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THE NON-EXISTENCE OF OBSERVABLE STATES WITH
FRACTIONAL CHARGE IN CP 2 MODELS

Simon Davis ,
Reaserach Foundation of Southern California
8837 Villa La Jolla Drive n.13595
La Jolla CA 92039

The CP? model is examined with regard to the theoretical
basis for the non-existence of observable states with fractional charge
in the strong interactions. It is demonstrated that the field variables in
quantum chromodynamics can be formulated on this this space, which
arises both through gravity and the unified gauge theory and the ex-
istence of composite states which transform trivially under SU(3) is
verified.

Key words and phrases. complex projective space, instanton-anti-instanton pair,
composite states, linear potential.
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1. INTRODUCTION

It has been noted that the CP? sigma model appears to approximate well
the nonperturbative aspects of quantum chromodynamics. This will be
investigated further here in the context of the coset spaces that arise in the
reduction of higher-dimensional field theories to the coupling of standard
model and gravity. It is found that the consistency of the hypothesis of
the existence only of states transforming under the trivial representation of
SU(3) is confirmed through the properties of the projective space.

In the second section, two contributions to the potential of the strong
interaction are are discussed. The quark-anti-quark pair can be regarded
as a composite state with a restricted set of interactions. Together with
the Hamiltonion of the electric dipole, the perturbative sum of the lad-
der diagrams may be evaluated. Furthermore, the instanton-anti-instanton
effects may viewed as a nonperturbative solution to the equations of a o-
model in complex projective space. Again, a linear potential is derived, and
the two. contributions may be added to give the quark-anti-quark potential.
The role of complex projective space in the higher-dimensional geometry of
unified theories which produce the standard model upon reduction to four
dimensions is summarized in the third section.

2. THE COMPLEX PROJECTIVE SPACE AND QUANTUM
CHROMODYNAMICS

The complex projective space CP? as the target space of a o-model [1] or
a topological fluctuation of space-time [2]. The Euclidean gravitational field
equations with a cosmological term A are known to have CP? are known to
have the CP? instanton as a solution. It has volume 2° and action = [2].
Since it has positive curvature, it would be weighted as less probable than
flat space. Nevertheless, there can exist tunneling to this vacuum solution.

It has been noted that a Coulomb term in the potential can be generated
with the strength of the interaction determined by the perturbative series in
quantum chromodynamics. Convergence of the perturbations series requires
a lower bound for the isounit of the hadrons [3]. Relating it to the isospin,
and combining this with an integrality of the sum of charges of the quarks,
it can be demonstrated that the quark charges equal the known values [4].

The necessity for a ¢q meson or gqq baryon, rather than a free quark, can
be deduced if the lower bound for the isounit, upon identification with the
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isospin, is larger than % The divergence of the perturbation series for lower
values of [/ describing free quarks would reflect the lack of observability of
fractional charges.

In addition to this term, the potential of quantum chromodynamics is
known to be the absolute value of a linear function of the distance. The
physical effect of this potential is the restriction of quark fields to a region
of nuclear dimensions. The potential has a basis in the string models of
hadrons. If two quarks are attached to the ends of the string, this would
be classical force field would be a monotonically increasing function of the
distance. The tunneling probability for free quarks has been proven to
vanish [5]. ~

Nonperturbative effects in quantum chromodynamics have been mod-
elled by a CP? field theory. By contrast with the symmetry group SU(3),
m(SU(3)/U(2)) = z allowing the existence of instantons. The CN~! model
with fermions is

21 I= / d’z ((DuZ)TD,uz +yl(p - M )'lbé-lﬁ(gs + e f)(§ly)?
= gl W)

where Dyzo = Juza — 4 (210,2) 2, and D, g2 = e — eL (G z)ge, 7
generate the flavour symmetry of the 4 fields and 2z = %, Zp = ptz =0
[6] [7]. In a & expansion, the quartic terms in 2 are eliminated through
the introduction of two new auxiliary fields a(z) and A\*(z) such that the
propagator is demonstrated to have a pole at zero momentum indicating a
long range force that confines the z and ¥ fields.

The supersymmetric model is V

(2.2) I = /dzz‘ [(D#za)fDﬂza — (L Pvs)

&
1

+ 7100 + (s - Whonn |

with zlz, = 1 and 2[4, = ¢}z, = 0 which is invariant under local U(1)
transformations and supersymmetry transformations. It is known that the
pole in the M propagator is not present in the supersymmetric model and
that confinement of the z and v fields does not occur [7].
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The connection between the Wilson loop variables, CP? and quantum
chromodynamics has been explored previously. The area law has been de-
rived for a Wilson loop variable
(2.3)

(WO A yu = <<e:z:p [z‘g fg da"n V! (m)} >Wt . T erp {’t jé W} >mzr'r

where nt = (A[ETT¢[A), |A) is a highest-weight coherent state of SU(3)
corresponding to the coset space SU(3)/U(2), T# is a generator of SU(3),
w = (Ali€Td€(z)|A), the perturbative factor is dominated by an Abelian pro-
jected effective gauge theory, where the Abelian group is a subgroup of [/ (2)
and the non-perturbative part is defined by a four-dimensional topological
quantum field theory [8]. Because this topological quantum field theory ad-
mits a BRST symmetry, it can be reduced through a superspace integration
to a two-dimensional bosonic o model. It is found that the contribution of
instanton-anti-instanton interactions to the Wilson loop variable vields an
exponential dependence with respect to the negative of the area contained
by the curve C [9]. This result is consistent with confinement of nontrivial
gluon states.

Supersymmetry has been shown to be necessary for finiteness of the
model, and yet, it is not compatible with confinement of quarks and glu-
ons. It is also known that Borel nonsummability of certain one-dimensional
quantum mechanical models is related to the interactions of instantons and
anti-instantons [10][11]. It follows that quark and gluon confinement will not
be a property of the theory of the strong interactions based on the CP? model
unless there are divergences in the perturbation series that are not being
removed through supersymmetry. These divergences require an evaluation
of the partition function for quantum fluctuations about a nonperturbative
state, which would depend on the relative energy of the instanton-anti-
instanton pair to the vacuum.

It is known that the perturbative series of quantum chromodynamics is
not Borel summable because of infrared renormalons and instanton singu-
larities [12]. While the renormalons tend to obscure the connection with
nonperturbative effects [13], these can be removed by passing to the con-
formal limit [14]. However, these instanton singularities are generated by
solutions of Yang-Mills field equations that do not yield an immediate pre-
diction of the confinement of quarks. For example, the potential derived
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from the interaction of QCD instantons and anti-instantons has the form
_ . d :
0O V) =VouuB) ~ [ ds (o)) + (o)

where 77 denotes the location of the instanton, p is the instanton scale size,
n(p) is the instanton density, vo(R) is a classical term and vy(p) is found
from diagrams with one-gluon exchange and self-energy graphs [15][16]. The
linear term in the potential is not recovered, however, unless the point-
particle picture is replaced by interactions of nonperturbative states defined
by the CP? model. Specifically, mapping of the two-dimensional areas of
the o-model to the complex projective space yield interactions in higher
dimensions. If the charge of the instanton and anti-instanton is distributed
throughout the surface of CP?, for example, an integration would yield a
factor of R®, which would cancel the factor arising from the integration of
513, because vg(p) and ve(p) produce a factor of %, to give a linear potential
when the quark-anti-quark separation is related to the size of the CP? spaces.

The existence of a ¢¢ pair separated by a distance r is nonperturbative
especially if the Hamiltonian is determined by a Wilson loop. Any pertur-
bative computation based on this configuration is a correction to a non-
perturbative state. The potential for quantum chromodynamics also has
been computed through a sum of ladder diagrams [17], which follows from
the interactions that can occur between ¢g states. The combinatoric fac-
tor ;fﬁm is reduced because there are restrictions on the planar pair-wise
contractions of 2n vertices.

The potential deduced through the CP? model may be added to that com-
puted perturbatively about the nonperturbative ¢g state to give the poten-
tial for the strong interactions. At a distance R from a colour electric dipole,
the expectation value of the square of the electric field is (E?) o %?; + ey,
where d is the distance between the quark and the anti-quark [18]. Al-
though it might appear energitically favourable for the two charges to move
in the orthogonal direction to the separation vector between the quark and
anti-quark, if this configuration develops, an instanton-anti-instanton inter-
action results, and integration over the surface areas yields a compensating
factor of R®. Consequently, a linear potential at larger distances is valid
generally.
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It might be concluded that since the Lagrangian of quantum chromody-
namics with fermions is included in the perturbative factor and the ghost
action that is equivalent to the topological field theory, there is no need to
extend the bosonic sigma model that results from the Parisi-Sourlas dimen-
sional reduction Quark confinement also follows from the linear potential,
which may be derived through the logarithm of the Wilson loop variable,
and it is attained with the bosonic o model. A two-dimensional o-model
with fermions would have to be derived from a four-dimensional action to
have a connection with chromodynamics. Although terms corresponding to
the fermion fields in the o-model might be added to the topological field
theory, the Parisi-Sourlas reduction cannot be implemented if the model is
not supersymmetric. Generalizing from two dimensions to four dimensions,

(2.5) Iy= / d'z [Dﬂzpﬂz + (YD, — Mp)p + —éfﬁ&(z/?w))?
+ %—‘i—[(@f;zﬁ” 2)? + +(pzOys 29

where the scalar fields are identified with gluons, |z[> = 3 and D, =

Oy — %%iég "z [19]. While the internal space is CP?, the integral is evaluated
over M*. There does not exist a spin structure on CP?, and the fermion
fields could not be extended to a total space which is locally diffeomorphic
to M*x CP?. Instead, the extension of fermion fields to the total space of the
bundle over Minkowski space-time will require a generalized spin-structure
which depends on phase factors containing the gauge field [20]. Integration
of the partition function yields an effective action that contains determinant
of the trace of the logarithms of the differential operators and an integral
containing auxiliary fields that are necessary for the elimination of the quar-
tic field terms. The auxiliary fields have the form of trivial representations
of SU(3). The quark and gluon fields are not present and there remain
only the hadron fields in the effective action [19]. This mechanism therefore
provides a theoretical basis for the non-existence of free fractional charge
states in the strong interactions. The action (3.4) is not renormalizable [19],
although there is a supersymmetric version of the four-dimensional o-model
[21]. ‘

The SU(3) symmetry of the CP? model is global in contrast to the lo-
cal invariance of quantum chromodynamics. These first invariance can be
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regarded as an approximation to the latter symmetry in the limit of infin-
itesimal radius of an internal space. The extension to higher dimensions
would be necessary for the initial formulation of this model to be valid.
There, a generalized spin structure involving the product of the fermion
field and a gauge field phase factor is required. This phase factor can be
identified with an open string. Furthermore, it is known that consistency
requires that the fermions transform under the representation of a double
covering of the group acting on the bosonic fields [20]. Although SO(6)
is larger than the isometry group SU(3), it does act on S% in the other
coset compactification. Furthermore, it has a double covering SU(4), which
might be considered to be a preceding invariance of the effective field theory
before the SU(3) symmetry of quantum chromodynamics. The projection
of SU(4) to SU(3) and SO(6) to SU(3)/2z, verifies the necessary constraint
on these fields such that a generalized spin structure may be defined.

It has been found that the instantons of the CP! and CP? models are
located below a melting point for the exponential suppression of the mass
of the 7' meson [22], whereas there are no instanton solutions to the CP"
are available for modelling phenomena in quantum chromodynamcs because
these are above this critical point for large field fluctuations. This result
would confirm the use of the CP? model.

3. THE COoMPLEX PROJECTIVE SPACE IN A COMPACTIFICATION OF
ExTRA DIMENSIONS

It may be recalled that there exists a coset space S&gfgg,i%%))” [23],

which is eight-dimensional and can be retracted through the groups to
gg((zs)):ggg?z(?(’s,), [24][25] such that the known particle spectrum is recovered
and the automorphism group of the spinor space of the standard model is
obtained [26]. The reduction sequence from a twelve-dimensional theory
compactified over this space to a four-dimensional theory with the gauge
group SU(3) x SU(2) x U(1) has been shown to be consistent with known
higher-dimensional models that are verified by particle physics phenomenol-
ogy at lower energies.

The seven-dimensional manifolds My, = ggg‘;: gz()%’;f{g,),, which are so-
lutions to the equations of eleven-dimensional supergravity, have an eight-
dimensional limit

SU(;’EE%Z(;)(S?(U, with the U(1) and U(1)" factors identified, which admits
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N = 2 supersymmetry and contains the lepton and quark multiplets of the

standard model [25]. The space %%—-(?2))%%%2 is classified by the Chern class

of the U(1) bundle over CP? and CP', where CP? ~ SU(3)/(SU(2) x U(1)).
Consequently, the complex projective spaces arise in the reduction se-
quence from higher dimensions and may be used as a basis for theoretical
models of elementary particles. The isometry group of CP? is SU(3)/zs
[2] [27], and the discrete group commutes with SU(3) and the embedding
of SU(2) x U(1). Both the covering of the isometry group of CP?, SU(3),
and the stability group, SU(2) x U(1), occur in the standard model in four
dimensions. ]

In the reduction sequence corresponding to the coset space 5(?{23)}(;5 gg)),ff’g(ll)) -
the nonperturbative bound states of the vector bosons of the strong interac-
tions have a special role and take values in 57 which then can be projected
to SU(2) x SU(2). There is a mapping between nonperturbative configu-
rations in S7 to SU(3)/U(1). These states are represented by Wilson loop
variables in S7, which may be identified as closed strings, whereas open
strings on SU(3)/U(1) is required for the modelling of the hadrons. With a
further SU(2) invariance, projection to SU(3)/(SU(2) x U(1)) ~ CP* would
yield the open string states on CP? which could serve as the phase factors
necessary to introduce the fermion fields. The existence of the open string
states requires a discrete factorization which results from the presence of
Zsz in the isometry group. Factorization by the restriction to an order-two
subgroup produces the strings with a quark and anti-quark, whereas the
entire Zs group would generate the open string description of baryons.

The compactification of the twelve-dimensional theory, containing the
ten-dimensional superstring theories, based on the coset space S&gfg(%),’fﬁ(lf)" ,
has been shown to be constrained by the presence of N = 1 supersymmetry
and the number of fermion generations. It has been shown that the radius
of the six-dimensional component G5/SU(3) [28] then equals approximately

(3.1) Ry ~ 0.7224 {p.

Since the contraction of the isometry and stability groups in this coset
manifold yield the bundle over CP?, it follows that the radius of CP? would be
similarly constrained. Furthermore, the CP? gravitational instanton arising
as a topological fluctuation of the metric is likely to have dimensions of the
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same magnitude of a Planck length. With such an infinitesimal radius of this
compact space, the approximation of a local SU(3) symmetry is sufficient.

4, CONCLUSION

There are several nonperturbative aspects of a CP? model that reflect
composite states in quantum chromodynamics. This model consistently
predicts the the monotonically increasing potential and the absence of frac-
tionally charged states outside of this potential. The existence of a gen-
eralized spin structure, necessary for the introduction of fermion fields, in
the higher-dimensional space is valid if there is a coupling to a phase factor
representing an open string state.
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Abstract

In our previous paper, we have studied prolongations of repre-
sentations of Lie groups. In this paper, we present a study on the
prolongations of representations of Lie algebras. We show that a
tangent bundle of a given Lie algebra attains a Lie algebra structure.
Then, we prove that this tangent bundle is algebraically isomorphic
to the Lie algebra of a tangent bundle of a Lie group. Using these,
we define prolongations of representations of Lie algebras.

Keywords: Prolongation; Representation; Lie Algebra.
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Introduction

In this paper, we present a study on the prolongations of representations
of Lie algebras. In our previous work [6], we have obtained a basis for the
tangent bundle of an arbitrary finite-dimensional vector space and shown
that if a function is linear, then its tangent function is also linear. We
have also defined prolongations of finite-dimensional real representations of
Lie groups and obtained faithful representations on tangent bundles of Lie
groups. The remaining part of the paper was dedicated to the study of the
properties of these faithful representations.

We start this study based on the fact that existence of prolongations of
representations of Lie algebras can be implied by the existence of prolonga-
tions of representations of Lie groups [1, 9]. First we show that the tangent
bundle of a Lie algebra has a Lie algebra structure. Then, we prove that this
tangent bundle is algebraically isomorphic to Lie(T'G) where G represents
a Lie group, T'G represents G’s tangent bundle, and Lie(T'G) represents the
Lie algebra of T'GG. Using these, we define prolongations of representations
of Lie algebras.

1 Preliminaries

THEOREM 1.1. For manifolds M and N, T(M) x T(N) is equivalent
to T(M x N) by using the following relation

(X,Y)2Tf(Y)+Tf,(X) (1.1)

_ Jorall X € To(M) and Y € T, (M), where fo : N = M x N and
Jfy: M — M x N defined by f.(m) = (z,m) and f,(m) = (m,y), where
T.(M) represents the tangent space of M at x € M.

DEFINITION 1.2. If we consider a coordinate neighborhood U in M with
a local coordinate system {zy, s, ...,z,}, then we can canonically define a
local coordinate system

n
{21, %9, ..., T, V1, V2, ..., v } on T(U), ie., a tangent vector Z%(Z‘;{)x has
i=1 i
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the coordinates (i, %, ..., Zn, v1, Vs, ..., U,) if the point 2 € U has the coor-
dinates (1, Za, ..., 7,). Thislocal coordinate system {z1, 2, ..., T, v1, Vo, ..., U }
is called the induced local coordinate system on T(U) by {z1,zs, ..., % }
3, 8].

DEeFINITION 1.3. If we consider two tangent vectors X € T,(R") and
Y € T,(R™), then the tangent bundle T(R") is a vector space of dimension
2n with respect to the following sum ”@®” and the scalar multiplication ”e”

X@Y = (Tr)X + (Tr,)Y,

Ao X = (To\)X (1.2)

where 7, represents a translation of R” by z € R® and o), represents a the
scalar multiplication by A € R. For any finite-dimensional vector space V/,
the tangent bundle T'(V') becomes a vector space with respect to the similar
sum and the scalar multiplication. If f : R" — R™ is a linear map, then
Tf:TR") = T(R™) is also a linear map [7].

ProprOSITION 1.4. Let V and W be arbitrary finite-dimensional real
vector spaces of dimensionsn, m and f:V — W be a linear map, then the
tangential map T'f : TV — TW is a linear function. Moreover if [ is a
linear isomorphism, then T f is also a linear isomorphism. [6]

DEeFINITION 1.5. Let V' be an n-dimensional real vector space, {; : 1 <
i < n} be a basis for V, {e; : 1 < i < n} be the standard basis for R"
and ¥ be bundle trivialization of T'V. Then 1) is a linear isomorphism with
respect to the both vector space structure on V x R"™ and the structure on
TV and if we define &; = (®;,0) € V x R" and ; = (0,¢;) € V x R™ for
Vi € {1,2,...,n}, then by definition n = {&;,y; : 1 <i < n} is a basis for
V x R™. Since # is a linear isomorphism, then

o) =G G =N @), B = 0 ()}
is a basis for TV [6].

DEFINITION 1.6. Let R, : GL(n) — GL(n) be a right translation of
GL(n) by a € GL(n) where R,(y) = y.a for y € GL(n). Then B =
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TR, (Y) is a tangent vector of GL(n) at its unit element (¢ € GL(n)),
namely B € Lie(GL(n)).

Conversely, for any pair a € GL(n) and B € Lie(GL(n)), there exists
Y € To(GL(n)) by Y = TRy(B). Y can also be written as Y = [a, B] [7].

THEOREM 1.7. T(GL(n,R)) can be embedded into GL(2n,R) by the
following one-to-one Lie group homomorphism
Jn : T(GL(n,R)) — GL(2n,R),
a 0 (1.3)
In(la; B]) = (.Ba, a)

for any a € GL(n) and B € Lie(GL(n)). It can be shown that J,([a,0]) =
Ta [7].

REMARK 1.8. The matrix that corresponds to a linear operator F €
Aut(V') with respect to a fixed basis {e; : 1 < i < n} C V consists of arrays
of scalars (F}) determined by

T

Flag) = (F)a (1.4)

i=1
[2]. Using (1.4), we can define the following group isomorphism
Z:GL(n) = Aut(V) | Z(F}) = Flo; ® o (1.5)

where [Fj] € GL(n). Another group isomorphism Z from GL(2n) to
Aut(TV') can be defined similar fashion.

DEFINITION 1.9. We define a one-to-one homomorphism
Jo s T(Aut(V)) = Aut(TV)

with jn =Zo JnoTZ. The differential of this homomorphism, which is
represented by (T'J,) .0 : Lie(T(Aut(V))) — End(TV') where (I,0) refers
at unit element, is a Lie algebra homomorphism.
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PrRoOPOSITION 1.10. If X is a left-invariant vector field in a Lie group
G, ie, TLX = X for any o € G, then X" and X¢ are left invariant
vector fields in the tangent group TG [11]. Moreover if {X1, Xa, X}
form basis for of the Lie algebra of G. Then their vertical and complete lifts
{X1%, X0, ., X0, X4©, (2, .., Xn°} form a basis of the Lie algebra of all
left invariant vector fields in TG [11]. If the structure equations are given

by
X, X5] = C%Xk (1.6)

Cg being the structure constants of G, then we have following equations:
[Xi, Xj]° = [X:%, X;¢] = Ch X,
(X, X]” = [X*, X5 = CEX” (L.7)
[X?jv; va} = 0.

2 Prolongations of Representations of Lie
Algebras

PropoSITION 2.1. For all a,b,c € G , A € R, X,, Y}, Z. € T(Lie(G)),
we have following formulas:

pofy = U*lo(PofTa (2.1)

pofy = ay0p0f (2.2)

pofhoon = oropof; (2.3)

Yofaa = oOr0pof, (2.4)

pofeon = Typgopof. (2.5)
T(pof)lZ)®T(po [1)(Z) = T(po fass)(Ze) (2.6)

T(Totp1a) © © © fo 0 0 0 Jo + Tygp(apye) © 0 © foe)(Xa)
=T(o-109p0 fopo f)(X,) (2.7)

T(Tﬂo(@(bm),a} cwo frz cpo fa + Tio(ip(a,b),e) © fa opo fb) (YE))
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= T({7~1 opo f(p(&,a))(}@) (2'8)

T(Totptber.o) © P © fotap) + Togp(aye) © 0 0 fao 9 o fy)(Ze)

— (01090 fyopo f)(Z) (29)

where ¢ represents the Lie bracket, Ty represents the differential of ¢ and
x; represents coordinate functions of G.

Proor. For all z € Lie(G), we have
(o fo)(z) = la,z)
= —(p(z,a))

= U.«1<(<Po.f2:a‘)(x))
= (01.1 inofa)($)'

This proves (2.1). Proofs of (2.2)-(2.5) can be easily shown by the similar
way. Therefore, we focus on the rest of the proofs.
Proof of (2.6): Using the coordinate functions of Lie(Q), we have

(@il(Tobe) © 0 fa) + TilTp(a,e) © 0 © fo))(X) = 25(0(b, ¢) + p(a, X) + p(a, c) + (b, X))

for all X € Lie(G). Since ¢(b, ¢) and ¢(a, c) are constants, we have

8(357:(7—(;:(&0) opo fa) + .Z'Z'(T(p(a,c) owo fb) l — a(IKZ °yo fa+b) { (2 10)
Ox; ‘ L ) '
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me 6
Using Z, = szé—gjc and (2.10), we have
=1 Y

(Lo fu)(Z) @ T(po fi)(Z)lr:]l = (T7p00(T(p 0 fo)(Ze)) + Trpa)(T(9 0 f,)(Z2)) ]
i 2 8(:51 O Topb,e) © P © fa +Z; 0 Topla,c) O @ © f;,)

— le
=1 (9Lj
— Em: 5 a(xi(T(p(b,c) ©@Yo fa + Tola,e) OP O fb)) I
1 4 8’173 ¢

—~_ O(ziopo fuy)
D% . le

= (T(po fars)(Z:))|xi]. (2.11)
This completes the proof.
Proof of (2.7): For all X € Lie(GG), we have
(T3 © Top(ofb,e)a) © 9 0 fe © 9 0 fo T © Tppapy.e) © P O fopne)(X)
= zi(p(e(b, ), a) + @(p(X,b), ) + p(p(a,b), ¢) + (b, c), X)). (2.12)
Then the differential of 2.12

O (Ty(p(b,c),a) © © © o © 00 Jo 4 Ttotap)e) © P © fone))
81’33‘

_O(wioo0p0 fyopo [)
Ox; '
Using (2.12) and (2.13), we finish the proof as follows

T(Top(p(b,c)a) © P © Jfeo Yo fr+T, olp(ab)e) © P O fome)(Xa)z:]

(2.13)

= Xali © T(p(,0,0) © 9 © [ 09 0 fi + Tpi(aiy.e) © 0 Fotve)]
m

- Tox O3 © Tp(paa) © P 0 Je © 9 0 Jo + Tytptap)d © £ © fomne)
- 7

la
e (?xj
_ §-ydmeocpohopo )
=] X] a Ea
- Ox;
J==1

= T(o10@o0 fyopo f.)(X,)|xi].
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Proof of (2.8) and (2.9) can be similarly performed. O
PRrROPOSITION 2.2. (T(Lie(G)),®, e, Tp) is a Lie algebra.
Proor. Using (2.1) and (2.2) for all (X,,Y;) € T'(Lie(G)) x T(Lie(G)),

we have

To(Xa,Ys) = To(T[o(Xa) + T fu(Ys))
= T(po f3)(Xa) +T(po fu)(¥s)
= T(o10po f3)(Xe) +T(0-1 090 fo)(V3)
= To 1 (Te(Tfu(Ys) + T fo(Xa)))
= To (Tp(Ys, Xa.)) ‘
= —1eTy(Ys, X,). (2.14)

(2.14) shows that Ty is antisymmetric. For all X,,V;, Z, € T(Lie(G)) and
A € R, Egs. (2.3) and (2.4) give

ToAe X, Ys) = To(Tf(Ae Xo) +Tha)(Vs)
= T(po foo0ox)(Xa) +T(¢0 fra)(Vs)
= T(orogo [y)(Xa) +T(or0@o f)(Vs)
= XeTp(X,,Ys). (2.15)

Using Eqgs. (2.5) and (2.6), we have

Il

To(Xa, Ze) ® Tp(Ys, Ze) T7v,0)(T0(Xa, Ze)) + TTopta,e) (T0(Vs, Ze))
T(Tp.e) © P © Je)(Xa) + T{Tptae) 0 @ © J) (V)
T(Tobe) © 9 © Ju + Tae) © ¥ © fo) (Ze)

T(po fc o) (Xa) +T(po fc 0 7)(Y3)

T (To(be) © 9 © fa)(Ze) + T(Tp(a) © 9 © fo)(Ze)
T(po f)(T7)(Xa) + (T7)(Y5))

(T(po fa)(Ze) D T(0o fo)(Zc))

To(T [o(Xa ®Yy) + T fars(Ze))

To(X, @Y, Z.). (2.16)

I

o+

+

o+ H

I
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(2.15) and (2.16) show that T is a bilinear function. Finally, using (2.7),
(2.8), and (2.9) we have

Te(To(Xa, Vs), Ze) @ To(To(Ys, Ze), Xa)
(T(po fc 0 )(Xa, Yy) +T(po f<p(a+b))(zc)>)
(T(po fao ) (Y, Ze) + T 0 fope)(Xa))
= (T(Tp(oera) © 9 0 fe 00 0 Jo + Tytptape) © 9 © foine))(Xa)
T(To(ot0 © 9 0 fo 0 90 fo+ Ty(pap) 09 © fao 00 [)(V3)
(T (Totptb.era) © 0 © Sotapy + Totptam,e) © 90 fao 0 0 f3)(Z)
= T(o_jopo fb opo fo)(Xe) +T(010p0 f«p(C,a))(Yb)
+ T(o0po fyopo fo)(Z)
= <T0-1 © T(z’o)«be(T(P(Zc; Xa) -+ Tﬁp(c,a)(n))
= To\(Te(Tp(Z:, Xa), V)
= —1eT(p(T'p(Z;, Xa),Y3))- (2.17)
Eq. (2.17) indicates that the Jacobi identity is satisfied. Therefore (2.14),

(2.15), (2.16), and (2.17) imply that (T(Lie(G)), ®, e, Tp) is a Lie algebra.
O

i

2]

LEMMA 2.3. Let C’i’; be structure constants of G, then we have:
d(zxopo fx)
(9$j

Az oo fy)
6xj

ly = a:C; (2.18)

Ix = b:C; (2.19)
m _ m B
where X = Z oX;, and Y = Z b X;.

t=1 =1

ProOOF. Using (zx 0 p o fx)(X) = @z, CE for all X € Lie(G), we show

aropoly), _ damCh
6xj Y 6::@

Proof of Eq. (2.19) can be done similarly. O



~ 632 -

DEFINITION 2.4. Let {X1, X3, .., X;n } be a basis for Lie(G) and {ey, ea, ..., €, }
denote the standard basis of R™. Then we define a new function

Q: T(Lie(G)) — Lie(TG) (2.20)

m m
where Q(X,V) = Z GX{+ X7, X = Z‘_‘iXi € Lie(G), and
i=1

i=1

m
V= Z‘T)?Fz € R™.
f=1

PROPOSITION 2.5. T(Lie(Q)) is algebraically isomorphic to (Lie(TG),1,]).

Proor. For simplicity, we represent {}\(;,1};} as a basis for T'(Lie(G))
where X; = (X;,0) and g; = (0,¢;) [6]. Since X; = Z(S;Xj, using (2.20)
we have

X)) = Q((id;Xj),O):i6§X;:Xf (2.21)

and since e; = Zc?;ej, we have
Qi) = 20, die;) =) 5XY = X! (2.22)
J=1 J

Eqgs. (2.21) and (2.22) shows that € is a linear isomorphism. Showing that
2 is a Lie algebra homomorphism completes the proof. For that, we take

m
two arbitrary elements (X, V), (Y, W) € T(Lie(G)) where X = ZGin‘,

g==1
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m m bt
Y = sz-Xi and V = Zviei, W = Z'wéei. Then, we have

f=1 i=1 i=1

To((X, V), (V. W)zl = (V,W)lzwo po fx] + (X, V)[ze o po fy]

_ Ny O@opofy) | dmkopofy),
— 2%( 8553 l % a/L] iX)

= Y (waCh +5;5C%)
i,j=1

= Y (w;a; — v;b;)CE. (2.23)

.f=1

(2.23) implies that

To((X,V),(V, W) = (O ab;[Xi, X;1, > (w8; — 0;5:)Cler).  (2.24)
Using Eqs. (1.7) and (2.24), we obtain

UTe((X, V), (Y, W) = > ab;CEXE+ > (wsa; — v;b)
= > abX, X+ (- wgaz*i—zzjb)[X],Xz]”
= Y @b [Xi, X5l + > (= + ;0 [ X, X
= X, V), Y, W)). (2.25)

Eq. (2.25) shows that Q is a Lie algebra homomorphism, therefore this
finishes the proof. 1

ProroOSITION 2.6. Let (g,¢) and (h,7y) be two Lie algebras and F -
g — h be a Lie algebra homomorphism. Then TF is a Lie algebra homo-
morphism.

Proor. Since F' is a Lie algebra homomorphism, it is a linear function.
By definition (1.3), TF is a linear function. Showing that TF preserves Lie
brackets, we complete the proof.
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Since F is a Lie algebra homomorphism, F'(¢(X,Y)) = v(F(X), F(Y))
for all X,Y € ¢. This means

Fop=vyo(FxF). (2.26)
From (2.26), we can write TF o Ty = Ty o (TF x TF). This leads to

TF(Tp(X,Y)) = (TFoTy)(X,Y)
= Tyo(TF xTF)(X,Y)
= T~y(TF(X),TF(Y)) (2.27)

where X € Tg and Y € Tg. Therefore (2.27) implies that TF preserves Lie
brackets. O

PROPOSITION 2.7. Let ¢ : Lie(G) — End(V') be a Lie algebra represen-
tation, Q : T(Lie(G)) — Lie(TG) and ' : T(End(V)) — Lie(Oto(TV)) be
Lie algebra isomorphisms which are defined by Eq. (2.4). Then
¢ - Lie(TG) — End(TV) is a representation of Lie(TQ) defined as

¢ = (TJ) oo oTdoQ™ (2.28)

where J,, represents a one-to-one Lie group homomorphism from T(Aut(V))
to Aut(TV) and T(J, )10y represents the differential of J, at (I,0) (refer
to Definition 1.9).

Proor. By Proposition (2.7), T'¢ is a Lie algebra homomorphism. Since
2 and ' are Lie > algebra isomorphisms and (TJ, )(1,0) is a Lie algebra homo-

morphism then qb is a Lie algebra homomorphism , i.e. (j) is a representation
of Lie(T'G). a

DEFINITION 2.8. The Lie algebra representation $ given in (2.28) is
referred to as the prolongation of ¢.

3 Conclusion

In this paper, we have studied prolongations of real representations of
Lie algebras. In particular, we have obtained representations of Lie algebras
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of tangent bundles of Lie groups. First, we have shown that a tangent bundie
of a given Lie algebra attains a Lie algebra structure. Then, we have proven
that this tangent bundle is algebraically isomorphic to a Lie algebra of the
tangent bundle of corresponding Lie group. Using these, we have defined
prolongations of representations of Lie algebras. In future, we will study the
relationships between the prolongations studied here and the prolongations
presented in [6].
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Abstract

In this paper we provide an action related to a certain sector of
general relativity where the algebra of Hamiltonian constraints forms
a first class system. This action is a Dirac-consistent stand-alone action
with two physical degrees of freedom per point. In this paper we pro-
vide the steps necessary to transform this new action to and from the
associated sectors of the Ashtekar theory and a certain antecedent of
the pure spin connection formulation by Capovilla, Dell and Jacobson.
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1 Introduction

The invariance of Einstein’s theory of general relativity (GR) under general
coordinate transformations is explicit at the covariant level of the theory,
where space and time appear on equal footing. In a canonical treatment
one formulates the theory using variables defined on 3-dimensional spatial
hypersurfaces which evolve in time. This almost inevitably introduces a
3+1 splitting of the theory, and one must verify in the end that the original
invariance has been preserved under this splitting. In this paper we will
probe this principle using a theory related to GR, specifically within the
realm of time reparametrizations. Let us consider a general transformation
© of coordinates z € M, where M is a 4-dimensional spacetime manifold

ot — o't = 2t + £ (z). (1)

As shown in [1], the form variation of a field F(z), 6oF(z) = F'(z) — F(x)
should be clearly distinguished from its total variation, §F(z) = F'(z') —
F(z). Form variation and differentiation are commuting operations, and
when z’ — z is infinitesimally small, we get

O0F(z) ~ 6o F'(x) + €0, F (). (2)

A scalar field @(z) € M is a field which is invariant with respect to trans-
formations (2): ¢'(z') = ¢(z). As a consequence, the form variation of ¢ is
given by transformation law [1]

dop(xz) = —EHOup(x). (3)

Equation (1) as an infinitesimal general coordinate transformation defines
the following vector field £ = £#3,, € M as realized in (2). The commutator
of any two vector fields &€,{ € M is given by the Lie bracket

[{”3‘“ 4”&,] — (guaugu _ C“apiy)&,, (4)

which defines a Lie algebra of general coordinate transformations.

To approach the question of whether there exists a formulation of GR
where the Lie algebra (4) can be realized at the canonical level, let us per-
form a 3+1 splitting of (4) into purely spatial and temporal vector fields
& = (0, N}, N? N3) and ¢&* = (N,0,0,0) for comparison. This yields the
following algebra

[N9;, N79;] = (M'O; N7 — N*6;M7)9;;
[N?0;, Noy| = (N'6;N )8y — (NN')0;
[M8y, N&y| = (MN — N M)d. (5)
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The Poisson algebra of hypersurface deformations for general relativity has
been computed by Teitelboim [2]

{H[N), HIM)} = Hy[N'0FM; — M'9* Ny,
{H(N), H[N]} = H[N'8;N]
{H(N),H(M)} = H;[(No; M — MO;N)q"], (6)

where H,, = (H, H;) are the Hamiltonian and diffeomorphism constraints,
and ¢% are phase space dependent structure functions. If one could make
the identifications

HuNﬁu————)HNag; Hzmé)z, (7)

then there would be an isomorphism between (5) and (6) with respect to
purely spatial diffeomorphisms, which form a subalgebra of (4). However,
equation (5) states that temporal diffeomorphisms should also form a sub-
algebra of (4), which clearly is not the case in (6).

A direct implication of (6) is the nonexistence of a canonical formulation
of GR, in the full theory, which evolves purely under the dynamics of the
Hamiltonian constraint.! In this paper we will propose an action Iy, which
is directly related to a certain restricted sector of GR in a sense which we
will make precise. We will show that the temporal part of the algebra (5) is
realized via Poisson brackets on Ig;,. which is the main result of this paper.
The question of whether Ig;, is equivalent or not to GR. is one which we
will not address in this paper. Rather, we will show that Ik, is a theory
with 2 degrees of freedom per point on its reduced phase space, which is
directly transformable into certain subspaces of the original theory of GR
in ways which we will clearly demonstrate.

The title of this paper refers to a ‘reduced’ 4-dimensional GR theory,
which is presented as Igy,. We will like to clarify that we have not shown
in this paper that Igy, follows from full GR in the sense of a reduced
phase space procedure, which involves solving constraints and gauge-fixing.
Rather, we will present Ig;, as a restriction by hand from full GR to a
certain subspace upon which our analysis will be carried out. It will become
clear that the action [gy, is still a stand-alone action irrespective of the
issue of its precise relation GR.? The organization of this paper is as follows.
Sections 2 and 3 present the action Igy, as the starting point, which is a
totally constrained system with a single constraint which we have named a

t Another way to state this is that the Hamiltonian constraint H does not form a first
class system. This is because the Poisson bracket of two Hamiltonian constraints yields
a diffeomorphism constraint. So (6) suggests that to be consistent, the diffeomorphism
constraint H; must be part of the theory in addition to the Hamiltonian constraint H.

280 while we will not claim here that I'x;n is the actual reduced phase space for gravity,
we will present it as motivation for the prospect that such a formulation for GR, where
this or something similar might perhaps be realizable, cannot be ruled out.
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Hamiltonian constraint. We carry out the Dirac procedure for constrained
systems, showing that Iy, is Dirac consistent at the classical level, and with
a physical phase space having two degrees of freedom per point. Sections
4 and 5 present the transformations which take Ix;, to and from certain
sectors of GR, specifically the restriction of full general relativity to the di-
agonal subspace of the Ashtekar and other variables and with no Gauss’ law
and diffeomorphism constraint. Our main result will be to show that this is
still consistent, even if it turns out to be the case that Ik, is not equivalent
to GR. Section 6 is a short discussion and conclusion of our results. In Ap-
pendix A, we derive the set of configurations exhibiting the same features
as Iy, as we have presented in this paper.

On a final note regarding index conventions for this paper, lowercase
symbols a,b,c,... from the beginning part of the Latin alphabet signify
internal SO(3,C) indices, while those from the middle i, j, &, ... are spatial
indices. Both sets of indices will take values 1, 2 and 3. Greeek indices u, v
will denote spacetime indices, which take values 0, 1, 2 and 3.

2 The starting action

Consider the phase space Qxsn = (Tkin, Prin) of a system with configura-
tion and momentum space variables ', = (X, Y, T') and Pryp, = (I3, 1o, IT)
defined on a 4-dimensional spacetime manifold of topology M = ¥ x R,
where ¥ is a 3-dimensional spatial hypersurface with R as the time direc-
tion. The variables are in general complex, and the configuration space
variables take on the ranges —oco < |X/|,|Y],|T| < co. The following mass
dimensions have been assigned to the variables

] =[] =M =1 [X]=[Y]=[T]=0. (8)

From these variables can be constructed the following kinematic phase space
action for a totally constrained system

I= _—é. / dt / &z (IL X + LY +107T) - iH[N], (9)
%

where G is Newton’s gravitational constant. The function H is smeared by
an auxilliary field N, forming a Hamiltonian density H|[N] given by

HIN] = / BrNUe /20 (10)

JE
where the quantities in (10) are defined as follows. First we have @, given
by

®= VH(HJVHQ(H”*HQ)KIHJ(% * Hinl * Hjm)} (1)
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where k = -A— is a numerical constant.® There are no spatial derivatives in

any of the qu&nmtles in (11), and all spatial derivatives in the theory (9) are
confined to the quantity U in (10), given by

U= [1 +e7T((322)(3:X) (DY) — (357 )(812)(02X))

+e X (OY)(012) + €7 (0,2)(8eX) + e ¥ (33X )(33Y)} " (12)

with 7 =T — X — Y. We have defined

7] 9] 4]

P T aE Ty

(13)
where y', y' and 3 are dimensionless spatial coordinates in 3-space X.

The canonical structure of (9) yields the following Poisson brackets
amongst fundamental phase space variables

{X(2,), iy, )} = {Y (2, 8), Ma(y, )} = {T(2, 1), IL(y, 1)} = —iG6P)(w, y),(14)

with all other brackets vanishing. Note that this induces the following canon-
ical Poisson bracket between any two phase space function f, g € C®(Qgyy,)

5 6
{f’g}:/gdg Of 99 09 8f | O by _ 99 Of  6f¢ég _dg f] (15)

6l 06X oI 60X oy 0Y Ol 0Y ' OI 6T  SLOT.

Since the Hamiltonian of (9) consists purely of a constraint proportional
to @, then it is appropriate to proceed with the Dirac analysis for totally
constrained systems [3].
The velocity N does not appear in the starting action (9), which implies

as a primary constraint the vanishing of its conjugate momentum Iy

or

Oy =—=0. ‘ 16

ON (16)
As a consistency condition we must require that Il be preserved in time,
which leads to the secondary constraint

of

s =H=UeT0 =0, (17)

iy =
We must then check for the preservation of (17) in time, which is the same
as checking for closure of the algebra of Hamiltonian (10) under Poisson’
brackets (15).

We will identify A as the cosmological constant, and ao is a numerical constant of
mass dimension [ag] = 1.
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3 Poisson algebra of the Hamiltonian constraint

We will now compute the Poisson algebra of two Hamiltonians. There exist

phase space functions ¢ = ¢’ (Qx;,) such that the functional derivatives of

(10) with respect to momentum space variables are weakly of the form
dH[N] dH[N] 9 OHI[N]

U O Ngt U v 2R N
510, 5 5m T q (18)

where we have defined

1 2
1 _g7.1/2 e
¢! = ~Ue! AT+ 1) ()

e 1 2

2 _ _17.T/2 )

¢ = —Ue \/II(H+II1)(II+II2)(H+H2) ;
1

¢* = —UeT/2 ST+ (I F rlg)[(ﬁ)2 + (Hjnl)z + (Hjng)z}.ag)

For the configuration space the relevant, contributions will arise from inte-
gration of U by parts, which transfers the spatial gradients away from the
variables whose functional derivatives are being evaluated. For functional
derivatives with respect to the ‘coordinate’ X we have that

SH[M)
X

where the following quantities have been defined

— O,(n M®) + —zlj-MeTﬂ(P(—e*”( (OY)(@12) + e P(3:X)(05Y) ) (20)

m = 5 (~e X (@) + e T (@:X)(@5Y) )

77% = -é}i]-'eT/Q (e”zyag(z - X)- e‘T((aaX)(é‘&Y) + (03Y)(61Z))>

P= o 00) e 0)(@,2)). (1)

3

For functional derivatives with respect to the ‘coordinate’ Y we have

#ngf 1 o5 M) + zle 720 (e (3,2)(0,X) + e 2 (8,X)(B4Y) ) (22)

where the following quantities have been defined

n = 5%61"/2 (e*ﬂa} (Z=Y)+e T ((32)(3:X) + (X )(831’)));

ne = —;ﬁeT/? (—*e_gy((&zX) + (33X)(31Y))>5

=

3= s (M@ X) — e T @23 X)) (23)
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For functional derivatives with respect to the ‘coordinate’ 7' we have

_SH[M)

7 I = (i M®) — —[}-Mei’/z( ((8:2)(33X)(61Y)

—~(03Y)(012)(8:X)) — €727 (8:X)(85Y), (24)

where the following quantities have been defined

1= 55 (e @) - T @x) o))
= 5 (7 @) + T @) (0)):

ns = 0. (25)

Let us now compute the individual terms contributing to the Poisson
brackets between two Hamiltonian constraints smeared by auxilliary fields
N and M. Using (18) and (20), (22) and (24) for the contribution due to
(II;, X) we have

o (SHIN) SHIM]  6H[M] §H[N]
/ ‘”(ml(m) 5X(z) ol (a) 5X(m))

- / d%((zvql)ai(n{M@) - (Mql)ai(n;'zv@)) - / wq'ni (N&;M — MO;N)®.(26)
b
Due to antisymmetry with respect to the difference of scalar functions, the

only nontrivial contributions to (26) are from spatial derivatives acting on
the functions M and N. Similarly for the (Ilz, V) contribution we have

SH[N]|SH[M] SH[M]SH[N] s o )
/ P (6H2( ) 0V (z)  olly(x) 5Y(m)) = L d*zg®ns (NOM — MO;N).(27)

For the contribution to Poisson brackets due to (II, 7)) we have

oo (SHINISHIM] _ SH[M]SHIN]
/ x(&ﬂ(:}s) 0T(z)  oli(z) 5T(:L’))

= />:d3m((Nq3)(8¢(n§M@) +MC) — (Mq") (g, (AN®) + NC’))

— [ (o mime) - (e )amND)) + [ [vame — g ve)].ces)
N ¥

The second integral on the last line on the right hand side of (28) vanishes,
and the first integral simplifies to

/ d*z¢*ni(NO;M — MO;N)®. (29)
b
Combining the results of (29), (27) and (26), we have that

{H|N],H[M]} = ‘ /L dPzq'n)(N&;M — M&;N)® = H[N, M], (30)
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namely that the Poisson bracket of two Hamiltonian constraints is a Hamilto-
nian constraint with phase space dependent structure functions. The result
is that the classical Hamiltonian constraints algebra for (9) closes with no
further constraints on the system.

The classical constraints algebra of (9) closes, which implies that Qg4
constitutes a first class system. A degree-of-freedom counting yields

3 (momentum) + 3 (config.) — 1 (First Class Constraint)
—1 (Gauge — fizing) = 4 phase space D.O.F., (31)

which corresponds to two physical degrees of freedom per point. The first
class constraint is the Hamiltonian constraint H, and gauge-fixing of Iy,
to its physical degrees of freedom involves factoring out the gauge orbits
generated by H in conjunction with making a choice of the auxilliary field
N. With two propagating degrees of freedom on its physical phase space,
then we know that (9) is not a topological field theory.

4 Relation of Ig;, to general relativity

There are at least two ways in which the starting action (9) is related to
general relativity, which we will explain in the remainder of this paper. (i)
The first is the relation of Iy, to gravity in the Ashtekar variables (See e.g.
[4], [5] and [6]). The Ashtekar action is given by

Tash = / dt / &z [5321? + A§D;5;,
%
i~7 k J abc~z’5:j ANk k
——GijlcN O‘QBa - 'Z—_N_Eijké g, b(g‘ﬂ’c -+ Bc)]! (32)

where & is the densitized triad with N = N(det)~!/? the densitized lapse
function. The configuration space variable A} is a gauge connection valued
in SO(3,C).The fields Nt and A¢ in (32) are auxilliary fields smearing the
Gauss’ law and the diffeomorphism constraints. Note that the constraints
algebra, of two Hamiltonian constraints from (32) is given by [4]

(H[M), HIN]} = Hlq" (MO:N — No;M)), (33)

which has the same form as (6). We will come back to this point later in
this paper.

(ii) The second way is the relation of I, to a certain action appearing in
[7], which forms an intermediate step in obtaining the pure spin connection
formulation Icpy from Plebanski’s theory of gravity [8]. This action is

Iy = __é. / dt /; d3:c[-§\I’aerngaep‘Vm —in(A +tr@*1)}, (34)
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where Fj, = 0,47 — 0, A}, + f“b"AzAg is the curvature of a 4-dimensional
SO(3, C) connection A, and 7 is a scalar density. We would like to clarify
that (34) is not the final action proposed by Capovilla, Dell and Jacobson in
[7]. The proposed action I¢py, which we will not display here, was obtained
by elimination of the field ¥, from (34), which we will refer to in this paper
as the ‘CDJ action antecedent’. We will now show that Ig;, can be seen
as a restriction of (32) in conjunction with (34) to certain sectors of phase
space.

4.1 Relation of I, to the CDJ action antecedent
Consider the following transformations

M=ojel \3; M+ =ade’Ay; TM+10p =ade’ My (35)
for the momentum space variables Py;,, and

X=m(2); v =m(2); 7=m(222) (36)

ag ag g

for the configuration space variables I'x;,, where ag is a numerical constant
of mass dimension [ap] = 1. Note that the new coordinates have the ranges
0 < |ag| < oo fora =1, 2,3, which forms a 3-dimensional functional manifold
per point with the origin a, = 0 missing. Let us also make the definitions

=" = gt = (37)

with y!, y? and y* the dimensionless spatial coordinates in (13), whence
[z'] = —1. Substitution of (36) and (37) into (12) yields
U = (a10209) | (@10209)" + (Brca) (Gs01) Or02)
—(03a2)(01a3)(82a1) + aza3(d1az)(81a3) + azai(daaz)(daa;)
1/2
Fanoa(Oa)(Gren)| = (derd) (et (39)
from which one recognizes U as the square root of the determinant of the

magnetic field B for a diagonal connection A? = diag(ai, ag, az), with the
leading order term in (detA) factored out. In matrix form this is given by

ay 0 0 ) agag -—*agag 62a3
a? = 0 a9 0 : bz = 83&1 azay ‘~é}1a3
0 0 asg —62:11 81652 a1a9
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Substitution of (35), (36) and(38) into (9) yields

i

I=—— /dt/ dgw()\lagagézl + Agaszaids + Azaiasdas
G 2

—iN (deth)/2y/ A hahs (A NN l). (39)
AL A Az

Equation (39) is nothing other than the 3+1 decomposition of (34) with
the Gauss’ law constraint missing, with a phase space restricted to diagonal
variables A = diag(ai, as,a3) and ¥, = diag(Ai, A2, A3). Equation (39)
can be seen as the result of choosing Af = 0 at the level of the action (34),
which in certain interpretations corresponds to a gauge-fixing choice. In this
sense the possibility exists that (39), while shown under the guise of (9) to
be a Dirac consistent theory, could conceivably be a different theory from
(34) in actuality.

The action (39) has the peculiar feature that its canonical one form
does not have any spatial derivatives. But there are spatial derivatives
contained in the factor (detb)'/? in its Hamiltonian, and therefore (39) is
not a minisuperspace theory. The canonical one-form in (39) can be seen as
the restriction to diagonal variables of the object

0= / B3z, Bl A? (40)
X

diag(¥;A)

It so happens, since all spatial derivatives from the magnetic field B occur in
the off-diagonal matrix positions when A;‘ is diagonal, that the contraction
with a diagonal matrix ¥, = diag(A1, A2, Az) annihilates these derivative
terms. There are six distinct configurations of AY which exhibit this feature,
and we will refer to these configurations as ‘quantizable configurations’ of
configuration space I';. The configurations I'; are given by

al 0 0 ai 0 0 0 & 0
=10 a& 0 |, 0 0 & |, ad 0 0 |,
0 0 a3 0 a3 O 0 0 a
0 a2 0 0 0 o 0 0 o
0 0 e ), fa} 0 0], | 0 d 0 el
al 0 0 0 a2 0 ai 0 0

namely the set of connections af having three nonvanishing elements, and
with deta # 0. The proof of this is provided in Appendix A. Note that the
same Dirac procedure as in sections 2 and 3 can be applied to each of the
six configurations I'y just as for the diagonal one counsidered. Hence there
are six separate sectors of a theory of Ix;, which can be studied.
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5 Relation of Ig;, to the Ashtekar variables

To see the relation of (9) to the Ashtekar variables, let us perform a canonical
analysis at the level of (39). The momenta canonically conjugate to the
(diagonal) connection are given by p, = 61k, /864, namely

P1 = A1a2a3; P2 = A@3ay; P3 = Azaias. (41)

Let us now substitute (41) into the Hamiltonian density of (39). This yields

: 1 1 1
H = (detb)'*\/X1 o) (A + ot % + X;)

— (detb) /2 Y L1E2PS (A 2208 By alaz)
(alaza:s) n p2 ps3

= U(pipaps) /*(Ap1paps + p1pa(araz) + pops(asas) + papi(azar)), (42)

with U given by (38). Substitution of (41) back into (39) yields the action
Ip,a] = / dt / BPrpaa® — iNU (detp) /2 H, (43)
P
with U as defined as in (38) and with

H = Apipops + pipa(aiag) + pap3(agas) + pspi(azaq). (44)

In the case where the connection A{ is spatially homogeneous, all derivatives
in U vanish and (43) reduces to a diagonal Bianchi I model. But a, = a4(z)
in general contains three degrees of freedom per point, corresponding to three
free functions of position and time. The spatial derivatives d;a in general are
nonzero, and therefore (43), as well as (39), are not minisuperspace theories.

The action (32) with the Gauss’ law and diffeomorphism constraints
removed by hand is given by?

i a0 i (DN
I= /dtLdsx [a;Af - §ﬁeijke“b°0;ag (gaf +Bf)}. (45)

Recall that the Poisson bracket between two Hamiltonian constraints is a
diffeomorphism constraint as in (33). Since there is no diffeomorphism con-
straint contained in (45), then this action in its present form cannot be
Dirac consistent in the full theory. But suppose that we restrict (45) to the
subspace of spatially inhomogeneous diagonal variables

‘ pi(zy 0O 0 ai(z) O 0
g, = 0 paz) O i Al = 0  ax(z) O
0 0  p3x) 0 0 as(z)

“The removal of Gauss’ law and the diffeomorphism constraints by hand can in certain
interpretations be seen as a gauge-fixing choice N* = A§ = 0 at the level of the action (32).
This implies in certain interpretations that (45) and (32) most likely are two inequivalent
theories.
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with 3 D.O.F. per point. Then for 5% = dip, and A? = §%a, with no
summation over a, the action (45) is given by

I= / dt / d?’x{(?éA;‘*iN(detE)(Ant(E"l)?Bi}
=

Diag{A;7)

= / dt /z d*z [pada — iN(Ap1paps + pip2(aiag) + paps(azas) -+ pspr (613&1))} .(46)

Equation (46) can be seen as a special case of (43) when U =1, with U as
defined in (38). Since all spatial derivatives in (9) and in (43) are confined
U, then {45) on diagonal variables, even when not spatially homogeneous, is
no more general than a minisuperspace theory.> Therefore the restriction of
the Ashtekar theory to diagonal variables yields a theory not having spatial
derivatives, which is essentially the same as a minisuperspace theory. So
the action (9) is equivalent with the diagonally restricted Ashtekar theory
only in minisuperspace, for the special case U = 1. In the full theory where
U # 0, then this is not so and while (45) is Dirac-inconsistent, equation (9)
is a Dirac consistent theory as we have demonstrated. So these two actions
are definitely not equivalent on the subspace of diagonal variables in the
general case. This then brings in the question of whether there exists action
for (9) which for U # 1 constitutes analogue of the diagonally restricted
version of (45), such that the action is not inconsistent in the full theory
as is (45). We will relegate the writing down of the desired action to the
discussion section of this paper.

5.1 Resolution of the disparity between minisuperspace and
the full theory

We will now revisit the question of whether there exists a consistent action
analogous to (45), which can be interpreted as the antecedent of the Dirac-
consistent action (9). The arguments of the previous section show that in
minisuperspace where U = 1, equation (9) can be obtained by removing the
Gauss’ law and diffeomorphism constraints and restricting (32) to diagonal
variables. Moreover, (32) leads via these restrictions initially to (45), which
is not Dirac consistent in the full theory. Since (9) is a Dirac consistent
theory in the full theory, then a pertinent question regards the mechanism
by which the Dirac-inconsistent (45) can become associated with the a Dirac-
consistent (9) in the general case U # 1.

5This is because there are no spatial derivatives in (46), which moreover is Dirac
inconsistent unless the variables are chosen to be spatially homogeneous. The spatial
derivatives in (46) have dropped out for the same reason that they drop out of the canonical
one form of (39). However recall that (39) still has spatial derivatives contained in (detb)'/?
which multiplies the lapse function N, whereas (45) and (46) do not.
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The root cause for the disparity apparently resides in the term U, which
contains all spatial derivatives of the theory. Recall that U is contained in
(9) but is not contained in (45). There is a certain transformation known
as the CDJ Ansatz®

G =V, B, (47)

where Woe = 4oy € SO(3,C) x SO(3,C) is symmetric, transforms (32)
into the action (34) when (detB) # 0 and (det®¥) = 0. Let us examine the
implication of (47) for (43) and (39), the ‘reduced’ versions of (32) and (34)
which follow from (9). Note that (39) can be written as

___i 3 3 'q
I= G/dt/gd x[\lfaeBeAl

—iN(detB)/2Vdet T (A + mf—l)} : (48)
diag(A);diag(¥)

with phase space restrictions Woo = 04eWoq = Ogede and A = 6fa, to
diagonal variables. The unrestricted versrion of (48), namely where the
variables can be nondiagonal, is simply the 341 decomposition of (34) with
the Gauss’ law constraint removed. An easy way to see this is to look at the
integrand of the canonical one form. First use the following definitions for
the components of the curvature

1

33;2

e Fg; B = A — DiAg, (49)
where Dyv, = v, + fabcA?vC is the SO(3,C) covariant derivative of the
SO(3, C)-valued vector v,. Then defining 7% = %k and using the symme-
tries of the 4-D epsilon symbol ¢##7 we have

L1 g
\I'(ae)szaAzq = —é\I}(ae)é]k_P}?k(F& + DZAS)

1 .
= é-\IfaeF;fyF;,e””m + W (o) Be Di Ap.- (50)
The first term on the right hand side of (50) is the same as the first term of
(34), which includes the Gauss’ constraint. The second term of (50) removes
this Gauss’ constraint, which can be obtained by integration by parts with
discarding of boundary terms \I'(ae)BiDiAg — nAng;Di\If(ae). The same
holds true on the diagonally restricted subspace of this.

Equation (48) is the same as the Dirac consistent theory (9) after the
redesignation of variables (35) and (36). But substitution of (47) in conjunc-
tion with restriction to diagonal variables transforms (45) into (48). Since

5This can be seen as the spatial restriction of one of the equations of motion arising in
Plebanski’s theory of gravity [8].
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(45) under (47) transforms, upon restriction to diagonal variables, into (39),
and (39) transforms via canonical transformation into (43), then it follows
that (47) is a noncanonical transformation. The conclusion is that this
noncanonical transformation, in conjunction with a restriction to diagonal
variables (or any of the quantiable configurations I';) is what is necessary
to make a Dirac consistent theory out of the reduction (as we have defined
it in this paper) of (32). A way to see this is that equation (47) contains
spatial derivatives on the right hand side in B, whereas there are no spa-
tial derivatives explicitly present on the left hand side. It is precisely these
derivatives from B! which make the difference between a Dirac-consistent
full theory of (9) and a Dirac-inconsistent full-theory of (45).7

6 Conclusion and discussion

The main aim of this paper at presenting an action (9) which realizes the
Lie subalgebra of temporal coordinate transformations (5) has been carried
out.® We have presented an action Ix;, in equation (9) which has been
shown to be Dirac consistent at the classical level and to exhibit two physi-
cal degrees of freedom per point. We have shown the relation of Ix;, to two
formulations of general relativity, namely the Ashtekar variables and a cer-
tain antecedent of the CDJ pure spin connection formulation in [7]. In basic
terms, the action Iy, can be seen as a restriction of the actions of these
formulations to diagonal variables where the Gauss’ law and diffeomorphism
constraints have been removed by hand. While this is strictly speaking, not
technically rigorous as a gauge-fixing procedure, the associated action Iy, is
still nevertheless a stand-alone action in the full theory and consistent in the
Dirac sense.® Hence we would like (9) to serve as a motivation for putting
in place a rigorously correct gauge-fixing procedure for full GR. The issue
of equivalence of the theories in light of the restrictions, or gauge-choices
in certain interpretations, is one which we have reserved for addressal in a
subsequent paper.

“The latter being Dirac-consistent only in minisuperspace.

8This is notwithstanding the fact that there are phase space structure functions ap-
pearing in (30) which still need to be interpreted.

°For an analogy, the action 7. for GR in Ashtekar variables [4] can be obtained from
Plebanski’s Ipies action [8] in the so-called time gauge, which sets three degrees of freedom
coresponding to the choice of a Lorentz frame to zero. But even though Tasn C Ipiey is
a restriction of Plebanski’s action to this specialized sector, the Ashtekar action is still
self-consistent in the Dirac sense and is a stand-alone action irrespective of the issue of its
equivalence with Ipies.
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7 Appendix A: Quantizable configurations of con-
figuration space

We have shown that the kinematic phase space action (9) can be seen as the
diagonal subspace of an action appearing in [7] except with the Gauss’ con-
straint missing. But we have shown that this action is Dirac counsistent for
a diagonal connection. However, (45) is Dirac consistent only in minisuper-
space for a diagonal connection. This leads to the question of whether there
are any additional configurations analogous to the diagonal case arising from
(9), which are Dirac consistent.

The reason why (9) rather than (39) is in suitable form for canonical
analysis is because (39) is not in canonical form. This can be seen from
the fact that the variation of its canonical one form, even for the case of a

diagonal connection
3 ic a
5( /E d*s)gbida)

= / a3z [(awg)é)\l Adai + Aid(agas) A 5@4 + Cyclic Perms, (51)
b

diag(A)

does not yield a closed symplectic 2-form owing to the second term on the
right hand side of (51). This difficulty is compounded in the more general
case where one is not limited to diagonal variables, which brings spatial
derivatives into the symplectic 2-form

08 general = 5( /E d*e) b da] ) = /E Pz [b;m s Adal + A (€7 D;sal) A M{] .(52)

Equation (52) is not a symplectic two form Qgenerq: of canonical form €2 =
§(pdq) = &p A éq, and is not suitable for quantization. The configuration

space part of By splits into two contributions b}(Sa{ = my + ny, where
. 1.
k k gk
my =€’ (Sjaﬁ)éa{; ng = 55” ffghagak‘éa{. (53)

Note that m; contains spatial gradients of a;;f , while ny is free of spatial
gradients. We will see that a sufficient condition for (52) to admit a canonical
structure on gy, is that the second term on the right hand side of (52)
vanishes, which is tantamount to the requirement that my in (53) be zero
for all f. Let us determine the configurations a{ for which this is the case
by expanding my and rearranging the terms into the following form

m; = (Byal — 8zad)dal + (83a] — Bra})dal + (91ah — Bhaf)éa]
= ((6a)B5 — (6a%)3s)af + ((8a1)8) — (9a])B3)af + ((8a])Bs — (6a3)01)af.(54)
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From (54) it is clear that a sufficient condition for mjy = 0 is that all except
three matrix elements of a{ be zero, with the nonzero elements such that
no two appear in the same row or column. In other words, we must have
(detalf ) # 0, which restricts the connection to one of the six forms

al 0 0 a; 0 0 0 af 0
=10 & 0 |, 0 0 a8 |, aj 0 0 |,
0 0 a 0 a3 0 0 0 a
0 a2 0 0 0 df 0 0 af
0 0 a3 |, | ad 0 0}, 0 a2 0 el
ail 0 0 0 a2 0 ai 0 0

where I'; defines what we will refer to as the quantizable configurations of
configuration space. Hence for a{ € I'y, we have that my = 0, and that ny
is given by

ny = %eijkffghagaﬁéa{ = (deta)(a*l)}éa{. (55)

It is not difficult to see that each of the six configurations I'; leads to a Dirac
consistent theory as the diagonal sector we have illustrated in this paper.
This constitutes six distinct sectors of the full theory (and not minisuper-
space) of reduced general relativity that can be studied.
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Abstract

In the previous published papers it is suggested that square root
of ratio of atomic gravitational constant G4 and classical gravita-
tional constant G is equal to the Avogadro number N. If Xp =
295.0606338 is the gravitational mass generating number, rest en-

. 2 4
ergy of electron is defined as Xg/75-&- and muon and tau masses

are fitted accurately. It is also suggested that sinfy = (aXg)™"' .
In this paper it is Sug%%ted that the magnitude of weak force can be
considered as F,, = Z%{ . Thus Bohr magneton can be expressed as

ovoec /e g ~oee [ o
1B = S/ ey sinfw. Hence p = 54/ 25— sin Ow can be con

sidered as the general expression for magnetic moment where Fx is
the characteristic magnitude of the force experienced by the parti-
cle. With reference to this expression strongly interacting elementary
particles magnetic moment can be given as pu = g%zﬂ sin Oy where

Copyright © 2010 by Hadronic Press, Inc., Palm Harbor, FL 346821577, USA
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Ry is the characteristic nuclear force radius or size of the strongly
interacting particle. With reference to measured proton and neutron
magnetic moments, Ry is close to 1.265 fermi and 0.866 fermi re-
spectively. Fermi’s weak coupling constant is coupled with the weak
and strong force magnitudes. Finally it is noticed that ratio of elec-
troweak energy scale and electron rest energy is equal to the strong
and weak force ratio.

Keywords:Classical gravitational constant, atomic gravitational con-
stant, Avogadro number, grand unification, electron rest mass, weak

coupling angle, weak force magnitude, electron magnetic moment,

strong force magnitude, proton magnetic moment, neutron magnetic

moment, Fermi’s weak coupling constant and electroweak energy

scale.

1 Introduction

Stephen Hawking [1] - in his famous book- says: It would be very difficult
to construct a complete unified theory of everything in the universe all at
one go. So instead we have made progress by finding partial theories that
describe a limited range of happenings and by neglecting other effects or ap-
proximating them by certain numbers. (Chemistry, for example, allows us
to calculate the interactions of atoms, without knowing the internal struc-
ture of an atomic nucleus.) Ultimately, however, one would hope to find
a complete, consistent, unified theory that would include all these partial
theories as approximations, and that did not need to be adjusted to fit the
facts by picking the values of certain arbitrary numbers in the theory. The
quest for such a theory is known as ‘the unification of physics’. Einstein
spent most of his later years unsuccessfully searching for a unified theory,
but the time was not ripe: there were partial theories for gravity and the
electromagnetic force, but very little was known about the nuclear forces.
Moreover, Einstein refused to believe in the reality of quantum mechanics,
despite the important role he had played in its development.

Abdus Salam [2], David Gross [3] and Tilman Sauer [4] presented their
views on Einstein’s works in unification. As the culmination of his life
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work, Einstein wished to see a unification of gravity and electromagnetism
as aspects of one single force. In modern language he wished to unite
electric charge with the gravitational charge (mass) into one single entity.
Further, having shown that mass the ‘gravitational charge’ was connected
with space-time curvature, he hoped that the electric charge would like-
wise be so connected with some other geometrical property of space-time
structure. Einsteins goal was to generalize general relativity to include elec-
tromagnetism. If one wishes to unify electroweak, strong and gravitational
interactions it is a must to implement the classical gravitational constant G
in the sub atomic physics. By any reason if one implements the planck scale
in elementary particle physics and nuclear physics automatically G comes
into subatomic physics.

Einstein, more than any other physicist, untroubled by either quantum
uncertainty or classical complexity, believed in the possibility of a complete,
perhaps final, theory of everything. He also believed that the fundamen-
tal laws and principles that would embody such a theory would be simple,
powerful and beautiful. The ‘old one’, that Einstein often referred to, has
exquisite taste. After his enormous success at reconciling gravity with rela-
tivity, Einstein was troubled by the remaining arbitrariness of the theoretical
scheme. First, the separate existence of gravitation and electromagnetism
was unacceptable. According to his philosophy, electromagnetism must be
unified with general relativity, so that one could not simply imagine that
it did not exist. Furthermore, the existence of matter, the mass and the
charge of the electron and the proton (the only elementary particles recog-
nized back in the 1920s), were arbitrary features. One of the main goals
of a unified theory should be to explain the existence and calculate the
properties of matter.

After sometime in the late 1920s Einstein became more and more iso-
lated from the mainstream of fundamental physics. To a large extent this
was due to his attitude towards quantum mechanics, the field to which he
had made so many revolutionary contributions. Einstein, who understood
better than most the implications of the emerging interpretations of quan-
tum mechanics, could never accept it as a final theory of physics. He had
no doubt that it worked, that it was a successful interim theory of physics,
but he was convinced that it would be eventually replaced by a deeper,
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deterministic theory. We now have direct evidence for the unification of
all forces dreamed by Einstein. Perhaps the most important feature of the
extrapolation of the standard models forces is that the energy at which they
appear to unify is very close, if not identical, to the point at which gravity
becomes equally strong. This indicates that the next stage of unification
should include, as Einstein expected, unification of the non-gravitational
forces and gravity.

David Gross says: Because of his opposition to quantum mechanics he
allowed himself to ignore most of the important developments in fundamen-
tal physics for over twenty five years, as Einstein himself admitted in 1954,
‘I must seem like an ostrich who buries its head in the relativistic sand in
order not to face the evil quanta’. If there is one thing that I fault Einstein
for, it is his lack of interest in the development of quantum field theory. To
be sure many of the inventors of quantum field theory were soon to aban-
don it when faced with ultraviolet divergences, but it is hard to understand
how Einstein, could not have been impressed with the successes of the mar-
riage of his children quantum mechanics and special relativity. The Dirac
[5] equation and quantum electrodynamics had remarkable successes, espe-
cially the prediction of anti-particles. How could Einstein not have been
impressed?

Kaluza and Klein in 1922 to 1926 showed that if one assumed general
relativity in five dimensions, where one dimension was curled up, the result-
ing theory would look like a four-dimensional theory of electromagnetism
and gravity. Electromagnetism emerged as a consequence of gravity in five
dimensions. In string theory there are six or seven extra-spatial dimen-
sions. One can imagine that these are curled up to form a small manifold,
and remarkably such six dimension compactifications (achieved by solving
the generalization of Einsteins equations in ten dimensions) can produce a
world remarkably like our own, in which the shape of the extra dimensions
determines the complete matter content and all the forces of nature, as seen
by a four-dimensional observer.

To unify 2 interactions if 5 dimensions are required, for unifying 4 in-
teractions 10 dimensions are required. For 3+1 dimensions if there exists 4
(observed) interactions, for 10 dimensions there may exist 10 (observable)
interactions. To unify 10 interactions 20 dimensions are required. This
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logic seems to indicate that with ‘n’ new dimensions one may not be able
to resolve the problem of unification. More over new problems and new
properties will come into picture and makes the 4 dimensional unification
program more complicated. Right now quantitatively and qualitatively:

1) one cannot implement the planck scale in ‘atomic’ and ‘nuclear’ space.
2) one cannot think about the ‘reduced magnitudes’ of quantized elementary
charge or angular momentum.

2 Coulomb mass and its magnetic moment

The first step in unification is to understand the origin of the rest mass of
a charged elementary particle. Second step is to understand the combined
effects of its electromagnetic (or charged) and gravitational interactions.
Third step is to understand its behaviour with surroundings when it is
created. Fourth step is to understand its behaviour with cosmic space-
time or other particles. Right from its birth to death, in all these steps
the underlying fact is that whether it is a strongly interacting particle or
weakly interacting particle, it is having some rest mass. To understand the
first 2 steps somehow one must implement the gravitational constant in sub
atomic physics.

The subject of unification is not new. But here the fundamental question
to be answered is: without a ‘mass content’ can electric charge preserve
its individual identity? For example even though ‘rest mass’ of photon is
zero it possesses ‘energy’. For any elementary charged massive particle -
which is more fundamental either the ‘mass’ or the ‘charge? Here authors
humble opinion is: charge can be considered as the fundamental, inherent
and characteristic property of the charged massive particle. For the same
magnitude of charge, proton’s mass is 1836.15 times heaver than the mass
of electron. Observed elementary mass spectrum ranges from 0.511 MeV to
182 GeV. But very interesting and surprising observation is that magnitude
of charge remains at e or 2e. How to understand this situation? Concept of
quantization of charge states that- in nature ‘charge’ exists only in integral
multiples of e.

If ‘charge’ is the inherent property and ‘mass’ is the induced or secondary
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property then the fundamental question to be answered is: how to under-
stand the origin of particles magnetic moment? Till now quantitatively
or qualitatively either the large number hypothesis or the string theory or
the planck scale is not implemented in particle physics. Unifying gravity
with the other three interactions would form a theory of everything (TOE),
rather than a GUT. In the published papers and book Seshavatharam and
Lakshminarayana [6-12] proposed that there may exist coulomb’s charged
particle of mass-energy

2 4
M c* = ﬁ; (%) & 1.042940852 x 10" GeV. (1)
0

62
M, =4/ o~ 1.859210775 x 107 Kg.
47T60G 9 % g (2)

If m, = 1.672621638 x 10~*" K g = rest mass of proton, m, = 9.109382154 x
1073 K g = rest mass of electron, N= Avogadro number and G=Gravitational
constant, semi empirically it is noticed that

In (%) =3 /%’; — In(V2). (3)

Here, Lhs = 41.55229152; Rhs = 41.55289244; A very beautiful fit. In grand
unification program this type of fitting should not be ignored. Considering
all the atomic physical constants, obtained value of the gravitational con-
stant is 6.666270179 x 1071 m3K g tsec™2. This is a very nice fitting. How
to interpret this strange relation? Please note that absolute lab measure-
ments of G have been made only on scales about 1 cm to 1 meter only.
Amedeo Carlo Avogadro [13] proposed his hypothesis in 1811. P.J. Mohar
and B.N. Taylor [14] recommended a value of N & 6.022141793 x 10* and
G =2 6.6742867 x 107 m*Kg~tsec™2.

Till today there is no explanation for the origin of large Avogadro num-
ber. The Avogadro constant expresses the number of elementary entities
per mole of substance. Avogadro’s constant is a scaling factor between
macroscopic and microscopic (atomic scale) observations of nature. It is an
observed fact. The very unfortunate thing is that even though it is a large
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number it is neither implemented in cosmology nor implemented in grand
unification. Note that ratio of planck mass and electron mass is %.

The beauty of above expression (2) is that it generates a ‘mass con-
tent’ from e and G. In the sense it is generating ‘inertia’ in the free space.
Here the fundamental questions to be answered are: from where elementary
charge is coming into picture? How and why it exists in the universe? How
many elementary charges are there in the universe? Is ‘coulomb mass’ the
mother of all the observed charged and neutral elementary massive parti-
cles? Qualitatively this obtained mass unit play some role in the generation
of elementary particle’s rest mass. But from numerical point of view this
mass is very large compared to the observed elementary particle’s rest mass.

The sources of magnetic fields, down to the atomic scale, are electrical
currents. A small current loop appears from a distance as a magnetic dipole.
Thus orbiting electrons give to an atom a magnetic dipole moment associ-
ated with its orbital angular momentum. In addition, subatomic particles
also have magnetic dipole moments. The magnetic dipole moment of a nu-
cleus comes in part from the proton currents within it, and the magnetic
dipole moment of a proton (and other baryons, and mesons) comes in part
from quark currents within it. In addition, the electron and the up and
down quarks also have an ‘intrinsic’ magnetic moment associated with their
spin, although they are supposed to be point-like; the heavier leptons and
quarks have one too. In a naive classical picture, the electron continually
goes in circles around itself. The Dirac equation endows the electron with a
spin lh and a magnetic moment eh . Both arise from quantum relativistic
effects that are built into Dirac’s theory Beyond that, quantum electro-
dynamics predicts that the intrinsic magnetic moment of the electron is
actually 22 1.00116u5 in stunning agreement with experiment. Generally,
the magnetic dipole moments of elementary particles are understood much
better than their masses. With reference to Dirac’s ‘magnetic moment’
concepts above expressed mass unit’s magnetic moment can be expressed

as
~ €l mgﬁ dregG
E= oM, 2V e?

Qualitatively this idea couples gravity, electromagnetism and quantum me-
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chanics. How to understand this? But quantitatively its magnitude is 102!
times smaller than the Bohr magneton. These expressions for ‘grand unified
mass’ and ‘grand unified magnetic moment’ indicates that grand unifica-
tion is not far from reality provided there exists a large scaling factor. It
can be supposed that elementary particles construction is much more fun-
damental than the black hole’s construction. Till today in the laboratory
no such a particle is observed with such a large mass or no such a small
magnetic moment is also observed. To move from this large mass unit to
the electron mass one must consider some type of large coupling constant or
a proportionality number or a scaling factor. Now the real problem comes
into picture.

To have a small mass unit one cannot assume that small massive particle
possesses a fractional magnitude of e. In CGS system of units value of 47e,
is unity. The only one alternative that can be allowed is variation of G.
Please note that the only one gravitational physical constant is: Newton’s
gravitational constant. Note that in the atomic or nuclear physics, till
today no one measured the gravitational force of attraction between the
proton and electron and experimentally no one measured the value of the
gravitational constant. Physicists say - if strength of strong interaction is
unity, with reference to the strong interaction, strength of gravitation is
10739, Whether the nature of variation is cosmic or there exists two kinds
of gravitational constants one for the classical physics and the other for the
atomic system- has to be analysed.

From above observations it can be suggested that for unifying gravity,
electromagnetism and quantum mechanics a ‘large value of fixed gravita-
tional constant’ is required. Some attempts have been done in physics
history. The large value of gravitational constant can be called as ‘atomic
gravitational constant’ or ‘strong gravitational constant’. The idea of strong
gravity originally referred specifically to mathematical approach of Abdus
Salam [15-17] of unification of gravity and quantum chromo-dynamics, but
is now often used for any particle level gravity approach. For defining
the atomic gravitational constant a large scaling factor is required. If the
scaling factor is a known one, then to some extent - its historical data
and physics background makes and brings the unification concepts into one
stream. Compared to the current research - it may be in the main stream-
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line or secondary streamline - it can be decided by the future thoughts and
experiments.

3 Grand unification and the need of atomic
gravitational constant

The strong or atomic gravitational constant is the supposed physical con-
stant of strong gravitation, involved in the calculation of the gravitational
attraction at the level of elementary particles and atoms. From the stand-
point of ‘infinite hierarchical nesting of matter’ and Le Sage’s theory of
gravitation, the presence of two gravitational constants shows the difference
between the properties of gravitons and properties of matter at different
levels of matter. The strong gravitational constant is also included in the
formula describing the nuclear force through strong gravitation and torsion
field of rotating particles. A feature of the gravitational induction is that if
two bodies rotate along one axis and come close by the force of gravitation,
then these bodies will increase the angular velocity of its rotation. In this
regard, it is assumed that the nucleons in atomic nuclei rotate at maximum
speed. This may explain the equilibrium of the nucleons in atomic nuclei as
a balance between the attractive force of strong gravitation and the strong
force of the torsion field (of gravito-magnetic forces in gravito-magnetism).
Qualitatively it is also thought that the magnetic moment of the pro-
ton is created by the maximum rotation of its positive charge distributed
over the volume of the proton in the form of a ball, when the centripetal
acceleration at the equator becomes equal to acceleration of strong grav-
itation. In literature one can refer the beautiful works of Abdus Salam,
C. Sivaram, Sabbata, A.H. Chamseddine, J. Strathdee, Usha Raut, K. P.
Sinha, Perng. J.J, Recami, Robert L. Oldershaw, K.Tennakone, S.I Fisenko
and S.G.Fedosin ([18]-[30]). Various proposed values of the strong gravita-
tional constant are 2.06 x 10%, 6.7 x 10?7, 2.18 x 10?8, 2.4 x 10%8, 3.9 x 10%,
1.514 x 10%°, 3.2 x 10%°, 5.1 x 10*!, 6.9 x 103! and 2.77 x 10°? m*K g~ 1sec™2.
In this connection authors in the previous papers suggested that square root
of ratio of atomic gravitational constant and classical gravitational is equal
to the Avogadro number N. Value of the proposed atomic gravitational
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constant is equal to G4 = N2G =2 2.420509614 x 107 m3K g lsec™. For
each and every elementary particle its corresponding value of G,, can be

expressed as

62

o
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Here GG, = magnitude of G corresponding to the mass of the particle m,.
The interesting point to be noted is that unlike the classical or continuous
mass range of celestial massive bodies, elementary particles mass spectrum
follows certain quantum rules and hence there exists some governing pro-
cedure for the observed mass spectrum. Not only that each interaction is
having some coupling constants. Considering leptons three exists only one
basic particle- that is electron. Considering hadrons there exists only one
stable particle - that is proton. Hence value of G,, can be fixed. If one is
able to inter change the coupling constants , there is a possibility of fixing
the value of G,,. In this way this proposed idea differs from Dirac’s proposal
of variation of G with cosmic time. Based on Sciama’s proposal ([31],[32])
in atomic and nuclear physics, with reference to the nuclear mass and size,
magnitude of the nuclear characteristic gravitational constant can be given
as

5
dmegms

2
G 2 ]“:ZC . (6)
P
Here, m,, = mass of proton, I, = size of proton.

To bring down the planck mass scale to the observed elementary particles
mass scale a large scale factor is required. Just like relative permeability and
relative permittivity by any suitable reason in atomic space if one is able to
increase the value of classical gravitational constant, it helps in four ways.
Observed elementary particles mass can be generated and grand unification
can be achieved. Electromagnetism, quantum mechanics and gravity can be
studied in a unified manner. Third important application is characteristic
building block of the cosmological ‘dark matter’ can be quantified in terms
of fundamental physical constants. Joshua A. Frieman et al [33] discussed
about the origin of dark matter. Fourth important application is - no extra
dimensions are required. Finally nuclear physics and quantum mechanics
can be studied in the view of ‘strong nuclear gravity’ where nuclear charge
and atomic gravitational constant play a crucial role in the nuclear space-
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time curvature, QCD and quark confinement. Not only that cosmology and
particle physics can be studied in a unified way.

Whether it may be real or an equivalent if it is existing as a ‘single con-
stant’ its physical significance can be understood. Charged lepton masses
can be fitted. Hence their magnetic moments can be understood. ‘Nuclear
size’ can be fitted with ‘nuclear Schwarzschild radius’. ‘Nucleus’ can be
considered as ‘strong nuclear black hole‘. Nuclear binding energy constants
can be generated directly. Proton-neutron stability can be studied. Origin
of ‘strong coupling constant’ and ‘Fermi’s weak coupling constant’ can be
understood. Chris Quigg [34] and J. Erler et al [35] discussed about the
estimation of strong coupling constant and Fermi’s weak coupling constant.
Authors feel that these applications can be considered favourable for the
proposed assumptions and further analysis can be carried out positively
for understanding and developing this proposed ‘Avogadro’s strong nuclear
gravity’.

4 Planck mass and the electron mass

It is noticed that ratio of planck mass and electron mass is 2.389 x 10?2
and is 25.2 times smaller than the Avogadro number. It is also noticed
that the number 25.2 is close to 8r 22 25.13274 . Qualitatively this idea
implements gravitational constant in particle physics. C. Brans and R.H.
Dicke discussed [36] about the planck mass in detail. Note that planck mass
is the heaviest mass and neutrino mass is the lightest mass in the known
elementary particle mass spectrum.

N
Me o [ B¢ 5 3809945054 x 102 = V.. (7)

Me Gmg 8

Here, Mp = planck mass and m, = electron rest mass. Hence electron rest
mass can be expressed as

8t [he | ke _
mMe = N -GT & 87 e 2 0.083115709 x 1073 Kg. (8)

Accepted value of m, = 9.109382154x1073! kg and accuracy is 99.7116%.
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In terms of the above introduced ‘coulomb’ mass unit it can be expressed
as

. 8 e _ 8r e?

::N\/& 47?600:_\75 47T60(N2G>' (9)
Here it can be assumed that- if % = 294.2098 is the electromagnetic

mass induction or generation strength then N2G 2 G4 can be considered

as the atomic gravitational constant. In grand unification program this

number

Me

8 dreo (N2G) m2
Xp2 2L o Jimey (V*G) 2, 295.0606338. (10)
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can be called as the lepton-quark-nucleon gravitational mass generator. It
is the utmost fundamental ratio compared to the fine structure ratio . It
plays a vital role in particle physics. Here the important and interesting
observation is that

e2
| 2 3087291597 x 10733 K. 11
mx \l dmeg (N2G) 0BT J (1)

v | CC o | € (N o ey ey, (12
mxe = dey (N2G) - 4meq (N2G) o ev.  (12)
This mass unit is very close the (neutral) neutrino mass. Conceptually this
can be compared with the charged dark matter. The fundamental question
to be answered is : 1.7318 keV is a potential or a charged massive particle?
If it is a particle its pair annihilation leads to radiation energy. If it is the
base particle in elementary particle physics - observed particle rest masses
can be fitted. Authors humble opinion is: it can be considered as the basic
charged lepton or lepton potential. It can be considered as the basic charged
dark matter candidate. Using this mass unit and above defined number X B,
muon and tau masses can be fitted as

R
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Here n =0, 1 and 2. E, = coulombic energy constant and E, = asymmetry
energy constant of the semi empirical mass formula respectively. P. Roy
Chowdhury et al [37] modified the semi-empirical mass formula. At n = 0,
electron mass is defined, At n=1, obtained muon mass is 105.95 MeV and
at n =2 obtained tau mass is 1777.4 MeV. At n =3 predicted mass is 42262
MeV. In terms of the atomic gravitational constant = G4, atomic planck
mass can be represented as

he _39 1r
mp = ey = 3.614056909 x 1073 Kg. (14)
hcd 4
2 o v} . =
mpc® = \J NG \Jﬁc (N2G) & 20.27337431 KeV. (15)

5 Atomic or nuclear weak force magnitude

In classical physics or in cosmology or in black hole physics or in planck
scale physics, the operating force limit is (%) . Seshavatharam [38] discussed
about its role in Black hole physics and W. C. Daywitt [39] discussed about
its role in Planck vacuum. Similar to this, the characteristic force limit in
atomic or nuclear physics can be given as (g;) . It can be expressed as

4 4

éz o NCQ & = 8.337152088 x 10~ newton. (16)

It can be suggested that Z;% ~ F, can be called as the weak force magnitude.
This weak force is responsible for the nuclear weak decay. In nuclear physics,
if F represents the magnitude of strong force it is noticed that

|Fy Ga\ 2
E:—;Zﬂln(G ) xQ?TIII(;N ) (17)

where F, = 157.9944058 newton can be called as the magnitude of the
nuclear strong force. Giger H and Marsden E [40] and Robert Hofstadter [41]
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explained the methods of estimating the nuclear size. Hence characteristic
nuclear size Ry can be expressed as

2

& 1.208398568 x 107 m. 1
47T€0F3 % mn ( 8>

Ry =

Claudia Glassman [42] discussed about the measurement of strong coupling
constant at HERA. If a, is the strong coupling constant, it is also noticed

that,

62 1 2K
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a n(QEa % Fw>' (20

Note that % plays a crucial role in nuclear stability as

A
Ao e (21)
& E 2
2+ () A°
where A is the mass number and Z; is the proton number. Please note that
for getting stability, neutron of the unstable isotope emits beta particle and
becomes a stable one. In hydrogen atom, force of attraction between proton
and electron can be represented as,

¢ o ( = )2Fw (22)

deqgad 2F,

Here ag is the Bohr radius. It can be expressed as

2F, | e
o . 2
4o E, \ drweyF, (23)

Hence potential energy of electron in hydrogen atom can be given as

e? E, e2F, s o
reotg <2Ea) dreg € | (24)
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Here o is the fine structure ratio. G. P. Shpenkov [43] explained the meaning
of fine structure ratio. Giving importance to the phenomena of 8 -decay,
rest mass-energy of electron can be expressed as

1 E, 18251” {62F1!,
2 o c
Noalh= o Sg . :25
Me€ o? % ZEa % 47 €o X 47 € ( )

Hence in Hydrogen atom force on electron can be expressed as

€ o (XEa2)2 % o (XEa2)2 F,. (26)

2
dregag

If F, is the electromagnetic force on electron in hydrogen atom, similar to
the square root of ratio of strong force and weak forces, square root of ratio
of electromagnetic force and weak forces can be represented as

F, E

28 v 6 o 2
Fw 2Ea XECM (27)

6 Weak force and the magnetic moment of
electron

P. A.M. Dirac [5], Richard Fyenman, R.L.Mills, G. Gabrielse, Boyer, W.K.H.
Panofsky, J.D. Jackson, D.J. Giffiths, A.O. Barut, M.Rivas, P.Kusch and
G.P. Shpenkov presented a clear picture of elementary particles geometry,
mass and magnetic moments ([44]-[55]). From above expressions magnetic
moment of electron can be expressed as

eh ., e e?G 4 ~ €€ e? (28)
2m. 2aXg V dmegc:  20Xp \/ dregFy,

In our previous papers [6-12] it is suggested that a Xz = 2.153161465 can
be considered as inverse of the weak coupling angle sinfy,. Then above
expression can be written as
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From this it is very clear that weak force is responsible for the origin of
magnetic moment of electron. For muon and tau their magnetic moments
can be expressed as

me\ €2 [ 1oGa me\ ec e?
2| — )= i = — = sin Oy . :
. <m> g\ g Snfw (m) 2 \/47reon sinfy. - (30)

where m is the mass of muon or tau.

7 Strong force and the magnetic moments of
proton and neutron

Using the above expression general expression for magnetic moments can
be expressed as

2

 €c e

2 VdmwegFx
where Fx can be referred to the particles characteristic force. A.W. Thomas,
G. Sardin, H.J. Lipkin, Y.K. Gambhir, N. Kaiser, Xiang-Song Chen, V.
Dimitrsinovic, G. P. Shpenkov, S. J. Dong, N. Mathur, G. L. Strobel, B.
Lee Roberts, MA Wei-Xing, W. R. B. de Ara ujo discussed about the baryon
magnetic moments ([56]-[70]). Hence for strongly interacting particles mag-
netic moment can be expressed as '

sin Oy (31)

o _eég 47Tist sin Gy . (32)
From nuclear electron scattering experiments,
o2
IreiF = Ry = 1.21 to 1.25 ferma. (33)

Experiments suggests that proton radius is close to R,= 0.86 fermi. Sangita
Haque et al [71] and B. Ketzer [72] discussed about the radius of proton.
Considering these radii- in strong interaction, (32) can be written as

R

H

2
%f 4;0 ] sin Oy = ecé?ﬂ sin Gy . (34)
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At Ry =1.21 fermi , pp = 1.3496 x 1026 J /T and can be compared with
the magnetic moment of proton = 1.41 x 1072 J/T. At Ry = 0.86 fermi, »
1= 9.592 x 107%7 J/T and can be compared (neglecting the -ve sign) with
the magnetic moment of neutron 9.66 x 10~%" J/T. With reference to the
measured proton and neutron magnetic moments, Ry = 1.265 fermi and
0.866 fermi respectively. Compared to the existing methods of estimation
of nucleons magnetic moments this method is simple and accurate. Not
only that this can be easily applied to other baryons or resonances. Just by
guessing the magnitude of the strong force or by guessing the baryon size
its magnetic moment can be estimated.

8 Fermi’s weak coupling constant G and the
electroweak energy scale

It is noticed that, Fermi’s weak coupling constant G depends on the mag-
nitudes of weak force and strong force. Semi empirically it is noticed that

(35)

It is noticed that,

E, y he y e?
F, 2 AdmeyF,

Recommended value ([14],(34]) of Gr = 1.435841042 x 1072 J.m?® and
ﬁ—Ggf_g— = 1.166371 x 107° GeV 2. Qualitatively and quantitatively with refer-
ence to sinfy = a;—F- = 0.464433353 , with an error of 3.58%, G can be

expressed as

2 4.87552608 x 10752 J.m?3. (36) .

> _sin*0 F,
Gr = V/2sin® Oy x %ﬁ X hczRo = Slri/iw X X heRy. (37)

where F,, = 7\,%%, \/I% = 27 ln (%), ,/M:st & Ry = 1.208399 ferme. If
so, charged weak boson rest energy can be expressed as
F, ke

1 ~
75X\ T X 27945 Ge. (38)
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Neutral weak boson rest energy can be expressed as

We? 1 F h
Zc? = X 1/ 2 &~ 89.7124 GeV. 39
cosbw  /2cos Oy R() ¢ (39)

Presently believed electroweak energy scale can be expressed as

B33 / [e2F,
EW = \/_GF (- ag]ne 477‘60 = 241. 9277486 GCV (40)

Eliminating sin 8, it can also be expressed as

3 c3 F, \/
By = - = Xgp X — X
v \/—QGF E Fw

where m.c?= 0.511 MeV = rest energy of electron. This is a very simple
and strange equation and coupleb the four fundamental nuclear interactions.
This equation is true when F,, = Ng = and \/— = 27 1n( ) This coin-
cidence clearly establishes the trueness of the magnitude of the proposed
weak and strong forces and reality of the existence of the atomic gravita-
tional constant G4 & N2G in atomic and nuclear physics.

e?k,,  F
o 41
dey I, X mec” (41)

Conclusion

Right from Dirac’s theory to the present QCD methods of estimation of ele-
mentary particles magnetic moments, proposed method is simple, accurate
and throws light on grand unification. It is very clear that leptons mag-
netic moments depends on the weak force and baryons magnetic moments
depends on the strong force. With reference to the proposed weak force
and its applications: existence of the atomic gravitational constant can be
confirmed. In this new direction authors are working in understanding the
neutron and electron mass ratio. Authors humbly request the world science
community to kindly look into this new approach.
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NUCLEAR FUSION” WITHOUT HARMFUL RADIATIONS OR WASTE
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Abstract

In this paper, we report three tests providing additional experimental confirmations of
the recently achieved and verified Intermediate Controlled Nuclear Fusions (ICNF). Thanks
to various chemical analyses performed by independent laboratories, the first test established
the ICNF of silica from carbon and oxygen; the second test confirmed the preceding results;
and the third test established the ICNF of oxygen from helium and carbon.

PACS 25.70.Jj, 24.10.-, 25.70.~z

1. Introduction

Following decades of studies for the prior development of mathematical, physical and
chemical formulations as structurally irreversible over time as the energy releasing
processes that have to be described (see review [1] and general presentations [2]),
and as a result of extensive tests and experimentations conducted for years, in the
preceding paper [3] we released, apparently for the first time, experimental evidence
on the “existence” of Intermediate Controlled Nuclear Fusions (ICNF) whose primary
features are the following;:

1) Lack of emission of harmful radiations (such as n, p, «, etc.) and lack of
release of radioactive waste. This fundamental feature is achieved by conceptually
and technically restricting the syntheses to light, natural and stable elements.

2) Control of the fusions via multiple means. This second important feature is
achieved via the control of power, temperature, pressure, flow and other engineering
means. ,
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Figure 1: A view of the author with the equipment used for the synthesis of nitrogen
from carbon and deuterium [3] showing from the r.h.s.:. the Miller Dimension 1000 AC-DC
converter; the pressure bottle of 99.99 pure deuterium; and the carbon steel, 12” x 24"
schedule 80 hadronic reactor.

3) Intermediate character between the so-called hot and cold fuions, in the sense
that the used temperature has values in between the high temperatures of the hot
fusion and the low temperature of the cold fusion.

ICNF are achieved via the use of specially constructed, high pressure, steel ves-
sels known as hadronic reactors because conceived and constructed via the laws of
hadronic mechanics and chemistry [1,2]. Their main function is that of delivering a
DC electric arc between suitably selected electrodes submerged within a suitably se-
lected gas at pressure. Under the condition that, for selected electrodes, the gas does
allow ICNF, it is called hadronic fuel. All tests herein considered deal with hadronic
fuels suitably selected to achieve ICNF when traversed by a DC arc between carbon
electrodes.
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In particular, paper [3] presented the following ICNF
D(2,1,1%,2.0141) + C(12,6,0%,12.0000) + TR —

— N(14,7,1%,14.0030) + AE, (1a)
AE = (Boy + Egen) — Frigy = 0.0111 u, (1b)

where T'R stands for the trigger, namely, an external action (such as instantaneous
increase in pressure) forcing exposed nuclei at mutual distances of 1 fm against their
repulsive Coulomb forces, at which occurrence the strongly attractive nuclear force is
activated between the two nuclei and their fusion is inevitable under the principles of
ICNF reviewed below. The reader should note that ICNF (1) verifies all conceivably
possible nuclear and other laws.

As described in detail in Ref. [3], ICNF (la) was achieved via a schedule 80
carbon steel hadronic reactor of 1ft x 2ft (see Figure 1) filled up with the hadronic
fuel given by pure deuterium gas at 100 psi (following pulling out of a vacuum) that
was traversed by a DC electric arc between commercially available graphite electrodes
powered by a 50 kW DC-AC converter built by the U. S. company Miller Electric. The
test had to be systematically interrupted following a maximum of 2 min operation
to prevent melt-down of the equipment. Independent chemical analyses, done by the
Oneida ORS Laboratories on samples of the interior gas before and after the activation
of the arc, measured a macroscopic percentage of nitrogen after the activation of the
arc that did not exist before, thus establishing its synthesis. The nitrogen synthesis
so detected was independently confirmed by the heat produced that was definitely
bigger than that provided by the 50 kW AC-DC converter.

ICNF (1a) was selected among a variety of possibilities to prevent wasteful aca-
demic discussions on the excess heat in the event interior combustion had been al-
lowed. In fact, the interior gas, that was confirmed as being 99.99 % pure deuterium,
positively cannot experience any combustion when traversed by a DC arc. Therefore,
the heat measured in excess of the heat produced by the arc can solely be explained,
on serious scientific grounds, as originating from ICNF (1).

ICNF (1a) was also selected among a considerable variety of possibilities to pre-
vent wasteful academic discussions on the absence of harmful radiations. In fact,
we have the synthesis of a light, natural and stable element, the nitrogen, from two
ligher, natural and stable elements, the deuterium and the carbon, Therefore, when
synthesis (1) occurs, there is no possibility whatsoever, not even remote, to produce
harmful radiations or release radioactive waste as routinely expected by the commu-
nity in nuclear fusions. In the event syntheses (1a) do not occur, there is equally the
impossibility of producing harmful radiations or releasing radioactive waste because
the energy of the 50 kW AC-DC converter is about one billion times short of the
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Figure 2: A view of the participants in the verification [4], showing from the left: G. West
(IBR), R. M. Santilli (IBR), T. Kuliczkowski (PGTI), L. Ying (PGTI), M. Rodriguez (IBR),
R. Brenna (PGTI), and C. Lynch (IBR). The picture also shows the used equipment.

energy needed to fracture the deuterium and/or the carbon nuclei for the production
of the harmful radiation and waste expected by the physics community in the field.

Following the appearance of paper [3], the author requested nuclear physicists
Robert Brenna, Theodore Kuliczkowski and Leong Ying of Princeton Gamma
Tech Instruments to conduct independent verifications or dismissals of the results
presented in Ref. [3]. Following extensive and detailed tests via the use of the same
equipment and same set up of tests [3], the indicated nuclear physicists released paper
[4] (see also ref. [5]) confirming all main results of Ref. [3], including: the synthesis
of nitrogen from deuterium and carbon; the excess heat over that produced by the
AC-DC converters; and the complete absence of harmful radiations or radioactive
waste.

Refs. [3,4,5] have essentially confirmed the following Santilli’s Principles of ICNF
(see Refs. [2] for extensive studies):

PRINCIPLE 1: Need to achieve a controlled exposure of nuclei. Nuclei are naturally
protected by their electron clouds, as well known. Consequently, no nuclear fusion is
conceivably possible or otherwise plausible without the systematic exposure of nuclei
as an evident necessary preparatory step for their fusion. This is the reason the author
dedicated decades of research for the new chemical species of Santilli magnecules (see



Figure 3: A conceptual view of the simplest possible example of the new chemical species
of Santilli magnecule which is a necessary prerequisite for all ICNF studied in this paper.

the review in Ref. [1] or Vol. IV of Refs. [2] and original literature quoted therein).
This new species is schematically represented in Figure 3 for the simplest possible bi-
atomic case, and clearly shows the controlled exposure of nuclei via the polarization
of the orbitals into toroids permitted by DC electric arc. The same picture shows
the maintenance of said polarization via couplings. In the author’s opinion, the most
important scientific contribution by R. Brenna, T. Kuliczkowski and L. Ying in Refs
[4] has been the experimental confirmation of the existence of Santilli magnecules, not
only for their evident independent chemical value, but also as a necessary prerequisite
for fusion.

PRINCIPLE 2: The need to achieve the correct spin coupling. Following the exposure
of nuclei, no controlled fusion is conceivably possible, or otherwise plausible, with-
out the additional systematic control of spin couplings. In fact, triplet couplings of
spin notoriously cause strong repulsive forces in which case fusions can at best be at
random. Ref. [3] established the second necessary condition for truly controlled fu-
sions, the achievement of systematic spin couplings either of planar singlet or of azial
triplet type. Another illustration of the fundamental character of Santilli magnecules
for ICNF is visually represented in Figure 3 with the automatic achievement of the
axial triplet coupling of nuclear spins (same spin direction for nuclei along the same
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symmetry axis).

PRINCIPLE 3: Use the minimal possible energy required by conservation laws, called
“threshold energy.” A reason stressed by the author for the inability by hot fusions to
achieve systematic and controlled nuclear fusions (following half a century of research
and the expenditure of over one billion dollars) is the use of excessive energies under
which the control of the fusion is practically impossible due to inevitable instabilities
and to the extreme technological difficulties for their control. Similarly, the author
has stressed that a reason for the inability by cold fusions to achieve systematic
and controlled fusions has been the use of insufficient energies, e.g., as needed for
a systematic exposure of nuclei. These two opposite extremes illustrate the third
principle of ICNF according to which, in order to avoid uncontrollable instabilities,
following the achievement of the configuration of Figure 3 via the implementation of
Principles 1 and 2, the fusion reactor must operate at “threshold energy,” namely, the
minimal possible energy needed to push the two nuclei at a mutual distance of 1 fm
against their repulsive Coulomb forces, with the consequential activation of nuclear
forces, at which activation fusion is simply unavoidable under the indicated premises.

2. Review of the New Tests

In this paper, we report three tests providing additional experimental confirmation
of the preceding results [3,4,5]. It should be stressed to prevent misconceptions,
that as it was the case for the preceding tests, the sole objective at this time of the
tests reported below is that of confirming the “existence” of systematic and
controlled nuclear fusions without harmful radiation or waste. Any expecta-
tion of “measurements” of heat produced, flow, temperature gradient and other data
would be grossly premature at this time since the equipment could only be operated
for a few minutes due to excessive production of heat. Also, the achievement of mea-
surements will require the investment of millions of dollars for the construction of a
hadronic reactor suitable to operate for the sufficient long time needed for meaningful
measurements. Under these understandings, the new tests can be reported as follows:

TEST 1.
the main objective of this test was the experimental confirmation of the existence of

the following new ICNF
0(18,8,07,17.9991) + C(12,6,0", 12.0000) + TR —
— S4(30,14,0%,29.9737) + AE, (2a)
AE =0.0254 u, (2b)

that also verifies all possible nuclear laws. The test was suggested by the fact that,
during the years of experimentation on ICNF, the author has systematically seen a



Figure 4: A picture of the hadronic reactor used in Tests 1, 2, 3.

“whitish powder” on the edge of carbon electrodes that is somewhat suggestive of the
synthesis of silica.

For the test of ICNF (2a), the author and his technicians Chris Lynch, Michael
Rodriguez, Gene West, Donald Roch, Ray Jones and Jim Alban constructed
in early 2010 a new, hadronic reactor with automatic controls of the arc and main
functions. as depicted in Figures 4, 5 and 6. This is the first automatic hadronic
reactor for ICNF since it creates and controls automatically the DC arc, but also
monitors all main features, including power, temperature, pressure, flow, trigger,
and other features with automatic shut off in the event of any malfunction. The
reactor essentially consists in an internal, carbon steel, schedule 80, cylindrical vessel
1 ft x5 ft filled up with the desired gaseous hadronic fuel and traversed by a DC arc
between carbon electrodes. The internal chamber is then completed with an external
water jacket used to cool down the reactor and for the production of steam. An
AC-DC converter was used with 100 kW maximal power, although actual uses were
restricted to 50 kW for safety. The reactor is then completed with a variety of sensors
for internal as well as external temperature, pressure and other data connected to the
automatic controls.

Following over one year of tests, verifications and tuning to assure the proper
operation and safety of the reactor, on April 11, 2011, with the assistance of the
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Figure 5: A view of the production of steam during test 3.

above indicated technicians, the author pulled a vacuum from the interior chamber
of the reactor, that was subsequently filled up with commercially available oxygen at
100 psi pressure. The reactor was then operated for six minutes, at which time there
was a violent increase in the production of steam out of the cooling jacket (see Figure
5) that forced the shut down of the reactor for safety.

After cooling off, the reactor was open and solid samples of the electrodes were
sent for independent chemical analysis by Princeton Gamma Tech Instruments on a
comparative basis with a solid sample of the same electrodes before the activation of
the arc. These analyses, entirely reported in Ref. [6], establish the distinct
detection of silica following the activation of the DC arc that, under the
above conditions, confirm the synthesis in laboratory of silica via ICNF
(2a). Note that no sample of the interior gas was taken because its analysis would
have no impact on the desired verification, the latter dealing with a solid.

We should add that, as it was the case for all preceding tests, no measurable
radiation was detected in the outside and no radioactive waste was detected in the
inside of the hadronic reactor following its opening up after cooling. The various
detectors used for radiations have been described in detail in Refs. [3,4] and their
identification is ignored hereinafter to avoid repetitions.
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TEST 2.

The controlled fusion of oxygen and carbon into silica was done because particularly
important for environmental reasons since it is the premise for the use of the green
house gas COqy as a hadronic fuel for the production of clean energy. In fact, a
hadronic reactor can be filled up with CO;y at pressure; the DC arc will be quite
efficient in its separation into oxygen and carbon; part of the separated oxygen and
carbon will evidently combust and produce CO that, in the presence of oxygen and
an arc, reproduce again COs, thus recovering in great part the energy used for the
separation of CO,. However, jointly with the conventional combustion at a loss for
the energy balance, the hadronic reactor will produce a net positive energy output
due to the fusion of oxygen and carbon into silica. Test 1 described above and the
second test here considered confirm the possible use of C'Oy as hadronic fuel for the
production of energy without harmful radiation or waste via the indicated processes.

However, the use of oxygen in a hadronic reactor is very dangerous because it is
known that virtually all substances, including metals, ignite when exposed to oxygen
at high temperature. In fact, the local temperature at the tip of the DC arc when hit-
ting the cathode is estimated as being, locally, of the order of 10°C. Even though such
a temperature decreases quite rapidly with the distance from the arc, it nevertheless
causes a rapid increase in the temperature of the oxygen. This essentially implies the
achievement of high oxygen temperatures in a matter of minutes at 100 psi pressure,
and in seconds at higher pressures, at which value combustion of most substances
exposed to oxygen is expected.

Following the adoption of due safety precautions, and in view of the indicated
environmental relevance, the author and his technicians repeated Test 1 on April 14,
2011 for the specific intent of verifying or disproving results [6]. This second test
was done under exactly the same conditions and setting of Test 1, thus without any
modifications, to prevent variations. As predicted from carbon powder accumulated
in the preceding Test 1, the internal oxygen achieved metal combustion temperature in
about three seconds of operations, at which time an external metal fitting measuring
pressure ignited and the operation has to be instantly interrupted. Nevertheless,
despite its shortness, the test was sufficient to secure sample of “glassy-type small
droplets” formed in the top of the cathode that were sent to Princeton Gamma Tech
Instruments for study. The resulting analyses, reported in full in Ref. [7],
confirmed for the second time the synthesis of silica from oxygen and
carbon via ICNF (2a) via a comparison of the solid samples of Test 2 with those
of the electrodes prior to the activation of the arc.

We should add again that, as it was the case for all preceding tests, no measurable
radiation was detected in the outside and no radiocactive waste was detected in the
inside of the hadronic reactor following its opening up after cooling.
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Figure 6: A view of the scorched carbon cathode following test 3.

TEST 3.

Following the successful synthesis of silica and its confirmation, among a variety of
possible additional syntheses, the author selected Test 3 the ICNF of helium and
carbon into the oxygen according to the rules

C(12,6,07,12.0000) + He(4,2,0%,4.0026) + TR —

— 0(16,8,0715.9949) + AE (3a)
AE = 0.0077 u (3b)

which synthesis also verifies all possible nuclear laws.

The test was done by the author and the above identified technicians on April
15, 2011, along lines similar to the preceding ones. The interior of the reactor was
cleaned, and various components replaced; a vacuum was pulled out of the interior
chamber; the reactor was filled up with commercial grade helium at 100 psi; a sample
of the interior gas was taken following due flushing and marked f/el; the reactor was
activated for about six minutes and then shut off because of excessive increase of the
produced steam from the water jacket; a sample of the interior gas was then taken
and, again after flushing, marked He2; and the two samples Hel, He2 were sent
to the Oneida ORS Laboratories for chemical analyses. the results, reproduced
in full in Ref. [8] with main results reported in Figure 7, confirm the
synthesis of helium and carbon according to ICNF (3) because, as one can
see, the oxygen content decreased from 117 ppmv in Hel to a non-detectable amount
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in He2 but the CO increased from a non-detectable amount in Hel to 4.24% in He2,
an increase solely possible from the synthesis of oxygen in the interior of the reactor.

We should indicate that, following test 3, samples of the electrodes were sent
to Princeton Gamma Tech Instruments for comparative analysis with the sample
electrode not exposed to the arc. The analysis was done because, following the test,
the top of the cathode acquired a “glassy-type” appearance suggesting the possible
synthesis of silica following that of the oxygen as per Tests 1 and 2. The results of
the analyses, reported in full in Ref. [9] , show complete absence of silica in Test 3,
and the production instead of a large peak of Fluorite that could originate from the
melting of some internal plastic component of the hadronic reactor. Jointly we also
note the increase of COs from non-detectable in Hel to 914 ppmv in He2.

The latter negative result establishes that the double nuclear synthesis, first of
helium and carbon into ozygen and then of oxygen and carbon into silica, “cannot”
be controlled. In fact, during the first step, the oxygen is synthesized at the tip of
the DC arc when hitting the carbon in the cathode surface. The ensuing large local
production of heat as per value (3b) rapidly expels the synthesized oxygen from the
DC arc, thus preventing any additional nuclear synthesis. The creation of CO is
then consequential due to the great affinity of carbon and oxygen which is at the
foundation of our lives.

Needless to say, the peak reported in analyses [9] for F(19,9,1/2%) could have in-
terpretation other than the aboce indicated melt down of internal plastic components
of the reactor, such as the ICNF of O(18,8,0%) and H(1,1,1/2%). Similarly, inspec-
tion of analyses [8] reveals the increase of the percentage of a number of elements.
Of course, these increases are expected from the heat produced by the arc and the
consequential conventional release of gases from the various substances composing
the hadronic reactor, although some of the new elements could be the result, at least
in part, of additional ICNF. The study of these possibilities requires additional tests
with related analyses and they are planned for release in future presentation.

We should add again that, as it was the case for all preceding tests, no measurable
radiation was detected in the outside and no radioactive waste was detected in the
inside of the hadronic reactor following its opening up after cooling.

3. Concluding Remarks.
The preceding tests [3,4,5] and the additional tests presented in this paper have
completed the author’s intent Phase I consisting in establishing the “existence” of
ICNF without harmful radiations or waste, and provided the necessary credibility
for the transition to Phase II consisting in the construction of a prototype hadronic
reactor producing clean electric energy in excess of that used.

Despite these promising results, the author would like to caution the reader against
easy expectations of rapid achievement of Phase I1I, consisting in commercially avail-
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4 ONEIDA TEST REPORT

RESEARCH INTERNAL VAPOR ANALYSIS
J SERVICES. INC.

8282 HALSEY ROAD « WHITESBORO, NY 13492 « PHONE: (315) 736-5480

GINO AMATO ORS REPORT NO. : 189920-001
MAGNEGAS CORPORATION
150 RAINVILLE ROAD DATE TESTED : 4/8/2011
TARPON SPRINGS, FL 34689
' QUANTITY TESTED
UNITED STATES E 2
PACKAGE TYPE : CYLINDER
MFG. CODE
PO: 724
Ret. No:
SAMPLE D HE1 HE2
INLET
PRESSURE torr 387 474
NITROGEN ppmy 685 5431
OXYGEN ppmv "7 ND
ARGON ppmv ND A0
co2 ppmv ND 914
MOISTURE ppmv 1,281 3,061
HYDROGEN v | 003 3.06
METHANE ppmv ND ND
AMMONIA ppmv ND ND
HELIUM Y%ov 998 917
FLUQRO-
CARBONS ppmv ND ND
KRYPTON ppmv ND ND
BENZENE ppmv ND 158
co Yow ND 424
COMMENTS: ND = None Detacted
1% = 10,600 ppm
Tested per ORS SOF MEL-1070: Gas Analysis of Sealing Chamber Atmosphere.
Page : 10f1 APPROVED BY: Daniel J. Rossiter

Figure 7: A reproduction of the main results of the chemical analyses on gases for Test 3
conducted by Oneida ORS Laboratories
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able new clean energies, due to the complexity of the engineering problems to be solved
for extended use, as well as the large investments needed for their achievement.
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Abstract

In a presence of magnetic force, the orbiting electron is found to
come to a closer equilibrium state that is different from the ground
state predicted by Bohr model. This distance equals to the known
classical (electromagnetic) radius of the electron. This is realized
when hydrogen atom is under high compression. This is achievable
due to gravity supporting stars. Under this situation the gravita-
tional and electromagnetic forces are of the same orders of magni-
tude. This bound minimum state is modeled for the neutron. The
magnetic field resulting from the orbital motion of the electron in
this minimum state is 6.06 x 10T. This explains the origin of the
magnetic field in the neutron star.

Keywords: Nuclear structure models and methods; Neutron model;
Neutron star; Nuclear physics; Strong gravity
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1. Introduction

Bohr model of hydrogen relies on equality of centripetal and elec-
tric force between the electron and the proton. With other Bohr
postulates, Bohr was successful in describing the spectral emission
of hydrogen. However, the correct theory for hydrogen atom is the
Schrodinger quantum theory. The ground state of hydrogen atom is
when the electron is at Bohr radius. Bohr did not consider the mag-
netic field the electron experience as seen from the proton frame of
reference. The inclusion of the magnetic force in the orbital motion
of the electron is found to guarantee that the minimum distance the
electron can exist from the nucleus is equal to the electron classical
radius. In this context, Sachs considered neutron as proton bound
to an electron in the nucleon domain [1]. Under this condition, the
gravitational force is tantamount to electric force. The gravitational
and electromagnetic radius of the electron are the same. In the ordi-
nary atom, the gravitational force can be ignored in comparison to
electric force. This is supported by the calculation we have found for
this hypothesis. These data also conform with a recent study of a
cosmic quantum model of the universe (2, 3, 4, 5]. In this model, the
gravitational force inside the system is so huge and inseparable from
the electromagnetic forces.

In 1920, Ernest Rutherford hypothesized the possible existence
of the neutron as due to the disparity found between the atomic
number of an atom and its atomic mass which could be explained by
the existence of a neutrally charged particle within the nucleus [6].

The magnetic field created at the electron site due to the proton
electric field (E), in the rest frame of the proton, is given by Biot-
Savart law, viz., [7]

=

X kev
z =22 (1)

2

B=

This magnetic field gives rise to the spin-orbit interaction between
the electron spin and the orbital angular momentum. This is well
corrected by Thomas factor as [§]
1 k2 =
AE = L-S y f:Zs -

T m2e2 3

= 1
S, k_élmsg'

2)

€
m
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In the next section, we will show that this magnetic field is responsi-
ble for preventing the electron to fall into the nucleus (proton). The
stationary orbit is given by

mv?  ke?

. = eE. (3)

However, when an electron (magnetic moment) is placed in a mag-
netic field, the electron will precess with Larmor frequency, wy,, due
to its spin. This frequency is defined as [8]

e
= —B. 4
wL 2m )

2. The classical electron radius

The force on the electron in hydrogen atom is governed by the

Lorentz force .
F=ebk+eixB. (5)

Using egs. (1) & (3), the centripetal force will become

mu? _ ke? + kev? (6)
roor2 22
The above equation can be written as

., L2 12

" e 2 =0 @)
This is solved to give )
ke?

ry = ] (8)
mc

as the minimum distance from the nucleus, which is the electron
classical radius (r.), and

LZ
= 2 &

which is the new Bohr orbit with magnetic field effect included.
Equation (7) can be written as

LZ

s - (10)

r1y+ro =
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The first term represents the electron orbit radius when only elec-
tric force is present. It is thus interesting to note that the effect of
including the internal magnetic field in hydrogen in electron orbital
motion is to shorten the orbit by the electron classical radius.

In gravitation, one can define a similar radius (the gravitational
radius), that any orbiting body of mass m around a central mass M,
as

Tg= 5o (11)
as a consequence of gravitomagnetic force. This is half the Schwarzschild’s
radius of a black hole. Thus, eq.(8) defines the electromagnetic
(Schwartzchild-like) radius. It is the distance that when reached
by a body, the body can’not escape out of the electric force exerted
on.

According to the general theory of relativity, the equation of the
orbit of an object around a black hole is given by [11]

9 L? 3L%
— r -+ =

GMm? m2c?
Comparing the above equation with eq.(7) reveals that an electric
black hole may also exist that is analogous to gravitational one. This

implies that the shortest distance is rg = 3.
The Bohr orbit, velocity and energy of the electron are given by

k2 ke?\ 1 mk?e?

Tn = (W) n2’ Up = (T) ;;: En = —‘2&2%2 ’ (12)
It is interesting to see that the classical electron radius, i.e., r1, cor-
responds to Bohr orbit with n = o = %ﬁj— = T:%’? , so that its velocity
will be the speed of light in vacuum. In this case, the magnetic and
electric forces are equal. This critical case defines a quantum case in
which the electron and the proton become so close and may oscillate
with high frequency. We call this orbit the "quantum orbit”. The
energy of the electron in this case will be

Ey = ~%mc2 (13)

0.

r

representing the quantum fluctuation energy of an orbiting electron
around the nucleus. It can also be related to the zero energy due
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to matter contributions. This may be linked to the minimum en-
ergy of a harmonic oscillator, viz., £y = %h w. If we, thus, add the
matter contribution and the field contribution (oscillator), we get a
vanishing total zero energy, Enn = 0. This concept will resolve the
cosmological constant problem of the standard cosmology.

3. High pressure

The electron exists in the quantum orbit when a high pressure is
exerted on hydrogen. Such a high pressure exists in neutron stars.
In a presence of huge magnetic field, the electron can exist in the
quantum orbit defined above. We can assume it circulates the proton
with speed of light (at most). Its mass will increase and be relativistic
(m«). Recall that in Dirac formulation the electron speed is ¢ too.
The proton-neutron mass difference can be obtained from the orbital
energy of the electron in eq.(13) by assigning the right value for m.
In beta decay, the protonium gives a proton, an electron and the
binding energy of the electron converted into neutrino.

An external magnetic field that needed to set the electron in
circular motion with radius r. is when

mv2

evB = , vEc. (14)
Te

This approximation is applicable under extreme conditions of high
pressure. Using eq.(8), the above equation yields

me  m2ed

Sl e 6.06 x 101 T. (15)
This is a typical magnetic field found in neutron stars. Thus, this
huge magnetic field may be generated as a result of the electron mo-
tion around the proton. Hence, neutron stars are not composed of
neutrons, but a hydrogen system of electron-proton minimum states
(protonium). The protonium state acts as an unbalanced dipole,
since the charge is distributed over two unequal sizes. This asymme-
try may explain the anomalous magnetic moment of the neutron. If
this state represents a neutron, then the mass difference between the
proton and the neutron is carried by the electron orbital energy, as
evident from eq.(13).
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One can estimate the pressure exerted on these protoniums as

F, ke? /72 mic®
P ="1= € =2, 29 N/m?.
D= A= I = e = 293X 10% N/m®.(16)

This is in fact a typical nuclear pressure. It is also equal to the pres-
sure at the center of a neutron star. One can also measure the current
resulting from the circulating motion of the electron in protonium as

Ij=— = =27x10° A (17)

and the resulting magnetic field is that of a loop, i.e.,

poly  pem?c® mPc poc®
By = 2nre  Amk2e3 T ked where e (18)

It is interesting that the two magnetic fields (eq.(15) and (18)) are
the same. The magnetic flux is defined by
k
(g = ByA = dr— = = = 6.03 x 10" 1"Wb.
C (2414
Comparing eq.(15) and (18) shows clearly that the magnetic field of
the neutron star is that due to the motion of the electrons in the
protonium states.
The capacitance and inductance of the protonium are defined by
e e?

—k—é—/—']’— = "r‘n“gz“ = 3.12)(10_251?.
e

¢q /«60@2 31
L o e—— o = }_“ 6 1 —
g 1, e 96x10 H,C,

One can define the impedance of the protonium as

oL jo0r=3mra,

Z, =
4 Cq gqcC

where 7, is the time constant (7, = 27, see eq.(25)). It can alterna-
tively be defined as Z, = 1/%1. This is the same as the impedance

aq
of the free space (vacuum). Thus, despite the huge electric and mag-
netic field inside the protonium, yet the space inside is that of a true

vacuuin.
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Let us now consider the magnetic moment due to the electron in
the protonium state. This is given by
e e ked
oI e et L:—«ww—ﬁ, = ——— == —0. 10‘26 T 19
b= (5= ) L= =5 () =~ = ~6.75x 102 J/T (19)
This can be compared with the measured value of the neutron and
protons magnetic moments, viz. u, = —9.66 x 10727 J/T and fp =
1.41x 10726 J/T . We can get the exact value by making some linear
combinations of eq.(19) and wp.
One can further find the electric field due to protonium state as
ke m2(:4 20
q:;g:wﬁé—=18x10 V/m (20)
The electromagnetic energy density (or pressure) inside the proto-
nium is

1 9 Bg mic® 29 3

This is the same as the eq.(16).
The centripetal acceleration of the electron in the protonium state

is

2mct

T re ke?

The centripetal force of the electron is

= 6.4 x 1031 m/s?. (22)

mv?  2m2ct

Fe=—r ="

(23)

If we consider the protonium as a diploe, we can calculate the power
radiated due to Larmor dipole radiation as

- 2/%’62&3 _ 2 m3c®
1733 T 3 ke2

The time for the electron to circulate the proton in the protonium is

=58x10° W. (24)

2rre 2ke?

v me3

T, = =59x108 g, (25)
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This is a typical nuclear time. If we define the power as

1 m2c®
dr ke? ’
which apart from the prefactor of 47, is the same as that of eq.(24).
The reaction force of the emitted radiation , the Abraham-Lorentz
force, is given by

P = Ey/T, = (26)

_ ugeQ da m2ct

Y7 6rc dt | 3mwke?
which apart from the prefactor of 3w, is not very different from the

centripetal force in eq.(23).
The Larmor frequency for protonium as defined in eq.(4) will be,

using egs.(1) & (8),

=1.48 x 1072 m/s?, (27)

3
mc
Wo=ors (28)
while the gravitational Larmor precession is [9]
GMwv
Yo T 9p2g2 (29)

of an orbiting body about a central mass, M. The latter being
independent of the mass of the orbiting body.

4. Cosmic quantum mechanics

In a recent study, we have constructed the physical quantities charac-
terizing the physical world at all scales [2]. We employ only the four
fundamental constants, ¢, k, G, and k. The above physical quan-
tities for the protonium state conform with the quantities obtained
from this study. From an earlier work, we have shown that inside
the nuclear region, the Newton’s constant (Gy) is given by |3, 4, 5]

Gy ~ 109G . (30)

In the nuclear domain, the magnetic moment and current are given

by
i
GhQ 3
uN=( N ) , (31)

k



- 703 ~

and .
S \2
INn=|—=—1] . : 32
N (G Nk) (32
The nuclear electric field intensity is given by
En=|— (33)
RGZ, )
The nuclear magnetic field density is
By=|-—] - (34)
RG%
The nuclear magnetic flux density is given by
1
By = (@.) : (35)
c
The magnetic (electric) field contribution to mass density is given by
32
= =1. 36
o= (%) (30
The pressure exerted by nuclear medium(quantum) is given by
P ( o ) (37)
N=| =55 -
G%h

The acceleration of the quantum fluid filling the space-time inside
the nucleus is given by

7 3
ay = (G‘jvh) . (38)

The amount of energy emitted per unit time per unit area (energy
flux) in the nuclear region is given by

08
TN = (5?]—75) : (39)
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These quantities are the same to the corresponding ones in the pre-

2
vious section if we set, E%t—;nﬂ = o?, where, mgy = \/Mgmy,, is the
geometric mean of electron and proton masses. This implies that the
electric and the gravitational forces are of the same magnitude. It is

interesting to consider the case when n = \/a, that yields, r, = ;3”—5
and E, = ~——%ch0¢.
The intensity in eq.(39) can be obtained from eq.(24) or (26) as

P 1 [m4c®
Y= = e | e 40
Y7 42 T 6 (lc%") ’ (40)

which has the same order of magnitude. Under these severe condi-
tions the electron in the atom will be in the protonium state. The
gravitational force is so immense as indicated above. Thus, the elec-
tron does not combine with proton to form the neutron. It exists in
the protonium state at a distance equals to the electron classical ra-
dius from the proton. If we had substituted the relativistic mass for
the electron, eqgs.(8) - (28), will change by some orders of magnitude.
This can be done to give eq.(13) the required value (the neutron elec-
tron mass difference) or the required value for the neutron magnetic
moment in eq.(19).

It is remarkable that w, = wy for protonium state only if G —
100G, as evident from egs.(28) and (29). This makes the description
of protonium state electromagnetically is equivalent to the gravita-
tional description. This is the only state where gravity is of great
importance.

5. Neutron star

Stars (mainly hydrogen) are affected by their self-gravitating energy
and the gas energy. At equilibrium (balance) the gravity and gas
(neutron Fermi gas) pressures are equal. According to Newtonian
gravity, this occurs when the gas radius (R) is related to the star
mass M by [10]

3 3 1/3 h? L
i . — —1/3, 4
R 8 (27«‘4) (Gmi’lg) M (41)
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The gravitational pressure is defined as

3 [ GM?
Fo=75 (z;ﬁ) : (42)

Owing to eq.(41) and (42), a neutron star of mass M = 1.5M will
produce a radius of 10.75 km and a pressure of 2 x 1033 Pa. In our
present model, a pressure of ~ 10%3 Pa will produce a magnetic field
of 10™T. This is also apparent from substituting eqs.(16) and (18)
to yield

gx<%>@. (43)

6. Conclusions

The gravitational interaction has been assumed to be negligible in-
side the hydrogen atom. However, at nuclear scales the gravitational
force could be enormously large. When the magnetic force is consid-
ered in Bohr model, this force prevents the electron from falling into
the nucleus (proton). The the other effect can be enormously large.
We have found that the correct electron orbit due to the presence
of the internal magnetic field is to shorten the electron orbit by a
distance that equals to the electron classical radius. The effect of a
subminimum (quantum) state is the creation of a protonium state
that is a neutral state. The impedance of this state is equal to that
of free space. This may be interpreted as the space inside this state is
the same as that of vacuum. The physical properties of this state co-
incide with the neutron, but the protonium has asymmetric charge
distribution. Moreover, our findings agree with the data obtained
from recent hypothesis of a cosmic quantum mechanics picture of
the universe. In this hypothesis, the gravitational force in the nu-
clear domain is as great as 10%0 as the ordinary gravity. This makes
gravity inseparable from electromagnetism.
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Abstract

The quaterionic formulation of quantum mechanics yields the uni-
fied quantum wave equation (UQWEs). From these equations, Dirac,
Klein - Gordon and Schrodinger equations can be derived. While the
UQWESs represent a matter wave (de Broglie), the Maxwell equa-
tions represent a transverse wave (field). Owing to UQWEs, the
spin-0 and spin-1/2 particle are described by a wavepacket consist-
ing of waves traveling to the left and to the right with speed of light.
UQWEs show that spin-0 and spin-1/2 are in continuous states of
creation and annihilation that are compatible with Heisenberg un-
certainty relation. The creation - annihilation process is a result of
the time translation property of the particle wavefunction. These are
E' = E —imgc® and E' = E & moc?, for Klein-Gordon’ and Dirac’
particles, respectively. It is found that ‘Tzzz(—,g' is the period of the cre-
ation -annihilation process.

Keywords: Quantum mechanics; Unified quantum models; Dirac
equation; Klein-Grdon equation; Telegraph equation
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1 Introduction

Quantum mechanics has been developed by Schrodinger who em-
ployed de Broglie hypothesis about the matter wave. The solution
of Schrodinger is a plane wave. However, a particle should be repre-
sented by a collection of waves (wavepacket). Schrodinger equation is
valid for a particle moving at non-relativistic speed. Later, Klein and
Gordon developed a quantum theory based on Einstein’s relativity.
The resulting equation represents the motion of spin -0 massive par-
ticles. However, the probability density obtained from this equation
is not positive definite. This urges physicists to replace it by a more
convenient equation. For this Dirac developed his quantum theory.
To remedy this impasse, Dirac presented a first order differential
equation in space and time.

Maxwell had used the quaternions formulation to write his elec-
tromagnetic equations. The resulting number of equations are too
many (20 equations). These equations look absurd. Only after Gibbs
and Heaviside invented the vector analysis, Maxwell equations, in
their present form, became conspicuous. Since that time quaternions
had been absent from physics except for some recent limited trials.
The surprising work has come recently when I reintroduce quater-
nions in quantum mechanics employing new ideas [1]. As a result,
unified quantum wave equation is obtained. From this equation we
have derived the Dirac, Klein-Gordon and Schrodinger equations [2].
The UQWEs express Dirac’s equation as a second-order wave equa-
tion [1, 3]. Consequently, Klein-Gordon as well as Dirac equations
are of the same mathematical structure. With the aid of Arbab-
Widatallah complex transformations, Dirac equation in its new form
is derived from the UQWEs using the complex mass transformation
mo — tBmg [4, 5]. Moreover, Dirac and Klein-Gordon equations
are found to stem from a massless wave equation upon making the
mass translations (shift/rotation). Like Maxwell equations, UQWEs
involve scalar and vector waves. The scalar wave represents longi-
tudinal wave while vectorial wave represents transverse waves. The
vectorial wave can be some sort of spin (or polarization) wave that
some magnetic systems have exhibited. It can also be related to the
field associated with the particle (electric, magnetic, gravitational,...
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ete). In a recent work, we have shown that for spin-0 particles, the
vector field is related to its acceleration [6]. In our present case, one
finds (¢ < 1) and (4 < 15) as fundamental fields. Aharonov and
Bohm demonstrated that the real fields that the quantum nature
of the particle reveals are the vector potential A and scalar poten-
tial ¢ [7]. The phenomenon in which an electron is affected by A
and ¢ produces the interference pattern of wavefunction is called
Aharonov-Bohm effect. This is confirmed experimentally by setting
up an environment with A and ¢, while having zero electric and
magnetic fields. This poses the question whether A and ( are more
fundamental than E and B. Moreover, A can be decomposed (A)
in transverse and parallel (Elf) components. In 1930 Fermi showed
that ff“ and ¢ give rise to the instantaneous Coulomb interactions

between the charged particles, whereas A accounts for the electro-
magnetic radiation of charged moving particles.

2 Universal quantum wave equation

We have recently derived a system of unified quantum wave equations
[, 2]

= -+ 1Oy mo
GG Ty, 1)
o~ T ™ =, 2
and L
Vxy=0. (3)

Equations (1) - (3) can be solved to give

L& v%wz(h)@w%(@g)zwo:ﬂ, (4)

¢ ot2 at I3
and )
167,b dzp mgce
o VU 2(h)8t+( )w 0. (5)

This is a dissipative wave equation for spin - 0 particle. It is a generic
Telegraphy equation representing signal transmission. Such a wave
arises when friction or other dissipative force produces a damping
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(proportional to the velocity of vibration), whose effect in the wave
equation is the inclusion of the term proportional to %%
The solution of eq.(4)/or eq.(5) is of the form

2 -
m%c tyexp(E2ni(ckt — k - 7)),

Yo(z,t) = Aexp(—

where A = const. and & is the propagation constant. It represents
an undistorted damped wavepacket moving to the left and right.

It is interesting to note that egs.(4) and (5) represent a scalar
wave (longitudinal) and a vector wave that are concomitant with the
particle motion. The vector wave is only a feature of our present
equation and does not exist in Schrodinger, Dirac or Klein-Gordon
description. Therefore, other physical properties can be associated
with this vector nature of the particle. Hence, the complete physical
description of the particle will be performed in terms of these two
waves.

Let us now write

2
mec
do(r, t) = exp (——5— 1) p(r, 1) (6)
Substitute eq.(6) in eq.(4) to get
16°
0—25{‘; —~ V2% =0. (7)

Hence, o(r,t) satisfies the wave equation. Therefore, the UQWE is a
relativistic equation. It is remarkable that the UQWESs describe the
particle by a scalar and vector quantities. Thus, the full description
of the particle motion can be made using these two quantities only.
Moreover, since eqgs.(5) & (6) are of a Telegraph-type equation that
represents the motion of the electric signal in a wire, then the motion
of a particle in space mimics signal propagation. Moreover, eq.(5
and (6) are of special nature that describes the propagation of an
undistorted signal along the wire. Hence, the particle of spin-0 travels
in space undistortedly.
Dirac’s equation can be written as [8]
10¢

cat T ¢

imoc B

-V + P =0. (8)
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(1 0 [0 7 2 a2 »
where = 0 —1 ,a~<6, G),a = f3* =1 and & are the

Pauli matrices. Equation (8) can be written as

18¢  imgep e
'C"—ég-i“—'—h———‘t/)——"a V’I,L (9)

Squaring the two sides of eq.(9) yields
10 imgcﬁ 2 . L o=2\2
('c”'a"g + *{*) Y = (—-O¢ . V) P (10)

Since o? = 82 = 1, eq.(10) yields

1 0% 9 imoB\ O [ moc\?

age - Vor2 () 5 - () v=0.
It is remarkable to know that eq.(11) can be obtained directly from
eq.(4) if we let

mo —+ ¢ mg, (12)

in eq.(4). This entitles the wavefunction ¢ to be represented by a

two-component construct, viz., ¥ = ( ://j*' ) .

Let us now write

o2
1mgc .
B t) = exp (— 2L ) 0. (13)
Substituting eq.(13) in eq.(11) yields
1 0% 9
;;27'5%5 -V X = 0. (14)

Once again, under the energy translation of the particle’s wavefune-
tion both Dirac and Klein-Gordon equations describe a massless par-
ticle. This is the equation of a massless particle (wave).

Let us now write the wavefunction

Yo(r,t) = exp (—R - P @(r,t), k= const., (15)

and substitute it in eq.(4) to get

2
1 /(8  mgc? - N2
5—2-«( + 2 ) tp—(Vvii) 0 =0, (16)

o h
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1 9% 12,
C2 (9772 v <p - 07 (17)
where 5 5 2
o _ 9 mo VAR
oy~ o + — Vi=V-R&. (18)

Equations (17) and (18) are the wave equation for a massless par-
ticle interacting with an external field described by . This can be
compared with a massless particle interacting with electromagnetic
potentials A and @ where A = «% R and V = imoc?.
Similarly, let us now write the wavefunction

Y(r,t) =exp (=& - 7) x(r,t), K = coust,. , (19)

and substitute it in eq.(11) to get

1 /8 myc? ? = N2
»C—i(gi—m——ﬁ——) x«—(V——n) x =0, (20)
or Y
E—Q—W——V&XZO, (21)
where 5 p _— ) )
Erl TR V=V -&. (22)

Equation (22) can be seen as representing a massless particle in-
teracting with an external vector field £ in potential energy mgc?.
Thus, Dirac and Klein-Gordon particles, with mass mg, are equiva-
lent to massless particles (waves) interacting, with constant real and
imaginary scalar potential with the same constant vector potential,
respectively. These correspond to By = E+imgc?, Ef, = E+mgc?,
and p'’ = p+ i iR, for Klein-Gordon (KG) and Dirac (D) particles,
respectively.

Consequently, egs.(15) and (19) can be seen as representing the
local gauge transformation of the Klein-Gordon and Dirac wavefun-
cions, x and ¢, respectively. In this case the four vector potential
A, = (Ap, /f) will be (mgc?, ~%— R) for Dirac and (imgc?, ——%—? R) for
Klein-Gordon. In electromagnetism, the gauge transformation is ob-
tained via A} = A, + 9,A. This corresponds, in our present theory,
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to A= -—%Fi -7. This analogy is quite interesting. The terms A, and
O, can be seen as describing the transverse an paralel components
of the vector potential, respectively. We have shown recently that
the parallel component of /‘(, ie., 9,7, gives rise to a longitudinal
wave [6].

The dispersion relation arising from eq.(4) is

2
wi = m,%c i ck, (23)
so that the group velocity is
‘ Ow
’Ug = 5}; = 4c. (24)

3  Creation and annihilation of particles

It interesting that the mass of the particle disappears in eq.(14) while
appears in eq.(11). Hence, at a time 7 (after an interval of E?E’f the
particle loses its mass (annihilates) and then again being created af-
ter the same time. Therefore, as time goes on the particle experiences
continuously a processes of creation and annihilation. This process
is governed by the time of uncertainty owing to the Heisenberg un-
certainty relation (At AE > h).
Under the transformation

il i (25)
eq.(11) can be written as
10%)
S 55—V =0. (26)

And under the transformation

15} 8  myc?

eq.(4) becomes
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Using eq.(8), Dirac equation, eq.(11), can be written as

%%ig_ww—z(m%”) ﬂ&-§¢+(%ﬂf)2d;=0, (29)
which under the transformation
6’:\7+z‘m%cﬁo?, (30)
becomes 1 9%
25—6-5~v“¢:0. (31)

Once again, this is a wave equation of a massless particle. Thus,
a particle of spin-0 or spin-1/2 undergoes a process of creation and
annihilation during its propagation in space and time.

Hence, eqgs.(15) & (16) and eqs.(17) & (18) are compatible with
eqs.(6) & (14). Therefore, while Dirac’s particle undergoes a vir-
tual process of creation and annihilation, Klein-Gordon’s particle
undergoes the same process in real time. It is interesting to observe
that eqs.(7) and (18) are connected by the energy translation, viz.,
E’ = E—imoc® and E' = E+mgc?, to eqs.(6) and (13), respectively.
Hence, a massless wave equation can be obtained from Dirac equation
by employing the energy translation (shift), E’ = E 4 mgc?, instead
of setting the particle mass to zero, and vice versa. These may be
attributed to time advance and time retard translation. Similarly,
Klein-Gordon equation can be obtained from UQWE by employing
the energy translation (rotation), £/ = E — imgc? . This may be
attributed to time rotation of the wavefunction. Imaginary mass
is like imaginary frequency, designates a dissipation in the oscillat-
ing system. Moreover, these transformations are equivalent to set,
w' =w—1we, and w’ = w * w,, where w, = mh(:?'

The wavefunction of Dirac particle is a wavepacket consisting of
waves traveling to the right and left with speed of light in oppo-
site direction. The dimension of this wavepacket is L = —7;%5 The
transformation in eq.(30) tells us that the creation and annihilation
processes occur periodically over space and time. One can argue
that the spin of the Dirac particle is due to the rotation of the two
waves comprising the particle around each other. For an electron,
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each wave (identity) has a mass half that of the electron, i.e., mq /2.
The spin angular momentum will thus be

S=1lw= Zimirz?wi = mlr%wl + mzrgwg , W = Wy = ¢ . (32)
T
Hence,
1
S:—Q—h, r=L/2. (33)

This coincides with the quantum value predicted by Dirac. It has
long been believed that the spin is not a classical concept! It thus
becomes obvious that the electron spin is analogous to the angular
momentum of the classical circularly polarized wave. Tt has been
shown by Belinfante in 1939, that it is possible that the electron
spin can be considered as an angular momentum, generated by the
circulation of the energy flow in the field of electron wave [9]. It is of
importance to remark that the property in eq.(30) is not applicable
to eq.(4) of spin -0 particles.

It is interesting to notice that because of the damping nature of
the the spin-0 zero particles (eq.(6)), their interactions are of short
range. This is in agreement with Yukawa’s theory. This is unlike the
interactions of the spin -1/2 particles which have oscillatory wave
nature, as evident from eq.(14). Owing to this property, spin-1/2
particles have long range interactions. The conversion of mass into
energy and ice versa are a manifestation of Einstein’s mass-energy
equivalence, since both equations emerge from this equation.

4 Conclusions

We have developed unified quantum mechanics wave equations that
have an analogy with Maxwell equations, and yield Dirac and Klein
- Gordon equations. These unified equations represent, like Maxwell
equations, scalar (longitudinal) and vectorial (transverse) waves. In
the context of these equations, the solution of the modified Kiein-
Gordon equation is that of the normal Klein-Gordon equation where
the frequency will be w’ = w—iw,. However, the solution of the Dirac
equation is obtained from the wavefunction of the standard wave
equation by allowing the frequency of the wave to be w’ = w + w,.
Moreover, the Dirac and Klein-Gordon equations are found to be
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equivalent to an equation of massless particle interacting with con-
stant vector and scalar potentials. The transformed wavefunction for
Dirac and Klein-Gordon equation are that of the local gauge trans-
formation with a linear gauge function. Dirac and Klein-Gordon
equations are shown to exhibit creation - annihilation process con-
sistent with Heisenberg uncertainty equation.
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1 Fisher information

Measurement in quantum mechanics is described in a statistical way. For
this reason, we discuss in this paper mutual relation of the formalism of
quantum mechanics and mathematical statistics.

First, we discuss the Fisher information — a very important quantity
appearing in mathematical statistics. In the most simple form, it can be

introduced as follows (see e.g. [1-18]).
We start with the normalization condition for the probability density

p(z) = | (x)]?, where 1 is the wave function

/pdmzzl.

Here, integration is performed from the minus infinity to plus infinity. For
the sake of simplicity, we assume also that p has the property
lim z"p=0, n=0,1,2. (1)

L—+t00

Therefore, we limit ourselves to discussion of the so-called bound states.
Now, we perform integration by parts in the normalization condition

and get

z—a)ply_ o — /(UC - a)—gg dz =1,

where @ is an arbitrary real number. Taking into account condition (1) we
get the starting point of the following discussion

op .,
/(ac — a)ggdx = —1.

Further, we make use of the Schwarz inequality for the inner product (u,v) =
Ju*vdz of two complex functions u and v

(v, u)(v,v) > [(u, v)|*. (2)

Putting
1 op

u:(x—-a)\/ﬁ, ’U:%é—;



- 719 -

and using Schwarz inequality (2) we get

o) l(?ﬁ)z
/(:z: a)pdzr:/p 5 dz > 1,

where the second integral is called the Fisher information /

1 /70p\2
= / ~(~> dz.
p \Ox ‘
This inequality is usually written in the form
/(:z —a)’pdz I > 1. (3)

This result is very general and does not depend on the concrete meaning of
the variable z.

Interpretation of the last inequality is similar to that of the uncertainty
relations in quantum mechanics since for given [ the integral [(z —a)?pdzx
cannot be smaller than 1/ and vice versa. The minimum of the integral
[(z — a)?pdz is obtained for @ = [zpdz. In a more general form, it is is
possible to derive the so-called Rao-Cramér inequalities [19-21].

2 Wave function

The wave function % can always be written in the form
¥ = elis=s2)/h (4)

where s; and sy are real functions and % is the Planck constant. It follows

from here that
p= [y = e/

Therefore, the Fisher information can be written in the equivalent form
[7-11, 13, 17, 18]

(= [0 () e
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3 Kinetic energy

Using Eq. (4) for the wave function we can write the quantum-mechanical
kinetic energy 7" in the form [7-11, 13, 17, 18]

T — / (9s1/0x)* + (532/5'35)28482/&(133.
2m

Therefore, kinetic energy can be written as a sum of two terms
T = Tl + Tz,

where ) )
T, — / (0s1/0z) e P20y Ty = fl__f:
2m 8m
The first part of the kinetic 7} is analogous to the classical kinetic energy
given by the expression Tyuss = (V.S)?/(2m) known from the Hamilton-
Jacobi theory.
The second part of the kinetic energy
R1
Ty = —
7 8m
is proportional to the Fisher information /. Due to T3, the kinetic energy
of the bound states cannot equal zero. Therefore, the Fisher information
plays very important role in quantum mechanics.

4 Heisenberg uncertainty relations

As above, we write the wave function + in form (4). The Heisenberg uncer-
tainty relation for the coordinate  and momentum p has the form [22]

2

(A8 2 T
where

(A2)) = [(z— @) plds, (ap)) = [ 16— ()l da,
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p = —ih(9/0x) and () denotes the usual quantum-mechanical mean value.
Analogously to the kinetic energy, ((Ap)?) can be split into two parts
[7-10, 13, 15-18] |
(Ap)*) = ((Ap1)*) + ((Ap2)?),

()= [ (G2 = (52 )) o as

(o) = [ (32) e >ias.

Similarly to the first part of the kinetic energy T3, ((Ap;)?) can be
interpreted within generalization of classical mechanics in which the classical
momentum p = 35/0x, where S is the classical action, is replaced by 0s;/9x
and the probability density p = |1|? = e~2%/* is introduced.

The second part

where

and

2
((Aps)?) = /(%%) e 252/ y

is, analogously to T3, proportional to the Fisher information /

[ lgopN?, 4 039\? _osain . 4 2
]__/IZ(EE) dx“?/(@m)e da:——hg«Alb) )-

For ((Ap:)?) = 0 (for example for real wave functions), the Heisenberg

uncertainty relation \
h
(A2))(8p)%) 2 =,

is equivalent to inequality (3) with a = (z).

5 Klein-Gordon equation

In physics, we have to take into account not only the probability density p
but also the probability density current j describing the motion in space. For
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this reason, we introduce generalized spatial and time Fisher informations
I and I} [13, 17, 18]

)" (e [ 15

and

te L1+ (G) Jomasni= [ [ 152

Since there are no potentials in the last two Fisher informations, they cor-
respond to a free particle.

To describe physical phenomena in a way independent of the choice
of the concrete inertial system, we require that the combined space-time
Fisher information equals a real constant K independent of the state of the
investigated system

[t" + I =K,
where ¢ is the speed of light and the sign in front of the spatial Fisher
information I/ can be either + or —. By considering two cases of a particle
in rest and a particle with very large kinetic energy it can be shown that
(13, 17, 18]

K >0

and the minus sign in the last equation has to be taken

I” 1" -
= - I, =K.
In this way, the correct signs of the metric of the special relativity and the
relativistic invariance of the theory is obtained.

The last equation can be then written in the form

[ (Gl

2

th

PR )da:dt ~0

87:—55
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This functional must be independent of

o 1064 oYty KK | -
/t:(,/ (25 9t ot oz o —Z—&p ?p)dxdt +c.c. =0,

where ¢ denotes the variation. Performing integration by parts with respect
to ¢ in the first term and with respect to x in the second one and assuming
that variations d¢ and d¢* equal zero at the borders of the integration
region we have

o 02 19 KK
/t:0/5¢ (5:2;5 2o T)?/)dmdt +cc = 0.

The condition that this equation has to be fulfilled for arbitrary values of
01 and 0¢* yields the equation of motion

(__é__?i 1 02 h2K>¢
oz? 2 ot? 4

Introducing the rest mass myg

4mic?

K = i

and generalizing to three dimensions we obtain the well-known Klein-Gordon
equation

-~ ——— 1 = 0.

2 ot? h? ) 4

Dirac equation and many other equations of motion of physics can be ob-
tained in a similar way [3-6, 13, 17, 18].

( 1 9% mic

6 Two new uncertainty relations

Now we show that the Heisenberg uncertainty relation can be replaced by
two stronger uncertainty relations [13, 15-18, 23].
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First, we take

e o= (82 (82))n

Then, the Schwarz inequality yields the first uncertainty relation

(AT)2)(Ap1)?) [ / Az (%}1 - <2‘2 >) e*%z/hdxr. (5)

Here, the function 0s;/0z corresponds to the classical momentum 95/0z
and the relation has the usual meaning known from mathematical statistics:
the product of variances of two quantities is greater than or equal to the
square of their covariance. Depending on the functions s; and sq, the square
of the covariance of the coordinate and momentum at the right-hand side
can have arbitrary values greater than or equal to zero.

The second uncertainty relation can be obtained in an analogous way

for 5 5
_ _ (932 952
U= AT/, vw(@x <c‘3r>>\/ﬁ
with the result

(BaP) () 2 | [la - @) (G - (G2)) e ras]

The right-hand side of this relation can be simplified

2

(Ax)) (Bp)) = (6)

This uncertainty relation follows from the Schwarz inequality in a similar
way as the first one, however, the covariance (u,v) is in this case constant
and equals /2 > 0 independently of the concrete form of the function s,.
We note also that this relation is for (z) = @ equivalent to inequality (3)
for the Fisher information.

We see that the Heisenberg uncertainty relation can be replaced by two
more detailed uncertainty relations. Uncertainty relation (5) can be under-
stood as the standard statistical inequality between the coordinate z and
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momentum represented by the function p = Js;/0z. Uncertainty relation
(6) can be understood as the standard statistical inequality, too. However,
because of the specific form of the covariance (u,v) which equals /2 in-
dependently of the function sg, the left-hand side of this relation must be
greater than or equal to /%/4.

We note that the sum of uncertainty relations (5) and (6) is equivalent
to the so-called Robertson-Schrédinger relation for the coordinate and mo-
mentum. The Heisenberg uncertainty relation can be obtained from the
sum of the uncertainty relations by neglecting the first term on its right-
hand side. Therefore, two new uncertainty relations are stronger than the
corresponding Heisenberg and Robertson-Schrédinger uncertainty relations
[24-26].

For general discussion of this approach see [7-10].

7 Example: Free particle

We assume that the wave function of a free particle is at time ¢ = 0 described
by the gaussian wave packet [17, 18, 23]

w(xv O) = ! e“mz/(zaz)—‘rikm

Jav/r

with the energy
h.? h?kZ
 dma®  2m’
where a > 0 and k are real constants. By solving the time Schrodinger

equation we get

(1) = —m 1— i
Vave i+ ()
<$*%t)2 |k + i — By

X exp { —

2a? [1+ (-m%)z} T (1)’
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The corresponding functions s, and sy equal

T+ gt — My ht
s1(z,t) = ik “4’“ 3§ — harctan —,
1+ (ma2> ma
Bk )
1 T — —n?t 1
so(z,t) = = ( )

? {w(mz)]" a1+ (25

As it could be anticipated, the mean momentum and the mean coordinate

have the form 5 -
) S1 _ bk
() = < a@> Wk, (z)=—t.

The mean square deviations of the coordinate and momentum are given

by the equations
At RAt?
1 Apy)?) =
+(m” ((Ap?)

2m?2a® {1 + (ﬁg)z}

(Azy) = %

and
ﬁ?

2a? [1—% (magﬂ'

The left-hand side and the right-hand side of uncertainty relation (5)
have the same value

ds Os PRt
2 2y 2oL [ Z2L -t
@aran) = (s (G- (52))) = o
Therefore, the first uncertainty relation (5) is fulfilled with the equality sign.
Calculating the left~hand side of uncertainty relation (6) we obtain
h?
(B (Apa)) = -

and see that the second uncertainty relation (6) is fulfilled with the equality
sign, too.

((Ap2)?) =
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8 Equality sign

The equality sign in uncertainty relations (5) and (6) is obtained if the
functions s; and s, are quadratic functions of 2 of the form p(t)z? + q(t)z +
7(t), where real coefficients p(t), q(¢) and r(t) can depend on time [17, 18,
23]. All functions s; and s, given in our example fulfill this condition.

It is worth to notice that this condition for the first uncertainty relation
is independent of the form of the function s;. Therefore, the equality sign in
this relation can be achieved for much larger class of the wave functions than
in case of the Heisenberg or Robertson—Schrédinger uncertainty relations.
It is interesting not only from theoretical but also from the experimental
point of view.

9 Standard commutation relations

Now we return back to the normaliz‘ation condition for the wave function

/[wlgdx =1.

Performing integration by parts and assuming z||?> — 0 for z — 400 we

get
/ (a¢w+@/ w) z=—1.

Multiplying this equation by —i we obtain the equation [11, 13, 17, 18, 23]

/{(ﬂﬂﬁ)* (MZ%) (—z%) :mp:! T = 22/ Osz e 2 dy = i,
The resulting equation

contains the operator —i(9/0x) which appears here as simple mathematical
consequence of integration by parts applied to the normalization condition
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and indicates validity of a more general operator equality
[z, —3(9/0z)] = 1.

Except for the factor i determining the choice of units, this commutation
relation agrees with the commutation relation

[z, p] = ih.

between the coordinate z and momentum operator p = —¢h(39/0z) known
from quantum mechanics.

It is seen that existence of the commutation relation for the coordinate
and momentum in standard quantum mechanics is closely related to the
existence of the normalized probability distribution p(z) and relation p =
|v|2. Similar commutation relations should appear in any statistical theory
formulated analogously to that discussed above.

10 Probability density current

Now we discuss the probability density current j [11, 13, 17, 18, 23]. As in
continuum mechanics, we assume

I=pv,
where v is ”velocity”. We have in the Hamilton-Jacobi theory
)

v ?
m
where S is the Hamilton action and m is the mass. By analogy with these
expressions we can take in quantum mechanics

VSl

=
Then we get
h ; '
i = | APV (e ) +19p/2),

m
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where p = e7?2/" Using the wave function in the form ¢ = ,/pe*/" we
obtain the well-known result

. h % L *
J—%W Vi — V™).

11 Deformed commutation relations

Now we make an attempt to find prescription for the probability density
and inner product that would lead to the deformed commutation relation
in the form

pal—i(d/a)] - q[~i(9/a))x = i,

where p > 0 and ¢ > 0 are real numbers. For the sake of simplicity, we
put A = 1 here. We assume the normalization condition for the probability
density p(z) in the usual form

/ pdz = 1.

Performing integration by parts and assuming xp — 0 for z — +o0o0 we get
9
—dz = —1.
/ Tort

This equation containing the first derivate with respect to z is the starting
point of the following discussion.
In standard quantum mechanics, we use the relation

p =y
Now, let us try a bit more general expression
p= PPyl

Repeating similar procedure as above we get

- =
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This result indicates that
qx(0/0z) — p(0/0z)x = —1

or
pa{—i(8/02)] - q[~i(8/6x)]z =i
Thus, the probability density p = ||? |¢|? leads to the deformed commuta-
tion relation p z[—i(9/0x)] — q [—i(9/0x)]x = 1.
However, an attempt to define the corresponding inner product in the

form
(0. ¥) = [l e

or

(p.9) = [ Bty da

fails since these formulas do not obey the usual mathematical properties of

the inner product.
It is seen that this naive approach fails and that a more systematic

theory has to be used (see [27, 28] and references therein).

12 Conclusions

e Statistical description of measurement can be used as the starting
point for formulating consistent physical theories. It is especially valid
for quantum mechanics and quantum theory in general.

e The complex wave function ¢ carries information on two real quan-
tities: probability density p = [4|* and probability density current
i=n/2mi)p*Vy — Vil

e The Fisher information depending on the form of the probability den-
sity p or the envelop of the wave function is an important part of the
kinetic energy.

e The Fisher information appears also in the uncertainty relations.
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e The Fisher information can be used to find equations of motion.

e It is possible to derive two uncertainty relations that are stronger than
the Heisenberg uncertainty relation. In these relations, classical and
quantum descriptions are separated.

"o Standard commutation relations can be obtained from the normaliza-
tion condition [pdz = 1.

e Our attempt to get mathematical structure of quantum mechanics
with deformed commutation relations in a similar way as it can be
done for standard quantum mechanics has not been succesfull. It
must be done in a more systematic way as in the papers of prof. R.M.
Santilli (see e.g. [27, 28]).

This work was supported by the MSMT grant No. 0021620835 of the
Czech Republic.
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