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1. Introduction
In this paper, we are interested in the solutions of thetwo-dimensional Schrödinger equation with the quartic
PT -symmetric potential V (x, y)

− ∆ψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y), (1)
where ∆ = ∂2

∂x2 + ∂2
∂y2 . (2)

Here, the potential V is assumed to be in the form
V (x, y) = V40x4 + V04y4 + V31x3y+ V13xy3

+ V22x2y2 + iV30x3 + iV03y3 + iV21x2y+ iV12xy2
+ V20x2 + V02y2 + V11xy+ iV10x + iV01y, (3)

∗E-mail: vladimir-tichy@email.cz

where the Vij are real coefficients. We suppose V40 > 0and V04 > 0. For more information on the PT -symmetricpotentials, see e.g. [1–7].To find analytic solutions, a similar approach as in [8–11]is used. Here, the ground state wave function is searchedfor in the form of the exponential of a cubic polynomial inthe variables x and y
ψ(x, y) = exp [−P(x, y)] , (4)

where
P(x, y) = c30x3 + c03y3 + c21x2y+ c12xy2

+ c20x2 + c02y2 + c11xy+ c10x + c01y. (5)
Here, the cij are complex coefficients to be found. Thenormalization factor is not written here. Note that in thepapers [8–11], excited states of polynomial potentials aresearched in the form of an exponential of a polynomial
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multiplied by another polynomial. In this paper, only theground state is presented.Eq. (1) can be rewritten in the form
V (x, y)− E = ∆ψ(x, y)

ψ(x, y) . (6)
Substituting Eqs. (3)-(5) into Eq. (6) we get an equationwith polynomials in both sides. Comparing the terms ofthe same order we get the formula for the energy

E = −c102 − c012 + 2c02 + 2c20 (7)
and the system of equations for the coefficients cij

V40 = 9c302 + c212, (8)
V04 = 9c032 + c122, (9)
V31 = 12c30c21 + 4c21c12, (10)
V13 = 12c03c12 + 4c12c21, (11)
V22 = 6c30c12 + 4c122 + 4c212 + 6c21c03, (12)
iV30 = 12c20c30 + 2c11c21, (13)iV03 = 12c02c03 + 2c11c12, (14)iV21 = 4c21c02 + 8c20c21 + 6c30c11 + 4c11c12, (15)iV12 = 4c12c20 + 8c02c12 + 6c03c11 + 4c11c21, (16)
V20 = 2c01c21 + c112 + 4c202 + 6c10c30, (17)
V02 = 2c10c12 + c112 + 4c022 + 6c01c03, (18)
V11 = 4c01c12 + 4c11c02 + 4c20c11 + 4c10c21, (19)iV10 = 4c10c20 − 6c30 + 2c01c11 − 2c12, (20)iV01 = 4c01c02 − 6c03 + 2c10c11 − 2c21. (21)

This is a system of 14 equations for 9 coefficients. It isevident that this system is not solvable in general andcertain conditions of its solvability must be fulfilled.
2. Energy and conditions of solv-
ability
To get the PT -symmetric solutions we suppose that allcoefficients cij with i + j even are purely imaginary andall cij coefficients with i + j odd are real. PT -symmetrywill be supposed to be unbroken and for this reason theenergy has to be real. From Eq. (7), it follows that

c02 = −c20. (22)

The left hand side of Eqs. (20) and (21) is purely imagi-nary, and thus the right hand side must be purely imagi-nary too. From here, it follows that
c21 = −3c03, (23)
c12 = −3c30. (24)

The system of Eqs. (8)-(21) then becomes
V40 = 9c302 + 9c032, (25)
V04 = 9c302 + 9c032, (26)
V31 = 0, (27)
V13 = 0, (28)
V22 = 18c302 + 18c032, (29)
iV30 = 12c30c20 − 6c03c11, (30)iV03 = −12c03c20 − 6c30c11, (31)iV21 = −12c03c20 − 6c30c11, (32)iV12 = 12c30c20 − 6c03c11, (33)
V20 = 6c30c10 − 6c03c01 + 4c202 + c112, (34)
V02 = −6c30c10 + 6c03c01 + 4c202 + c112, (35)
V11 = −12c30c01 − 12c03c10, (36)iV10 = 4c20c10 + 2c11c01, (37)iV01 = −4c20c01 + 2c11c10. (38)

Immediately, one can see the following conditions of solv-ability: Eqs. (27), (28) give V31 = 0 and V13 = 0.Eqs. (25), (26), (29) yield further conditions
V40 = V04 = V222 ≡ V4. (39)

From Eqs. (30) and (33), resp. (31) and (32) follow theconditions
V12 = V30, (40)
V21 = V03. (41)

Now, we can express from Eqs. (30) and (31) the coeffi-cients
c20 = 112 V30c30 − V03c03

c302 + c032 i, (42)
c11 = 16 V30c03 + V03c30

c302 + c032 i. (43)
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Substituting these coefficients into Eqs. (37) and (38) andsolving the resulting two equations one gets
c10 = 3V30V10 − V03V01

V302 + V032 c30 − 3V03V10 + V30V01
V302 + V032 c03, (44)

c01 = −3V03V10 + V30V01
V302 + V032 c30 + 3−V30V10 + V03V01

V302 + V032 c03.(45)
Now, it is useful to express the sum of Eqs. (34) and (35)and their difference:

V20 + V02 = 8c202 + 2c112, (46)
V20 − V02 = 12c10c30 − 12c03c01. (47)

Substituting Eqs. (42)-(45) to Eqs. (36), (46) and (47) oneobtains
V11 = 36(c302 + c032) (V30V01 + V03V10)

V302 + V032 , (48)
V20 + V02 = 118 V302 + V032

c302 + c032 , (49)
V20 − V02 = 36(c302 + c032) (V30V10 − V03V01)

V302 + V032 . (50)

Referring to Eq. (25) we can rewrite Eqs. (48)-(50) in theform

V11 = 4V4(V30V01 + V03V10)
V302 + V032 , (51)

V20 + V02 = −12 V302 + V032
V4 , (52)

V20 − V02 = 4V4(V30V10 − V03V01)
V302 + V032 . (53)

These equations are the remaining three conditions ofsolvability. Denoting

Va ≡ V30V10 − V03V01, (54)
Vb ≡ V30V01 + V03V10. (55)

Eq. (3) describing the potential can be rewritten to theform

V (x, y) = V4x4 + V4y4 + 2V4x2y2 + iV30x3 + iV03y3 + iV03x2y+ iV30xy2 +(−14 V302 + V032
V4 + 2V4Va

V302 + V032
)
x2

+(−14 V302 + V032
V4 − 2V4Va

V302 + V032
)
y2 + 4V4Vb

V302 + V032 xy+ iV30Va + V03Vb
V302 + V032 x + iV30Vb − V03Va

V302 + V032 y. (56)
Eq. (56) represents the general form of the resulting potential fulfilling all mentioned conditions. Here, V4 is an arbitrarypositive real number and V30, V03, Va and Vb are arbitrary real numbers.Transformation of Eq. (56) to spherical coordinates

x = R cos(φ), (57)
y = R sin(φ), (58)

gives
V (R,φ) = V4R4 + iV30R3 cos(φ) + iV03R3 sin(φ) + (−14 V302 + V032

V4 + 2V4Va
V302 + V032

)
R2 cos2(φ)

+ (−14 V302 + V032
V4 − 2V4Va

V302 + V032
)
R2 sin2(φ) + 4V4Vb

V302 + V032R2 cos(φ) sin(φ)
+ iV30Va + V03Vb

V302 + V032 R cos(φ) + iV30Vb − V03Va
V302 + V032 R sin(φ). (59)

521

Author c
opy



Analytic wave functions and energies for two-dimensional PT -symmetric quartic potentials

Eq. (59) shows a non-trivial dependency of the potentialon the angular coordinate φ. It is seen that the presentedmethod leads to a new type of PT -symmetric potential.Substituting Eqs. (42)-(45) into the energy (7) we obtain
E = −9(c302 + c032) (V102 + V012)

V302 + V032 . (60)
Using Eq. (25) and (54)-(55) this formula becomes

E = −V4 Va2 + Vb2(
V302 + V032)2 . (61)

3. General form of the wave function
Using Eq. (25), Eqs. (42)-(43) can be rewritten in the form

c20 = 34 V30c30 − V03c03
V40 i, (62)

c11 = −32 V30c03 + V03c30
V40 i. (63)

The general solution of Eqs. (25)-(29) can be written as
c30 = √

V43 cos(α), (64)
c03 = √

V43 sin(α), (65)
where α is a real parameter within the interval [0, 2π). Itwill be seen that α can be an arbitrary real number withinthis interval.Now it is possible to write Eq. (5) in the form
P(x, y) = √V43 cos(α)P1(x, y)+ √V43 sin(α)P2(x, y), (66)

where
P1(x, y) = x3 − 3xy2 + i3V304V4 x2 − i 3V304V4 y2

− i 3V032V4 xy+ 3Va
V302 + V032 x − 3Vb

V302 + V032 y, (67)

P2(x, y) = y3 − 3x2y − i 3V034V4 x2 + i3V034V4 y2
− i 3V302V4 xy −

3Vb
V302 + V032 x − 3Va

V302 + V032 y. (68)

The resulting wave function for the potential of the form(3) fulfilling the conditions (27), (28), (39)-(41) and (51)-(53) can be written as
ψ(x, y) = exp [−√V43 [cos(α)P1(x, y) + sin(α)P2(x, y)]] ,(69)where P1(x, y) and P2(x, y) are defined by Eqs. (67)-(68).The corresponding energy is given by Eq. (61). The pa-rameter α is a real number in the interval [0, 2π). In gen-eral, the wave functions (69) corresponding to differentvalues of α are linearly independent. The energy (61)does not depend on α . For this reason, this energy isinfinitely degenerate.
4. Conclusions
In this paper, the two-dimensional Schrödinger equationwith the PT -symmetric quartic potential has been investi-gated. The analytic formulae for ground state energy andthe corresponding wave functions have been found. Thisenergy is infinitely degenerate. Further investigation ofthis problem will be the subject of further research. Also,other solutions will be searched.
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