
Z. Phys. B - Condensed Matter 63, 259-265 (1986) Condensed 
Zeitschrift Matter 
for Physik B 

�9 Springer-Verlag 1986 

Interpolation Formula for Propagators in Systems 
with Intermediate Degree of Transport Coherence* 

L. Skala I and V.M. Kenkre 

Department of Physics and Astronomy, University of New Mexico, 
Albuquerque, New Mexico, USA 

Received August 12, 1985; revised version January 2, 1986 

We present an interpolation formula for the probability propagators of the generalized 
master equation appropriate for the description of the motion of quasiparticles in 
systems with an intermediate degree of transport coherence. Although highly simplified 
in form, the formula is convenient for practical computations on complex systems 
whose exact dynamics would be essentially impossible to obtain. The formula has 
features analogous to some in the relaxation time prescription for the calculation of the 
Boltzmann distribution function. We point out the manner in which the interpolation 
formula may be used in conjuction with experimental data as well as with model 
calculations. 

1. Introduction and the Interpolation Formula 

Although the motion of quasiparticles such as Fren- 
kel excitons in molecular crystals or excitations in 
biological systems has been actively investigated for 
many years with special attention on the issue of 
transport coherence [1-5], very few exact solutions 
valid for the entire intermediate range of coherence 
exist. Transport behaviour is understood in detail in 
the completely incoherent limit where a Master equa- 
tion (sometimes referred to as the Pauli master equa- 
tion) is the underlying equation of motion. Transport  
is also understood in the purely coherent limit where 
the SchrSdinger equation among site states is oper- 
ative. In addition, prescriptions [6, 7] are available 
which take these two starting points and, on the 
basis of a perturbation scheme, describe transport 
near those two limits, i.e., respectively, the largely 
incoherent limit and the largely coherent limit. And 
yet, many real systems exist, in which none of these 
available prescriptions and solutions is useful be- 
cause the systems are too complex to be solved 
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exactly and too far removed from both extreme li- 
mits to be approached through the approximation 
prescriptions. In this paper we suggest that in some 
of these cases an interpolation formula (to be used 
in the entire intermediate range) which is construc- 
ted starting from known solutions in the two limits 
might be useful. We examine several forms of such a 
formula, compare its consequences to some exact 
solutions, and discuss how it might be used in the 
light of experimental observations such as sensitized 
luminescence or transient grating. 
For reasons that we will discuss below, we choose 
the probability propagators rather than intermediate 
quantities such as memory functions, as the objects 
on which to construct the interpolation formula. By 
the propagator, which we denote by ~,,,(t), is meant 
the probability that the quasiparticle occupies site m 
at time t, given that it occupied site n at time 0. We 
suppose that, for the system under consideration, the 
propagator is known for the case of complete coher- 
ence as also for the case of complete incoherence 
and we denote it in the two respective cases by 
~,,,(t) and inc 0,,,(0. Our suggestion is that the in- 
termediate range be described by the following ex- 
pression for the propagator: 

~ m . ( t )  = i ,~ ~ i"r t ?,..(t) + ~(t) [ r  ~ ' . , . (  ) ] .  (1.1) 
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Equation (1.1) contains the interpolation function 
~(t) which we introduce. Its essential property is that 
it equals 1 at t = 0  and tends to 0 as t-~ov. By 
construction, therefore, the propagator t),,, as given 
by the interpolation formula (1.1) becomes identical 
to the known coherent propagator O~,,(t) for t ~ 0  

Om~(t) for and to the known incoherent propagator ~n~ 
t ~ ,  thus recovering the two limits in the appro- 
priate extremes. While (1.1) would be at best a high- 
ly simplified version of the actual propagator in 
general, it is guaranteed to provide the correct de- 
scription near the two limits and furthermore serves 
as a single prescription which spans the two limits. 
Whether or not the actual dynamics is described 
properly by (1.1) deep inside the intermediate range 
will be governed by how appropriate it is to assume 
a single function ~ to bridge all the propagators. In 
other words, it is always possible to write 

_ _  i n c  c i n c  O~,(t) -- ~tm, (t) + ~n(t) [ ~ ,  (t) -- l~m . (t)], (1.2) 

where we have introduced a separate interpolation 
function ~m,(t) for every propagator. Since (1.2) 
would serve as a definition for ~,~,(t), the validity of 
(1.2) cannot be questioned. By the same token, how- 
ever, (1.2) would be useless as it stands unless there 
were a simple independent way to arrive at the ~'s. 
We shall investigate below the consequences of (1.1), 
i.e. of assuming a single ~(t), particularly with simple 
choices for the time dependence of s 

2. Consequences of the Exponential Form for ~(t) 

The requirements that the interpolation function 
must satisfy in order that (1.1) be able to recover the 
appropriate limits at very short and very long times 
are 

~ ( t ~ 0 ) = l ;  ~ ( t ~ ) = 0 .  (2.1) 

The simplest such function is the exponential: 

(t) = exp( -  ~ t) (2.2) 

where ~ is a positive parameter to be determined 
from the dynamics of the system. The interpolation 
formula (1.1) now takes on a form which is highly 
analogous to the well-known relaxation time for- 
mula for the Boltzmann distribution function fk(t): 

Jk(t) = fk ~ + ( f o  _ fkoo) exp( - t/z). (2.3) 

The ~ we have introduced is analogous to the re- 
ciprocal of the relaxation time z. The shortcomings 
of assuming a single ~ for all ~9's and a monotoni- 
cally decreasing function such as an exponential for 

~(t) are thus very similar to the shortcomings of 
assuming a single z for all f ' s  and an exponential 
form for the decay of the distribution functions in 
the Boltzmann equation context. The limits bridged 
by our interpolation prescription are the (time-de- 
pendent) coherent and incoherent propagators valid 
at short and long times respectively, whereas those 
bridged by the well-known relaxation time are the 
initial and final (thermalized) values of the distribu- 
tion function. With this connection which might 
help in establishing the proper perspective on our 
interpolation formula (1.1), we now proceed to cal- 
culate its consequences. 
Consider a dimer with equienergetic sites 1 and 2 
wherein an exciton moves via the intersite matrix 
element V in the coherent limit and via the transfer 
rate F in the incoherent limit. The self-propagator 
011 = ~ 2 2 - ~ o  is given in the two extremes by [3] 

0;(t)  = (1/2) [1 + cos(2 vt)], (2.4) 

0~n~(t) = (1/2) [1 + exp( -  2Ft)]. (2.5) 

We assume the destruction of the off-diagonal ele- 
ments of the density matrix [2] at rate c~. This as- 
sumption giving the exp( -e t )  damping of the co- 
herent memory functions leads to the relation [3] F 
= 2 V2/cc 
The interpolation formula (1.1) takes the form 

$0(t) = (1/2){[1 + exp ( -  2Ft)] + [cos(2 Vt) 

- exp( -  2Ft)] exp( -  ~t)}. (2.6) 

The exact consequence of a stochastic Liouville 
equation description of motion in a dimer with a as 
the scattering rate is [3] 

~0(t) = [1 + g(t) exp( - ca/2)]/2, (2.7) 

where g(t) equals (1+~t/2) if a=4V, and [cos(bt) 
+e/(2b)sin(bt)]  with b = ( 4 V 2 - a 2 / 4 )  1/2 otherwise. 
On comparison of (2.6) and (2.7) with the prescrip- 
tion F = 2 V 2 / a ,  numerical calculations show that the 
best agreement is achieved for ~=~/2 (see Fig. 1). 
Consider now the infinite linear chain with the near- 
est neighbour interaction V whose exact self-pro- 
pagator for arbitrary c~ calculated from the stochas- 
tic Liouville equation equals [7] 

Oo(t) = e-  ~t dg(2 Vt) + i c~e- ~(~ ") j2 [2 V (t 2 - -  U2) 1/z] d u .  

o (2.8) 

The approximate propagator given by  Eqs. (1.1) and 
(2.2) is equal to 

~9o(t ) = [exp(-- 2Ft)] Io(2Ft  ) + EJo2(2 Vt) 

- exp( -  2Ft)  Io(ZFt)] exp( -  ~t). (2.9) 
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Fig. l a-c. Comparison of the exact solution of the stochastic 
Liouville equation (full line) and the result of our interpolation 
prescription (dashed line) for the self-propagator ~0(t) for the 
dimer: Three cases corresponding to large (a), intermediate (b) 
and small (e) degree of the coherence (VIce) are shown. The value 
of the interpolation parameter ~ used in the figure is ~/2 and 
produces the most appropriate fit 
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As in case of the dimer we shall take F=2V2/a  for 
comparison. Numerical calculations lead to ~= a  for 
best agreement (see Fig. 2). 
We now use the interpolation formula for the calcu- 
lation of the mean square displacement (x2).  The 
mean square displacement in the infinite linear chain 
with the propagator (2.8) equals [-31 2 F 2 a 2 t  2 in the 
coherent case, 2Fa2t in the incoherent case, and, in 
the general case is given by 

(x2)/a 2 = [4 V 2 t/a] - (4 V 2/a2)(1 - exp( - at)), (2.10) 

where a is the lattice constant. The interpolation 
formula for the mean square displacement reads 

<x2>/a2=2Ft+2(V2t_F) te  ct. (2.11) 

The comparison of (x2)  as given by (2.10) and (2.11) 
for the prescriptions F-=2vZ/a and ~ = a  is shown in 
Fig. 3. 
We see that while both curves have similar parabolic 
form for small t, they are shifted by a constant value 
for large t. This shift is unimportant and the dif- 
fusion constant D which equals (1/2) the infinite t 
limit of d(xZ)/dt,  is 2V2aZ/a in both cases. 
Finally, we analyze a situation in which the exact 
solutions in the intermediate range are much less 
poorly known than in the two limits of extreme 
coherence and incoherence thus presenting an ex- 
plicit example of the interpolation scheme in a 
practical case. Consider a finite linear chain of N 
molecules in which the exciton would move via the 
nearest-neighbour interaction V in the coherent limit 
and via the nearest-neighbour transfer rate F in the 
incoherent limit. In contrast to the dimer and in- 
finite linear chain the analytic solution for general a 
is not known in this case so that the interpolation 
formula seems to be the only way to describe at 
least approximately the corresponding propagators. 
The incoherent probability propagators are known 
[9] in the Laplace domain. The coherent propa- 
gators can also be calculated in the following way. 
The (coherent) amplitude propagator Z~, equals 

N 1 
Z.,.(8) = ~ (* ( P ) -  (2.12) 
~c ;=t% c, 8 + i E / '  

where c ( p ) - ] ~ -  " mpzc m - [ / ~ - s l n ~ ] -  is the solution of the 

Schr6dinger equation corresponding to the energy 

E p = 2 V c o s  p~ N + 1' p = 1 . . . . .  N [10]. The propagator 

(2.12) can be summed [11] as 

i sin(toO)sin(N+ 1-rn)O 
2~, (e )=~ sinOsin(N+l)O ' m<=n, (2.13) 
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Fig. 2a-c. Comparison of the exact (full line) and the result of the 
interpolation prescription for the self-propagator r for the 
infinite linear chain: Three cases corresponding to large (a), in- 
termediate (b) and smalI (c) degree of the coherence (V/a) are 
shown. The value of ~ used in the figure is 0~ (and not c~/2 as in 
Fig. 1) and provides the most appropriate fit. The resutts for the 
propagators r (m:t:O) are similar but not  shown 

where O=arcos(ie/2V). A numerical Laplace inver- 
sion of (2.13) gives Zm,(t) and thence the probability 
propagator Izm.(012. A numerical inversion of the 
result in Ref. 9, on the other hand, gives the in- 
coherent probability propagator. From the two lim- 
its the interpolation prescription yields the pro- 
pagator for intermediate coherence through (1.1) and 
(2.2). The results are plotted in Fig. 4 for two values 
of the interpolation parameters as shown. 
We see from Figs. 1-3 that the interpolation pre- 
scription gives reasonable fits to the exact solutions 
of the stochastic Liouville equation. The fits are, as 
expected, particularly good near the highly coherent 
and highly incoherent limits respectively. In the re- 
gion far from both limits the approximation does 
not produce absurd or patently incorrect propa- 
gators. For complex systems in which direct solution 
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Fig. 3. The mean square displacement <x2> for the infinite linear 
chain as a function of time. The full line is the exact result while 
the dashed line results from the interpolation formula. The value 
of ~ used is e as in Fig. 2 
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for intermediate coherence is not practical we thus 
believe that the interpolation approximation might 
produce an acceptable description. 

3. Extraction of ~ from Experimental Data 

In systems for which the interpolation formula is 
appropriate, the value of the parameter ~ or the 
function ~(t) can be extracted easily from experimen- 
tal observations. As examples we mention the tran- 
sient grating signal and the (guest) quantum yield of 
luminescence. The former quantity is proportional to 
the square of S(t), the amplitude of the sinusoidal 
inhomogenity in the exciton density produced by 
illuminating a crystal through crossed beams, where- 
as the latter is qSG, the ratio of the number of pho- 

tons that come out radiatively out of guest mole- 
cules which trap the excitons moving in a host crys- 
tal, to the number of photons put into the host 
initially through illumination. 
The transient grating signal amplitude S(0 is pro- 
portional to the Fourier transform of the propa- 
gators. Therefore, in terms of the interpolation for- 
mula and expressions S ~ and S ~"~ which describe S in 
the coherent and incoherent limits respectively, 

S(t) = sine(t) + [SC(t)- Sin~ e x p ( -  ~t). (3.1) 

Since both SC(t) and Si"r are well known from 
earlier analyses [12], one may write down ~ directly 
from experiment. Thus, 

exp( - ~t) = {S(t) - exp [ - 4Ft  sin2 (r//2)] } 

"{Jo[4 Vtsin(~/2)]-exp[-4Ftsin2(*l /2)]}  -1 (3.2) 

and ~ may be obtained by inspection or integration 
of the above expression from the observed transient 
grating input S(t) on one hand and from known 
values of the intersite nearest-neighbour interaction 
V and the incoherent transfer rate F on the other. In 
(3.2) above, ~ is the ratio of the grating wavevector 
to the nearest-neighbour distance. 
Unlike the transient grating signal S(0 which is lin- 
ear in the propagator transform, the quantum yield 
in sensitized luminescence is related to the propa- 
gator in a more complex fashion. Thus, in terms of 
the guest concentration p, the capture rate c, and the 
Laplace transform of the self-propagator evaluated 
at e = l / z ,  where z is the exciton lifetime, the guest 
yield is given by [2, 3] 

q~a = P v [(l/c) + ~ 0(l/v)] - t  (3.3) 

However, it is clear that the (observable) quantity 
(pz/4G) is linear in the Laplace transform of the 
propagator. Since the interpolation formula (1.1) for 
the self-propagator can be written in the Laplace 
domain as 

~0(e) = ~nc(e) + [ ~ ( e  + ~) - ~nc(e + ~)] (3.4) 

the relation 

(p z/C~G ) = (l/c) + ~nc (l/z) + [~)(~ + l/z) 

__ ~ n e ( ~  jr 1/'g)] (3.5) 

can be used at once to extract ~ from experiment. 
Expressions for ~ ( e )  and ~o"~(e) are available [2] in 
terms of known special functions for simple models 
and may be used directly in (3.5) to extract ~ from 
known values of c, ~ and p, and of the motion 
parameters F and V in the two limits. 
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4. Discussion 

The interpolation prescription we have suggested 
and analyzed in this paper is not as microscopic in 
nature as the standart procedures (see e.g. Refs. 2, 3, 
6, 7) in which the passage from the limits to the 
intermediate range of coherence occurs at the level 
of the memory functions or of the density matrix 
equations. Instead, our present prescription operates 
at the semi-microscopic level of the probability 
operators. While this is a relative shortcoming of the 
present method, it has also some practical advan- 
tages. Thus, when the interpolation function ~(t) is 
taken to have an appropriate form such as the expo- 
nential exp(-{t) ,  the interpolation propagators are 
guaranteed to satisfy the requirement that they lie 
between 0 and 1 at all times. It is interesting to 
compute the memory functions that correspond to 
the interpolation scheme. Since, for a periodic sys- 
tem, the Fourier transform of the propagator O k is 
related to that of the memory functions s ]  k through 
[2, 3] 

1 
~k(e)= e + s~k(e) (4.1) 

an expression analogous to (3.4) leads immediately 
to 

Ak(~) = s~(~  + ~) [A'~ ~176 r + (~ + A ? ~  = 

-At- ~ 2  nc ~(~ "~ 2 esJ~"~)]/Ed#(e + ~)( 
q- ~2 q- #(2~ q- ~#ne) q- (8 q- ~klnc)2 ] . (4.2) 

To obtain (4.2) we have substituted the Fourier 
transform of the propagator given by the interpo- 
lation scheme of (1.1) and (2.2) in (4.1). 
It is obvious from (4.2) that s~k(e) is rather different 
from the coherent memory functions displaced at the 
Laplace domain. In other words the interpolation 
scheme produces a memory function which in gener- 
al differs considerably from the one obtained at the 
microscopic level [2, 3] via exponential damping. 
Indeed, the former displays multiple time constants 
whereas the latter has a single time constant relevant 
to the onset of incoherence. To describe intermediate 
coherence the standard procedure [2, 3] uses a sim- 
ple modification of the memory function and results 
in a complex modification of the propagators ~(see 
e.g. (2.8)), whereas the interpolation scheme present- 
ed here uses a simple modification of the propa- 
gators and results in a complex modification of the 
memory functions (as seen in (4.2)). 
The propagators 0,,,(t) given by the prescription 
(1.1) fulfil the initial condition 0,.,(0)=bin, and con- 
verge to the equilibrium values given by 02~(t~oo). 

It follows from (4.2) that dk(t~Oo)=limes~k(e)=O 

SO that the corresponding memory functions go cor- 
rectly to zero for t--,oo. From this point of view, the 
interpolation formula (1.1) provides correct descrip- 
tion for t---,0 and oo limits. 
There is no doubt that a modification at the memo- 
ry function level is preferable in that one may relate 
it to features of the Hamiltonian such as exciton- 
phonon interactions in a straightforward way and 
that, whereas the parameter ct which produces 
damping of the memory functions [2, 3] is essen- 
tially the rate of scattering of excitons, the interpo- 
lation parameter ( has no such microscopic signifi- 
cance. The value of the interpolation formula lies, 
however, in its simplicity. It avoids the mathemati- 
cally difficult problem of the solution of the equa- 
tions of motion to get the propagator. For a given 
system, one may obtain ~ and ~(t) from one experi- 
ment, as shown in Sect. 3, and then use it for ad- 
dressing another experiment. We believe that the 
interpolation procedure will be particularly useful 
for complex biological systems e.g. photosynthetic 
units where the solution of the equations of motion 
is not practical. The 5-molecule system we have 
studied in Fig. 4 is a simple example of such a 
situation. 
Figures 1-3 and the relevant numerical calculations 
show that ~= ct gives the best fit of the interpolation 
to the exact solution for large systems but ~=e/2 
gives the best fit for a dimer. It is conceivable that 
the propagator generally has several exponents in its 
behaviour which lie between these 2 values. In the 5- 
molecule chain we have therefore shown both _~ = c~/2 
and ~ = ct fits. It is to be noted that in the light of the 
results it may not be unreasonable to calculate ( 
from scattering interactions in the same way that ct 
or the relaxation time in the Boltzmann equation is 
calculated. Through such a calculation ( may be 
obtained microscopically. 
In conclusion, we have presented a simple scheme to 
describe motion with arbitrary degree of coherence 
to be used in complex systems. Undoubtedly there 
are situations in which the scheme will provide a 
poor description because it is not microscopic in 
character. However, it has a role which is similar to 
that of the relaxation-time approximation in the 
Boltzmann equation context and as such it is ex- 
pected to be useful in systems where the more micro- 
scopic procedures are not practical. 
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