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No analytic solutions of the Schr'odinger equation are known for the quartic 
anharmonic oscillator. We show in this paper that there are closely related modified 
quartic oscillators with the potential depending on Ixl for which analytic solutions 
for some states exist. These results can be extended to the higher order oscillators. 

1. I N T R O D U C T I O N  

Analytic solutions of  the Schr6dinger equation for the anharmonic 
oscillators 

-~-~ + , = EO, (1) 

where V = x 2~ and N = 2, 3 . . . . .  are not known (see, e.g., Bender et  
al. ,  1969; Bender and Wu, 1971, 1973; Bender, 1982; Simon, 1970, 1982; 
Fernandez et  al. ,  1985; Killingbeck et  al.,  1985; Richardson and Blanken- 
becler, 1979; Weniger et  al. ,  1991, 1993; Vinette and Creek, 1991). However, 
it has been shown that analytic solutions exist for some polynomial potentials 
of  the order 2N = 4k + 2, where k = 1, 2 . . . .  (see, e.g., Magyari, 1981; 
Turbiner and Ushveridze, 1987; Ushveridze, 1994; Vanden Berghe et  al. ,  

1995; Skala et  al. ,  1996). These solutions have the form 

d~ = e (x)e O(x) (2) 

where P (x) and Q (x) are polynomials. Such analytic solutions exist for 
some polynomial potentials in which (N - 1) constraints on the values 
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of the potential coefficients are introduced (Magyari, 1981; Turbiner and 
Ushveridze, 1987; Ushveridze, 1994; Vanden Berghe et al., 1995; Sk~ila et 
ai., 1996). We note that there are no constraints for the harmonic oscillator 
(N = 1) only. It appears that the potential constraints depend on the order 
of the polynomial P (x). For this reason, there is only a finite number of the 
analytic solutions of the form (2) for given potential constraints, and different 
analytic solutions correspond usually to different potential constraints. The 
harmonic oscillator with no potential constraints is a special case in which 
all analytic solutions belong to the same potential. 

Assuming the polynomial potential of the order 2N, the solutions of  the 
differential equation (1) behave for x ~ ___~ as exp[+-xN§ + 1)]. To get 
the square-integrable wave function ~ for 2N = 4k + 2 and k = 0, 1 . . . . .  
the highest order term in the polynomial Q (x) must be taken in the form 
- x  Zk+21(2k + 2). For 2N = 4k, k = 1, 2 . . . . .  the highest order term in Q (x) 
must be taken in the form -x~+ll (2k  + 1) for x > 0 and x2k+ll(2k + 1) for 
x < 0 or, equivalently, in the form -Ixl~+ml(2k + 1). We see that to find the 
analytic solutions in this case we have to solve x > 0 and x < 0 cases 
separately and match the solutions at x = 0. In comparison with the 2N = 
4k + 2 case, there are two additional conditions here. First, both solutions 
for x > 0 and x < 0 must correspond to the same eigenvalue E and potential 
V. Second, the wave function and its first derivative must be continuous at 
x = 0. These conditions limit our possibilities to find the analytic solutions 
in the 2N = 4k case. This is obviously the reason that no analytic solutions 
of  this problem have been found till now. 

In this paper, we investigate the problem of the generalized quartic 
oscillator with the potential 

V =  Vlx + V2x 2 + V3x 3 + x 4 (3) 

or its modifications. In Section 2, we summarize the matrix representation 
introduced in Sk~ila et al., (1996). In the following section, we show that the 
analytic ground-state wave function exists for the modified quartic oscillator 
with the potential V = -21xl + V] x2/4 + V3lxl 3 + x 4 (Section 3). Excited 
states for the potential V = - 2 ( n  + l)lxl + x 4 are found in Section 4. 
In Section 5, we discuss excited states for some more general potentials. 
Conclusions and discussion of some higher order oscillators are given in the 
last section. 

2. MATRIX REPRESENTATION 

First we transform the Schrtdinger equation (1) with the potential (3) 
into the matrix form. Following the general method suggested in Sk~ila et 
al., (1996), we assume the wave function ~ in the form 
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d~-~- ~ CmXme -gOx-glx212-g2x313 (4) 
m = 0  

where Cm and gm are coefficients of  the polynomials P(x) and Q(x). For 
the sake of simplicity, the wave functions investigated in this paper are 
not normalized. 

It has been shown in Sk~ila et al., (1996) that 

Ht~m = ~ hmkd~k (5) 
k 

where 

I[I m ~ xme-gOx-glx212-g2x313 

and coefficients hmk equal 

hm, m+i = - m ( m  - 1)~i,_ 2 Jr 2mgo~i,_ 1 q- (2mgl + gl - g2o)~i,o 

+ (2mg2 - 2g0gl + 2g2 + Vl)~i,l + (-2g2g0 - g2 + V2)~i,2 

+ ( -2g ig2  + V3)~i,3 + ( - g ~  + 1)~i.4 

Substituting (4) and (5) into the SchriSdinger equation (1) and assuming 
the linear independence of  the functions 0m, we get the equivalent matrix 
eigenvalue problem of  the infinite order 

E Cmhmk = ECk (6) 
m 

The coefficients Cm are the components of  the left eigenvector of the matrix 
h = {hmn}. The matrix h is not Hermitian. 

3. GROUND STATE 

It is well known that the wave function which is the solution of the 
one-dimensional Schr0dinger equation with the energy E0 < Ei < E2 �9 �9 has 
n = 0, 1, 2 . . . .  nodes. 

To calculate the ground-state wave function with no nodes, we assume 
the function in the form 

~(x)  = e-gox-glx212-g2x313 (7) 

To obey the matrix problem (6) for Cm = ~mO and the boundary condition 
O(x) ~ 0 for x ~ ~ we take 

g2 = 1, g~ = Val(2g2), go = (V2 - g~)l(2g2) (8) 
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and introduce the potential constraint 

V1 = 2glgo - 2g2 (9) 

It is obvious that the function (7) is the solution of  the differential equation 
(1) for E = gl - g2. However, it does not obey the boundary condition 0(x) 
---' 0 for x ~ - ~ .  Therefore, it is the solution for x > 0 only. To get the 
solution for x < 0 the opposite sign g2 = - 1 must be taken. 

Changing the sign of  g2, the coefficients g~ and go in (8) change their 
sign as well. Therefore, to get the same energy E for both solutions x > 0 
and x < 0 we have to assume that V3 changes the sign, too. In this case, gt 
does not change the sign and the right-hand side of (9) changes sign. Therefore, 
V1 must change the sign similarly to V3. 

The derivative of  the wave function (7) must be continuous at x = 0. 
It leads to V2 = V]I4 and go = 0. 

As a result, we get the analytic ground-state wave function for the 
potential 

V = -21xl + V~x2/4 + V31xI 3 + x 4 

where V3 can have an arbitrary value. The ground-state wave function for 
this potential equals 

O(x) = e-v3x214-1x1313 

and corresponds to the energy E = V312. 

4. P O T E N T I A L  V = - 2 ( n  + 1)~c[ + x 4, n = 0, 1, . . .  

The wave functions corresponding to this potential can be found in a 
similar way as the ground-state wave function. For the sake of  simplicity, 
we assume in this section the potential in a special form 

V = Vtlxl + x 4 (10) 

Similarly to the ground-state wave function, the wave functions depend on Ixl. 
For x > 0, we assume the wave function in the form (4). The infinite- 

order problem (6) can be reduced to a finite-order eigenvalue problem 

~ Cmhmk = ECk, k = 0 . . . . .  n (11) 
m=0 

if  the conditions hn,n+i -- 0, i = 1 . . . . .  4, are obeyed (Sk~ila et al., 1996). 
It leads to the equations go = g~ = 0, g2 = 1, and the potential constraint 

V1 = - 2 ( n  + i), n = 0, 1 . . . . .  (12) 
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The matrix h then equals 

hm,,n+i = - m ( m  - 1 ) ~ i , _  2 - 2(n - m ) ~ i ,  1 

The nonzero coefficients c,, are given by the recurrence equation following 
from (11) 

r  = 1 

m ( m  - 1) 
r = 2(n - m + 3)cm 

The case x < 0 can be discussed analogously and gives similar results. 
From the recurrence equations, it is easy to construct the wave functions. 

The analytic functions exist for n = 0, 1, 3, 4, 6, 7, 9, 10 . . . . .  These functions 
are the solutions of  the SchrSdinger equation (1) with the potential given by 
(10) and (12) for the energy E = 0. The number i shown together with the 
function denotes the number of  its nodes: 

%(x) 

$1(x) 

%(x) 

q,4(x) 

q,6(x) 

1ll7(x) 

%(x) 

$1o(X) 

= e--Ixl3/3, i = 0 

= xe  -Ixl313, i = 1 

= ( - 1  + Ixl3)e -Ixl313, i = 2 

= x ( - 2  + Ixl3)e-lXl3/3, i = 3 

= (5/2 - 51xl 3 + x6)e-lX13/3, i = 4 

= x(7 - 71xl 3 + x6)e-lXl3/3, i = 5 

= (--10 -t- 30lXl 3 -- 12X 6 -t- Ixl9)e -Ixl3/3, 

= x ( - 3 5  + 1051xl3/2 -- 15x 6 + Ixl9)e-lXl3/3, 

i = 6  

i = 7  

The function %(x) = exp (-Ixl3/3) is identical with the wave function 
following from the asymptotic analysis for x ~ ___oo and is a special case of  
the ground-state wave function found in the preceding section. 

To clarify the role of  111 in the potential (12), we assume that VI < 0. 
This potential has a double-well form with the maximum at x = 0. For V~ 
= - 2 ,  the ground-state wave function % corresponds to the energy E = 0 
lying at the potential maximum V(0) = 0. Increasing Vl, the depth of the 
wells increases and the energy levels move down. For V1 = - 4 ,  the second 
level goes through the potential maximum and the corresponding analytic 
wave function is t~. Increasing n, this situation repeats and the higher excited- 
state wave functions corresponding to E = 0 are successively obtained. It is 
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obvious that for I/i = - 2 ( n  + 1), n = 0, 1 . . . . .  all the analytic states of 
this kind are obtained. 

The functions ~, (x ) ,  n = 0, 1 . . . . .  have an interesting property. It 
follows from the equation 

( -  d~ -t- X4)d, Jn(X) = 2(n "l-1)lXl~n(X) 

that the functions O,,(x) are orthogonal if the weight Ixl in the integration 
is used. 

5. EXCITED STATES FOR MORE GENERAL POTENTIALS 

General discussion of the problem (6) is difficult. For this reason, we 
discuss only a few cases in which this problem can be reduced to the diagonal- 
ization of the problem (11). The case n = 0 has been discussed in Section 3. 

Case  n = 1 

The analysis of (6) shows that it can be reduced to the problem (11) of 
the order two in the following cases. 

In the first case, the preexponential factor equals x. We find the analytic 
wave function in the form 

~J(X) ----- xe - v3x214-1x1313 

This function describes the first excited state of the Schr6dinger equation 
with the potential 

V(x) = -41x l  -t- V~x2/4 + V31xI 3 -t- x 4 

for the energy E = 3V3/2. In the special case V3 = 0 the solution ~l(x) from 
Section 4 is obtained. 

In the second case, the preexponential factor is a first-order polynomial 
in Ixl. The wave function with the preexponential factor equal to Ixl does 
not have a continuous derivative at x = 0. Therefore, we have to assume 
Co q: 0. We find the wave function in the form 

~(X) = (C O + [xl)e -(v2-v~14)txl/2-v3x2/4-1x1313 

This function is the solution of the Schr6dinger equation for the potential 

V = [(V2 - vE/4)V3 /2  - 4]lxl + V2x 2 + V31x13[3 + x 4 

The energy E depends on Vz and V3 and can have two values 
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E-+ = -V2214 - V4164 + I,'3 + V2V2318 +- 1/2 x/3V ] - 8V2 

The corresponding values of  Co are 

c ~  = V314 ~ 1/4 x/3V32 - 8V2 

Depending on the sign of Co, the ground state (Co > 0) or the first excited 
state (Co < 0) is obtained. The condition of  the continuous derivative of  the 
wave function at x = 0 leads to the potential constraint between V2 and V3, 

V ~  = 3V218 - (A-+)218 

where A -+ denotes the real root of  the polynomial 

(A-+)3 -T- V3(A _+)2 _ V~A-+ • V 3 ~- 64 

Depending on the value of V3, different numbers of  physically relevant 
solutions can exist. 

In the special case I13 = 0 the wave function 

~(x) = ( -  1 + Ixl)elXl-lxl3/3 

is obtained. This function is the solution of  the Schr6dinger equation with 
the potential 

V = -41xl - 2 x  2 + x 4 

corresponding to the second excited-state energy E = 1. 

Case  n = 2 

In this case, the eigenvalue problem (11) is of  the order three. For the 
sake of simplicity, we assume 113 = 0. Similarly as for n = 1 we get the 
analytic solution 

t~(x) = (c o + CllXl + c2x2)e-V21xl12-[x1313 (13) 

where 

and 

Co = (16E 2 + 8 E V  2 + V 4 + 64172)/128 

cl = - ( E l 2  + V218) 

c2 = 1 

E = A ~13 _ 8VzI (3A 1/3) _ V214, A = 8(x/24V23/81 + 1 - 1) 

The value of the potential coefficient I/'2 is given by the equation 
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E2V218 + E(1 + V93/16) + V25/128 + 3V2~14 = 0 

which can be solved only numerically. We obtained V2 = 1.399086777. The 
wave function (13) is the ground-state wave function for the potential 

V =  -61xl + Vzx 2 + x 4 

Case n >- 3 

For n = 3, the eigenvalue problem (11) can be solved in terms of 
Cardan's formulas. One of the wave functions is O3(x) given is Section 
4. The calculation of other functions is too cumbersome and will not be 
given here. 

For n > 3 and V = - 2 ( n  + 1)lxl + x 4, we get the functions 0~(x) 
found in Section 4. Other states can be calculated numerically from (11). 
Following Ushveridze (1994), the corresponding solutions can be denoted 
as quasi-exact solutions. 

6. CONCLUSIONS 

To find the analytic solutions for the modified quartic oscillator, the 
general method suggested in Skfila et al. (1996) has been used. We have 
shown that to get the analytic solutions for this oscillator it is necessary to 
introduce the absolute value Ixl into the potential. Similarly to other analyti- 
cally solvable cases, the potential coefficients cannot be arbitrary and must 
obey certain potential constraints. In detail, we have discussed the analytic 
solutions for the ground state and few lowest excited states. For the special 
form of the potential V -- - 2 ( n  + 1)lxl + x 4, the analytic ground-state as 
well as excited-state wave functions have been found. More general cases 
lead to the eigenvalue problem (11), which can be solved numerically. 

The most interesting application of these results seems to be in the 
theory of the quartic oscillator with the potential V = x 2 + [3x 4. The usual 
perturbation theory for this oscillator is based on the use of the zero-order 
Hamiltonian H0 = x 2 (see, e.g., Bender, et al., 1969; Bender and Wu, 1971, 
1973; Bender, 1982; Simon, 1970, 1982). The well-known divergence of the 
corresponding perturbation series is related to different asymptotic behavior 
of the wave functions of the harmonic and quartic oscillator for x ---> -+ oo 
(Weniger, 1996). From this point of view, the analytic wave functions found 
in Section 4 are more suitable for the use in the perturbation theory than the 
functions of the harmonic oscillator. We would like to investigate this problem 
not only for the quartic, but also for the sextic oscillator and higher order 
oscillators. 
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It is obvious that the results obtained for the modified quartic oscillator 
can be extended to higher order oscillators. For example, we can consider 
the potential 

V = - N I x I  N-l  + x ~v 

where N = 1, 2, 3, 4 . . . . .  Analogously to the discussion in Section 4, it 
can be shown that the ground-state wave function for this potential equals 

~0(x) = e -ixiN+ I/(N+ 1) 

Similary to functions ~n(x) from Section 4, this wave function obeys the 
SchrOdinger equation (1) for E = 0. This solution can be also obtained from 
the general confluent equation (Abramowitz and Stegun, 1972) or from the 
differential equation y" + (ax ~-2 - b2xZC-2)y = 0 (Kamke, 1956) in terms 
of the Whittaker functions MK,~ and WK,~. However, our approach is more 
simple and straightforward and makes it possible to find analytic solutions 
even for E :/: 0. These examples show that the analytic solutions of  the 
Schr6dinger equation exist not only for some polynomial potentials of the 
order 2N = 4k + 2, but also for some polynomial potentials of the order 2N 
= 4k, provided that the variable x is replaced by Ixl. 
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