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1. Introduction

Quantum mechanics and its meaning have been discussed in a large number of publications from
many different points of view (see e.g. books [1,2] and recent paper [3]). It shows that quantum
mechanics is, despite its numerous successful applications, difficult to understand.

In this paper, we discuss quantum mechanics from the point of view that is different from the pre-
vious ones and that can, as we hope, contribute to its better understanding. Our aim is to compare (a)
statistical extension of the Hamilton–Jacobi equation of classical mechanics in which the probability
density q(x, t) describing the statistical character of measurement of the coordinate x and momentum
p at time t is introduced (Section 2) and (b) analogous approach to the Schrödinger equation in which
the mean values of these quantities are calculated (Section 6). For the sake of simplicity, only the
bound states having the property limx?±1xnq = 0, n = 0, 1, 2 are investigated. By comparing results
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of (a) and (b) we are then able to find differences of both approaches and identify the terms that are
present in quantum mechanics and that do not appear in approach (a).

To be consistent, we consider the same statistical ensemble in both cases (a) and (b). In contrast to
standard statistical mechanics, where the mean values are calculated over different states of the system,
we consider in case (a) the same statistical ensemble as in quantum mechanics (b). It means that the
mean coordinate and momentum are measured in both cases on different members of the statistical
ensemble of systems in a given state or in repeated measurement on one system in this state (Section 2).

In more detail, we show that results following from the Schrödinger equation are, in contrast to
those following from the extension of the Hamilton–Jacobi theory (a), in agreement with general
structure of statistical theories or, more exactly, with the Schwarz inequality. Therefore, quantum
mechanics is from this point of view formulated correctly.

Basic mathematical apparatus of quantum mechanics like the wave function, probability density,
probability density current, coordinate and momentum operators, their commutation relation, kinetic
energy, uncertainty relations and continuity equation is also discussed.

It is assumed that the momentum can be represented in approach (a) in the form p = @s1/@x, where
s1 a real function (Sections 2–4). This expression is generalization of the formula p = @S/@x known from
classical mechanics, where S denotes the Hamilton principal action and can be used for calculating the
mean values hp̂i and hxp̂þ p̂xi=2. However, in more complicated cases as in case of the square of the
momentum, such representation of the momentum leads to results that are incorrect from the point
of view of the Schwarz inequality. In contrast to it, representation of the momentum by means of the
differential operator p̂ ¼ �i�hð@=@xÞ used in quantum mechanics (approach (b)) leads to formulae that
are not in contradiction with this inequality.

In our statistical approach, the complex wave function w = exp[(is1 � s2)/�h] is only a different way
of writing the statistical information carried by two real functions s1(x, t) and s2(x, t), where q =
exp(�2s2/�h) (Section 3). Its main advantage is simple formulation of the theory in terms of the oper-
ators acting on the wave function w.

Further it is shown that main differences of approaches (a) and (b) are closely related to the so-called
Fisher information introduced to mathematical statistics in 1925, i.e. before the first Schrödinger’s
papers on quantum mechanics were published (Section 7). It appears that the kinetic energy in quan-
tum mechanics equals the kinetic energy in approach (a) plus a term that is proportional to the Fisher
information I ¼

R1
�1ð@q=@xÞ2=qdx. This term is responsible for the non-zero kinetic energy of the bound

states in quantum mechanics as is for example the ground state energy of the linear harmonic oscilla-
tor. It shows that this well-known quantum mechanical result is closely related to the statistical char-
acter of quantum mechanics and representation of the momentum by the operator p̂ ¼ �i�hð@=@xÞ.

Another typical quantum result is the existence of the uncertainty relations. We show that the
Heisenberg uncertainty relation for the coordinate x and momentum p̂ is closely related to the
Rao–Cramér inequality known from mathematical statistics that appears in any similarly formulated
statistical theory. The Heisenberg and Robertson–Schrödinger uncertainty relations for the coordinate
and momentum and two new uncertainty relations that are stronger than the original Heisenberg and
Robertson–Schrödinger relations are from this point of view discussed (Sections 9–11).

The first uncertainty relation from the new ones has its classical analogy and can be understood as
the well-known inequality according to which the product of variances of two quantities is greater
than or equal to the square of their covariance. At the same time, the square of the covariance can have
arbitrary values greater than or equal to zero.

The second uncertainty relation mentioned above is closely related to the Rao–Cramér inequality
for the coordinate x and the Fisher information I. It has the same meaning as the above mentioned
inequality between the variances and covariance, however, it appears that the square of the covari-
ance is independent of the statistical state of the system described by the wave function w and equals
�h2/4. The second uncertainty relation has not its classical analogy and is related to the differential form
of the momentum operator.

Results of Sections 9–11 are illustrated in case of the Gaussian wave packet (Section 12).
The continuity equation in quantum mechanics is usually derived from the Schrödinger equation. It

is shown that this equation and the expression for the probability density current can be obtained in
analogy with classical continuum mechanics if the probability density current is calculated from the
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expression j = qv, where the velocity v equals v = p/m and m is the mass (Section 13). Then, using the
analogy of the expression for the momentum p =rS known from the Hamilton–Jacobi theory one gets
the continuity equation of quantum mechanics. It shows that the continuity equation in quantum
mechanics is analogous to the continuity equation known from classical continuum mechanics.

2. Statistical description of results of measurement

In this section, we discuss an important step making possible to compare mathematical formalism
of quantum and classical mechanics – statistical description of results of measurement. More detailed
discussion of this approach can be found in [4–7].

For the sake of simplicity, we consider only one spatial coordinate x and time t.
We note that measuring apparatus is not described in measurement on the microscopic level and

the measured system interacts with the measuring apparatus. Therefore, in agreement with experi-
mental experience, we assume that distribution of the results of measurement of the coordinate x
at time t can be described by the probability density q(x, t) obeying the normalization condition
Z

qdx ¼ 1; ð1Þ
where the integration is performed from minus infinity to plus infinity. For the sake of simplicity, we
assume also that q has the property
lim
x!�1

xnq ¼ 0; n ¼ 0;1;2: ð2Þ
Therefore, we limit ourselves to discussion of the so-called bound states obeying conditions (2).
Further we suppose that the mean value of the coordinate x resulting from measurement is given

by the integral
hxi ¼
Z

xqdx: ð3Þ
In the limit
qðx; tÞ ! dðx� xclÞ ð4Þ
corresponding to transition to classical mechanics with the classical trajectory xcl = xcl(t) the mean
coordinate hxi equals xcl.

To avoid confusion, we would like to point out that the mean value given by Eq. (3) is different from
the mean value of the coordinate used in statistical mechanics. In standard statistical mechanics, the
mean values are calculated over different states of the system that are possible in agreement with clas-
sical mechanics. In case of Eq. (3), the mean value hxi takes into account the fact that measurement of
the coordinate x performed on different members of the statistical ensemble of systems in a given state
(or in repeated measurement on one system in this state) leads in real experiments to different values
of x that has to be averaged with the corresponding statistical weight q. Therefore, the statistical
ensemble considered here is the same as that used in quantum mechanics (approach (b)). If necessary,
averaging over different states could be included into the theory in a similar way as it is done in quan-
tum statistics for mixed states by introducing the statistical weights of different states into Eq. (3).

In classical mechanics, the motion of a particle is described by the Hamilton–Jacobi equation [8,9]
ðp� qAÞ2

2m
þ V þ @S

@t
¼ 0; ð5Þ
where S = S(xcl, t) is the Hamilton principal action, xcl denotes the classical coordinate of the particle,
p ¼ @S
@xcl

ð6Þ
is the momentum, m and q are the mass and charge of the particle and A = A(xcl, t) and V = V(xcl, t) de-
note the vector and scalar potentials in one dimension, respectively.
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Statistical generalization of the last equation analogous to Eq. (3) can be in approach (a) written in
the form
hpi ¼
Z

pqdx ¼
Z
@s1

@x
qdx; ð7Þ
where s1 = s1(x, t) is a new real function corresponding to the Hamilton function S. It is assumed that
the function s1 leads for q(x, t) ? d(x � xcl) and s1 ? S to the same momentum as Eq. (6)
hpi ¼ @s1

@xcl
¼ @S
@xcl

: ð8Þ
It is to be noted that a similar comment as in case of Eq. (3) applies here. Different results of mea-
surement of the momentum are given by the function @s1/@x and their statistical distribution is
described by q.

It is assumed here that the function q characterizing the distribution of results of measurement x
and p is the same in Eqs. (3) and (7).

3. Momentum operator

In this section, we introduce the wave function w and show that for calculating the mean momen-
tum hpi, the momentum can be equivalently represented either by the function p = @s1/@x used in the
preceding section or by the momentum operator p̂ ¼ �i�hð@=@xÞ.

We start from Eq. (7) and re-write it into the form
hpi ¼
Z
@s1

@x
qdx ¼

Z
qe�is1=�h �i�h

@

@x

� �
eis1=�h dx: ð9Þ
The constant �h > 0 could be an arbitrary real constant depending on the choice of units. However, to
get formulae that agree with quantum mechanics, we will assume that �h = h/(2p) denotes the reduced
Planck constant.

Further, we introduce a real function s2 = s2(x, t) by the equation
q ¼ e�2s2=�h ð10Þ
or equivalently
s2 ¼ �
�h
2

lnq: ð11Þ
It follows from Eq. (2) that the integral
Z
@s2

@x
qdx ¼ � �h

2

Z
@

@x
e�2s2=�h dx ¼ � �h

2

Z
@q
@x

dx ¼ ��h
2
q
����1

x¼�1
¼ 0 ð12Þ
equals zero. Therefore, we can write the mean momentum also in the form
hpi ¼
Z

eð�is1�s2Þ=�h �i�h
@

@x

� �
eðis1�s2Þ=�h dx ð13Þ
or
hpi ¼
Z

w� �i�h
@

@x

� �
wdx; ð14Þ
where the function w equals
w ¼ eðis1�s2Þ=�h ð15Þ
and the star denotes the complex conjugate. The function w called the wave function in quantum
mechanics is in our approach only a different way of representing the state of the particle described
by the functions s1 and s2.
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It is worth noting that our expression for the wave function (15) is similar to that of Bohm [10,11].
However, we do not assume the existence of hidden variables here.

From Eq. (14) we get the usual expression for the mean momentum in the form
hp̂i ¼
Z

w�p̂wdx; ð16Þ
where the momentum operator equals
p̂ ¼ �i�h
@

@x
: ð17Þ
As shown in Eq. (12), the derivative @s2/@x does not contribute to the mean momentum hp̂i and the
mean momentum can be calculated either from Eq. (7) or Eq. (16). Therefore, both representations of
the momentum p = @s1/@x and p̂ ¼ �i�hð@=@xÞ are in this case equivalent.

4. Mean value of xp

In this section, we investigate the mean value of the product of the coordinate and momentum
which is important in the uncertainty relations.

We investigate the quantum-mechanical mean value
hxp̂þ p̂xi
2

¼ 1
2

Z
w� x �i�h

@

@x

� �
þ �i�h

@

@x

� �
x

� �
wdx: ð18Þ
Using Eq. (15) for the wave function we get
hxp̂þ p̂xi
2

¼ 1
2

Z
eð�is1�s2Þ=�h 2x �i�h

@

@x

� �
� i�h

� �
eðis1�s2Þ=�h dx: ð19Þ
Now we calculate the integral
Z
eð�is1�s2Þ=�hx �i�h

@

@x

� �
eðis1�s2Þ=�h dx ¼

Z
x
@s1

@x
e�2s2=�h dxþ i

Z
x
@s2

@x
e�2s2=�h dx: ð20Þ
Using integration by parts in the last integral and Eqs. (1) and (2) we obtain
Z
x
@s2

@x
e�2s2=�h dx ¼ x

��h
2

e�2s2=�h

����1
x¼�1

þ �h
2

Z
e�2s2=�h dx ¼ �h

2
: ð21Þ
The resulting formula
hxp̂þ p̂xi
2

¼
Z

x
@s1

@x
e�2s2=�h dx ¼

Z
x
@s1

@x
qdx ð22Þ
agrees with generalization of the expression x(@S/@xcl) from classical mechanics in the sense of
approach (a)
hxpi ¼
Z

x
@s1

@x
qdx: ð23Þ
Here, the classical momentum @S/@xcl is replaced by @s1/@x and the probability density q is taken into
account.

Summarizing the results of the last two sections we see that contribution of the function @s2/@x to
the mean values hp̂i and hxp̂þ p̂xi=2 equals zero and the momentum operator can be in these cases
represented by the function p = @s1/@x. Therefore, the quantum mechanical expressions for the mean
coordinate hxi, mean momentum hp̂i and their product in the form hxp̂þ p̂xi=2 give the same results as
Eqs. (3), (7) and (23). However, in more complicated cases as for example in case of the square of the
momentum the derivative @s2/@x does play the important role and the two representations of the
momentum p = @s1/@x and p̂ ¼ �i�hð@=@xÞ lead to different results (see Section 6 and the following
sections).
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5. Commutation relation between coordinate and momentum

It has been shown in the preceding section that the mean value hxp̂þ p̂xi=2 can be calculated from
Eq. (23) in which the coordinate x and momentum p = @s1/@x commute
hxpi ¼
Z

x
@s1

@x
qdx ¼ hpxi: ð24Þ
The fact that the coordinate x and momentum p = @s1/@x commute agrees with our experience from
macroworld. However, it is in contradiction with experimental evidences known from microworld
according to which results of measurement of the coordinate and momentum depend on the order
in which measurement is performed (for general discussion, see e.g. [12]). It shows that representation
of the momentum by the function p = @s1/@x is not in microworld usable.

If we use the differential representation of the momentum (17), application of the commutator
½x; p̂� to the wave function yields the commutation relation
½x; p̂� ¼ i�h ð25Þ
known from quantum mechanics.

6. Hamilton–Jacobi and Schrödinger equations

To compare approaches (a) and (b), we first replace the action S in the Hamilton–Jacobi equation
(5) by the function s1 as in Section 2, multiply the resulting equation by the probability density q =
exp(�2s2/�h) and integrate over x from minus infinity to plus infinity (see also [7])
Z ð@s1=@x� qAÞ2

2m
þ V þ @s1

@t

" #
e�2s2=�h dx ¼ 0: ð26Þ
Now we perform analogous steps with the time Schrödinger equation [13]
ðp̂� qAÞ2

2m
þ V

" #
w ¼ i�h

@w
@t
: ð27Þ
Multiplying the last equation from the left-hand side by w* and integrating over x from minus infinity
to plus infinity we can write the result in the form (see also [7])
Z jðp̂� qAÞwj2

2m
þ V jwj2 � w�i�h

@w
@t

" #
dx ¼ 0: ð28Þ
Using Eq. (15) for the wave function and Eq. (17) for the momentum operator we get
ðp̂� qAÞw ¼ @s1

@x
þ i

@s2

@x
� qA

� �
eðis1�s2Þ=�h ð29Þ
and
jðp̂� qAÞwj2 ¼ @s1

@x
� qA

� �2

þ @s2

@x

� �2
" #

e�2s2=�h: ð30Þ
Analogously, we obtain
w�i�h
@w
@t
¼ � @s1

@t
þ i

@s2

@t

� �
e�2s2=�h: ð31Þ
Therefore, Eq. (28) can be written as
Z ð@s1=@x� qAÞ2 þ ð@s2=@xÞ2

2m
þ V þ @s1

@t
þ i

@s2

@t

" #
e�2s2=�h dx ¼ 0: ð32Þ
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Due to Eq. (1) the integral
Z
@s2

@t
e�2s2=�h dx ¼ � �h

2
@

@t

Z
e�2s2=�h dx ¼ 0 ð33Þ
equals zero and the resulting equation
Z ð@s1=@x� qAÞ2 þ ð@s2=@xÞ2

2m
þ V þ @s1

@t

" #
e�2s2=�h dx ¼ 0 ð34Þ
can be compared with Eq. (26).
We see that Eq. (34) following from the Schrödinger equation differs from Eq. (26) only by the term
1
2m

Z
@s2

@x

� �2

e�2s2=�h dx ð35Þ
representing a part of the kinetic energy depending on the shape of the probability density q
given by @s2/@x. This term disappears either in the limit of classical mechanics when we can
assume q(x, t) ? d(x � xcl) and @s2=@xjx!xcl

! 0 [7] or if the function (@s2/@x)2 has very small values.
It has purely quantum character and is related to the so-called Fisher information discussed in the
following section.

7. Fisher information

The Fisher information is a very important quantity appearing in mathematical statistics (see e.g.
[14,15]). In our case, it can be introduced in the following simple way (see also [4,6,16–19]).

We start with normalization condition (1) for the probability density q in which we perform inte-
gration by parts and use Eq. (12)
½ðx� aÞq�1x¼�1 �
Z
ðx� aÞ @q

@x
dx ¼ 1; ð36Þ
where a is an arbitrary real number. Taking into account Eq. (2) we get the starting point of the fol-
lowing discussion
Z

ðx� aÞ @q
@x

dx ¼ �1: ð37Þ
Now we make use of the Schwarz inequality for the inner product ðu;vÞ ¼
R

u�v dx of two complex
functions u and v
ðu;uÞðv ;vÞP jðu;vÞj2: ð38Þ
Putting
u ¼ ðx� aÞ ffiffiffiffiqp ; v ¼ 1ffiffiffiffiqp @q
@x

ð39Þ
and using inequality (38) we get
Z
ðx� aÞ2qdx

Z
1
q

@q
@x

� �2

dx P 1; ð40Þ
where the second integral is called the Fisher information I
I ¼
Z

1
q

@q
@x

� �2

dx: ð41Þ
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Inequality (40) is usually written in the form [14]
Z
ðx� aÞ2qdxI P 1: ð42Þ
This result is very general and does not depend on the concrete meaning of the variable x. Interpreta-
tion of the last inequality is similar to that of the uncertainty relations in quantum mechanics since for
given I the integral

R
ðx� aÞ2qdx cannot be smaller than 1/I and vice versa. The minimum of the inte-

gral
R
ðx� aÞ2qdx is obtained for a = hxi.

We note that inequality (42) in a more general form is known in mathematical statistics as the
Rao–Cramér inequality [15,20–22]. Hence, any similarly formulated statistical theory has to lead to
inequality (42) or an analogous one.

Using the expression q = exp(�2s2/�h) for the probability density the Fisher information can be writ-
ten in the equivalent form
I ¼ 4

�h2

Z
@s2

@x

� �2

e�2s2=�h dx ð43Þ
which will appear in the following discussion.
8. Kinetic energy

Now, we express the mean kinetic energy appearing in Eq. (34)
T ¼
Z ð@s1=@x� qAÞ2 þ ð@s2=@xÞ2

2m
e�2s2=�h dx ð44Þ
as a sum of two terms
T ¼ T1 þ T2; ð45Þ
where
T1 ¼
Z ð@s1=@x� qAÞ2

2m
e�2s2=�h dx ð46Þ
and
T2 ¼
�h2I
8m

: ð47Þ
The first part of the kinetic energy T1 depending on @s1/@x is the same as the kinetic energy appear-
ing in Eq. (26). The second part of the kinetic energy T2 depending on @s2/@x is proportional to the Fish-
er information I and does not appear in Eq. (26).

We note also that, in contrast to classical mechanics, the kinetic energy T for the bound states obey-
ing condition (2) cannot equal zero.
9. Heisenberg uncertainty relations

In this and the following two sections we discuss the uncertainty relations known from quantum
mechanics and their relation to inequality (42).

For the sake of simplicity, we assume that the potential A equals zero. The Heisenberg uncertainty
relation [23] for the coordinate x and momentum p has then the form
hðDxÞ2ihðDpÞ2iP �h2

4
; ð48Þ
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where
hðDxÞ2i ¼
Z
ðx� hxiÞ2jwj2 dx ð49Þ
and
hðDpÞ2i ¼
Z

�i�h
@

@x
� hp̂i

� �
w

���� ����2 dx: ð50Þ
Discussion of the mutual relation of the Heisenberg uncertainty relation (48) and inequality (42) for
the Fisher information can be found for example in [6,24].

Using Eqs. (12), (15) and (43) we get
hðDpÞ2i ¼ hðDp1Þ
2i þ hðDp2Þ

2i; ð51Þ
where
hðDp1Þ
2i ¼

Z
@s1

@x
� @s1

@x

� 	� �2

e�2s2=�h dx ð52Þ
and
hðDp2Þ
2i ¼

Z
@s2

@x

� �2

e�2s2=�h dx ¼ �h2I
4
: ð53Þ
We see that, analogously to the kinetic energy T, the mean square deviation of the momentum h(Dp)2i
can be split into two parts.

The first part h(Dp1)2i can be interpreted within approach (a) in which the classical momentum
p = @S/@xcl is replaced by @s1/@x and the probability density q = exp(�2s2/�h) is introduced.

The second part h(Dp2)2i is proportional to the Fisher information I given by Eq. (43). We note also
that for h(Dp1)2i = 0 the Heisenberg uncertainty relation (48) can be re-written in form of inequality
(42) for the Fisher information with a = hxi.

We see that the constant �h2/4 at the right-hand side of the Heisenberg uncertainty relation (48) has
the same origin as the right-hand side of inequality (42). Therefore, existence of the Heisenberg uncer-
tainty relation (48) is closely related to the statistical description of results of measurement by means
of the probability density q and the differential form of the momentum operator p̂ (approach (b)). This
point is discussed in the following section in more detail.

10. Two new uncertainty relations

According to the well-known result of mathematical statistics, the product of variances of two
quantities is greater than or equal to the square of their covariance [22]. For the following two cases
it is equivalent to the Schwarz inequality (38) with a suitable choice of the functions u and v.

Now we show that the Heisenberg uncertainty relation can be replaced by two uncertainty rela-
tions for h(Dp1)2i and h(Dp2)2i (see also [25–27]).

First, we take
u ¼ Dx
ffiffiffiffi
q
p ð54Þ
and
v ¼ @s1

@x
� @s1

@x

� 	� � ffiffiffiffi
q
p

: ð55Þ
Then, the Schwarz inequality yields the first uncertainty relation
hðDxÞ2ihðDp1Þ
2iP

Z
Dx

@s1

@x
� @s1

@x

� 	� �
e�2s2=�h dx

� �2

: ð56Þ
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As it follows from Section 4, the function @s1/@x in the last integral represents in this case the classical
momentum and this relation has the usual above mentioned meaning known from mathematical sta-
tistics. Depending on the functions s1 and s2, the square of the covariance of the coordinate and
momentum at the right-hand side of this relation can have arbitrary values greater than or equal to
zero.

The second uncertainty relation can be obtained in an analogous way for
u ¼ Dx
ffiffiffiffi
q
p ð57Þ
and
v ¼ @s2

@x
� @s2

@x

� 	� � ffiffiffiffi
q
p ð58Þ
with the result
hðDxÞ2ihðDp2Þ
2iP

Z
ðx� hxiÞ @s2

@x
� @s2

@x

� 	� �
e�2s2=�h dx

� �2

: ð59Þ
The right-hand side of this relation can be due to Eq. (12) simplified
hðDxÞ2ihðDp2Þ
2iP

Z
x
@s2

@x
e�2s2=�h dx

� �2

: ð60Þ
Then, Eq. (21) leads to the final form of the second uncertainty relation
hðDxÞ2ihðDp2Þ
2iP �h2

4
: ð61Þ
This uncertainty relation follows from the Schwarz inequality in a similar way as the first one, how-
ever, the covariance (u,v) is in this case constant and equals �h/2 > 0 independently of the concrete
form of the function s2. We note also that relation (61) is for hxi = a equivalent to relation (42) for
the Fisher information.

We see that the Heisenberg uncertainty relation (48) can be replaced by two more detailed uncer-
tainty relations (56) and (61). First uncertainty relation (56) can be understood as the standard statis-
tical inequality between the coordinate x and momentum represented by the function p = @s1/@x.
Second uncertainty relation (61) can be understood as the standard statistical inequality, too. How-
ever, because of the specific form of the covariance (u,v) which equals �h/2 independently of s2, the
left-hand side of this relation must be greater than or equal to �h2/4.

Similar uncertainty relations can be derived also in the multidimensional case [25,26] and for the
mixed states described by the density matrix [26].

The sum of uncertainty relations (56) and (61) gives the relation
hðDxÞ2ihðDpÞ2iP
Z

Dx
@s1

@x
� @s1

@x

� 	� �
e�2s2=�h dx

� �2

þ �h2

4
: ð62Þ
The Heisenberg uncertainty relation (48) can be obtained from this relation by neglecting the first
term on its right-hand side. Therefore, uncertainty relations (56) and (61) are stronger than the cor-
responding Heisenberg uncertainty relation (48).

11. Robertson–Schrödinger uncertainty relation

Relationship of uncertainty relations (56) and (61) to the Robertson–Schrödinger uncertainty rela-
tion [28–31] can be clarified as follows.

For the linear hermitian operators bA and bB, the Robertson–Schrödinger uncertainty relation can be
written in the form
hðDbAÞ2ihðDbBÞ2iP 1
4
hfDbA;DbBgi2 þ jh½bA; bB�ij2
 �

; ð63Þ
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where hbAi ¼ hwjbAwi is the mean value of the operator bA in the state described by the wave function
w; DbA ¼ bA � hbAi; fbA; bBg ¼ bAbB þ bBbA denotes the anticommutator and ½bA; bB� ¼ bAbB � bBbA the commuta-
tor of the operators bA and bB.

For the operators x̂ ¼ x and p̂ ¼ �ið�h@=@xÞ we get after the straightforward calculation
1
2
hfDx;Dp̂gi ¼ 1

2

Z
eð�is1�s2Þ=�h Dx �i�h

@

@x
� hp̂i

� �
þ �i�h

@

@x
� hp̂i

� �
Dx

� �
eðis1�s2Þ=�h dx

¼
Z

Dx
@s1

@x
� @s1

@x

� 	� �
e�2s2=�h dx: ð64Þ
Further, taking into account the commutation relation ½x; p̂� ¼ i�h, relation (63) leads to Eq. (62).
Therefore, relations (56) and (61) are stronger than the corresponding Heisenberg and Robertson–
Schrödinger relations and yield more detailed information in terms of the mean square deviations
h(Dx)2i, h(Dp1)2i and h(Dp2)2i. As mentioned in the preceding section, Heisenberg uncertainty relation
(48) can be obtained from Robertson–Schrödinger relation (62) if the first term on the right-hand side
of Eq. (62) is omitted.

We noted at the end of Section 4 that the momentum can be in some cases represented by the func-
tion p = @s1/@x. For this representation, the commutator [x,p] equals zero and the term �h2/4 in the
uncertainty relations (48) and (62) is replaced by zero. Since the resulting relations are not in agree-
ment with Eq. (42) following from the Schwarz inequality, we see again that this non-operator repre-
sentation of the momentum is not in general case usable.
12. Gaussian wave packet

In this section, we discuss uncertainty relations (48), (56), (61) and (62) in case of the Gaussian
wave packet.

We assume that the wave function of a free particle is at time t = 0 described by the Gaussian wave
packet
wðx;0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
a
ffiffiffiffi
p
pp e�x2=ð2a2Þþikx ð65Þ
with the energy
E ¼ �h2

4ma2 þ
�h2k2

2m
; ð66Þ
where a > 0 a k are real constants. By solving the time Schrödinger equation we get
wðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
a
ffiffiffiffi
p
pp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i�ht

ma2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ht

ma2

� 
2
q exp �

x� �hk
m t

� 
2

2a2 1þ �ht
ma2

� 
2
h iþ i

kxþ �htx2

2ma4 � �hk2

2m t

1þ �ht
ma2

� 
2

" #8<:
9=;: ð67Þ
The corresponding functions s1 and s2 and their derivatives equal
s1ðx; tÞ ¼ �hk
xþ �htx2

2ma4k�
�hk
2m t

1þ �ht
ma2

� 
2 � �h arctan
�ht

ma2 ; ð68Þ

s2ðx; tÞ ¼
�h
2

x� �hk
m t

� 
2

a2 1þ �ht
ma2

� 
2
h i� ln

1

a
ffiffiffiffi
p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �ht
ma2

� 
2
q

8><>:
9>=>; ð69Þ
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and
@s1

@x
¼ �hk

1þ �htx
ma4k

1þ �ht
ma2

� 
2 ; ð70Þ

@s2

@x
¼

�h x� �hk
m t

� 

a2 1þ �ht

ma2

� 
2
h i : ð71Þ
As it could be anticipated, the mean momentum and the mean coordinate equal
hp̂i ¼ @s1

@x

� 	
¼ �hk ð72Þ
and
hxi ¼ �hk
m

t: ð73Þ
The mean square deviations of the coordinate and momentum are given by the equations
hðDxÞ2i ¼ a2

2
1þ �ht

ma2

� �2
" #

ð74Þ
and
hðDp1Þ
2i ¼ �h4t2

2m2a6 1þ �ht
ma2

� 
2
h i ; ð75Þ

hðDp2Þ
2i ¼ �h2

2a2 1þ �ht
ma2

� 
2
h i : ð76Þ
The left-hand side of relation (56) equals
hðDxÞ2ihðDp1Þ
2i ¼ �h4t2

4m2a4 : ð77Þ
Calculating the right-hand side, we get the same result
Dx
@s1

@x
� @s1

@x

� 	� �� 	2

¼ �h4t2

4m2a4 : ð78Þ
Therefore, uncertainty relation (56) is fulfilled with the equality sign.
Calculating the left-hand side of uncertainty relation (61) we obtain
hðDxÞ2ihðDp2Þ
2i ¼ �h2

4
ð79Þ
and see that uncertainty relation (61) is fulfilled with the equality sign, too.
The corresponding Robertson–Schrödinger uncertainty relation has the form
hðDxÞ2hðDpÞ2ii� ¼ �h4t2

4m2a4 þ
�h2

4
ð80Þ
and is fulfilled with the equality sign for all t P 0. The Heisenberg uncertainty relation (48) for our
wave packet can be obtained if the first term on the right-hand side of the last equation is neglected.

The equality sign in Schwarz inequality (38) is obtained if the functions u and v are collinear, i.e. for
u = constv, where const is a complex number. However, since the functions s1, s2 and q are real, the
corresponding functions u and v are also real. Therefore, const must be a real number or a real function
of t. It follows from the conditions u = constv for the functions s1 and s2 that these functions have to be
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quadratic functions of x of the form a(t)x2 + b(t)x + c(t), where real coefficients a(t), b(t) and c(t) can
depend on time. Both functions s1 and s2 given by Eqs. (68) and (69) fulfill this condition.

It is worth to notice that the condition for the equality sign in relation (61) is independent of the
form of the function s1. Therefore, the equality sign in this relation can be achieved for much larger
class of the wave functions than in case of the Heisenberg or Robertson–Schrödinger uncertainty rela-
tions. It is interesting not only from theoretical but also from the experimental point of view.

13. Continuity equation

In contrast to standard mathematical statistics, probability density q(x, t) in quantum mechanics
depends on time. For particles with the infinite life time investigated in standard quantum mechanics
normalization condition (1) is valid at all times from the initial measurement (or preparation of the
system in the state given by the functions s1 and s2 or, equivalently, by the wave function w) till
the following measurement at later time. For this reason, the continuity equation in three dimensions
@q
@t
þ div j ¼ 0 ð81Þ
analogous to the continuity equation known from classical continuum mechanics must be valid in
quantum mechanics, too. In a similar way as in continuum mechanics, we can write the probability
density current in the form j = qv, where v = p/m is the velocity and p is the momentum. It follows
from Section 3 that the momentum p can be in three dimensions represented by the vector rs1 with
the result
j ¼ qv ¼ q
p
m
¼ q
rs1

m
: ð82Þ
Using wave function (15) this formula can be written in the form known from quantum mechanics
j ¼ �h
2mi

w�rw� wrw�ð Þ: ð83Þ
It is seen that in contrast to the kinetic energy or uncertainty relations, there are no purely quan-
tum terms in the quantum continuity equation and that this equation has its analogue in classical con-
tinuum mechanics and in approach (a).

14. Conclusion

In this paper, two approaches (a) statistical extension of the Hamilton–Jacobi theory with the
momentum p = @s1/@x and (b) analogous approach following from the time Schrödinger equation with
the momentum operator p̂ ¼ �i�hð@=@xÞ have been compared. Only the bound states obeying the
boundary condition (2) have been discussed.

The statistical ensemble used in approach (a) is different from that used in standard statistical
mechanics. In contrast to statistical mechanics where the mean values are calculated over different
states of the system, the mean values defined by Eqs. (3) and (7) take into account the fact that mea-
surement of the coordinate and momentum on different members of the statistical ensemble of sys-
tems in a given state (or in repeated measurement on one system in this state) yields in real
experiments different values of x and p. Therefore, the statistical ensemble considered in case (a) is
the same as that used in quantum mechanics (b). The actually measured values of the coordinate
and momentum are given by x and @s1/@x and the statistical weight of different results of measure-
ment is described by the probability density q(x, t).

The function corresponding to the principal Hamilton action S appearing in classical mechanics has
been denoted in both cases (a) and (b) as s1(x, t). It has been assumed that in the limit q(x, t) ?
d(x � xcl) or �h ? 0+ corresponding to transition to classical mechanics with the trajectory xcl = xcl(t)
the function s1 leads to the same momentum as the formula from classical mechanics p = @S/@x.
Then, we have introduced the second real function s2(x, t) by the relation q = exp(�2s2/�h). Two real
functions s1 and s2 give uniquely two important quantities used in the statistical description of
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measurement – probability density q and probability density current j. Instead of two real functions s1

and s2 it is then possible to introduce the complex wave function w = exp[(is1 � s2)/�h] known from
quantum mechanics.

In case of the mean values hp̂i or hxp̂þ p̂xi=2 the momentum can be represented either by the func-
tion p = @s1/@x or the momentum operator p̂ ¼ �i�hð@=@xÞ acting on the wave function w. However, in
more complicated cases as in case of the kinetic energy these two representations of the momentum
lead to different results.

The difference of the kinetic energies in cases (b) and (a) equals T2 = �h2I/(8m), where
I ¼

R
ð@q=@xÞ2=qdx ¼

R
ð@s2=@xÞ2qdx is the Fisher information, important quantity appearing in math-

ematical statistics. The Fisher information appears also in the inequality
R
ðx� aÞ2qdxI P 1, Eq. (42),

known from mathematical statistics.
Heisenberg and Robertson–Schrödinger uncertainty relations known from quantum mechanics fol-

low from two stronger uncertainty relations (56) and (61).
First relation (56) can be understood as the inequality for the product of variances of the deviation

of the coordinate x and momentum p = @s1/@x from their mean values which must be greater than or
equal to the square of the covariance of these quantities. Therefore, relation (56) has the well-known
statistical meaning and appears in both approaches (a) and (b).

Second relation (61) is equivalent to the above mentioned inequality (42) for the Fisher informa-
tion. It can be also understood as the inequality between the variances and covariance of the deviation
of the coordinate x and the function @s2/@x from their mean values. However, the covariance is con-
stant and equals �h/2. Its square then yields the constant �h2/4 appearing at the right-hand side of
the Heisenberg uncertainty relation. Uncertainty relation (61) is not obtained in approach (a).

Heisenberg (48) and Robertson–Schrödinger (63) uncertainty relations and two new uncertainty
relations (56) and (61) are analytically calculated for the Gaussian wave packet (Section 12). In this
case, the Robertson–Schrödinger uncertainty relation and two new uncertainty relations are fulfilled
with the equality sign for all times t P 0.

It follows from the Schwarz inequality that in any statistical theory with the same averaging as in
(a) and (b) must exist an inequality analogous to Eq. (42). Since there is no such relation in approach
(a), this approach is from this point of view incorrect. In contrast to it, mathematical structure of quan-
tum mechanics with the momentum operator p̂ ¼ �i�hð@=@xÞ is from this point of view correct.

In contrast to the kinetic energy and uncertainty relations there are no typically quantum terms in
the quantum continuity equation (Section 13). The continuity equation in quantum mechanics can be
introduced in analogy with the continuity equation known from classical continuum mechanics.

Finally we note that quantization known from quantum mechanics is consequence of the statistical
description of results of measurement, differential form of the momentum operator p̂ and boundary
conditions applied to the wave function w. As it is known, only some solutions of the Schrödinger
equation obey these conditions and possible states of quantum systems can be quantized.

In summary, results of this paper show that the basic mathematical structure of quantum mechan-
ics can be understood as generalization of classical mechanics in which the statistical character of re-
sults of measurement is taken into account and the most important general properties of statistical
theories known from mathematical statistics are correctly respected. It is not therefore surprising that
quantum mechanics has been successfully applied to a very large spectrum of systems in physics,
chemistry, biology and other fields.
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