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Using the semiclassical approach for the description of the propagation of the electromagnetic
in optically active isotropic media we derive a new formula for the circular dichroism parameter
theory is based on the idea of the time damped electromagnetic wave interacting with the mo
of the sample. In this theory, the Lambert—Beer law need not be taken as an empirical law, hc
it follows naturally from the requirement that the electromagnetic wave obeys the Maxwell eque
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In this paper, we are interested in the theory of the circular dichroism in isoti
media. It is well-known that the propagation of the left or right handed circularly
larized electromagnetic waves (LHCP or RHCP) in optically active media is diffe
If the molecule absorbs at the frequency of the electromagnetic wave, the absorp
the LHCP and RHCP waves is not equal. This effect is called the circular dichr
(CD) and is characterized by the difference of the corresponding absorptioi ¢
cients. This difference is usually denoted as the circular dichroism parameterg(se

refsh?)

Ab=b -bg , @)

whereb, andbg are defined by the Lambert—Beer law

|
o= ePn @
|
I:g = exp(-bed) - ®
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Here,l(2) is the intensity of the wave propagating alongZlais.

The standard theories of the circular dichroism assume the electromagnetic fi
the form of the monochromatic plane waveln case of absorption, such approach
not theoretically justified since the plane wave does not obey the Maxwell equa
The Lambert—Beer law is taken as an empiricaltlaw

The aim of this paper is to present a more consistent theory in which we ass
damped electromagnetic wave instead of the plane wave. This approach has two
tages. First, this wave satisfies the Maxwell equations. The seciwathtage of our
approach is that the Lambert—Beer law follows naturally from the damped wav
sumption.

In the next section, we summarize the semiclassical approach and introduce thi
physical quantities. We briefly discuss difficulties of the usual approaches and
duce the idea of a damped electromagnetic wave, and then we solve the Maxwe
ations and derive the formula for the circular dichroism parameter. In the last se
discussion of the results is presented. The averaging procedure of molecular qui
is described in Appendix A. In Appendix B, an order estimate of the damping con
is performed.

SEMICLASSICAL APPROACH

We assume that the electromagnetic waves are solutions of the Maxwell equz
Assuming further that there are no free charges and currents in the sample the M
equations read

D[E:—iD[P,
€
1 o __ F]
L OXBg g E=OXMe P,
OomB=0 ,
0, _
DXE+atB—0.

To solve these equations we have to know the material relations

P=P(EB), M= M(E,B) . @)

In this paper, we assunimear material relations. In this case we get from the fi
Maxwell equation
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OCE=0 .
Therefore, we require the gauge conditions
O0A,.=0,¢=0, ©)

whereA,,.and¢ denote the macroscopic vector and scalar potentials. In this way
get from the Maxwell equations the wave equation

N S s WY ©6)
Ho mac~ €0 gtz 'mac™ gt .

To derive the material relationg)( we proceed as follows. We assume that 1
optical activity is produced by the interaction of the electromagnetic field with
individual molecules of the sample. We are interested in the electronic states a
sume that the interaction among the molecules is weak and the wave functions
individual molecules are known. For the vibrational states, these assump#onsta
justified.

First, we calculated and m, the quantum mechanical average of the electric i
magnetic dipole moments of the molecule interacting with the electromagnetic
These quantities are defined by the equation

0Q =y [ QwO, @

where Q denotesd or m. To calculate {), we have to know the state vect¢il]lt is
the solution of the Schrddinger equation

I3 190 £= (Ho+ W) () 0, ®

AN AN
whereH, is the Hamiltonian of the free molecule anwddescribes the interaction be
tween the molecule and the local electromagnetic field in the first ordgg.of

W) == 2 5 Aodr) B - ©
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Here,e = —g] andm denote the charge and mass of the electron, respectivelys
over all electrons in the molecule. Keeping linear term4,ip only, we solve Eq.8)
in the first order of the perturbation thegry. To solve Bj. \We expandyj(t)Uinto the
eigenstates}j,(t)Uof the free hamiltoniaitl, with the energie&,, = hw,

[W(t) C= [Wo(®) OF 3 ct) [ Wet) O, 10)

where

| Wn()) = exp(ioy) [mO. (€30

Here, ),0denotes the ground state of the molecule. The sum over stationary
includes the ground state, too. By inserting expansloh ito Eq. 8) we get in the
first order

. N
inc, = D (6) [V [ Wo(®) O, 12
where the orthonormality relations
(W [ W, OF O (13)
are used. Integration of Edl?) yields
t
1 ! ! A ! !
G = [t () [WAE) [ Wiolt) O, 4)
t0

wheret, is the initial time of the interaction between the field and the molecule.
inserting expansionlQ) into the definition 7) we obtain in the first order o4,

N
W Q1w = Qoo+ 2ReHy ¢,Q0n exp(-itogt) (15)
On O
Here, Re denotes the real part,

Om=0[Q[n0 (16)
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and

W0 = @y = @y w7)

In the second step, we convert the local electric and magnetic moghantsn into
the macroscopic polarizatioR and magnetizatioM. We do it by calculating averagt
over all orientations of the molecules and by multiplying the averaged quantities kt
number of the molecules in the unit volume

P=NOdO, M=NOmO. (18)

Finally, we have to transfer from the local fiedg,. to the macroscopic field ..
In this paper, we use the usual assumption

Amac = SAloc ' (19)

whereSis a phenomenological constant.

DAMPED WAVE APPROACH

The usual approach to the solution of the wave equaijois pased on the plane wav
assumptioh? It has two disadvantages. First, this wave does not obey6EqTHe
second disadvantage is that the Lambert—Beer law does not follow from the tt
however, it must be taken as an empirical law. In this paper, we replace the plene
assumption by a more accurate damped wave approximation.

To perform the integration in Eql4), we have to assume the time dependence of
vector potentiald;,; = Ajp(r:b).

In the usual approaéf, the following time dependence is assumed

Aprt) = Ar) coswt + A(r) sinwt . (20)
Then, we can write

W(H) = W explict) + W~ exp(-iat) | 1)
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N
whereW#* can be obtained from comparison of E@%$)( (20) and ). With this nota-
tion, we evaluate the integral in Eq4] and get°

_10 . expliwtwgt  _ expli(zo+ (*)no)t]g ’ @2)

TR i+ ) 0 iwtw) [

where
N
H=Cnh|W=*|o00. 23)

It is seen that in case of absorptien= w,,) the assumption2Q) leads to

+ exp(2int) E _

1
= Wttt + Wi HEE

24)
Because of the term proportional tte- t,, this result is in contradiction with the as
sumption R0). Therefore, this approach cannot be used in case of absorption.
problem can be solved in two ways: either using the Kramers—Kronig relations
taking into account the spontaneous emissiénHowever, these approaches are r
satisfactory since it is necessary to make rather crude approxiniations

In this paper, we find the time dependence of the solution from the heuristic
siderations. In case of resonance, molecules are excited to higher energy levels
absorption of individual photons. After very short times, molecules emit the ele
magnetic waves and deexcitate. The electromagnetic waves propagate in all dire
Therefore, the amplitude of the wave propagating in one direction is damped.

First we summarize the semiclassical approach. When solving the Schrodinger
tion (8) we have to assume some time dependencé which must obey the wave
equation 6). Therefore, we have to guess the time dependence of the electroma
wave in advance. Thus, the wave appearing on the right hand side &) BEqn¢t the
external wave, but the internal wave interacting with individual molecules.

We believe that the picture described above can be obtained by taking into ac
the nonlinear terms iA. Therefore, we consider the wave

Apdrt) = (ALr) coswt + Ay(r) sinwt) exp(-kt) , (25)

wherek is a phenomenological parameter. If we were able to solve the problem ¢
propagating electromagnetic waves in the matter exactly, we would get the deper
(25) in the limit case of the weak field. In this case, we wouldkgas a function of
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parameters describing the interaction between the wave and matter. The valise
estimated in Appendix B.

We assume that damping of the monochromatic electromagnetic wave isbgizer
single damping factor. We note first thég(r,t) is multiplied in Eq. {2) by the factor
exp (wqet). Further, this function of is integrated in Eqg.14) and divided by exp @,qt)
(see Eg. 15)). Finally, SA,,(r.t) is inserted intoA,,, P and M in Eq. 6) and the
derivatives in this equation are performed. It follows from the resulting equtktain
the time dependenceX) is the only dependence which is the solution of the wa
equation §).

CALCULATION OF THE DAMPED WAVE

In case of the time dependen@3)(we can write
N N N
W(t) = exp(-kt)[W™* exp(iwt) + W~ exp(-iwt)] . (26)

Integration of Eq.14) with this time dependence yields

_a 0 expfi(e+ wyg + ikt _expfi(—w+ wy+ ikt O
SEREY i@t weric) TV iwragri) 50 @D
By inserting this formula into Eql5) we obtain
2 exp(=kt
00 [ Qg - 2

! OW ; exp(iot +w—iK) Wpexp(-iwt -w-ik) H
XREEZ Qo O no €Xp( )((*;no . )+ no €Xp( . )((;no ; )DE ©28)

0 0 (Wnp + W)* + K (W~ W) +K g

Dn

To describe the circular dichroism it is sufficient to consider just two terms of
Taylor expansion of the space dependencd,gfin the molecule
O
Aloc(rit) = Aloc(oit) +r Aloc(rit) %:O . (29)

Here pointr = 0 corresponds to the center of the molecule. Further, we put

d:ez I (30)
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and
e
m=, 3 rxp (31)
i

into @, convert these quantities inandM (see Appendix A), convert the local fieli
into the macroscopic one using Ef9) and use the well-known relation

Pro = iMWnolyg - 32
Taking the real part of the resulting expressiondriwe obtaif*

P = exp(—kt) [(a; + wo,)(Ag coswt — A, sinwt) + (B, + wf,)(B, coswt — B, sinwt) +

+ Ka (A, coswt + Ag sinwt) + KP,(B, coswt + B sinwt)] (33)
and

M = exp(—K)[ (B3 + wPB)(A, coswt + Ag sinwt) — KB (Ag coswt — A, sinwt)] , (34)

where

B.=OxA., Bs=OxA , (35)

N 0 1 1 0
a, = d, P - , 36
1 38?%0%)' no | B(U)no*'w)z*"(z (U)no‘(*))z*'Kz% (36)

N 0 1 1 0
o, =— ad 2 + , 37
2 38"1;0)”“ no | B(U)no*'w)z*"(z (U)no‘(*))z*'KzB @37

O 1 1
g

- N -
B, = 3 Z Wno IM { My Ly, } Heno+ 02 +K2 (0 — )2
n

O
+ K2 B /38)

g 1 1 g
g

+ , 39
D(wno + (*))2 +K? ((*)no - (*))2 +K? % 9

N
Bzzﬁzlm{mnomm}
n
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N O 1 1 O
e I (Mo . 40
Bs 3 Z (‘)ﬁo m { my, [, } B("%o*’ 0))2 +K2 ((*)no_ 0))2 +K2 B (40)
Here, we neglected the terms proportionafrig [mg, which are small.
In the limitk — 0 when the absorption disappears we get
o)+ Wa, =~ wd @1)
BptwB,=+wp , 42
B+ =-wPB, 43)
wherea is the polarizability
o | anl
= 3 Z 2o — P (“44)
andp is the optical rotational parameter
Im { m,,
Z { n0 On} ] (45)

Using Eq. 83) for P, Eq. 34) for M and the time dependenc] for A in the wave
equation §) we obtain

-1 [12 (A, coswt + Ag sinwt) + &, [(k? — wP) (A, coswt + A sinwt) —

Ho
— 2kw (Ag coswt — A, sinwt)] = —ka, (Ag coswt — A, sinwt) —
= [o,(k? + wP) + a,W] (A, coswt + A sinwt) — 2kB; (B, coswt — B, sinwt) -

= [B,(k? + w?) — B3] (B, coswt + B sinwt) . (46)
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Comparing terms with the same aosand sinwt dependence on both sides of E46)(
we obtain two equations. By puttitdy, = £iA, we can reduce these two equations ir
one equation

_1
0
—ikay A = [0k, + W) + 04w] A, — 2iKBy B, — [Ba(k? + 0P) — B4l B, . @)

12 A, + €o(K2 — WA, — 2iEKWA, =

Now we search for the solution in the form
A=A exp(ikD) , (48)
where
[kl=20 . (49)

Here,n is a refraction indexy is a circular frequency is the velocity of the propaga:
tion of the electromagnetic waves afglis the complex amplitude of the vector pote
tial. From the gauge conditio®)(we obtain

k OA, = 0 . 60)
Therefore, we can put tleaxis along the direction of thle vector. Then we can write
Ao = (A Ay 0) . ©1)
From Eq. 47) we get a system of two linear algebraic homogenous equations

(Eg + A+ iayy)A; = i(bre *+ ij)NA, ®2)

(8gn? + ape * i) Ay = — i(bre + iby)NA, (63)
where
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_&o (K2~ wP) + 0, (0P + K2) + 0y

ape= 2 , 54
By = w , (55)
pr= 2D 7o (56
and
by = 2§E1 . G7)

To solve Eqs¥2) and 63), the determinant of this system of equationsApandA,
must equal zero. The solution of this condition with respeatiso
_ bre+ by + VAg, (age + 181)
2= 2 ’
0

(58)

_ e by + VA B ¥ 8,)
n3y4 = 220 .

(59)

Here, we neglected the tertm(+ ib,,,)?in the discriminant which is quadratic in,,
The solutions with the minus sign in front of the discriminant in B85 &énd £9) are
unphysical since the amplitude of the corresponding wave would increase.

As a result, we get the left handed polarized wave

A, = A (60)

corresponding tm,; and the right handed polarized wave

A, = —iA (61)

corresponding ta,.
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Calculatingl, =| A, P andlg =|Ag P we get the Lambert—Beer law, E® and @).
Rather complex expressions figrandbg will not be given explicitly here.
The ratio of the intensitiels andlz equals

LA lz = exp(-Ab2) | 62)
IR [Arl
where
Ab= % -
£C
4KUoN 0 1 1 0
- 0 (63)

I (Wof -
3 %wnom{mno On}D((*)r]O_m)2+K2 (%04_0))24_'(2%

is the final formula for the circular dichroism parameter.

In contrast to ref, Eq. 63) takes into account the summation over all states.
note also that the second term in the brackets is not considered.itmfever, forw
closed tow, this term can be neglected. We emphasize that, in contrast3rdées
not describe the natural line width but the effective line width resulting from the
sorption of the electromagnetic wave by the medium.

In the usual approximate approach to the theory of circular dichtpidra ex-
pression forAb reads

4N

Ab= 3%k

wim { myq g, } (64)

for w = wy andAb = 0 otherwise. We see that this formula can be obtained from
Eqg. (63) as an approximation fab = wy if the second term in the brackets in E&B)(
is neglected and the summation in this equation is reduced to jugttbrierm. It is
obvious that the approximate formuldd) can be used only if the energy levels of tl
molecule are sufficiently distant. In contrast to E&ft)(where the spectral lines hav
o-like character our equatior63) yields more realistic Lorentzian shape of spect
lines. It is obvious that for achiral molecules with the center of symmetry the s
product Im {m,, [, } is equal to zero (compare with r&f. Therefore, the circular
dichroism parametekb equals zero for such molecules.
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CONCLUSIONS

In this paper, we have used the semiclassical approach to derive a nelaf@3for
the circular dichroism parametéb. The standard expressions for the circular dic
roism parameter follow from our more general formula as a special case.

In our approach, we do not have to take the Lambert—Beer law as an empirice
however, this law follows naturally from the discussion of the possiblesfafrthe
solutions of the Maxwell equations.

APPENDIX A

In this Appendix, we describe the averaging procedure in more detail. We follov
procedure introduced in réf We assume that the matter is isotropic. It means that
molecules have all possible spatial orientations. We limit our attention to the v
character of Eq.28)

RQIMQ+ARQ+LAPRQ , (65)

where the summation convention is used. An arbitrary rotation of the \wedmgiven
by

o, =R, q; , (66)

wherea), is the rotated vectoR,; is the matrix of rotation in the three dimension
space expressed in terms of the Euler angels. The explicit form of the rotation me
not necessary for our purposes. Rotating the expression i®&qvé get

0Q, MO Q+A, P, Qu+ 0,1y AR, Q) - ©67)

Here, we do not rotate the field quantities. The electromagnetic wave propa
through the matter, where it interacts with different rotating electric arghet& mo-
ments of the molecules. Using EG6)Y we obtain

MR Q+AR;Rip Q+0,ARRR; R Q - (68)

Averaging over all spatial orientations means the integration of the terms containir
matricesR,; over the Euler angels. Here, we can use the idertitfes
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Ri=0, 69)
— 1
Ri Ry = 3 O G (70)
and
— 1
Ry Ry Ry = 6 Enw &ijl - (71)

Using these equations we get from E&)(
— 1 1
[QAD]Ap§5xp5|jP,Qi*‘DpAvgsxpvstirjP| . (72)

This formula is used in the transition from E88) to Eqs 83) and (34).

APPENDIX B

In this Appendix, we make an order estimate of
By using the estimates

N=10%nms, p, = 106NC2&,

=10°s?, Immyy [y, =10°°C?m*s, A=10%4Js

in Eq. ©4) we get

L 101

-1
S(m .

Ab

In the case of a box of the lengtlr 10°m we have

10°
Abz= x
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A

typical experimental value ohbz for the considered molecular concentration a

length of the bo%is

Abz=10°In 10 .

Comparison of the last two estimates yields the order estimate of the pBaduct

X =10"s? .
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The molecules in the sample are excited at different ttgnéEhe macroscopic polarization ant
magnetization are given by an average over a large number of the molecules. Due

oscillating form ofc,, we can assume that the contributions of the lower bounds inlEy.

cancel so that the lower bounds need not be considered.

Since the HamiltoniaHp describing the molecule is real, both the real and imaginary parts o
wave function have to obey the stationary Schrodinger equation. Hence, we may assume f
wave function is real. It follows from this assumption that we can takedigahnd purely

imaginary mno.
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