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1. Introduction

In this paper, we are interested in the solutions of the
two-dimensional Schrodinger equation with the quartic
‘PT -symmetric potential V/(x, y)

= Ad(x, y) + VX, y)dlx, y) = Edix, y), M

where
92 0?
A=aataz @

Here, the potential V is assumed to be in the form

Vix,y) = \/40)(4 + V04y4 + V31X3y + V13Xy3
+ V22X2y2 + i.\/3()X3 + .lV03y3 + .lV21Xzy + i.V12Xy2
—+ V20X2 + V02y2 + V11Xy + 'LV10X + [me, (3)
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where the Vj; are real coefficients. We suppose Vi > 0
and Vp4 > 0. For more information on the P7 -symmetric
potentials, see e.g. [1-7].

To find analytic solutions, a similar approach as in [8-11]
is used. Here, the ground state wave function is searched
for in the form of the exponential of a cubic polynomial in
the variables x and y

dlx.y) = exp[=P(x,y)], 4

where

Plx,y) = 30X + Co3y3 + Cz1X2y + C12Xy2

+ cox’ + Cozy2 + cixy + crox + cory. (5)

Here, the ¢; are complex coefficients to be found. The
normalization factor is not written here. Note that in the
papers [8-11], excited states of polynomial potentials are
searched in the form of an exponential of a polynomial
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multiplied by another polynomial. In this paper, only the
ground state is presented.
Eq. (1) can be rewritten in the form

_r_ Adlxy)
Vix.y) - E = Wy) (6)

Substituting Egs. (3)-(5) into Eq. (6) we get an equation
with polynomials in both sides. Comparing the terms of
the same order we get the formula for the energy

E = —c10° — o1 + 2¢o2 + 2¢20 7)

and the system of equations for the coefficients c;;

Vio = 9c30” + ¢’ (8)
Vos = 9cos® + 1%, 9)
Va1 = 12c30¢01 + 4cncrn, (10)
Vis = 12co3¢12 + 4cpen, (1)
Vyy = 6csoci + 4cin’ + 4en? + 6caicos, (12)
iVap = 12cxc30 + 2c1101, (13)
WM = 12coc03 + 211612, (14)
Vo1 = 4cacor + 8o +6c3pc1t + 4cricrz,  (15)
iVio = 4ciac0 + 8cpac12 + 6co3cnn +4ciicn,  (16)
Vao = 2corca + cr” + 4e” + bcrocs, (17)
Vie = 2ci0¢i2 + on’ + 4cgo® + 6corcos, (18)
Vii = 4cocra + 4encor + 4encin + 4cioen, (19)
WVio = 4cioc — bc30 + 2co1c11 — 2cqz, (20)
Vo = 4corcor — bcos + 2c10011 — 2c. (21)

This is a system of 14 equations for 9 coefficients. It is
evident that this system is not solvable in general and
certain conditions of its solvability must be fulfilled.

2. Energy and conditions of solv-
ability

To get the P7T -symmetric solutions we suppose that all
coefficients c¢;; with i + j even are purely imaginary and
all ¢;; coefficients with i + j odd are real. PT-symmetry
will be supposed to be unbroken and for this reason the
energy has to be real. From Eq. (7), it follows that

Co2 = —C20. (22)

The left hand side of Egs. (20) and (21) is purely imagi-
nary, and thus the right hand side must be purely imagi-
nary too. From here, it follows that

1 = —30p3, (23)
C1p = —3630. (24)

The system of Egs. (8)-(21) then becomes

Vig = 9c30° + 9co3”, (25)
Vo = 9c30° + 9cos’, (26)
Vs = 0, (27)
Vis = 0, (28)
Vo, = 18c30” + 18co37, (29)
V3o = 12c30c20 — bcozen, (30)
iVis = —12co3c20 — b3t (31
iVar = —12cp3¢20 — 630011, (32)
Vi = 12c30c20 — b6co3cin, (33)
Voo = 6c30c10 — 6co3con + 4ca0” + €1’ (34)
Voo = —6c30cio + b6coscor + 4can” + cii?,  (35)
Vir = —12c30c01 — 12cq3¢10, (36)
iVio = 4caocio + 2ciico1, (37)
iVim = —4cxco + 2c11¢10- (38)

Immediately, one can see the following conditions of solv-
ability: Egs. (27), (28) give V3 = 0 and Vi3 = 0.
Egs. (25), (26), (29) yield further conditions

%
V40 = V04 = % = V4. (39)

From Egs. (30) and (33), resp. (31) and (32) follow the
conditions

Vi = V3, (40)
Vor = Vs (41)

Now, we can express from Egs. (30) and (31) the coeffi-
cients

1 Ve300 — Voscos,
= —— i, 42
€20 12 o + o2 L (42)

_ 1 V000 + Voscao,

(5
6 C302 + C032

(43)
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Substituting these coefficients into Egs. (37) and (38) and
solving the resulting two equations one gets

V3o Vio — Vs Vo Vs Vio + V3o Vo

cp=3————""75—¢C0—3 Co3, (44)
Vao® + Vos? Vao® + Vos?
4, VizVig + V3o Vo —V3pVio + Vo3 Vin
co1 = —3 > >—C30 + 3 > > Co3-
Vie® + Vi V30” + Vo3
(49)

Now, it is useful to express the sum of Eqs. (34) and (35)
and their difference:

Voo + Vo 8ca® + 2c11?, (46)
Voo — Voo = 12c¢10c30 — 12¢03¢01- (47)

Substituting Egs. (42)-(45) to Eqgs. (36), (46) and (47) one
obtains

2+ c03?) (VaoVor + Vs V-
Vi :36(630 03 )2( 30 012 03 10)' (48)
Va® + Vi
1 Vao® + Vos®
V. Vo= ——————, 49
2 + 02 18 C302 +Co32 ( )
2 2
+ Vi0Vio — Vs
Vag — Vi = 36(030 Co3 ) (Va0 Vio 03 01). (50)

Vil + Vis®

V(x,y) = Vax* + Vay* + 2Vix2y? + iVax® + iVisy® + iVosx?y + 1Vaoxy? +

=1 Vi + Vo
4 Vs

2V4V, ,

+
Vil + Vis®

4V, V,
Vil + Vis®

Referring to Eq. (25) we can rewrite Egs. (48)-(50) in the
form

Va(V3oVor + Vo3 Vao)

Vip = 4 , (51)
Vao® + Vos®
—1 Vio? + V32
Vao+ Voo = 7%403' (52)
Va(V3oVio — Vs Vo
Vo — Voo = d V21 V2 1). (53)
30" + Vo3

These equations are the remaining three conditions of
solvability. Denoting

&~
|

= V3 Vio — Vs Vor, (54)
Vi = VoV + VizVao. (59)

Eqg. (3) describing the potential can be rewritten to the
form

=1 Vi + Vos?
4 Vi

vV, |\,
2 2 | X
V3o~ + Vo3

y VoV + VsVl

V3oV — Vi3 Ve
2 2 t
V3o© + Vo3

Vi + Vis®

(56)

Eq. (56) represents the general form of the resulting potential fulfilling all mentioned conditions. Here, V; is an arbitrary
positive real number and V3p, Vi3, V, and V, are arbitrary real numbers.

Transformation of Eq. (56) to spherical coordinates

>
|

S
Il

gives

V(R, ) = V4R* + 1V3oR3 cos(¢p) + i1VosR? sin(¢) +

=1 V> + Vos?
4 Vi

2V4V,
- 2 2
V3o”™ + Vo3

;1 Vao® + Vo3

= Rcos(9), (57)
Rsin(¢), (58)

2ViVe R? cos?(¢)

4

R?sin’(¢) +

Vs \/302 + V032
4V, V,
Vao® + Vos®
s V3oV + VsVl
Vi + Vos®

R? cos(¢) sin(¢)

VoV — VsV,
R cos(¢) + 173\3 b 0

ot Vol Rsin(¢). (59)
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Eq. (59) shows a non-trivial dependency of the potential
on the angular coordinate ¢. It is seen that the presented
method leads to a new type of P7 -symmetric potential.

Substituting Egs. (42)-(45) into the energy (7) we obtain

2 2 V. 2 Vv 2
E— _9(530 + 5032) ( 10 2+ 01 ) (60)
Vao© + Vo3
Using Eq. (25) and (54)-(55) this formula becomes
2 2
F=_y YotV (61)

(Vso® + V032)2'

3. General form of the wave function
Using Eq. (25), Egs. (42)-(43) can be rewritten in the form

_ 3 Ve — Vo3Co3.L

= 2
€20 7 Vio (62)
3 Vpc03 + Vosexo,
11 = ETL (63)

The general solution of Egs. (25)-(29) can be written as

3 = \/ijcos(a), (64)
co3 = gsin(a), (65)

where «a is a real parameter within the interval [0, 27). It
will be seen that a can be an arbitrary real number within
this interval.

Now it is possible to write Eq. (5) in the form

P(x,y) = @ cos(a)Pi(x, y)+ g sin(a)Pa(x, y), (66)

where

3V, 3V
4V, 4v, Y
. 3Vo3 3V, 3V,

— =X X —
2V, J Vao® + Vos® Vao® + Vs

Pi(x,y) = x> = 3xy? +

7y, (67)

Pz(X,y) :y3—3ng lw)( -|‘l47\/4
.3V30 3V, 3V,
—l=—xy — X — . (68
2V, J Vao® + Vos® Vao® + Vos® y. (68)

The resulting wave function for the potential of the form
(3) fulfilling the conditions (27), (28), (39)-(41) and (51)-
(53) can be written as

lx,y) = exp [—@ [cos(@)P1(x, y) + sin(a) Pa(x, y)]] ,

(69)
where Py(x,y) and P,(x, y) are defined by Egs. (67)-(68).
The corresponding energy is given by Eq. (61). The pa-
rameter « is a real number in the interval [0, 27). In gen-
eral, the wave functions (69) corresponding to different
values of a are linearly independent. The energy (61)
does not depend on a. For this reason, this energy is
infinitely degenerate.

4. Conclusions

In this paper, the two-dimensional Schrodinger equation
with the P7 -symmetric quartic potential has been investi-
gated. The analytic formulae for ground state energy and
the corresponding wave functions have been found. This
energy is infinitely degenerate. Further investigation of
this problem will be the subject of further research. Also,
other solutions will be searched.
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