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Abstract It is known that the Heisenberg and Robertson-Schrödinger uncertainty relations
can be replaced by sharper uncertainty relations in which the “classical” (depending on the
gradient of the phase of the wave function) and “quantum” (depending on the gradient of
the envelope of the wave function) parts of the variances 〈(Δx)2〉 and 〈(Δp)2〉 are separated.
In this paper, three types of uncertainty relations for a different number of classical parts
(2, 1 or 0) with different time behaviour of their left-hand and right-hand sides are discussed.
For the Gaussian wave packet and two classical parts, the left-hand side of the corresponding
relations increases for t → ∞ as t2 and is much larger than �

2/4. For one classical part, the
left-hand side of the corresponding relation goes to the right-hand side equal to �

2/4. For
no classical part, both the right-hand and left-hand sides of the corresponding relation go
quickly to zero. Therefore, the well-known limitations following from the usual uncertainty
relations can be overcome in the corresponding measurements.

Keywords Quantum mechanics · Uncertainty relations · Three types of uncertainty
relations

1 Introduction

The Heisenberg uncertainty relation for the coordinate x and momentum p has the well-
known form [1]

〈
(Δx)2

〉〈
(Δp)2

〉 ≥ �
2

4
, (1)

L. Skála (�)
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2,
Czech Republic
e-mail: Lubomir.Skala@mff.cuni.cz

L. Skála
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Author's personal copy

mailto:Lubomir.Skala@mff.cuni.cz


3394 Int J Theor Phys (2013) 52:3393–3404

where

〈
(Δx)2

〉 =
∫ ∞

−∞

(
x − 〈x〉)2|ψ |2dx, (2)

〈
(Δp)2

〉 =
∫ ∞

−∞

∣∣(p̂ − 〈p̂〉)ψ∣∣2
dx, (3)

ψ = ψ(x, t) is the normalized wave function, p̂ = −i�(∂/∂x), 〈 〉 denotes the usual
quantum-mechanical mean value and � is the reduced Planck constant � = h/(2π). For
recent discussion of uncertainty relations see e.g. [2–15]. Detailed discussion of the uncer-
tainty relations in stochastic mechanics can be found in [16].

The normalized wave function ψ can be always written in terms of its modulus and
argument (phase)

ψ = |ψ |ei arg(ψ) = e−s2/�eis1/�, (4)

where s1(x, t) and s2(x, t) are real functions. Then we get

p̂ψ = ∂s1

∂x
ψ + i

∂s2

∂x
ψ. (5)

The mean momentum can be written as

〈p̂〉 = 〈ψ |p̂ψ〉 =
∫ ∞

−∞

∂s1

∂x
|ψ |2 dx + i

∫ ∞

−∞

∂s2

∂x
|ψ |2 dx. (6)

Assuming the bound states with the property

xn|ψ |2 → 0, n = 0,1,2, x → ±∞ (7)

the second integral in Eq. (6) does not contribute to the mean momentum

∫ ∞

−∞

∂s2

∂x
|ψ |2dx = −�

2

∫ ∞

−∞

∂

∂x
e−2s2/�dx = −�

2
e−2s2/�

∣∣∣∣

∞

x=−∞
= 0. (8)

Therefore, the resulting expression for the mean momentum [17–20]

〈p̂〉 =
∫ ∞

−∞

∂s1

∂x
|ψ |2 dx (9)

does not depend on ∂s2/∂x. This formula corresponds to transition from the point particle
in classical mechanics where the probability density has the δ-like character to the particle
described by the probability density |ψ |2 in quantum mechanics. At the same time, the
expression for the classical momentum pcl = ∂S/∂x, where S is the Hamilton action is
replaced here by the mean value 〈p̂〉 = 〈∂s1/∂x〉, where the function s1 corresponds to S

and the probability density |ψ |2 is introduced.
As an example, we consider the wave function of a free particle [17–19] in form of the

Gaussian wave packet at time t = 0

ψ(x,0) = 1
√

a
√

π
e−x2/(2a2)+ikx (10)
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with the mean energy

E = �
2k2

2m
+ �

2

4ma2
, (11)

where a > 0, k is a real constant and m is the mass of the particle. Solving the time
Schrödinger equation we get [17, 18, 20]

ψ(x, t) = 1
√

a
√

π

√
1 − iα√
1 + α2

exp

[
− (x − �k

m
t)2

2a2(1 + α2)
+ i

(
kx + αx2

2a2 − �k2

2m
t

1 + α2

)]
, (12)

where α = �t/(ma2). The corresponding functions s1 and s2 and their derivatives equal

s1(x, t) = �k
x + αx2

2a2k
− �k

2m
t

1 + α2
− � arctanα, (13)

s2(x, t) = �

2

[
(x − �k

m
t)2

a2(1 + α2)
− ln

1

a
√

π
√

1 + α2

]
(14)

and

∂s1

∂x
= �k

1 + αx

a2k

1 + α2
, (15)

∂s2

∂x
= �(x − �k

m
t)

a2(1 + α2)
. (16)

As it could be anticipated, the mean momentum in this case equals

〈p̂〉 =
〈
∂s1

∂x

〉
= �k. (17)

Relation between the mean coordinate and momentum

〈x̂〉 = �k

m
t = 〈p̂〉

m
t (18)

agrees with the Ehrenfest theorems and is the same as in classical mechanics. In agreement
with Eq. (9), the constant a determining the width of the wave packet and ∂s2/∂x does not
appear in the last two equations.

2 Square of the Momentum and Two Uncertainty Relations

Now, we will discuss 〈p̂2〉 [17–20]. It follows from Eq. (5) that the mean value 〈p̂2〉 can be
written as a sum of two parts

〈
p̂2

〉 = 〈p̂ψ |p̂ψ〉 = 〈
p̂2

1

〉 + 〈
p̂2

2

〉
, (19)

where

〈
p̂2

1

〉 =
∫ ∞

−∞

(
∂s1

∂x

)2

|ψ |2 dx (20)
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and

〈
p̂2

2

〉 =
∫ ∞

−∞

(
∂s2

∂x

)2

|ψ |2 dx. (21)

Similarly to our discussion of 〈p̂〉 in Eq. (9), the first part 〈p̂2
1〉 can be interpreted as statisti-

cal generalization of the expression p2
cl = (∂S/∂x)2 from classical mechanics in which the

classical momentum pcl = ∂S/∂x is replaced by ∂s1/∂x and the probability density |ψ |2
is introduced. The second part 〈p̂2

2〉 is given by |ψ |2 or the envelope of the wave function
|ψ | = exp(−s2/�) and does not depend on ∂s1/∂x. For the Gaussian wave packet, Eq. (19)
leads to energy (11).

It is obvious that such separation applies not only for 〈p̂2〉 and kinetic energy but also for
the variance 〈(Δp̂)2〉 appearing in the Heisenberg uncertainty relation [17–23]

〈
(Δp̂)2

〉 = 〈(
p̂ − 〈p̂〉)2〉 = 〈

(Δp̂1)
2
〉 + 〈

(Δp̂2)
2
〉
, (22)

where

〈
(Δp̂1)

2
〉 =

∫ ∞

−∞

(
∂s1

∂x
− 〈p̂〉

)2

|ψ |2 dx (23)

and

〈
(Δp̂2)

2
〉 =

∫ ∞

−∞

(
∂s2

∂x
−

〈
∂s2

∂x

〉)2

|ψ |2 dx =
∫ ∞

−∞

(
∂s2

∂x

)2

|ψ |2 dx. (24)

We note that interesting approach to the classical-quantum decomposition of variances can
be found in [24].

It was shown that Heisenberg uncertainty relation (1) can be replaced by two sharper rela-
tions for 〈(Δp̂1)

2〉 and 〈(Δp̂2)
2〉 [17–23]. These relations can be obtained from the Schwarz

inequality

〈u|u〉〈v|v〉 ≥ ∣∣〈u|v〉∣∣2
, (25)

where u and v are complex functions, 〈u|v〉 = ∫ ∞
−∞ u∗v dx and the star denotes the complex

conjugate.
Taking the functions

u = Δx|ψ | = (
x − 〈x〉)|ψ | (26)

and

v =
(

∂s1

∂x
− 〈p̂〉

)
|ψ | (27)

we get the first relation

〈
(Δx)2

〉〈
(Δp̂1)

2
〉 ≥

[∫ ∞

−∞
Δx

(
∂s1

∂x
− 〈p̂〉

)
|ψ |2dx

]2

. (28)

This relation has the usual meaning known from mathematical statistics: The product of
variances of two quantities is greater than or equal to the square of their covariance. De-
pending on the functions ∂s1/∂x and |ψ |2, the square of the covariance of the coordinate
and momentum at the right-hand side of this relation can have arbitrary values greater than
or equal to zero. In this sense, this inequality has classical character.
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The second relation can be obtained in an analogous way for

u = Δx|ψ | (29)

and

v = ∂s2

∂x
|ψ | (30)

with the result

〈
(Δx)2

〉〈
(Δp̂2)

2
〉 ≥

[∫ ∞

−∞

(
x − 〈x〉)∂s2

∂x
|ψ |2dx

]2

. (31)

The last integral can be calculated as
∫ ∞

−∞

(
x − 〈x〉)∂s2

∂x
|ψ |2dx

= −�

2

∫ ∞

−∞

(
x − 〈x〉)∂|ψ |2

∂x
dx

= −�

2

[(
x − 〈x〉)|ψ |2∣∣∞

x=−∞ −
∫ ∞

−∞
|ψ |2dx

]
= �

2
, (32)

where the expression |ψ |2 = exp(−2s2/�), integration by parts, boundary conditions (7)
and the normalization condition for the wave function are used. The resulting uncertainty
relation

〈
(Δx)2

〉〈
(Δp̂2)

2
〉 ≥ �

2

4
(33)

follows from the Schwarz inequality in a similar way as relation (28) and can be understood
as the standard statistical inequality, too. However, the covariance 〈u|v〉 equals in this case
�/2, does not depend on the concrete form of the functions s1 and s2 and the left-hand side of
this relation cannot equal zero. In contrast to relation (28), the left-hand side of relation (33)
does not depend on s1 and depends only on s2 giving the envelope |ψ | = exp(−s2/�) of the
wave function ψ . In this sense, relation (33) has quantum character.

The sum of relations (28) and (33)

〈
(Δx)2

〉〈
(Δp̂)2

〉 ≥
[∫ ∞

−∞
Δx

(
∂s1

∂x
− 〈p̂〉

)
|ψ |2dx

]2

+ �
2

4
(34)

is equivalent to the Robertson-Schrödinger uncertainty relation for the coordinate and mo-
mentum [18, 25–27]. The Heisenberg uncertainty relation can be obtained from this sum
by neglecting the first expression appearing at the right-hand side of relation (34). There-
fore, relations (28) and (33) are sharper than the corresponding Heisenberg and Robertson-
Schrödinger uncertainty relations.

3 Momentum Representation

It is evident that analogous approach can be used also for the wave function in the momen-
tum representation

ϕ(p) = 1√
2π�

∫ ∞

−∞
ψ(x) epx/(i�)dx (35)
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that can be written in form analogous to Eq. (4)

ϕ(p) = e−r2/�eir1/�, (36)

where r1(p) and r2(p) are real functions. Using the coordinate operator in the momentum
representation x̂ = i�(∂/∂p) it is easy to derive equations analogous to Eqs. (9) and (19)–
(24)

〈x̂〉 = −
∫ ∞

−∞

∂r1

∂p
|ϕ|2 dp, (37)

〈
x̂2

〉 = 〈x̂ϕ|x̂ϕ〉 = 〈
x̂2

1

〉 + 〈
x̂2

2

〉
, (38)

〈
(Δx̂)2

〉 = 〈(
x̂ − 〈x̂〉)2〉 = 〈

(Δx̂1)
2
〉 + 〈

(Δx̂2)
2
〉
, (39)

where

〈
x̂2

1

〉 =
∫ ∞

−∞

(
∂r1

∂p

)2

|ϕ|2 dp, (40)

〈
x̂2

2

〉 =
∫ ∞

−∞

(
∂r2

∂p

)2

|ϕ|2 dp, (41)

〈
(Δx̂1)

2
〉 =

∫ ∞

−∞

(
−∂r1

∂p
− 〈x̂〉

)2

|ϕ|2 dp (42)

and

〈
(Δx̂2)

2
〉 =

∫ ∞

−∞

(
∂r2

∂p
−

〈
∂r2

∂p

〉)2

|ϕ|2 dp =
∫ ∞

−∞

(
∂r2

∂p

)2

|ϕ|2 dp. (43)

Relations in the momentum representation corresponding to Eqs. (28) and (33) have the
form

〈
(Δx̂1)

2
〉〈
(Δp)2

〉 ≥
[∫ ∞

−∞

(
−∂r1

∂p
− 〈x̂〉

)
Δp|ϕ|2dp

]2

(44)

and

〈
(Δx̂2)

2
〉〈
(Δp)2

〉 ≥ �
2

4
. (45)

Comments to these relations can be made similar as in case of relations (28) and (33) and
will not be given here. In the above mentioned sense, the first relation (44) has classical
character and the second one (45) has quantum character.

4 Relation for Two Quantum Parts

It has been shown above that both the mean values 〈(Δx̂)2〉 and 〈(Δp̂)2〉 can be expressed
as a sum of two parts having classical and quantum character. Now we ask, if it is possible
to derive some relation for the quantum parts of 〈(Δx̂)2〉 and 〈(Δp̂)2〉 only, without the
presence of parts having classical character. Such relation is discussed in this section.
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First, we use the same expression in the coordinate representation as in Eq. (30)

u = ∂s2

∂x
|ψ | = −�

∂|ψ |
∂x

(46)

and the Fourier transform of an analogous expression −�(∂|ϕ|/∂p) in the momentum rep-
resentation

v = 1√
2π�

∫ ∞

−∞

(
−�

∂|ϕ|
∂p

)
e−px/(i�)dp, (47)

where ϕ is the Fourier transform of the wave function ψ given by Eq. (35). We get

〈u|u〉 = 〈
(Δp̂2)

2
〉
, (48)

〈v|v〉 = 〈
(Δx̂2)

2
〉

(49)

and

〈u|v〉 = �
2
∫ ∞

−∞

∂|ψ |
∂x

1√
2π�

∫ ∞

−∞

∂|ϕ|
∂p

e−px/(i�)dp dx. (50)

Then, Schwarz inequality (25) yields the relation for the quantum parts of 〈(Δx̂)2〉 and
〈(Δp̂)2〉

〈
(Δx̂2)

2
〉〈
(Δp̂2)

2
〉 ≥ ∣∣〈u|v〉∣∣2 = �

2|I |2, (51)

where

I = �

∫ ∞

−∞

∂|ψ |
∂x

1√
2π�

∫ ∞

−∞

∂|ϕ|
∂p

e−px/(i�) dp dx. (52)

In contrast to uncertainty relations (1), (33) and (45), the right-hand side of this relation is
not in general equal to �

2/4 and the value of the integral I has to be calculated in each case
separately. If the wave functions ψ and ϕ depend also on time, all quantities in relation (51)
may be time dependent. For this reason, we do not denote Eq. (51) as an uncertainty relation
but as a relation or an inequality.

The wave functions ψ and ϕ are related by the Fourier transform. In contrast, this is not
generally the case for their envelopes |ψ | and |ϕ|. For this reason, relation (51) has different
character than the usual uncertainty relations and can lead to interesting results.

To give an example, we assume that |ϕ| equals the Fourier transform of |ψ |. Using
Eq. (35) we then get

I = −i

∫ ∞

−∞

∂|ψ(x)|
∂x

{∫ ∞

−∞

∣∣ψ
(
x ′)∣∣

[
1

2π�

∫ ∞

−∞
ep(x′−x)/(i�)dp

]
x ′dx ′

}
dx. (53)

Taking into account that the expression in brackets equals the Dirac δ-function we have

I = −i

∫ ∞

−∞

∂|ψ |
∂x

x|ψ |dx. (54)

Performing integration by parts we get

∫ ∞

−∞

∂|ψ |
∂x

x|ψ |dx = x |ψ |2∣∣∞
x=−∞ −

∫ ∞

−∞
|ψ |

(
x

∂|ψ |
∂x

+ |ψ |
)

dx. (55)
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It follows from boundary conditions (7) and the normalization condition for the wave func-
tion ψ that

∫ ∞

−∞

∣∣ψ(x)
∣∣x

∂|ψ(x)|
∂x

dx = −1

2
. (56)

Therefore, if |ϕ| equals the Fourier transform of |ψ | relation (51) has the usual right-hand
side

〈
(Δx̂2)

2
〉〈
(Δp̂2)

2
〉 ≥ �

2

4
. (57)

For example, it is valid for the ground state of the linear harmonic oscillator.
If |ϕ| does not equal the Fourier transform of |ψ |, integral I has to be calculated in each

case separately. As shown in the following section, it leads to interesting results.

5 Gaussian Wave Packet

In this section, we return back to our example discussed in Introduction.
The quantities appearing in relations (1), (28), (33), (34), (44), (45) and (51) equal in this

case
〈
(Δx̂)2

〉 = 〈
(Δx̂1)

2
〉 + 〈

(Δx̂2)
2
〉
, (58)

〈
(Δx̂1)

2
〉 = a2α2

2
, (59)

〈
(Δx̂2)

2
〉 = a2

2
, (60)

〈
(Δp̂)2

〉 = 〈
(Δp̂1)

2
〉 + 〈

(Δp̂2)
2
〉
, (61)

〈
(Δp̂1)

2
〉 = �

2α2

2a2(1 + α2)
(62)

and

〈
(Δp̂2)

2
〉 = �

2

2a2(1 + α2)
, (63)

where α = �t/(ma2).
Using these results, we discuss now the left-hand and right-hand sides of relations (1),

(28), (33), (34), (44), (45) and (51).
First we see that 〈(Δx̂1)

2〉〈(Δp̂1)
2〉 and also 〈(Δx̂)2〉〈(Δp̂)2〉 in relations (1) and (34)

increase for t → ∞ as �
2α2/4 ≈ t2. Therefore, the left-hand side of these relations increases

in time due to the presence of two classical parts 〈(Δx̂1)
2〉 and 〈(Δp̂1)

2〉 at their left-hand
side.

Products 〈(Δx̂2)
2〉〈(Δp̂1)

2〉, 〈(Δx̂1)
2〉〈(Δp̂2)

2〉 and also 〈(Δx̂2)
2〉〈(Δp̂)2〉, 〈(Δx̂)2〉 ×

〈(Δp̂2)
2〉 in relations (33) and (45) go for t → ∞ to �

2/4. Therefore, if there is only one
classical part at the left-hand side as in case of relations (33) and (45), the left-hand side
tends to �

2/4.
In contrast to these cases, the left-hand side of relation (51) given by Eqs. (60) and (63)

〈
(Δx̂2)

2
〉〈
(Δp̂2)

2
〉 = �

2

4(1 + α2)
(64)
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does not contain the classical parts and behaves for t → ∞ as 1/t2. This behaviour of
relation (51) is very different from relations (1), (28), (33), (34), (44) and (45). It implies
that also the right-hand side of relation (51) must go to zero for t → ∞.

Calculating the inner product 〈u|v〉 appearing at the right-hand side of Eq. (51) we get

〈u|v〉 = −i

√
2�a2

(2 + α2)5/2

(
1 + α2

)1/4[
k2

(
1 + 2α2 + iα3

) − (
2 + α2

)
/a2

]

× e−k2a2(2α2−2iα+1)/(2+α2)/2. (65)

The corresponding formula for the right-hand side |〈u|v〉|2 of relation (51) can be calculated
easily and will not be given here.

Special interesting cases are

∣∣〈u|v〉∣∣2 = �
2

4

√
1 + α2

(1 + α2/2)3
, k = 0 (66)

and

∣∣〈u|v〉∣∣2 = �
2

4

(
k2a2/2 − 1

)2
e−k2a2/2, t = 0. (67)

For k = 0 and t = 0, the last two equations lead to the well-known value

∣∣〈u|v〉∣∣2 = �
2

4
(68)

appearing in Eqs. (1), (33), (34) and (45).
The right-hand side |〈u|v〉|2 of Eq. (51) given by Eq. (66) decreases to zero for t → ∞.

The characteristic value of α for which |〈u|v〉|2 in Eq. (66) becomes significantly smaller
than �

2/4 is α ≈ 1. For the electron mass and a typical nanoscale dimension a = 10−9 m,
the condition α ≈ 1 is fulfilled already for very short time t0 ≈ 10−14 s. For t � t0, the right-
hand side of relation (51) goes to zero and this relation represents practically no restriction
on the possible values of the product 〈(Δx̂2)

2〉〈(Δp̂2)
2〉 at the left-hand side.

Similarly, the characteristic value of ka for which |〈u|v〉|2 in Eq. (67) becomes smaller
than �

2/4 is given by the condition ka ≈ 1. For a = 10−9 m, this condition is fulfilled for
k0 ≈ 109 m−1. Therefore, the right-hand side of relation (51) is for the wave vectors k � k0

close to zero.
We note also that for k �= 0, a �= 0 and t → ∞ the right-hand side of Eq. (51) given by

Eq. (65)

∣∣〈u|v〉∣∣2 ≈ 2a10k4m3e−2a2k2

�t3
(69)

goes to zero as 1/t3, i.e. faster than its left-hand side (64).
The constant �

2/4 appears at the right-hand side of relations (1), (33), (34) and (45) due
to the presence of classical terms 〈(Δx̂1)

2〉 and/or 〈(Δp̂1)
2〉 at the left-hand side of these

relations. In contrast to these relations, the right-hand side of relation (51) goes to zero.
The width of the Gaussian wave packet in the coordinate or momentum representation

measured by 〈(Δx̂)2〉 or 〈(Δp̂)2〉 increases in time and the wave packet spreads out. In
contrast to it, quantities 〈(Δx̂2)

2〉 and 〈(Δp̂2)
2〉 appearing in relation (51) do not increase in

time and their product goes to zero.
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Quantities 〈(Δx̂2)
2〉 and 〈(Δp̂2)

2〉 are given by the mean values of the square of the
derivatives ∂s2/∂x and ∂r2/∂p, where s2 and r2 give the probability densities |ψ |2 =
exp(−2s2/�) and |ϕ|2 = exp(−2r2/�) in the coordinate and momentum representation, re-
spectively. Measurement of the probability densities in the coordinate and momentum rep-
resentation should be feasible for example for the photon wave packets. Therefore, rela-
tion (51) is interesting also from the experimental point of view.

6 Conclusion

In this paper, internal structure of the Heisenberg and Robertson-Schrödinger uncertainty
relations has been investigated.

It is known that the mean square deviation of the momentum in the coordinate repre-
sentation from its mean value can be written as a sum of the classical and quantum parts,
Eq. (22). Similar result is valid also for the coordinate in the momentum representation,
Eq. (39). The classical parts in these expressions depend on the phase of the wave function
and probability density in the corresponding representation. Function s1 giving the phase of
the wave function in the coordinate representation corresponds to the Hamilton action. The
quantum parts depend on the probability densities or envelopes of the wave functions only
and have not their counterpart in classical mechanics.

A few relations for the classical and quantum parts have been discussed. Depending on
the number of classical parts in the relations, three types of the relations have been intro-
duced:

(I) Heisenberg and Robertson-Schrödinger uncertainty relations (1) and (34) have two
classical parts at their left-hand side and �

2/4 (and additional square of the covariance
term in case of the Robertson-Schrödinger relation) at their right-hand side. For the
Gaussian wave packet and t → ∞, their left-hand sides behave as t2.

The left-hand sides of relations (28) and (44) contain two classical parts, too. For
the Gaussian wave packet and t → ∞, the left-hand sides of these relations have the
same behaviour as in case of the Heisenberg and Robertson-Schrödinger uncertainty
relations. The right-hand sides contain the square of the covariance term appearing also
in the Robertson-Schrödinger uncertainty relation (34) and can equal zero.

(II) Relations (33) and (45) have only one classical part at their left-hand side and �
2/4 at

the right-hand side. For the Gaussian wave packet and t → ∞, the left-hand sides tend
to �

2/4.
(III) The left-hand side of relation (51) contains the quantum parts only and behaves for the

Gaussian wave packet and t → ∞ as 1/t2. Except for special cases, the right-hand side
is not equal to �

2/4 and has to be calculated in each case separately. For the Gaussian
wave packet and t → ∞, it behaves as 1/t3 (see Eq. (69)).

The sum of relations (28) and (33) yields the Robertson-Schrödinger uncertainty rela-
tion (34). Therefore, relations (28) and (33) are sharper than the Heisenberg and Robertson-
Schrödinger uncertainty relations. In contrast to relation (33), the right-hand side of rela-
tion (28) does not contain �

2/4 and can equal zero. Similar conclusions can be made also
for analogous relations (44) and (45) in the momentum representation.

It is seen from our example that the time dependence of relations I–III can be very dif-
ferent:

With increasing time, the left-hand sides of relations I containing two classical parts
behave for the Gaussian wave packet and t → ∞ as t2 and the right-hand sides are greater
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than or equal to �
2/4. From the experimental point of view, it limits attainable accuracy of

measurements.
Uncertainty relations II contain one classical part only and their left-hand sides go for the

Gaussian wave packet and t → ∞ to the right-hand side �
2/4. From the experimental point

of view, this situation is more favourable than in case I.
In case III, the left-hand side of relation (51) for the Gaussian wave packet and t → ∞

goes to zero as 1/t2 and the right-hand side as 1/t3. Therefore, accuracy of measurement of
the product of two quantum parts 〈(Δx̂2)

2 = 〈(∂r2/∂p)2〉 and 〈(Δp̂2)
2 = 〈(∂s2/∂x)2〉 is not

in general case limited by �
2/4 as in cases I and II. Relation (51) is only the usual relation

between the variances and covariance of two quantities valid for any measurement.
Reason that Heisenberg and Robertson-Schrödinger uncertainty relations (1) and (34)

and relations (33) and (45) contain �
2/4 is the existence of the commutation relation [x̂, p̂] =

i� valid in the coordinate as well as in the momentum representation (see also calculation in
Eqs. (53)–(56)). In contrast to this situation, the inner product 〈u|v〉 in relation (51) depends
on the derivatives ∂|ψ |/∂x and ∂|ϕ|/∂p of the functions |ψ | and |ϕ| that are not, except for
special cases, related by the Fourier transform. In this respect, relation (51) is different from
the Heisenberg and Robertson-Schrödinger uncertainty relations and relations (28), (33),
(44) and (45).

Our example shows that relations II and III are less restrictive than uncertainty relations I.
Therefore, the well-known limitations following from the usual uncertainty relations can be
overcome in measurements related to the envelopes of the wave function in the coordinate
and momentum representations. Such measurements should be feasible for example for the
photon wave packets.

These results clarify the internal structure of the Heisenberg and Robertson-Schrödinger
uncertainty relations and show that these relations can be replaced by sharper relations with
different time behaviour of their left-hand and right-hand sides. It is not only of theoretical
interest but also important from the experimental point of view.
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