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Abstract: This paper presents a direct algebraic method of searching for analytic solutions of the two-dimensional
time-independent Schrödinger equation that is impossible to separate into two one-dimensional ones. As
examples, two-dimensional polynomial and Morse-like potentials are discussed. Analytic formulas for the
ground state wave functions and the corresponding energies are presented. These results cannot be
obtained by another known method.
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1. Introduction

There are many types of potentials for which the one-dimensional Schrödinger equation is analytically solv-able. Usually, the two-dimensional Schrödinger equationis solved by some type of separation of variables (see e.g.[1–5]). If this method fails, no general approach to solvingthe Schrödinger equation is known.
In this paper, a method of searching for the solutions ofthe two-dimensional Schrödinger equation if separationof variables is not applicable is presented. The presented
∗E-mail: vladimir-tichy@email.cz

method is based on the algebraic approach to solving one-dimensional problems presented in [6–8]. The method wasgeneralized to two-dimensions in papers [9–11], wherethe potential was assumed in the form of a polynomialin variables x , y. In this paper, we present a general-ized approach to searching for analytic solutions of theSchrödinger equation. The method is applied to the two-dimensional polynomial and Morse potentials.Polynomial and Morse-like potentials are very useful invarious applications in physics and chemistry. Exactanalytic solutions for at least some states of the two-dimensional Schrödinger equation would be very use-ful not only for testing approximate methods of solutionsbut also for extending our knowledge of analytic one-dimensional solutions to more dimensional ones.
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First, we summarize our method for the one-dimensionalproblems [6–8]. In these papers, it is assumed that solu-tions ψ(x) of the one-dimensional Schrödinger equation
− d2dx2ψ(x) + V (x)ψ(x) = Eψ(x) (1)

are linear combinations of the functions ψm(x) in the form
ψ(x) =∑

m
dmψm(x), (2)

where
ψm(x) = fm(x)h(x). (3)

fm(x) denotes m-th power of f (x). The potential V isassumed in the form
V (x) =∑

m
Vmfm(x). (4)

Function h(x) is equal to the ground state wave functionand is searched in the form
h(x) = exp(− ∫ ∑

m
hmfm(x)dx) . (5)

Using this approach, it is possible to take different forms ofthe function f (x) and to test if the Schrödinger equationwith the potential V of the form (4) has analytic solu-tions obeying the corresponding boundary conditions. InEq. (4), limits for index m are given by the potential andif necessary, negative values of m can also be included.After substituting Eqs. (2-5) into the Eq. (1), a system ofalgebraic equations for unknowns dm and hm is obtained.Possible values of indices m in Eqs. (2) and (5) follow fromthe condition that the number of the resulting equationshas to be equal to the number of unknowns.
2. Generalization to two-
dimensions
In [9], first attempt to generalize this method to two di-mensions was presented. In this paper, the Schrödingerequation is assumed in the form

− ∆ψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y), (6)
where ∆ = ∂2/∂x2 + ∂2/∂y2. Its solutions ψ(x, y) areassumed in the form

ψ(x, y) =∑
m,n

amnψmn, (7)

where
ψmn(x, y) = fm(x)gn(y)h(x, y). (8)

The potential V (x, y) can be assumed in a general form
V (x, y) =∑

m,n
Vmnfm(x)gn(y). (9)

In this paper, we restrict ourselves to the case
V (x, y) = m+n≤2M∑

m≥0 n≥0 Vmnf
m(x)gn(y). (10)

In our previous papers [9–11], a general formula for thetwo-dimensional function h was missing. Only the sim-plest cases with f (x) = x , f (y) = y were discussed andthe assumption
h(x, y) = exp(∑dijx iyj

) (11)
for the function h was used. In [10], also the PT -symmetric solution was discussed, however, the methodwas restricted to the polynomial potentials, too.
3. Ground state wave function
In this paper, the function h(x, y) is assumed in the form

h(x, y) = exp [−J(x, y)] , (12)
where the function J(x, y) is to be found.The function h(x, y) is supposed to be equal to the groundstate wave function of the Schrödinger equation (6), asin all previously presented one-dimensional as well astwo-dimensional cases. Therefore, it should fulfil theSchrödinger equation

− ∆h(x, y) + V (x, y)h(x, y) = E0h(x, y). (13)
Substituting Eq. (12) into Eq. (13), we obtain a partialdifferential equation (PDE) for the function J(x, y)

[
∂J(x, y)
∂x

]2 + [
∂J(x, y)
∂y

]2
− ∂2J(x, y)

∂x2
− ∂2J(x, y)

∂y2 = V (x, y)− E0. (14)
The potential V on the right-hand side of Eq. (14) is sup-posed in the form of polynomial in the functions f , g in
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Eq. (10). Therefore, the partial derivatives of J(x, y) aresearched in a similar form
∂J(x, y)
∂x = m+n≤M∑

m≥0 n≥0 cmnf
m(x)gn(y), (15)

∂J(x, y)
∂y = m+n≤M∑

m≥0 n≥0dmnf
m(x)gn(y). (16)

The limits of sums are given by the condition that it isnecessary to obtain the same order of the polynomial atboth sides of Eq. (13). A general discussion is difficult, sothe following calculations are made for specific values of
M . The solutions are searched for in the following steps:

• The value of M and suitable functions f , g aretaken. In this paper, functions f (x) = x , g(y) = yor f (x) = e−x , g(y) = e−y are used.
• For given functions f , g, conditions for the coef-ficients cij , dij are found in such a way that thesystem of PDE (15)-(16) is solvable.
• The function J solving the system of Eqs. (15)-(16)is found. Function J is substituted into Eq. (12).
• Equation (12) is substituted into the SchrödingerEquation (13). Comparing the terms of the sameorder, a system of algebraic equations for unknowncoefficients cij , dij is obtained.
• Finally, formulas for the coefficients cij , dij and con-strains for the coefficients Vij are found.

3.1. Case M = 1
For M = 1, Eq. (10) equals

V (x, y) = V20f2(x) + V02g2(y) + V11f (x)g(y)+ V10f (x) + V01g(x) (17)
and Eqs. (15)-(16) have the form

∂J(x, y)
∂x = c00 + c10f (x) + c01g(y), (18)

∂J(x, y)
∂y = d00 + d10f (x) + d01g(y). (19)

Calculating the derivative of Eq. (18) with respect to yand Eq. (19) with respect to x and comparing the right-hand sides of the resulting equations, the condition ofsolvability of the system of PDE (18)-(19) equals
d10 df (x)dx = c01 dg(y)dy . (20)

Equation (20) could be fulfilled taking c01 = d10 = 0.However, in this case all resulting solutions can be ob-tained also by separation of variables, so they are not in-teresting. Another option is to put f (x) = x , g(y) = y and
c01 = d10. However, it leads to the well-known problem ofthe two-dimensional harmonic oscillator. The same resultis obtained for general linear functions f (x) = f1x+ f2 and
g(y) = g1y+ g2.
3.2. Case M = 2
For M = 2, the situation is completely different. In thiscase, Eqs. (15)-(16) have the form
∂J(x, y)
∂x = c00 + c10f + c01g+ c20f2 + c02g2 + c11fg,(21)

∂J(x, y)
∂y = d00 + d10f + d01g+ d20f2 + d02g2 + d11fg.(22)

Condition of solvability of PDE (21)-(22) is now
(d10 + 2d20f + d11g) dfdx = (c01 + 2 c02g+ c11f ) dgdy .(23)For given functions f , g, Eq. (23) represents constraintsfor coefficients cij and dij .In this paper, we aim to simple cases when Eq. (23) iseasy to fulfil. First case is dfdx = const, dgdy = const, i.e.

f (x) and g(y) are linear functions. Without loss of gener-ality, functions f (x) = x , g(y) = y were chosen. Secondpresented case is dfdx = f , dgdy = g, i.e. f = ex , g = ey.There could be some constants included but without lossof generality, they were omitted.
3.2.1. Two-dimensional quartic polynomial potentialIf f (x) = x , g(y) = y is chosen, then Eq. (23) equals

d10 + 2d20x + d11y = c01 + 2 c02y+ c11x. (24)
Consequently, three constrains are gotten: c01 = d10,
c11 = 2d20 and 2c02 = d11. The system of PDE (21)-(22) has the solution

J = c203 x3 + d023 y3 + d20x2y+ c02xy2
+ c102 x2 + d012 y2 + c01xy+ c00x + d00y. (25)

Here, an irrelevant integration constant is omitted. Sub-stituting Eq. (25) into (12), an equation which is equiva-lent to Eq. (11) is obtained. This result justifies Eq. (11)used in the previous papers [9–11] as the assumption. Thecomplete discussion and results for the quartic polynomialpotentials are given in these papers.
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3.2.2. Two-dimensional quartic Morse potentialIf f (x) = ex , g(y) = ey is chosen, then Eq. (23) equals
d10f + 2d20f2 + d11fg = c01g+ 2 c02g2 + c11fg. (26)

Now the constrain d11 = c11 is seen and also it is seenthat coefficients c02, c01, d20, d10 have to equal to zero.Eqs. (21)-(22) contain totally 12 parameters cij , dij . Fourof them have to equal to zero and two of them are relatedby the constrain. Therefore, seven of the coefficients cij ,
dij remain independent.Substituting these conditions into Eqs. (21)-(22), systemof PDE for function J is obtained

∂J(x, y)
∂x = c00 + c10e−x + c20e−2x + c11e−x−y, (27)

∂J(x, y)
∂y = d00 + d01e−y + d02e−2y + c11e−x−y. (28)

System of PDE (27)-(28) has the solution

J(x, y) = d00y− d01e−y − d022 e−2y − c11e−x−y
− c202 e−2x − c10e−x + c00x. (29)

Here, an irrelevant integration constant is omitted. Sub-stituting Eq. (29) into Eq. (12), the formula for the function
h is obtained as

h(x, y) = exp(c202 e−2x + d022 e−2y + c11e−x−y + c10e−x + d01e−y − c00x − d00y
)
. (30)

Substituting M = 2, f (x) = e−x and f (y) = e−y into Eq. (10), the formula for the potential is
V (x, y) = m+n≤4∑

m≥0 n≥0Vmne
−mx−ny. (31)

Without loss of generality, it is assumed that V00 = 0. Substituting Eqs. (30)-(31) into Eq. (13), the following equationis obtained
c202e−4x + 2 c20c10e−3x + (c102 + 2 c20c00 + 2 c20)e−2x + (2 c10c00 + c10)e−x + d022e−4y + 2d02d01e−3y
+ (d012 + 2d02d00 + 2d02)e−2y + (2d01d00 + d10)e−y + 2 c112e−2(x+y) + 2c11(c00 + d00 + 1)e−x−y
+ 2 c20c11e−3x−y + 2 c11c10e−2x−y + 2d02c11e−x−3y + 2 c11d01e−x−2y + c002 + d002 = m+n≤4∑

m≥0 n≥0Vmne
−mx−ny − E0.

(32)

The consequent calculations are made in a similar manner as it has been done in papers [9–11] and they are notpresented in detail here. Comparing the terms of the same order, a system of 15 algebraic equations is obtained. Oneof them represents the formula for the ground state energy. Ideally, the remaining 14 equations would be transformedto 7 equations for 7 coefficients cij , dij in dependence on 14 parameters Vij of the potential. Parameters Vij are notindependent but they have to fulfil seven constrains.As a simpler way to express the results, parametrization by 7 independent real parameters W40 = ±√V40, W04 = ±√V40,
W22 = ±√V22, V30, V03, α = c00, β = d00 was found. Used parametrization ensures that all constrains ale fulfilled.As a result, the analytic solution of the Schrödinger equation (6) for the potential is obtained as

V (x, y) = W402e−4x +W042e−4y +√2W40W22e−3x−y +√2W04W22e−x−3y +W222e−2x−2y + V30e−3x + V03e−3y
+W22V30√2W40 e

−2x−y + W22V03√2W04 e
−x−2y + 8W403(α + 1) + V3024W402 e−2x + 8W043(β + 1) + V0324W042 e−2y

+√2W22(α + β + 1)e−x−y + V30(2α + 1)2W40 e−x + V03(2β + 1)2W04 e−y. (33)
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The corresponding ground state wave function has the form
ψ0(x, y) = exp(W402 e−2x + W042 e−2y + W22√2 e−x−y + V302W40 e−x + V032W04 e−y − αx − βy

) (34)
and the ground state energy equals

E0 = −α2 − β2. (35)
The potential (33) represents the two-dimensional generalisation of the quartic Morse potential

V (x) = 4∑
n=1 Vn [1− exp(−x)]n (36)

presented in [6, 7]. The ground state wave function (34) has continuous derivatives in the entire plane (x, y). If α > 0,
β > 0, W40 < 0, W04 < 0 and W22 ≤ 0, the wave function (34) is also quadratically integrable in the entire plane (x, y).
3.3. Case M = 3
For M = 3, Eqs. (15)-(16) have the form

∂J
∂x=c00 + c10f + c01g+ c20f2 + c02g2 + c11fg+ c30f3 + c21f2g+ c12fg2 + c03g3, (37)
∂J
∂y=d00 + d10f + d01g+ d20f2 + d02g2 + d11fg+ d30f3 + d21f2g+ d12fg2 + d03g3. (38)

Condition of solvability of the system of PDE (37)-(38) representing constrains for the coefficients cij , dij is
(
c01 + 2c02g+ c11f + c21f2 + 2c12fg+ 3c03g2) dgdy = (

d10 + 2d20f + d11g+ 3d30f2 + 2d21fg+ d12g2) dfdx . (39)
The following calculations can be made in a similar manner as in the case of the quartic Morse potential. For thisreason, detailed calculations are not presented.
3.3.1. Two-dimensional sextic polynomial potentialIn this case, it is taken f (x) = x , g(y) = y. Then, Eq. (39) has the form

c01 + 2c02y+ c11x + c21x2 + 2c12xy+ 3c03y2 = d10 + 2d20x + d11y+ 3d30x2 + 2d21xy+ d12y2. (40)
It is seen that it is necessary to fulfil the following constrains: c01 = d10, d11 = 2c02, c11 = 2d20, d12 = 3c03, c21 = 3d30and d21 = c12. The solution of Eqs. (37)-(38) for the function J is

J =c304 x4 + d30x3y+ c122 x2y2 + c03xy3 + d034 y4 + c203 x3 + d20x2y+ c02xy2 + d023 y3
+ c102 x2 + c01xy+ d012 y2 + c00x + d00y.

(41)
There are 14 unknown coefficients cij and dij .Now it is necessary to substitute Eq. (41) into Eq. (12) and consequently to Eq. (13) with the potential given by Eq. (10),where M = 3. Comparing the terms of the same order, system of 21 algebraic equations is obtained.A general discussion of the problem is very complex. In this paper, solution of simplified problem is presented. Here,it is supposed that all sixth order cross-terms in the potential are zero, i.e. V51 = V42 = V33 = V24 = V15 = 0 and all
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fifth order terms are zero, i.e. V50 = V41 = V32 = V23 = V14 = V05 = 0. These assumptions lead to reduction of freeparameters to 7.The solution is parametrized by independent real parameters W60 = √V60, W06 = √V06, V40, V04, V30, V03, α = c01.These parameters were chosen to obtain the resulting equations in a simple form.The resulting potential has the form
V (x, y) = W602x6 +W062y6 + V40x4 + V04y4 + 2W60αx3y+ 2W06αxy3 + V30x3 + V03y3 +( V4024W602 + α2 − 3W60

)
x2

+( V0424W062 + α2 − 3W06
)
y2 + ( V40

W60 + V04
W06

)
αxy+ (V40V302W602 + V03

W06 α
)
x + (V04V032W062 + V30

W60 α
)
y.

(42)
The ground state wave function for this potential is

ψ0 = exp(−W604 x4 − W064 y4 − V404W60 x2 − V044W06 y2 − αxy− V302W60 x −
V032W06 y

)
. (43)

The corresponding energy equals
E0 = V402W60 + V042W06 −

V3024W602 − V0324W062 . (44)
The wave function (43) has continuous partial derivatives in the entire plane (x, y). If W60 > 0 a W06 > 0, function (43)is quadratically integrable.
3.3.2. Two-dimensional sextic Morse potentialTo get a potential of the Morse type, we put f (x) = e−x , g(y) = e−y. Then, to fulfil Eq. (39), it is necessary to take
d10 = c01 = d20 = c02 = 0, d11 = c11, d12 = 2c12 and c21 = 2d21. The solution of Eqs. (37)-(38) for the function J is
J = −c303 e−3x − d21e−2x−y − c12e−x−2y − d033 e−3y − c202 e−2x − c11e−x−y − d022 e2y − c10e−x − d01e−y + c00x + d00y.(45)

There are 11 unknown coefficients cij and dij .Now it is necessary to substitute Eq. (45) into Eq. (12) and consequently to Eq. (13) with the potential given by Eq. (10),where M = 3. Comparing the terms of the same order, system of 21 algebraic equations is obtained.A general solution of this problem can be found, however, it is very complex. In this paper, only one of the simplifiedsolutions is presented. Here, it is supposed that all sixth order cross-terms in the potential are zero, i.e. V51 = V42 =
V33 = V24 = V15 = 0 and also V40 = V04 = 0. These assumptions caused reduction of free parameters to 7. The solutionis parametrized by independent real parameters W60 = √V60, W06 = √V06, V50, V05, α = c00, β = d00, γ = c11.The resulting potential has the form
V =W602e−6x +W062e−6y + V50e−5x + 2W60γe−4x−y + 2W06γe−x−4y + V05e−5y + V50

W60 γe−3x−y + 2γ2e−2x−2y

+ V05
W06 γe−x−3y + [W60 (2α + 3)− V5038W604

]
e−3x − V5024W603 γe−2x−y − V0524W063 γe−x−2y + [W06 (2β + 3)− V0538W064

]
e−3y

+ [V50(α + 1)
W60 + V50464W606

]
e−2x + [V05(β + 1)

W06 + V05464W066
]
e−2y + 2(α + β + 1)γe−x−y

− 2α + 18W603 V502e−x − 2β + 18W063 V052e−y. (46)
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The ground state wave function has the formula
ψ0 = exp(W603 e−3x + V504W60 e−2x − V5028W603 e−x + W063 e−3y + V054W06 e−2y − V0528W063 e−y − αx − βy+ γe−x−y

) (47)

and the corresponding energy equals
E0 = −α2 − β2. (48)

The ground state wave function (47) has continuousderivatives in the entire plane (x, y). If α > 0, β > 0,
W60 < 0 and W06 < 0, wave function (47) is also quadrat-ically integrable in the entire plane (x, y).
4. Conclusions
Most of known analytic solutions of the two-dimensionaland three-dimensional Schrödinger equation, as for in-stance the quantization of the angular momentum or thehydrogen atom, have been obtained by reducing the prob-lem to one-dimensional differential equations. Problemsthat cannot be reduced to one-dimensional equations aredifficult to solve.In our preceding papers [9–11], a few analytic solutions ofthe two-dimensional Schrödinger equation with the quar-tic polynomial potential were found. The method used inthese papers is based on the approach suggested in [6–8].This method yields most of known analytical solutions ofthe one-dimensional Schrödinger equation. In general, inone dimension and consequently in two dimensions, ana-lytic solutions for some energies and wave functions arepossible only for certain values of the potential coeffi-cients.In this paper, we used generalized assumptions compris-ing wider class of two-dimensional potentials (Sections 2and 3). Then, we applied this method to the fourth andsixth order two-dimensional polynomial and Morse poten-tials. In these cases, the analytic ground state energiesand wave functions for some values of the potential coef-ficients were found (Section 3). The wave functions havecontinuous partial derivatives and are quadratically inte-grable in the entire plane (x, y).These examples show that despite complexity of theproblem, analytic solutions of the two-dimensionalSchrödinger equation can be found in some physically in-teresting cases that cannot be reduced to one-dimensionalproblems.

For the one-dimensional problems, no analytic meth-ods for calculating the complete energy spectrum of theSchrödinger equation with the fourth and higher orderpotentials are known. In two dimensions, the situationis even worse and our contribution to this effort is sum-marized in this paper. We have shown that the analyticground state energies and wave functions can be found inmany cases discussed in this paper. Solutions for the ex-cited states are even more difficult and have been found inonly one case [9]. Other excited states will be the subjectof further research.
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