit our attention to the vector
character of Eq. (28)

〈 Qi 〉 ∝ Qi + Aj pj Qi + ∇j rj Al pl Qi  , (65)

where the summation convention is used. An arbitrary rotation of the vector αi is given
by

αλ
′  = Rλi αi  , (66)

where αλ
′  is the rotated vector, Rλi is the matrix of rotation in the three dimensional

space expressed in terms of the Euler angels. The explicit form of the rotation matrix is
not necessary for our purposes. Rotating the expression in Eq. (65) we get

〈 Qλ
′  〉 ∝ Qλ

′  + Aµ pµ
′  Qλ

′  + ∇µ rµ
′  Aν pν

′  Qλ
′   . (67)

Here, we do not rotate the field quantities. The electromagnetic wave propagates
through the matter, where it interacts with different rotating electric and magnetic mo-
ments of the molecules. Using Eq. (66) we obtain

〈 Qλ
′  〉 ∝ Rλi Qi + Aµ Rµj Rλi pj Qi + ∇µ Aν Rλi Rνl Rµj rj pl Qi  . (68)

Averaging over all spatial orientations means the integration of the terms containing the
matrices Rλi over the Euler angels. Here, we can use the identities3,7,8
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Rλi

___
 = 0  , (69)

Rλi Rµj

______
 = 

1
3

 δλµ δij (70)

and

Rλi Rµj Rνl

_________
 = 

1
6
 ελµν εijl  . (71)

Using these equations we get from Eq. (68)

〈 Qλ
′

___
 〉 ∝ Aµ 

1
3
 δλµ δij pj Qi + ∇µ Aν 

1
6

 ελµν εijl Qi rj pl  . (72)

This formula is used in the transition from Eq. (28) to Eqs (33) and (34).

APPENDIX B

In this Appendix, we make an order estimate of κ.
By using the estimates

N ≈ 1024 m–3 ,  µ0 ≈ 10–6 N C–2 s2 ,

ω ≈ 
c
λ ≈ 1015 s−1 ,  Im mk0 ⋅ d0k ≈ 10−56 C2 m3 s−1 ,  h− ≈ 10−34 Js

in Eq. (64) we get

∆b ≈ 
1011

Sκ  m−1  .

In the case of a box of the length z ≈ 10–2 m we have

∆bz ≈ 
109

Sκ   .
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A typical experimental value of ∆bz for the considered molecular concentration and
length of the box9 is

∆bz ≈ 10−5 ln 10  .

Comparison of the last two estimates yields the order estimate of the product Sκ

Sκ ≈ 1014 s−1  .

This work was supported by the Grant Agency of the Czech Republic and the Grant Agency of
Charles University.
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