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Abstract:

This paper presents a direct algebraic method of searching for analytic solutions of the two-dimensional

time-independent Schrédinger equation that is impossible to separate into two one-dimensional ones. As
examples, two-dimensional polynomial and Morse-like potentials are discussed. Analytic formulas for the
ground state wave functions and the corresponding energies are presented. These results cannot be

obtained by another known method.
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1. Introduction

There are many types of potentials for which the one-
dimensional Schrédinger equation is analytically solv-
able. Usually, the two-dimensional Schrodinger equation
is solved by some type of separation of variables (see e.g.
[1-5]). If this method fails, no general approach to solving
the Schraodinger equation is known.

In this paper, a method of searching for the solutions of
the two-dimensional Schrodinger equation if separation
of variables is not applicable is presented. The presented

*E-mail: vladimir-tichy@email.cz

method is based on the algebraic approach to solving one-
dimensional problems presented in [6-8]. The method was
generalized to two-dimensions in papers [9-11], where
the potential was assumed in the form of a polynomial
in variables x, y. In this paper, we present a general-
ized approach to searching for analytic solutions of the
Schrodinger equation. The method is applied to the two-
dimensional polynomial and Morse potentials.
Polynomial and Morse-like potentials are very useful in
various applications in physics and chemistry. Exact
analytic solutions for at least some states of the two-
dimensional Schrodinger equation would be very use-
ful not only for testing approximate methods of solutions
but also for extending our knowledge of analytic one-
dimensional solutions to more dimensional ones.
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First, we summarize our method for the one-dimensional
problems [6-8]. In these papers, it is assumed that solu-
tions (x) of the one-dimensional Schrodinger equation

d2
— YW+ VINYx) = Ed(x) M
are linear combinations of the functions ¢, (x) in the form

Ylx) =) dnihm(x), 2)

where
Ym(x) = " (x)h(x). 3)

f™(x) denotes m-th power of f(x). The potential V is
assumed in the form

V) =) Vaf"(x). (4)

Function h(x) is equal to the ground state wave function
and is searched in the form

h(x) = exp (—/thf"'(x)dx) . (5)

Using this approach, it is possible to take different forms of
the function f(x) and to test if the Schrodinger equation
with the potential V' of the form (4) has analytic solu-
tions obeying the corresponding boundary conditions. In
Eq. (4), limits for index m are given by the potential and
if necessary, negative values of m can also be included.
After substituting Egs. (2-5) into the Eq. (1), a system of
algebraic equations for unknowns d,, and h,, is obtained.
Possible values of indices m in Eqs. (2) and (5) follow from
the condition that the number of the resulting equations
has to be equal to the number of unknowns.

2. Generalization to two-
dimensions

In [9], first attempt to generalize this method to two di-
mensions was presented. In this paper, the Schrédinger
equation is assumed in the form

—Adx, y) + VIx, y)g(x, y) = Edlx, y), (6)

where A = 0%/0x?> + 0%/dy?. lts solutions (x,y) are
assumed in the form

YY) =) Gmnmn, (7)

m,n

where
mn(x, y) = 1"(x)g" (y)h(x, y). (8)

The potential V/(x, y) can be assumed in a general form

Vi g) =Y Vaaf"(x)g"(y). (9)

In this paper, we restrict ourselves to the case

m+n<2M

Vi g)= ) Vaul"(g"(y)- (10)

m>0 n>0

In our previous papers [9-11], a general formula for the
two-dimensional function h was missing. Only the sim-
plest cases with f(x) = x, f(y) = y were discussed and
the assumption

hixy) = exp (Y dyx'y’) (11)

for the function h was used. In [10] also the PT7T-
symmetric solution was discussed, however, the method
was restricted to the polynomial potentials, too.

3. Ground state wave function

In this paper, the function h(x, y) is assumed in the form

h(x,y) = exp[=J(x. y)], (12)

where the function J(x, y) is to be found.

The function h(x, y) is supposed to be equal to the ground
state wave function of the Schrodinger equation (6), as
in all previously presented one-dimensional as well as
two-dimensional cases. Therefore, it should fulfil the
Schrodinger equation

—Ah(x, y) + Vix, y)h(x. y) = Eoh(x,y). — (13)

Substituting Eq. (12) into Eq. (13), we obtain a partial
differential equation (PDE) for the function J(x, y)

[af(x, y)]z . [af(x.y)]z_a%(x,y)

Ox dy ox?
*J(x, y)
- T2 Vi) -6 (14

The potential V on the right-hand side of Eq. (14) is sup-
posed in the form of polynomial in the functions f, g in
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Eq. (10). Therefore, the partial derivatives of J(x, y) are
searched in a similar form

aJ(x, y) =
CO =Y g, (1)
m>0 n>0
m+n<M
aj(ax'y) = Y duf"(09"(y). (16)
y m>0 n>0

The limits of sums are given by the condition that it is
necessary to obtain the same order of the polynomial at
both sides of Eq. (13). A general discussion is difficult, so
the following calculations are made for specific values of
M. The solutions are searched for in the following steps:

e The value of M and suitable functions f, g are
taken. In this paper, functions f(x) = x, g(y) = y
or f(x) = e™, g(y) = e™¥ are used.

e For given functions f, g, conditions for the coef-
ficients ¢;;, d; are found in such a way that the
system of PDE (15)-(16) is solvable.

e The function J solving the system of Eqs. (15)-(16)
is found. Function J is substituted into Eq. (12).

e Equation (12) is substituted into the Schrédinger
Equation (13). Comparing the terms of the same
order, a system of algebraic equations for unknown
coefficients ¢;;, dj; is obtained.

e Finally, formulas for the coefficients ¢ij, dij and con-
strains for the coefficients V;; are found.

3.1. CaseM-=1
For M =1, Eq. (10) equals

Vix,y) = Vaof*(x) + Voag*(y) + Vinf(x)g(y)
+ Viof(x) + Vorg(x) (17)

and Egs. (15)-(16) have the form

9J(x, y)

o = Got crof(x) + cor1g(y), (18)
%j’) = doo + duof(x) + dorgly).  (19)

Calculating the derivative of Eq. (18) with respect to y
and Eq. (19) with respect to x and comparing the right-
hand sides of the resulting equations, the condition of
solvability of the system of PDE (18)-(19) equals

df(x) _ dgly)
dqo dx _Cmidy . (20)

Equation (20) could be fulfilled taking cp1 = dig = 0.
However, in this case all resulting solutions can be ob-
tained also by separation of variables, so they are not in-
teresting. Another option is to put f(x) = x, g(y) = y and
co1 = dqip. However, it leads to the well-known problem of
the two-dimensional harmonic oscillator. The same result
is obtained for general linear functions f(x) = fix+f, and

g(y) = g1y + ga.

3.2. CaseM=2

For M = 2, the situation is completely different. In this
case, Egs. (15)-(16) have the form

aJ(x,

j((;(xy) = oo + crof + corg + coof + c2g’ + enfyg,
(21)

aJ(x,

jg(yy) = doo + diof + do1g + daof” + doag? + diifg.

(22)

Condition of solvability of PDE (21)-(22) is now

df d
(d10 + 2d20f + d11g) —_— = (C01 + 2 Co2g + C11f) £

dx
(23)
For given functions f, g, Eq. (23) represents constraints
for coefficients ¢;; and d;.
In this paper, we aim to simple cases when Eq. (23) is
easy to fulfil. First case is j—i = const, j—z = const, Le.
f(x) and g(y) are linear functions. Without loss of gener-
ality, functions f(x) = x, g(y) = y were chosen. Second
presented case is % = f, g—g =g, ile f=¢e"g=¢eY
There could be some constants included but without loss

of generality, they were omitted.

3.2.1. Two-dimensional quartic polynomial potential

If f(x) = x, g(y) = y is chosen, then Eq. (23) equals
dio +2dyx+ dny = cnn + 2 coay + cx. (24)

Consequently, three constrains are gotten: cp1 = dho,
11 = 2d20 and 2C02 = d11. The sgstem of PDE (21)—
(22) has the solution

oo 3, dp
] = 3 X +73
clo 5, do
5 X +79 + corxy + coox + dooy.  (25)

y3 + dzony + C()sz2
+

Here, an irrelevant integration constant is omitted. Sub-
stituting Eq. (25) into (12), an equation which is equiva-
lent to Eq. (11) is obtained. This result justifies Eq. (11)
used in the previous papers [9-11] as the assumption. The
complete discussion and results for the quartic polynomial
potentials are given in these papers.
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3.2.2. Two-dimensional quartic Morse potential
If f(x) = e*, g(y) = eY is chosen, then Eq. (23) equals

d10f+2d20f2+d11fg = C01g+2Cozgz+C11fg. (26)

Now the constrain di; = ¢q1 is seen and also it is seen
that coefficients cp, o1, da0, d1o have to equal to zero.
Egs. (21)-(22) contain totally 12 parameters c;;, d;;. Four
of them have to equal to zero and two of them are related
by the constrain. Therefore, seven of the coefficients ¢,
d;; remain independent.

Substituting these conditions into Eqs. (21)-(22), system
of PDE for function J is obtained

a‘ ’ g + ¢ + e 2:
(XX ) = Coo -‘r Cip€ x 20 = 1 ) y' ( )
0 ’ + =+ « e
‘(X y) — d00—|—d01€ Y dOZe 2y 11 X 9(28)

|

h(x,y) = exp %e’zx

System of PDE (27)-(28) has the solution

d
_/(X, y) = dooy — d01 E‘_y — %E_Zy — C11€‘_X_y
— %672)( — C‘|0€7X + CooX- (29)

Here, an irrelevant integration constant is omitted. Sub-
stituting Eq. (29) into Eq. (12), the formula for the function
h is obtained as

d
+ %EFZy + C116‘7X7y + C1097X + d01 e ¥ — CooX — dOOU . (30)

Substituting M = 2, f(x) = e ™ and f(y) = e™¥ into Eq. (10), the formula for the potential is

m+n<4

Vxg)= > Ve ™. (31)

m>0 n>0

Without loss of generality, it is assumed that Voo = 0. Substituting Eqs. (30)-(31) into Eq. (13), the following equation

is obtained

2

C0 674)( + 2 C20C106‘73X + (6102 + 2 C20Co0 + 2 Czo)f‘izx + (2 C10Co0 + C10)E'7X + d022€'74y + 2 d02d01 673y

+ (dor® + 2 doadoo + 2 doz)e ™ + (2 dordog + dio)e™ + 2 ci?e ) + 2cqq(coo + doo + 1)e Y

(32)

m+n<4

—“3x— —2x— —x— —x—2 2 2 —mx—
+2620611e 3x y+2C11C1()e X y+2d02611e X 35’+2611d01e X y+COO +d00 — § V,,e ny_E0~

m>0 n>0

The consequent calculations are made in a similar manner as it has been done in papers [9-11] and they are not
presented in detail here. Comparing the terms of the same order, a system of 15 algebraic equations is obtained. One

of them represents the formula for the ground state energy. Ideally, the remaining 14 equations would be transformed
to 7 equations for 7 coefficients ¢, d;; in dependence on 14 parameters Vj; of the potential. Parameters V;; are not

independent but they have to fulfil seven constrains.

As a simpler way to express the results, parametrization by 7 independent real parameters Wy = £/ Vo, Wos = =/ Vi,
Woy = £/ Vaa, Vo, Vo3, a = coo, B = doo was found. Used parametrization ensures that all constrains ale fulfilled.
As a result, the analytic solution of the Schrodinger equation (6) for the potential is obtained as

V(X, y) = W4026'_4X + W042(:‘_4y + \/§W40 W229_3X_y + \/§W04 sze_x_3y + W2228—2x—2y + V3oe_3X + Vo3€'_3y

3 2 3 2
n sz V30 e_zx_y W22 V03 e_X_zy n 8W40 (O’ + 12) + V30 e_ZX n 8W04 (B + 12) + V03 e_Zy
V2Wye V2Wos 4Wio 4Wos
+\6W22(G +B+MNe ™Y + we Me*y‘ (33)

2Way

2Wos
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The corresponding ground state wave function has the form

Wi Wos oy  Wao oy Vo Vs, _,
, — X X—Y X _ 34
Yn(x, y) = exp - e +—2 e +—ﬁe +2W40e +2W04€ —ax — By (34)
and the ground state energy equals
Ey=—a®— B2 (35)

The potential (33) represents the two-dimensional generalisation of the quartic Morse potential
Vix) =) Vi[1—exp(—x)]" (36)
n=1

presented in [6, 7]. The ground state wave function (34) has continuous derivatives in the entire plane (x,y). If a > 0,
B >0, Wy <0, Wos < 0 and Wy <0, the wave function (34) is also quadratically integrable in the entire plane (x, y).

3.3. CaseM-=3

For M = 3, Egs. (15)-(16) have the form

a

67)1(2600 + ciof + cong + cwf? + 29’ + enfg + cof’ + cnf’g + ciaf g* + cn3g”, (37)
I _q + diof + dorg + daof? + doag? + diifg + dsof® 4 dar g + d12f g + dzg® 38
ay_ 00 10 019 20 029 1nrg 30 211~ g 1219 039 - ( )

Condition of solvability of the system of PDE (37)-(38) representing constrains for the coefficients ¢;;, d;; is

d df
(Cm + 26029 + C11f + ¢ f2 + 2612fg + 3C0392) ﬁ = (d10 + 2d20f + d11g + 3d30f2 + 2d21 fg + d1292) —_— (39)

dx’

The following calculations can be made in a similar manner as in the case of the quartic Morse potential. For this
reason, detailed calculations are not presented.

3.3.1. Two-dimensional sextic polynomial potential
In this case, it is taken f(x) = x, g(y) = y. Then, Eq. (39) has the form

Co1 + 2(?02y + c11x + 621X2 -+ 2C12Xy =+ 3Co3y2 = d10 -+ 2d20X + d11y -+ 3d30X2 + 2d21Xy -+ d12y2. (40)

It is seen that it is necessary to fulfil the following constrains: co1 = d1o, d11 = 2co2, c11 = 2d20, d12 = 3c03, €21 = 3d3o
and dz1 = c¢12. The solution of Egs. (37)-(38) for the function J is

C c d [s d
=054 4 dsx’y + szyz + cosxy® + Eg4 + 208+ daox?y + coaxy® + ﬁgf
4 2 4 3 3 (41)
C10 5 dmn 2
+7X +co1xy+79 +CO0X+d00y.

There are 14 unknown coefficients ¢;; and d;.

Now it is necessary to substitute Eq. (41) into Eq. (12) and consequently to Eq. (13) with the potential given by Eq. (10),
where M = 3. Comparing the terms of the same order, system of 21 algebraic equations is obtained.

A general discussion of the problem is very complex. In this paper, solution of simplified problem is presented. Here,
it is supposed that all sixth order cross-terms in the potential are zero, i.e. V51 = Vi = V33 = Vo4 = V45 = 0 and all
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fifth order terms are zero, t.e. Vs = Vi = V3, = Vo3 = Viy = Vs = 0. These assumptions lead to reduction of free
parameters to 7.

The solution is parametrized by independent real parameters Wso = v/Veo, Wos = v'Vos, Vao, Voa, Va0, Vo3, @ = cor.
These parameters were chosen to obtain the resulting equations in a simple form.

The resulting potential has the form

V. 2
V(x, y) = Weox® + Woey® + Viox* + Voay* + 2Weoax’y + 2Wosaxy® + Vaox® + Vizy® + ( 4‘/;‘/0 ~+ o’ — 3W60) X
60

Voa? 2 2 ( Vio Vo4 ) ( VaioVio | Vo3 ) ( VoaVos | Vao )
+ a® —3W + v+ | axy + +———alx+ —a
4 Wog? oY Wso = Wos Y 2Wio? Wos 2 Wog? Wso

(42)

The ground state wave function for this potential is

Weo 4 Woe 4 Vi 5, Vos Va0 Vo3
Yo _eXp( 2 T 2 Y T S T 4W%y Y WX T W7 ) (43)
The corresponding energy equals

Eo = Vao Vos Vio® Vos” (44)

2Weo | 2Wos  AWe? AWl
The wave function (43) has continuous partial derivatives in the entire plane (x, y). If Wso > 0 a Wye > 0, function (43)
is quadratically integrable.

3.3.2. Two-dimensional sextic Morse potential

To get a potential of the Morse type, we put f(x) = e™, g(y) = e™Y. Then, to fulfil Eq. (39), it is necessary to take
dig = cor = dap = co2 =0, di1 = c1, di2 = 2¢47 and ¢y = 2d1. The solution of Egs. (37)-(38) for the function J is

G0 - - e dos _ Co _ ey do2 _ _
J=- 3e ¥ dye” X”—qzexzy—?e%—? Z e ™Y — Z2el — cpe ™ — dype™Y + coox + dooy.

(45)

There are 11 unknown coefficients ¢;; and d;.

Now it is necessary to substitute Eq. (45) into Eq. (12) and consequently to Eq. (13) with the potential given by Eq. (10),
where M = 3. Comparing the terms of the same order, system of 21 algebraic equations is obtained.

A general solution of this problem can be found, however, it is very complex. In this paper, only one of the simplified
solutions is presented. Here, it is supposed that all sixth order cross-terms in the potential are zero, i.e. V51 = Vi =
Vi3 = Voy = V45 = 0 and also Vg = Vo4 = 0. These assumptions caused reduction of free parameters to 7. The solution
is parametrized by independent real parameters Wso = /Vso, Wos = v/Vos, Vso, Vos, a = coo, B = doo, ¥ = 1.

The resulting potential has the form

%
vV :W602676X + W062676y + V50e75x + 2W60Y€74X7y + 2W06Y97X74y + VQ5€759 + Vv50 ve 73)( U 2V2 —2x—2y

60
V05 —x—3 V } -3 \/502 —2x— VOSZ —x—2 V ’ -3
+ —vye 7Y 4+ | Weo (2a + 3 e — e Y — e Y + | Wes (2B + 3 e Y
Woo Y 60 ( ) — 8W60 4W603 14 4W063 Y 06 (2B ) — 8W06
Vso(a + 1) Vo' i Vos(B + 1) Vos' - e
+ + e + + e +2a+B+1T)ye Y
[ Weo 64 Weo" Wos 64 Wos® @+ BTy
2a +1 . 2B+1 _
- ~Vso’e ™ — . ~Vos'e ™!
8Wso 8Was

(46)
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The ground state wave function has the formula

Weo 3, Voo oy Vso®
=exp|—=e "+ e " — e+ —
Yo P{3 4Weo 8 Wey? 3
and the corresponding energy equals
Eo = —a?— B (48)

The ground state wave function (47) has continuous
derivatives in the entire plane (x,y). If @ > 0, B > 0,
Weso < 0 and Wos < 0, wave function (47) is also quadrat-
ically integrable in the entire plane (x, y).

4. Conclusions

Most of known analytic solutions of the two-dimensional
and three-dimensional Schrodinger equation, as for in-
stance the quantization of the angular momentum or the
hydrogen atom, have been obtained by reducing the prob-
lem to one-dimensional differential equations. Problems
that cannot be reduced to one-dimensional equations are
difficult to solve.

In our preceding papers [9-11], a few analytic solutions of
the two-dimensional Schrédinger equation with the quar-
tic polynomial potential were found. The method used in
these papers is based on the approach suggested in [6-8].
This method yields most of known analytical solutions of
the one-dimensional Schrdodinger equation. In general, in
one dimension and consequently in two dimensions, ana-
lytic solutions for some energies and wave functions are
possible only for certain values of the potential coeffi-
cients.

In this paper, we used generalized assumptions compris-
ing wider class of two-dimensional potentials (Sections 2
and 3). Then, we applied this method to the fourth and
sixth order two-dimensional polynomial and Morse poten-
tials. In these cases, the analytic ground state energies
and wave functions for some values of the potential coef-
ficients were found (Section 3). The wave functions have
continuous partial derivatives and are quadratically inte-
grable in the entire plane (x, y).

These examples show that despite complexity of the
problem, analytic solutions of the two-dimensional
Schrédinger equation can be found in some physically in-
teresting cases that cannot be reduced to one-dimensional
problems.

2
-2y VOS

e - e
4 W06 8 W063

Y —ax—By+ye Y (47)

For the one-dimensional problems, no analytic meth-
ods for calculating the complete energy spectrum of the
Schrédinger equation with the fourth and higher order
potentials are known. In two dimensions, the situation
is even worse and our contribution to this effort is sum-
marized in this paper. We have shown that the analytic
ground state energies and wave functions can be found in
many cases discussed in this paper. Solutions for the ex-
cited states are even more difficult and have been found in
only one case [9]. Other excited states will be the subject
of further research.
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