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Analytic energies and wave functions of the two-
dimensional Schrodinger equation: ground state of
two-dimensional quartic potential and
classification of solutions

Viadimir Tichy, Ales Antonin Kubéna, and Lubomir Skala

Abstract: New analytic solutions of the two-dimensional Schrodinger equation with a two-dimensional fourth-order poly-
nomial (i.e., quartic) potential are derived and discussed. The solutions represent the ground state energies and the corre-
sponding wave functions. In general, the obtained results cannot be reduced to two one-dimensional cases.

PACS Nos: 02.30.Jr, 03.65.Fd, 03.65.Ge

Résumé : Nous obtenons et analysons de nouvelles solutions analytiques de 1’équation de Schrddinger en 2-D avec un po-
tentiel polynomial quartique en 2-D. Les solutions représentent les énergies du fondamental et les fonctions d’onde corres-
pondantes. En général, les résultats ne peuvent pas étre réduits a deux cas unidimensionnels.

[Traduit par la Rédaction]

1. Introduction

The Schrodinger equation represents the fundamental
equation of quantum mechanics. This paper is concerned
with its time-independent form in two dimensions

—AY(x, y) + V(x, y)¥(xy) = E¥(x y) (1)

where
2 ?
A=—+—
Ox? + Oy?

The function V(x, y) is the potential (i.e., a given real func-
tion representing physical problem). In this paper, potential
V is assumed in the form of the fourth-order polynomial:

V(x, y) = Z VX" y" (2)

m>0n>0

m+n<4

where V,,, are real constants. Potential (2) represents a wide
class of physical problems including quantum anharmonic
oscillator [1, 2] and quantum double-well problems. These
models are widely used, for example, in chemical physics.
Equation (1) represents a partial differential equation.
When we speak about solving (1), we mean two problems.

The first problem is to find such values of E that (1) has a
solution, that is, we search for the eigenvalues of the opera-
tor —A + V(x, y). The second problem is to find the corre-
sponding complex functions ¥ (x, y) of real variables x and y
solving (1). In this paper, we restrict ourselves to searching
for the ground states (i.e., for the lowest value of E, denoted
Ey, and for the corresponding wave function v, denoted ).
We search for the analytical solutions, that is, for their formu-
lae in the closed form.

Commonly the solutions ¥ (x, y) are required to be quad-
ratically integrable in the whole plane (x, y), that is, the
boundary condition

[ ) (5 )y < o0 ()

has to be fulfilled. The asterisk denotes complex conjugation.

The common method to find solutions of (1) is to separate
it into two ordinary (i.e., one-dimensional) differential equa-
tions [3-5]. To solve (1) when it is impossible to separate it
into two ordinary differential equations, the proper methods
are called for.

The method presented here is based on the method for
one-dimensional problems, given in refs. 6-8. There, it is as-
sumed that solutions (x) of the one-dimensional Schro-
dinger equation
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d2
— VW) +V)Yx) = E(x) (4)
are linear combinations of the functions /,,(x) in the form
) = S, () (5)
where
Y (x) = " (x)h(x) (6)

It has been proved that to obtain analytic solutions, the po-
tential V must have the form

V(x) = Vaf ()" (7)

Function A(x) is expected to appear in the form [1, 2]

h(x) = exp (— % (x)dx) (8)

Using this approach, it is possible to take different forms
of fix) and to test if the Schrodinger equation with potential
V of the form (7) has analytical solutions obeying the corre-
sponding boundary condition. In (7), the limits for the index
m are given by studied potential and if necessary, negative
values of m can also be admitted. After substituting (5)—(8)
into (4), a system of algebraic equations for unknowns d,,
and A, is obtained. Allowed values of indices m in (5) and
(8) follow from the condition that the number of obtained
equations has to be equal to the number of unknowns.

In ref. 9, the first attempt was made to generalize this
method to two dimensions. There, the Schrodinger equation
has the form (1). Its solutions ¥(x, y) are assumed in the
form

1#()@ y) = ZcmHWmn (9)

where

Y (5, y) = f"(x)8" (¥)h(x, ) (10)
The potential V(x, y) is assumed in the form

VE5Y) = Vi "(0)g"(y) (11)

For the polynomial potential, we take fix) = x and g(y) =
y. Here, we aim to the fourth-order polynomial potential, so
the sum in (11) is performed over all m € {0, 1, 2, 3, 4}
and n € {0, 1, 2, 3, 4} excluding cases m + n > 4. Term
Voo represents an irrelevant additive factor, so that we assume
Voo = 0. We get

V(xy) = Wipx* + Way' + Vaixly + Visxy® + Vapx?y?
+ V30 + Vo3y® + Varx®y + Vigxy® + Vagx®
+ Vooy* + Vixy + Viex + Vory - (12)

where Wiy = £1/Vy4 and Wy, = £/ V4. The sign of the
coefficients Wy, and W, is discussed below. We assume that
V4o > 0 and Vy > 0, which are necessary conditions for the
existence of solutions fulfilling boundary condition (3).
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Generalization of (8) to two dimensions has not been
found. However, it has been shown in ref. 4 that for the two-
dimensional quartic polynomial, the function % is equal to the
ground state wave function 1/, and it has the form

h(xy) =Yoxy) =exp | Y —dply (13)

i>0j>0

i+j<3

where the coefficients d; have to be found. One of the exist-
ing solutions is presented in ref. 9. Searching for general for-
mulae for those coefficients and consequently for formulae
for ground state wave functions and the corresponding ener-
gies is the subject of this paper.

Wave function (13) is not quadratically integrable in the
whole plane (x, y). One possible approach to solving this
problem is to suppose that we solve the Schrodinger equation
on the quadrant x > 0, y > 0. In this paper another approach
was chosen. The wave function was modified in the same
way as in refs. 6-9 to

Yo (x,y) = exp (—dsolx|” — dos|y|’ — da1x’|y| — dia |x]y
— doox® — dopy® — d|xy| — duolx| — dot|y])  (14)

This function solves the Schrodinger equation with the modi-
fied potential depending on Ixl and [yl

V(x,y) = Wix* + W' + Vai[xPPy + Visxly?
+ Vaax®y? + Vaolx® + Vos|y|? + Var|y| + Vialxy?
+ Vaox® + Vooy* + Vin|xy| + Violx| + Vory|  (15)

This approach has a disadvantage in that the wave function
(14) and the potential (15) do not have continuous derivatives
on axes x =0 and y = 0.

Substituting (12) and (13) into (1) and comparing the
terms of equal order yields the formula for the ground state
energy [4]

Eo = 2dyy + 2doy — d%y — d2, (16)

The system of equations for the wave function coefficients d;;
becomes

W= oy + )
Wy = 9dgs + di, (18)
Va1 = 12d50da1 + 4da1din (19)
Viz = 12dpzdiz + 4diada) (20)
Vay = 6ds0dy + 4d3, + 4d3, + 6da1dos (21)
V3o = 12d0d30 + 2d11d2 (22)
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Vo3 = 12dpdos + 2dy1dy> (23)
Var = 4daidoy + 8dyoday + 6dzodiy + 4dyidin (24)
Via = 4diadyo + 8ddiz + 6dozdir +4diida (25)
Voo = 2do1day + diy + 4dyy + 6dyod3o (26)
Voo = 2dyodya + di, + 4d5, + 6dodos (27)
Vii = 4dordiz + 4didoy + 4daodiy + 4dioda (28)
Vio = 4diodao — 6d30 + 2do1dii — 2d12 (29)
Vor = 4do1doy — 6dos + 2d10d11 — 2da (30)

This is a system of 14 equations for nine coefficients dj;. It
is evident that this system is not solvable in general. How-
ever, for certain choices of the potential coefficients V;; some
of the preceding equations become dependent and a regular
system of equations is obtained. This problem is well known
from the one-dimensional case, where only some quartic po-
tentials are analytically solvable [6-8].

2. Classification of the solutions

We prove in Appendix A that each two-dimensional
quartic polynomial can be transformed into a polynomial
with V3; = 0. Therefore, without any loss of generality we
can assumme V3, = 0.

505

Table 1. Labeling of solutions.

dip =0, dip =0, dip # 0, dp # 0,
dy =0 do #0 dy =0 do #0
Viz =0, al bl cl dI
V=0
Vis #0, all bIl cll dIt
Vair=0

In (19) and (20) it is necessary to discuss whether the val-
ues of the variables Vi3, dy1, and d;, are zero or nonzero. We
denote the corresponding solutions as “a type” for dj, = 0
and d,; = 0, “b type” for dj, = 0 and d,; # 0, “c type” for
di, # 0 and dp; = 0, and “d type” for di, # 0 and dp; # 0.
Further, we denote solutions as type I for Vi3 = 0 and II for
Vi3 # 0. In total, we get eight solution classes: al, bl, cl, dI,
all, bll, cII, and dII listed in Table 1.

It is seen from (17)—(30) that only some cases have to be
considered, because bl and cI classes are equivalent and one
of them can be obtained from the other by interchanging
dj < dj, Wj < W;, and V;; < V. Further, classes all and
bIl are empty, because if Vi3 # 0 and dj, = 0 then (20) has
no solution.

2.1. Solutions of type al
In this case, we suppose Vi3 = V31 = dr; = dj, = 0. This

case is solved in ref. 9 using the parameter
_Va Vi

0=—=— 31
Wi Wos S

The resulting potential has the form

oa [V Vi
Vil 3) = Wit + W + Vb + Vaa? -+ Wanay|+ Wasahe? + Ve + Voy? +5 (1224 08 ) oy

2\ Wi Wy

N <4W§4v02 — Wi — Vo . AW, Voo — Wipa? —

W54 8Wio

V2
0 Vi — 2W40> |x|

AW, Vo — Wi,

(4W30V20 - Wfoaz - V320
+ 3 o
8Wio

- Vi
2 Voz — 2W, 32
SWE, 03 04> Iyl (32)

where Wy and Wy, are arbitrary positive real numbers and V3o, Vi3, Vg, Voo, and « are arbitrary real numbers. The ground

state wave function for potential (32) has the form

AWy * 4Wou

@| E Vo » Vo3

_ Wao, 13
R

_ 4W4%0V20 - Wfoaz - V320 x| — 4W4%0V02 - Wz%oaz - V023

The corresponding ground state energy is

2
£, — V30 n Vos  (4W3pVao — Wi’ — V)
0T 2Wy | 2Wo 64WS,
2
_ (4W54V02 - W§4a2 B V(%3) (34)
64WE,

2 @
y 2IxyI

b))

8Wao 8Wao

Resulting wave function (33) is quadratically integrable in the
whole plane (x, y), because Wy, and Wy, are supposed to be
positive.

2.2. Solutions of type cl

Here, we suppose that Vi3 = V3; = dpy = 0 and d, # 0.
Equation (19) is fulfilled automatically and (17), (18), (20),
and (21) have the form
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Wz%o - 9d§0 (35)
W, = 9dgs + di (36)
0 = 12dpsdy (37)
Vo = 6d30dya + 4d3, (38)

The solution and condition of the solvability of this system
are

dyo = @ (39)
dy; =0 (40)
dip = Wy (41)
Vi = 2WaoWou + 4W2, (42)

Substituting (39)—-(41) into (22)—(25) we get

V3o = 4drWa (43)
Vo3 = 2d11 Wos (44)
Vo1 = 4dy1 Wos + 2Waod (45)
Via = 4dWos + 8dor Wos (46)

The solution of this system of equations and the condition of
its solvability are

V3o
dry = 47
20 AWao (47)
Vi V3o
d, - 48
27 8Wos  8Wio (48)
Vo3
d = —= 49
= ()

Can. J. Phys. Vol. 90, 2012

W.
Vor = Vi (40 + 2) (50)
Wos

Substituting (39)—(41) and (47)—(49) into (26)-(30) we get

Vao = Vi, + 2d10Wao + Yoy (51)
20 = w2 10Wao w2,
(ViaWag — V3o Wou)? Vs
Voo = 2d10 W, — 52
02 I 6Wf0W34 + 2d10Wos + 4W§4 ( )
V30 Vo3 Vos(Vi2Wao — V3o Wos)
Vii=————+4dy W, 53
! 2W04W40+ 0o+ 4W5, Wao 3)
do1 Vi dioV-
Vip = (‘);/0:)3 + ;:/4;0 —2Wos — 2Way (54)
dio Vi do1 (Vo Wag — VzoW,
Vo = DoVos | 01(Vi2Wao 30Wos) (55)
Wou 2Woa Wi

Coefficients dio and dy; can be expressed from (51) and (53)
as

V2 V2 V.

dip = — 2 — O (56)
SW,  SWaW2,  2Wa

oy — VioVos VsV | Vi (57)

S 16Wao W2, 16W2, AWy

Equations (52), (54), and (55) give the last conditions of sol-
vability as

W4()(4Vg3 + Vi) B 4W()4V320

16Wyo Vo — 16Wy Voo =

W4 Wio
LV 2VaVi 473, (58)
Wao Wou
and
Vie — VioVao Vi VaoVg  VasVi
TowE, swh, SWRWE 16WE,
VosVir _ VaoVis 2Wos —2Wao  (59)
AWZ,  16WiWl,
Vo, = 4Vo3Vao = ViiVao Vi Vos 7 Vi,
8W40Wos 8W20 Wos  8Wyo Wg4
Vi2Vi V3, Vo VsV,

— 60
swe, " wawr om0

Substituting (39)—(42), (47)—(50), (56), (57), (59), and (60)
into (14) we get the following formula for the potential:
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4

W.
V(x,y) = Wax* + W2y* + 2(WaoWoy + 2W2)x*y + Vaolx* + Vos|y® + Vos <—° + 2>x2y| + Via|x[y? + Vagx? + Vioy?

Wos

VioVao V3 VioVa,  VaVia VeV VoV,
+Vikol+ ( W2 swE swz Wz, dowd T awz,  Tewsws, 2o~ 2Wao Jld
40 40 40 Vo4 04 04 40 Wy
4Vo3Vao — ViiVao ViVos _ Vi V2V Vi Vos _ VosVi, bl (61)
8 WaoWos SW3Wos  SWaWe,  8WZ, ' 32wiwg, 32wd, )Y

Condition (58) has to be fulfilled as well.

Substituting (39)—(41), (47)—(49), (56), and (57) into (14) we obtain the resulting formula for the ground state wave function

Wao, 13 » Vo o Via Vio\ o Vo3 Vi, Ve Voo
¢l = - ) _W - - - - -
Voley) = exp | = =hl™ = Woaldy™ =20 o = gy “swao)” 2w ™ T swz Fswaowz, 2w
V30 Vo3 VsViz Vi
2 + 3 |y| (62)
16WaoW2, | 16W3,  4Wos

It is seen that in some cases (62) is quadratically integrable in
the whole plane (x, y). The main cases arises if Wy, > 0,
Wos > 0, and (Vio/Woy) — (V3o/Wy) > 0. This situation can
be obtained by appropriate choice of the potential coeffi-
cients.

Substituting (47), (48), (56), and (57) into (16) we get an
equation for the corresponding ground state energy

g Y n Vo (Vi Vis Vo ’
O T AWo, AW \8W3, | 8WiWZ, 2Wi
ViV, VoV Vi )’
_ 30 032 4 Yo ;2_ 11 (63)
16WaoW2, '~ 16W2, 4Wo,

2.3. Solutions of type dI
In this case, we suppose Vi3 = V31 =0, dy; # 0, di, #0,
and from (19) and (20) follows

dix = —3d3 (64)

dr1 = —3do3 (65)

The resulting wave functions are not quadratic integrable in
the whole plane (x, y). The proof will be performed for the
quadrant x > 0, y > 0 and it can be performed for other
quadrants analogously.

Let the wave function of the form (14) be quadratically in-
tegrable in the quadrant x > 0, y > 0. In this case, it is neces-
sary that d3y > 0 and dy; > 0. Substituting (64) and (65) into
(14) we get

Yo(x,y) = h(xy)
= exp[—dso (x* — 3kx’y — 3xy* + ky*) +...]  (66)

where k = d;y/dyz > 0 and the dots denote lower order terms.
To obtain quadratically integrable function (66) in the quad-
rant x > 0, y > 0, it has to have zero limit for all directions
going to infinity and lie in the quadrant x > 0, y > 0. How-

ever, beside the line x = 1, y = (k + /1 + k)1, this function
has a limit

=i (1 VIR

= tim exp{2ds [k + (144%™ + K] + ..}

r—+400

= +00 #0 (67)

Note, that this case has the PJ -symmetric [10] solutions
given in ref. 11.

2.4. Solutions of type cII

In this case, it is supposed that V3; =0, Vi3 #0, d»; =0,
and dj, # 0. Then (19) is fulfilled automatically and (17),
(18), and (20) have the form

Wfo = 9d§0 (68)
W§4 = 9‘133 + d122 (69)
Viz = 12dpsdy, (70)
The solutions of these equations are
W.
dy = % (71)
1
dps = ig\/2W34 +\/4Ws, —VE =« (72)
Vi3
dyy = —> 73
p=12 (73)

To get a quadratically integrable function of the form (14),
the first sign in (72) has to be chosen as positive. The second
sign can be chosen arbitrarily. These two choices lead to two
different potentials and the corresponding ground state wave
functions and energies. It is obvious, that a sufficient condi-
tion for wave function (14) to be positive is V3 > 0. More-
over, there exist quadratically integrable solutions that obey
more general conditions, but we will not perform a general
discussion here.
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Equations (21)—(25) can be solved and conditions of their

solvability can be obtained in a similar way as was done for do1 = (4W40 B+ V320 4WZOV2 0)

the cI class. The result is 288W20
Voo — B> —
V3o +2 77 (80)
dy = 74
20 Wi (74) 6«

ViV | Vi3

Vi = Voo — 4y — B2
dy =2V g (75 " T BeaWha fge2 V2 =47 = F)
6Wyoo + Vi3 2
L(ﬂ —Vzo) +3—0ﬂ+4,3 (81)
216W4()Ol3 W
do — 6Vosa — Visp _ (76)
02 T e Y X
V3o Visp ) Vi3V B
Vip= [ =2 —_“BF ) (y,, — V13V3oP
Vis 10 <2wa 36W40a2>( 0= F)+ 144W3,02
V. 6W. \% 77
2 = g (Waoa + Vis) (77) W — 88y —Vis — 28 Viy
+ — =30 2wy, (82)
6a 8Wi
ViV 2V
Vi, = 13 V30 13)/—&—6 B (78)
12Wyoa 3a 2
V()1 _ (i_ V13V >(V20 _132) + V13V30V
In these equations, it is supposed that d3, is known from Wi 18Wya? T2Wiye?
(71). If we also suppose that dpy, dp, and d;; are known y X , 2 4
from (74) and (75), the solution of (26)~(30) and their condi- - 3—(2V02 -2 —8y) — 4v83 —6a (83)
tions of the solvability can be written in the form o 40
p Vao — ,32 V320 79 Substituting V3; = 0 'and (77) and (78) to (15), we get the
10 = W«) — SWi’O (79) formula for the potential as
V(xy) = Wipx* + Woy* + Vislx| by + = 36 2 (6Waoa + Vi3)x®y? + Vaola® + Voslyl® + Var®y|
ViV 2V
13730 2PV 4 60 ) |ely? + Vaox® + Vooy® + Vitloy| + Violx| + Voulyl - (84)
12W4()C¥ 3«

Here, the coefficients Vi, Vj,, and V{; have to be calculated using (81)-(83) and

1 /
o = 6\/2‘/04 + 4V§4 — V123 (85)

3V210l
= 86
6Wyoor + Vi3 ( )
_ 6Voza — V3B
7202 ®7)

Substituting (71)—(75), (79), and (80) into (14), the resulting ground state wave function for the solutions of type cll is ob-
tained in the form

ﬁ‘ y? Va0

_ Vo — B i V320 | x|
12c AWy

X =y’ — Blxy| + ( W BWS
40

Wao
R

Voo — B> — 42
(4W3B> + Vi) — AW Vag) +——————| ¢ (88)

[288W40 6a
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Substituting (74)—(76), (79), and (80) into (16), the formula
for the corresponding ground state energy is obtained in the
form

1% Voo — B2 V2 \°
E, 30—1—2)/—(20 B 3())

B 2Wyo 2Wyo 8W3,
Vi3 2 0 2 2
_ [W@Wmﬁ + V3y — 4W4 Vo)
Voo — B — 4%
_— 89

2.5. Solutions of type dII
Here, we suppose V3; =0, Vi3 # 0, dy; # 0, and dy, # 0.
In this case, (17)—(21) have the form

Vio = 9d3, + d3, (90)
Vou = 9dg, + d7, (91)
0 = 12d30da; + 4dyd)y (92)
Vis = 12dp3din + 4d1aday (93)
Vi = 6d30dya + 4d3, + 4d3, + 6da1dos (94)

From (90)-(93) we can find

1
doy = 3/ Vos — 95, (95)
dy = 41/ Vi — 92, (96)

dy = —3dx (97)

To get a quadratically integrable wave function of the form
(14), the positive sign of the coefficient dy; has been chosen.
Substituting (95)—(97) into (93) we get

V13 = $12d30\/ V4() — 9d%0 — 12d3()\/ V04 — 9d%0 (98)

After squaring, modifying, and performing the substitution
o = 9d3,, we obtain

Vou + V. Vi
az_ya:‘:a\/‘/4o—a\/v04_a+3_;:0 (99)

Equation (99) is an equation of type (B1) (analysed in Ap-
pendix B). Here, « is the unknown and

2
— V13

d= V4() e = V()4 f = 3 (100)
and
a= Vi + Vos b = ViVoa

/ VZ
C:2 V40VQ4—1—163 (101)

509

Variable « has to be real and positive, because d3; has to be
real to get a quadratically integrable wave function. We sup-
pose that variables V,, and V are positive (i.e., d > 0 and
e > 0). Using results of Appendix B, it is seen that to get «
real and positive, the necessary and sufficient condition is
de > 2f, that is,

2

V
VaoVos > 1—163 (102)

must be fulfilled.
Possible solutions of (99) are

V2
o = 13 (103)
16(Vao + Vou) + 84/16VagVos — Vi,
V2
o — i3 (104)

16(V4() + V04) — 8/ 16V Vs — V123

Examining the asymptotic behaviour of (14) in a similar
way as in Sect. 2.3 and using (90)-(97), the condition for
the wave function to be quadratically integrable can be ex-
pressed as

8Vaodry — 3V i3d30 — 8(V40)3/2 >0 (105)

It can be found that if (98) has to be equivalent to (99) and
(105) has to be fulfilled, then

Viz<0 (106)

must be fulfilled.

Next, if Vi3 < 0 and if the positive sign is chosen for the
coefficient d,;, then «; solves (98) and (99) and numerical
tests indicate that (105) is fulfilled and o leads to a quadrati-
cally integrable solution. In some cases, «; solves (98) and
(99), however numerical tests indicate that o, does not lead
to a quadratically integrable wave function. In summary, we
get the resulting formulae for the wave function coefficients
as

1
d03 = 5\/ V()4 — o] (107)

1
dy = 3V (108)

d21 =/ V4() — o] (109)
dip = —\Jar (110)

where «; is defined by (103).
From (94), (95)-(97), and (99), it is possible to get the
condition for the potential coefficient V5, as

- 48Vyoay — 16Vosay + V123

\%
2 160(1

(111)

Solution of (22)—(25) and the condition of its solvability
can be writen in terms of the variables ds, dy3, and d,; as
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V3 dy1 (Va0 + Viz)dos + 2Voadso
dyy = . ) (112)
12d5y  36d3 2d30 — dydy; — d03
Vi3 dyo (Vo + Viz)dos + 2Vosdso
doy = — ! 0 (113)
12dys  12dy3 2d30 — dydyz — d30
iy — _1(V -L- Vi2)dos + 2V023d30 (114)
6 22 — dodes — 2
Vyy = d30[3V30(doz + da1) + Vi2(3dos — day)]
3(2d3) — dardos — diy)
 2d51do3(2V30d21 + 3Viodos — Viadan)
Octso (22 — dardos — diy)
Vos (18d%, + d2, — 3da1d
03( 30 T a5 21 03) (115)

9(2d§0 —dodyz — d&)

2d3,

Vi1 = 4dq1 (d d _—
11 1(dao + 02)+3d30(3d03+d21)

dyy

Vip=————
7 3dgs + day

(Vao + Voo — 4d5, — 4dg, — 2d7,) +

2d()2

Vor = —23do3 + do1) + 55—
01 (3dos + dar) 3dos + do;

Note that these fractions are regular, because the case d,; =
—3dy3 leads to Vi3 = 0 which is not dII class but dI class.

Potentials belonging to class dII and the appropriate
ground state wave functions can be obtained as follows. Sup-
pose V3; = 0. Coefficients Vg, Vi4, and Vi3, must be chosen
to fulfill conditions (102) and (106). Then, «; must be deter-
mined from (99) and coefficients dys, dp;, and d;, from
(107)—(110). Potential coefficient V,, is given by (111). Fur-
ther, the remaining potential coefficients are given by (115),
(118)—(120), and the wave function coefficients follow from
(112)—(114), (116), and (117). The resulting wave function
of the form (14) is quadratically integrable in the whole plane
(x, y). The corresponding ground state energy can be calcu-
lated using (16).

The preceding discussion shows that the results in the class
dII can also be obtained. However, explicit formulae for the
potential, ground state wave function and the corresponding
energy are too complex, so that we do not include them here.

(—V02 + 4d(2)2 + d%l) +

2d0do3
d30(3do3 + do)

(Vao + Voo — 4d3y — 4dg, — 2d3,) +
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For the sake of generality, it would be necessary to discuss
the value of the term 2d3, — da1dos — d3; = 0 in the numera-
tor of these expressions. This simple discussion will not be
given here.

Solution of (26)—(30) and conditions of its solvability are
written in terms of the wave function coefficients known
from the previous equations as

dos3 (3Vao — 12d3, — 3d3)) — doy (Voo — 4d, — d3)

din =
10 6d30(dr1 + 3do3)
(116)
doy = Voo + Voo — 4d§0 — 4d(2)2 — Zd%l (117)
2(dy + 3dp3)
2dZIdOBS 2 2
e L Y L VAN S
d30(3d03 —|—d21)( 20 20 ll)
6d30 > 2 >
—(—Vp — V- 4d 4d 2d 118
+3d03—|—d21( 02 — Vao + 4dg, + 4d3, +2d7,)  (118)

(V20 - 4d§0 - d%l)

2dh0d>)

- (Vo —4d%, — & 119
3d30(3d03+d21)( 02 02 11) ( )

d03dll 2 2
__ Aoy, 4 —d
d30(3do3 +d21)( %0 20~ i)
dridy

3y g (Voo —4dg, —dfy) (120
3d30(3d03+d21)(02 0 —dn) (120)

3. Conclusion

The idea pursued in this paper is to search for analytic sol-
utions of the two-dimensional Schrodinger equation in cases
when other known methods like the separation of variables
are unusable. This problem appears to be rather difficult and,
for this reason, we have aimed for its partial solution, namely
the problem of ground states of two-dimensional fourth-order
(quartic) polynomial potential. For the sake of generality, we
have used the algebraic method of the solution of the Schro-
dinger equation. The advantage of this algebraic approach is
its generality not relying on any special properties (like sym-
metry, supersymmetry, etc.) of the problem. Our method is
based on generalization of the one-dimensional approach
used in refs. 68 published in ref. 9. All possible solutions
have been found and they have been classified into eight
classes, denoted al, bl, clI, dI, all, bIl, cII, and dII. The most
important classes are al, bl, cI, cll, and dII, because it has
been shown that these classes contain physically interesting
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(quadratically integrable) wave functions. These functions,
corresponding energies, and the conditions for the potential
have been found.

In Appendix A, it is shown that for any two-dimensional
fourth-order polynomial potential it is in general possible to
perform the rotation of the coordinates leading to V3, = O.
Again, this result has been used in the preceding sections.

In Appendix B, (B1), which is needed in the main text,
has been analyzed and its solutions together with the condi-
tions of its solvability found.

Generalization of the method to other types of potentials
will be a subject of further research.
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Appendix A

A.1. Theorem

Let V(x,y) = > o<1 j<4Viix'y be a polynomial of a degree
less than or equal to four.

Then there exists a rotation in the plane (x, y)

OO0 -

where p and ¢ are real numbers satisfying p? + ¢> = 1 and
there exists a polynomial

V= \7()6 y) = Z \N/ijxi)fi (A2)
i+j<4

such that

Vi =0 (A3)

and

Vr,yeR:V(xy) =V(&E7) (A4)
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where R denotes the set of all real numbers. Before the proof,
we prove the following lemma.

A.2. Lemma

Let the continuous function P(f):R — R be decomposed to
an even continuous function P¢*"(f) and to an odd continu-
ous function P°d(f) as

P(t) = P (1) + P*Y(s) (AS)

and let the function P®ven(r) have at least one real root. Then
P(?) has at least one real root.

A.3. Proof of the lemma

Let 1, satisfy Pev%(t;) = 0. Then also Peven(—t5) = O,
P(ty) = P°Y(ty), and P(~ty) = —P°%(s,). Thus, P(r) has a
root in the interval [y, f].

A.4. Proof of the theorem
From the condition (A4) we obtain

Vi = V3i1(p,q) = Vaip* + (4Vao — 2Vn)p'q
+(3Vi3 = 3Va)p’q” + (V2 — 4Vou)pg® — Viag*  (A6)

We need to prove that the polynomial V3 (p, q) has a real
root (p, q) satisfying the condition p? + g2 = 1. V31(p, q) is
a homogenous polynomial, that is why it is sufficient to
prove that V3 (p, ¢) has a real root (p, g) satisfying the con-
dition p% + ¢2 > 0.

We will show that there always exists a real p such that
Vi (p, 1) = 0, that is,

Vii(p, 1) = Vaip* + (4Viyo — 2Va)p® + (3Vi3 — 3V3)p?
+ (2V22 - 4V04)p - V13 =0 (A7)

Without losing generality we suppose that V3 > 0.
If

P(z) = V312> + (3Vi3 — 3V31)z — Vi3 (A8)

has a real non-negative root z; then the function

~even

Vi (p 1) = Vaip* + (3Vi3 = 3Va1)p* — Vi3 (A9)
has a root (roots) +,/z; and

Vai(p, 1) = Vaip* + (4Vag — 2Vip)p® + (3Vi3 — 3V3))p?
+ (2V22 — 4V04)p — V13 (AIO)

has a real root in the interval [—,/z1, \/z1] according to the
lemma. If Vi3 < 0 then the root

3V3 —3Vis +/(3V31 — 3Vi3)? +4Vi3V3
2

(Al1)

of the polynomial P(z) is real and positive. If Vi3 > 0 then
PO) < 0 and P(z) > O for large positive z or vice versa.
Thus, P(z) has a non-negative real root and exist p, € R
such that

Vaipg + (4Vao — 2Va)pd + (3Vi3 — 3Va1)pg
+ (2V22 - 4V04)p0 - V13 =0 (A12)
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and
Do 1
V145 1405
R= 1 o (A13)
V145 /1405
is the desired rotation.
Appendix B

In this section, we analyse the equation

x2—d;exj:xv(d—x)(e—x)—i—fzo (B1)
Let us refer to it as a “plus version” if the sign before the
third term is 4+ and “minus version” if the sign is —. We sup-
pose that d, e, and f are real numbers and our aim is to find
real solutions of (B1).

Moving the term with the square root of (B1) to the right-
hand side and squaring both sides of this equation we get the
same equation for the plus version as for the minus one

(e — df + 8fx2 B

(e+d)fx+f*=0 (B2)

B.1. Case (e —d)? + 8f # 0
First, we will suppose that (e — d)> + 8f # 0. Now, quad-
ratic (B2) has two roots

L, d+e—2\/de—-72f 2f
n=d (e—d)?+8  d+e+2\/de—2f (B3)

d+et2/de—2f 2f (B4)

Xy =2 =
= (e —d)* +8f d+e—2y/de —2f

It is seen that if (e — d)? + 8f # O then de > 2f is the neces-
sary and sufficient condition to make x; and x, real.

Now we discuss the question of which solution of (B2), x;
or x,, solves the plus, minus or no version of the original
(B1). This uncertainty arises here because we squared some
equations. It is useful to introduce new variables

a=d+e (BS)

b=de (B6)

¢ =2+/de — of (B7)

with the corresponding backward transformation

_axa®—4b
e

d e (BB)
4b — ?
8

It is easy to find that for any real d, e, and f the term a2 — 4b
is non-negative.

f= (B9)
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Now, (B1) has the form
2

b
xz—ng:x\/xz—ax+b+§—%:0 (B10)
and possible solutions are

4b — 2
=— B11
. 4(a+c) (BL1)
4b — 2
= BI2
2 4(a —c) (B12)

After substituting (B11) into (B10) we get

(4b — cz) (02 + 2ca + 4b)
(c+ay

i4b—c2\/<c2+2ca+4b>2:O
c+a c+a

Similarly, after substituting (B12) into (B10) we obtain

(B13)

(4b — CZ) (62 —2ca + 4b)
(a—c)?

4b —c* | (2 —2ca +4b\*
L2
a—c a—c
Now it is important to suppose that we work in the real num-
bers domain. In this case we can write the absolute values in-

stead of the square roots of the squares and can get the
following conditions:

(B14)

e If 4b = 2, then x; and x, solve the both versions of (B1).

It can be seen directly from (B3) and (B4), because 4b =

¢? if and only if f = 0 and consequently x; = x, =0 is a

solution to (B1) evidently.

o If (¢2 + 2ca + 4b)/(a + ¢) < 0 then x; solves the plus
version of (B1).

e If (¢ + 2ca + 4b)/(a + ¢) > 0 then x; solves the minus
version of (B1).

o If (¢2 - 2ca + 4b)/(a — ¢) < 0 then x, solves the plus ver-
sion of (B1).

e If (2 — 2ca + 4b)/(a — ¢) > 0 then x, solves the minus
version of (B1).

Note that in the complex numbers domain the problem is
slightly different. Both versions of (B1) represent one equa-
tion with a different choice of the square root branch. The
question of which solution of x; and x, is the right one must
be understood as a question of the correspondence to differ-
ent square root branches.

For the cases discussed in this paper it is also important

thatifd>0,e>0,and0§2f<dethen0<c§2\/5§a
and 0 < x;, < min(d, e). The proof of this statement is easy.

B.2. Case (e —d)? + 8 =0

Now we discuss the case (e — d)? + 8f = 0. We need not
make general discussion because in the cases discussed in the
main text, the variable f is non-negative. For f > 0 only one
case exists; when (e — d)? + 8f = 0. This is the case d = e
and f = 0.
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In this case, we cannot use (B2) because it has the form
0 = 0. We must start from (B1) again. If e = d and f = 0
then this equation has the form

¥ —detxV(d—x)2=0 (B15)

We see that x = 0 is one solution. Now we can divide this
equation by x and modify it to the form

513

x—d+tx—d =0 (B16)

Further, we see that also

e any x < d solves the plus version,
e any x > d solves the minus version.
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