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Analytic Solutions of Multi-Dimensional Schrodinger
Equation

V. Tichy, L. Skéla
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Abstract. There exists a part of mathematical physics that aims to find new
potentials for which the Schrédinger equation has analytical solution. One method
of this searching for one-dimensional Schrédinger equation was presented in [1],
[2]. Our goal is to generalize this method to a multi-dimensional case.

Introduction

It was assumed in [1], [2] that the wave functions are linear combinations of the functions
in the form

Ym(z) = f(z)™h(z), (1)

where f(z) and h(z) are general functions.
It has been proved that in this case the potential must have the form

Vig)=) fla™ (2)

and the function h(z) is the ground state wave function. It is possible to choose function f(z)
and test if the Schrodinger equation with some potential of the form (2) has analytical solutions.
Now we search for generalization to a multi-dimensional case.

Generalization to multi-dimensional case

Wave functions

It is possible to suggest few generalizations of the assumption (1) to n-dimensional case, but
the most straightforward is to suppose that wave functions are linear combinations of functions

".bml,mz,...,mn =fi (-'If'l)m1 f2($2)m2 cae fn(xn)m"h(xla T2,y zn)~ (3)

General discussion is very complicated in this case. Now we will confine ourselves to a
two-dimensional case

Ymn = f(2)"g(y)"h(z,y). (4)

We will discuss this problem in cartesian coordinates. It is possible to discuss the problem
in the polar coordinates, but it is more complicated than a cartesian case, because it is necessary
to include a cyclic condition for the angle coordinate in this case.

Potential

We tried to generalize the potential form to

Viz,u) =D ) Vima f(2)™9(y)". (5)

We will discuss only the case when f(z) = z and g(y) = y. It means that potential is a
polynomial in the variables z and y.
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Function h

A differential equation for function h(z) was found in [1], [2]. In the one-dimensional case
this function is determined for the given function f(z). We have not found an analogical result
for the two-dimensional case. But we know that some polynomial potentials in one-dimensional
case have the ground state in form of an exponential of a polynomial. That is why we will
suppose that the function h(z, y) has the form

h(z,y) = Yo(z,y) = exp (Z cmn f (x)"‘g(y)”) = exp (Z cmnx"‘y“) ; (6)

m,n

where ¢, are numerical coefficients.

Bound states for two-dimensional quadratic potential

We assume that the potential has a form
V(z,y) = Vaoz? + Voo + Virzy + Vigz + Viry. (7)

This potential has bound states if and only if

Voo > 0 (8)
Voo > 0 (9)
(Vi1)? < 4VagVp. (10)

It will occur if and only if the potential (7) is a positive definite quadratic form. Therefore, we
can diagonalize this quadratic form and separate partial Schrodinger equation with independend
variables z and y to two ordinary Schrédinger equations for two harmonic oscillators. It means
that this problem is always analytically solvable, but we tested to use the mentioned method
of solving this problem. It means that we tested whether our assumptions are correct.

Let us assume that the ground state wave function is an exponential of a polynomial as we
have mentioned above

h(z,y) = exp (*C'zoi'?2 — co2y® — 11Ty — croz — Cmy) : (11)
Here we have written conventional minus signs in the exponential.
The function A(z,y) must obey the Schrodinger equation
= A h(z,y) + V(z,y)h(z,y) = Eh(z,y). (12)

We want to find the potential V(z,y) that is why we will rewrite the Schrédinger equation

into the form

V(z,y) - E = % (13)

Substituting (7) and (11) into (13) we get an equation with polynomials at both sides

Vaoz?  +Voou? + Viray + Viez + Vory — E
= (4e’+cn?) 2 + (dege? + c11?) y? + (dc1p cop + dexcin)zy (14)
+ (419 c20 + 2 ¢ c1)z + (4 co1 oo + 2co c1)y — 2 e99 + 6102 — 2c¢g2 + 6012.
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It follows from this equations that

Voo = 4dego® +enn?, (15)
Voo = 4dcgp?+en?, (16)
Vii = 4.c11 cp2 +4cy 11, (17)
Vio = 4cipc20 + 2¢01 C11, (18)
Vo = 4eprepa+2¢cipen, (19)

E = 2c¢cp—c102+2¢p - co1’. (20)

Now we can evaluate coefficients V;; and the ground state energy E if we know coefficients Cij-
But a normal task is reversal. For a given potential we want to evaluate the wave function and
energy. We need to solve the system of equations (15)-(19) with respect to the coefficients Gis-
It is possible, but the resulting formulas are complicated. We have chosen the simpler way. We
have expressed the coefficient ¢;; and found two solutions for its square. It means that there
exist four solutions for ¢,

Vi1)? V. = (Vo
Gl = (V11)® Voo + Vao + /4VaoVoz = (Vi1) (21)

4 (Vao — Vo2)? + (V11)?
or
2 _ (Vi1)? Vg + Vag — v/AVooVoz — (Vi1)2
(cll) S 2 2 ! (22)
4 (Vao = Vo2)? + (V11)
Now for the chosen solution we can express other coefficients Cij as
s 1 —Vipen +vVa — 112V (23)
2 Vo —en? VVa — e112 — ¢y 2’
o 1 =Voern + vVoz — enn? Vip (24)
) 2 VVo2 — e’ VVag — e — e 2’
1
2 = 5VVo2 —en? (25)
1
o = 5VVao-en? (26)

If we evaluate these coefficients, we can determine the ground state wave function from the
formula (11) and its energy from (20).
Bound states for two-dimensional quartic potential

Now the potential is assumed in the form

V(z,y) = Vioz* + Voay* + Va12%y + Viszyd + Vasz?y? (27)
+ Vaoz® + Vosy® + Varz2y + Vipay?
+ Vaoz? + Vooy? + Virzy + Vigzr + Vory.

Let us try to find the ground state wave function as an exponential function of a cubic
polynomial as it is in the one-dimensional case

h(z,y) = exp ('-03033 — cosy’ — ena®y — c1azy? — eana? — copy? — ennzy — cr02 — Co1y) . (28)
Substituting (27) and (28) into (13) as it has been done for a quadratic potential, we get the

formula for the ground state energy

o= —6102 = 0012 + 2¢cgo + 2¢9p (29)
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and system of equations for the potential coefficients

Vio = 9c30® + ¢, (30)
Vou = 9co3® + ¢152, (31)
Va1 = 12¢30c9; + degicyg, (32)
Vis = 12¢p3c10 + 4cyges, (33)
Voo = 6espcrn + 4102 + 4y + 6c21co3, (34)
Vo = 12¢o9c39 + 2¢c11€91, (35)
Vo3 = 12copco3 + 2c11019, (36)
Vo1 = degiepn + 8caoco1 + 6esgery + dcyico, (37)
Vis = 4ecigegg + 8coacr1o + 6cozerr + deyicyy, (38)
Vao = 2co1091 + e11? + degg? + 6cioc30, (39)
Voo = 2ci0c10 + 112 + dega® + 6oy cps, (40)
Vi = deoreyg + dericon + degoery + 4cioep, (41)
Vio = 4eigeap — 6egp + 2¢1¢11 — 2¢19, (42)
Voo = depicyr - 6cos + 2¢10¢11 — 2¢9. (43)

It is a system of 14 equations for 9 coefficients. It is clear that this system is not solvable
in general. But for certain choice of potential coefficients some equations will get dependent
and we get a regular system of equations. This problem is well known from one-dimensional
case. Only some quartic potentials are analytically solvable in one-dimensional case. We are
not surprised that the same is right in two-dimensional case,

The second problem is that equations (30)-(43) are not linear. We have found that there
exist cases when the system has solution but we cannot get it by algebraical methods. In these
cases the problem leads to algebraic equations of the order higher than four and that is why
numerical methods are needed in these cases.

For example, we have proved that c;» must be equal to 0 or the equation

1 1 I
0 = %56 Vis® + (—g Vi Vi3® — ZVI36 Vo) c212

1 1 3
(2Va3* Voa Vao + 6 Vis* Vou? - 7 Var Vig® + 3 Va2 Vizt + Vio® Vig* + 3 Vi3%)c2,y?

(32Vio Vis? Vou? + 12 1,2 Via® Vos — 14 Vi3V, + 4 Va1 Vis® Vo — 64 1432 1,8

— 8Va Viz® Vou — 214,21, Vis® — 32 Vo2 V352 Vos = 4Vi3* Vyg)c2103 -

(—4Va1® Vis + Vit + 256 Voa* — 64 V3, Vi3 Vi Voa + 32312 V2 - 3215, 2 Vao Vou

192 Va1 Via Voa? + 32 Vio? Vig? + 160 Vig2 Vg2 — 6 Va1? Via® + 4 Va1 Vig® + 9 144

= 512Vio Vou® + 256 Vip? Vpy2) 2,1

T (=32Vi3® Vio - 160 Vis® Vou + 64 Vi Vig Vi — 512 Vio? Vou — 512 Vog® — 96 V3,2 Vjp,

+ 32Va1? Vg + 1024 V2 Vao — 320 V3, Vig Viy) 2,58

+ (=512Vio Vog + 64 V432 + 64 Va1? + 128 Vi, Vig + 256 Vao? + 256 Vgg?) c2,,5 (44)

+

+ +

must be fulfilled. The symbol ¢215 means the square of cj5. Equation (44) is an algebraic
equation of the sixth order for the unknown c¢2 12

The third problem is the asymptotic behaviour of the solution. For example if ¢y3 > 0 and
c30 > 0, the function h(z,y) can be normalized on the first quadrant but not on the other ones.
It means that we must solve the system of equations (30)-(43) separately on all quadrants and
we must hope that these solutions are possible to match.
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It has been said that it is not possible to find the general exact solution of the equations
(30)-(43). But we have found it can be done for some special cases.

For example, we have solved the equations (30)-(43) for the case when Vi3 =0, V31 =0
and Vap = 0, if we suppose that ¢ =0 and ¢;2 = 0. The solution is

Z
e 45
C30 3 ) ( )
Y
A 46
€3 3 3 ( )
| 1 V3o
3 _— —_—— 47
Ff. C20 i1 Z ) ( )
1 Vos
e U0 48
Co2 4Y ) ( )
Caasi=s X (49)
il (—=Vo1Vao + 2XZVyo + 4XZ? - 2V3Y)Y (50)
iy 4X2ZY — Vo3 Va0 ’
L W (—V10V03 +2XY Vo + 41XY? - 2V03Z)Z (51)
34 4X2ZY — VisVao )
where
VAR A T (52)
Y = £/ Vas, (53)
i 1 Vi
_1Vy
DX A (55)
Vi ZY
X = ————
VioY + VooZ' B
Aoy S 2
o liiaa j:-;- \/‘IVZOZ 8;10Z (V.'.’.O) , (57)
= S 2

The signs in the equations (52) and (53) can be chosen according to the quadrant where the
wave function is to be normalized. There exist five equations for the coefficient X. The potential
and the signs in equations (57) and (58) must be chosen to get the same five terms on the right
sides of equations (54)-(58). !

The energy of the ground state is

1Vao , 1Vos _ (~VioVs +2Y XViu +4Y2X — 2V53 2)*2?

9% 2 Y (4X2ZY — Vi3Vao)?
(—V01V30 +2XZVio + 472X — 2V30Y)2Y2

W=

@XT2Y ~ VoaVuo? ak
An example of the potential that fulfills the conditions listed above is
V(z,y) = 9z* + 1223 + 922 — 2z + 9yt + 12¢° + 9y% — 2y + 62y + 6zy? + 8zy. (60)

From the equations (45)-(51) with respect to the equations (52)-(58) we can get its ground
state wave function, which can be normalized on the first quadrant

h(z,y) = e(—z3—x2—%z—y3—y2—%y—xy). (61)
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